JP2006071190A - Oxygen producing device - Google Patents

Oxygen producing device Download PDF

Info

Publication number
JP2006071190A
JP2006071190A JP2004255787A JP2004255787A JP2006071190A JP 2006071190 A JP2006071190 A JP 2006071190A JP 2004255787 A JP2004255787 A JP 2004255787A JP 2004255787 A JP2004255787 A JP 2004255787A JP 2006071190 A JP2006071190 A JP 2006071190A
Authority
JP
Japan
Prior art keywords
oxygen
nitrogen
air
sub
rectification column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004255787A
Other languages
Japanese (ja)
Other versions
JP4698989B2 (en
Inventor
Takao Yamamoto
隆夫 山本
Masashi Kaneshima
昌司 兼島
Shinji Tomita
伸二 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide Japan GK
Original Assignee
Air Liquide Japan GK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide Japan GK filed Critical Air Liquide Japan GK
Priority to JP2004255787A priority Critical patent/JP4698989B2/en
Publication of JP2006071190A publication Critical patent/JP2006071190A/en
Application granted granted Critical
Publication of JP4698989B2 publication Critical patent/JP4698989B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04969Retrofitting or revamping of an existing air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04321Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04436Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
    • F25J3/04454Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system a main column system not otherwise provided, e.g. serially coupling of columns or more than three pressure levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/34Processes or apparatus using separation by rectification using a side column fed by a stream from the low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/50Separating low boiling, i.e. more volatile components from oxygen, e.g. N2, Ar
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/52Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being oxygen enriched compared to air, e.g. "crude oxygen"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/52One fluid being oxygen enriched compared to air, e.g. "crude oxygen"

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for efficiently producing pressure liquefied oxygen and oxygen gas by utilizing discharged fluid and by-product fluid in a nitrogen producing process without affecting the primary nitrogen producing process. <P>SOLUTION: This oxygen producing device comprises (1) extracting a part of oxygen-rich liquefied air of a nitrogen producing device from a nitrogen rectifying tower or a nitrogen rectifying tower condenser, and introducing the same to an intermediate stage of a sub-rectifying tower 8 having a reboiler 9 at its lower part, (2) forming the liquefied air in the reboiler 9 by introducing the compressed air to the lower reboiler 9 of the sub-rectifying tower, returning a part of the liquefied air to the nitrogen rectifying tower, and supplying the rest to a part of the sub-rectifying tower 8 as reflux liquid, and (3) producing oxygen from the lower part of the sub-rectifying tower 8. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、酸素製造装置に関するもので、特に、窒素製造プロセスにおける排出流体および副生流体を利用して酸素ガスおよび液化酸素を効率的に製造するために有用である。   The present invention relates to an oxygen production apparatus, and is particularly useful for efficiently producing oxygen gas and liquefied oxygen using exhaust fluid and by-product fluid in a nitrogen production process.

従来、酸素の製造装置としては、低温空気分離プラントは広く知られており、一般に複数の蒸留塔を使用して順次分離効率を上げて、最終製品として、主として窒素、酸素及びアルゴンを生産している。一方、半導体プロセスを含めた窒素の需要は、酸素などに比べ非常に大きく、市場での使用量と生産量とのバランスから、窒素製造装置が多く用いられている。窒素製造装置では、主として空気を原料とし、圧縮・精製プロセスを経由して窒素ガスおよび液化窒素を効率的に製造するとともに、酸素分を豊富に含んだ清浄ガスを廃ガスとして排出していた。   Conventionally, a cryogenic air separation plant has been widely known as an oxygen production apparatus. Generally, a plurality of distillation towers are used to sequentially increase separation efficiency and produce mainly nitrogen, oxygen and argon as final products. Yes. On the other hand, the demand for nitrogen including a semiconductor process is much larger than that of oxygen or the like, and a nitrogen production apparatus is often used because of the balance between the amount used in the market and the production amount. In a nitrogen production apparatus, mainly air is used as a raw material, nitrogen gas and liquefied nitrogen are efficiently produced via a compression / purification process, and a clean gas rich in oxygen is discharged as waste gas.

しかしながら、当初窒素のみの需要が主である工場あるいは地域であっても、既存の窒素製造装置の近傍に酸素の需要が現れる場合があり、上記の窒素製造装置からの廃ガス等を有効に生かした酸素製造装置の設置、あるいは別途新たな原料空気を利用し常温分離法や深冷分離法などによる酸素製造装置の設置を行っていた。   However, even in factories or regions where the demand for nitrogen is the primary factor, demand for oxygen may appear in the vicinity of existing nitrogen production equipment, and the waste gas from the above nitrogen production equipment can be used effectively. Oxygen production equipment has been installed, or oxygen production equipment has been installed by using a separate raw material air, such as a room temperature separation method or a cryogenic separation method.

既存の窒素製造装置を利用した方法としては、1つには、図4に例示するように、原料空気と液化酸素を熱交換させて上昇ガスを作る副凝縮器(リボイラ)7を内蔵した副精留塔8を設け、該副精留塔8に凝縮器5の液化空気の一部を導くとともに原料空気の一部を上記副凝縮器(リボイラ)7に導くようにしたことによって少量の酸素ガスおよび液化酸素を採取する方法Aが提案されている(例えば特許文献1参照)。   As an example of a method using an existing nitrogen production apparatus, as illustrated in FIG. 4, as illustrated in FIG. 4, a sub-condenser (reboiler) 7 that incorporates a sub-condenser (reboiler) 7 that heats raw material air and liquefied oxygen to exchange heat. A rectifying column 8 is provided, and a part of the liquefied air of the condenser 5 is led to the sub-rectifying column 8 and a part of the raw material air is led to the sub-condenser (reboiler) 7 so that a small amount of oxygen is obtained. A method A for collecting gas and liquefied oxygen has been proposed (see, for example, Patent Document 1).

また、図5に例示するように、底部に蒸発器(リボイラ)7を有する副精留塔3を設け、該塔上部に、窒素製造用単式精留塔1の底部より該塔用凝縮蒸発器2に供給される液化空気の一部が供給されるように導管により連絡するとともに、副精留塔3の底部の蒸発器(リボイラ)7の一端は、前記単式精留塔1の下部の空気供給導管と、他端は、弁を介して前記単式精留塔用凝縮蒸発器2へ導入される液体空気用導管と連設して酸素ガスおよび液化酸素を採取する方法Bが提案されている(例えば特許文献2参照)。   Further, as illustrated in FIG. 5, a sub rectifying column 3 having an evaporator (reboiler) 7 is provided at the bottom, and the tower condensing evaporator is provided at the top of the column from the bottom of the single rectifying column 1 for producing nitrogen. 2 is connected by a conduit so that a part of the liquefied air supplied to 2 is supplied, and one end of an evaporator (reboiler) 7 at the bottom of the sub rectifying column 3 is air below the single rectifying column 1. A method B for collecting oxygen gas and liquefied oxygen by connecting the supply conduit and the other end of the supply conduit to a liquid air conduit introduced into the condensing evaporator 2 for a single fractionator via a valve has been proposed. (For example, refer to Patent Document 2).

さらに、図6に例示するように、原料空気中の水分及び炭酸ガスを除去した後の原料空気の全量を窒素精留塔10内に導入して冷却液化させ、この窒素精留塔10から製品としての窒素を採取し、前記窒素精留塔10にて得られる酸素リッチ液体空気を窒素凝縮器14の冷熱源として使用した後、成出した酸素リッチ空気を酸素精留塔20のリボイラ24の加熱源として使用し、それにより凝縮して成出した酸素リッチ液体空気を前記酸素精留塔20の酸素原料及び還流液として使用することにより、窒素の回収率を維持しながら酸素を製造する方法Cが提案されている(例えば特許文献3参照)。
特開昭54−163797号公報 実開昭55−140990号公報 特許第3203181号公報
Further, as illustrated in FIG. 6, the entire amount of the raw material air after removing moisture and carbon dioxide in the raw material air is introduced into the nitrogen rectifying column 10 to be cooled and liquefied, and the product from the nitrogen rectifying column 10 is The nitrogen rich liquid air obtained in the nitrogen rectifying tower 10 is used as a cold heat source for the nitrogen condenser 14, and the generated oxygen rich air is used as the reboiler 24 of the oxygen rectifying tower 20. A method for producing oxygen while maintaining a nitrogen recovery rate by using oxygen-rich liquid air produced by condensation as a heating source, as an oxygen raw material and a reflux liquid of the oxygen rectification column 20 C has been proposed (see, for example, Patent Document 3).
JP 54-163797 A Japanese Utility Model Publication No. 55-140990 Japanese Patent No. 3203181

しかしながら、新規の酸素製造装置の設置では、経済的な負担が大きく、また、既存の窒素製造装置および新設の酸素製造装置の両方から副生された酸素ガスあるいは窒素ガスが廃出されることになり、エネルギーを含め非常に大きなロスが生じることとなる。   However, the installation of a new oxygen production apparatus has a large economic burden, and oxygen gas or nitrogen gas produced as a by-product from both the existing nitrogen production apparatus and the new oxygen production apparatus will be discarded. A very large loss including energy will occur.

また、窒素製造装置に付帯的に酸素製造装置を設置する場合においても、上記のような従来法については、いくつかの課題があった。   Moreover, even when an oxygen production apparatus is incidentally installed in the nitrogen production apparatus, there are some problems with the conventional method as described above.

つまり、方法Aあるいは方法Bについては、いずれも窒素製造装置の原料空気を、また、方法Cについては、窒素精留塔の凝縮蒸発器(コンデンサ)での廃ガスを、酸素精留塔のリボイル源として利用しており、その液化温度に見合うまで酸素リッチ液化空気を減圧し、結果として酸素精留塔の運転圧が低下し発生する酸素ガスの圧力が低下することとなる。
また、既存の窒素製造装置に新規に酸素製造装置を付設する場合には、窒素製造装置の能力に影響を与えないような改造が容易でない。
In other words, both the method A and the method B are the raw material air of the nitrogen production apparatus, and the method C is the waste gas from the condensing evaporator (condenser) of the nitrogen rectification column, and the reboiling of the oxygen rectification column The oxygen-rich liquefied air is depressurized until it matches the liquefaction temperature, and as a result, the operating pressure of the oxygen rectification column is lowered and the pressure of the generated oxygen gas is lowered.
In addition, when an oxygen production apparatus is newly added to an existing nitrogen production apparatus, it is not easy to make a modification that does not affect the capacity of the nitrogen production apparatus.

従って、本発明の目的は、窒素製造プロセスにおける排出流体および副生流体を利用するとともに、もとの窒素製造プロセスに影響を与えることなく、有圧の酸素ガスおよび液化酸素ガスを効率的に製造する装置を提供することである。   Accordingly, an object of the present invention is to efficiently use the exhaust fluid and by-product fluid in the nitrogen production process, and efficiently produce pressurized oxygen gas and liquefied oxygen gas without affecting the original nitrogen production process. It is to provide an apparatus for performing.

本発明者らは、鋭意研究を重ねた結果、以下に示す酸素製造装置により上記目的を達成できることを見出し、本発明を完成するに到った。   As a result of intensive studies, the present inventors have found that the above object can be achieved by an oxygen production apparatus shown below, and have completed the present invention.

本発明は、酸素製造装置であって、(1)窒素製造装置の酸素リッチ液化空気の一部を、窒素精留塔または窒素精留塔コンデンサから抜き出して、下部にリボイラを有するサブ精留塔中間段に導入し、(2)圧縮空気を前記サブ精留塔の下部リボイラに導入して該リボイラで液化空気を生成し、その一部を前記窒素精留塔に戻すとともに、残りを前記サブ精留塔の搭頂部に還流液として供給し、(3)前記サブ精留塔下部から酸素を製造する、ことを特徴とする。   The present invention is an oxygen production apparatus, and (1) a sub-rectification tower having a reboiler at the bottom by extracting a part of the oxygen-rich liquefied air of the nitrogen production apparatus from a nitrogen rectification column or a nitrogen rectification column condenser (2) Compressed air is introduced into the lower reboiler of the sub rectifying column to generate liquefied air in the reboiler, a part thereof is returned to the nitrogen rectifying column, and the rest is returned to the sub rectifying column. (3) Oxygen is produced from the lower part of the sub-rectification column.

つまり、本発明は、単に窒素製造装置と酸素製造装置の組合せではなく、双方で余剰となる部分を利用し合うとともに、そのときに双方が求める気液の状態あるいは温度および圧力とを合致させることで、非常に効率の高い窒素・酸素製造システム構成を目指したものである。窒素精留塔にサブ精留塔(酸素精留塔)を設置し、原料として窒素製造装置によって副生される酸素リッチ液化空気(以下「R/L」という)の一部をサブ精留塔中間段に導入するとともに、別途昇圧した空気をサブ精留塔下部のリボイラに導入し、液化した液体空気の一部(前記R/L相当量)は窒素精留塔に戻して残りをサブ精留塔頂部に還流液として供給することによって、もとの窒素製造装置に影響を与えることなく、酸素を効率的に製造することが可能となる。   In other words, the present invention is not simply a combination of a nitrogen production apparatus and an oxygen production apparatus, but uses both surplus parts and matches the gas-liquid state or temperature and pressure required by both parties at that time. The aim is to create a highly efficient nitrogen / oxygen production system. A sub rectification column (oxygen rectification column) is installed in the nitrogen rectification column, and a part of oxygen-rich liquefied air (hereinafter referred to as “R / L”) by-produced by the nitrogen production apparatus as a raw material is used as the sub rectification column. In addition to being introduced into the intermediate stage, separately pressurized air is introduced into the reboiler at the bottom of the sub rectification column, and a part of the liquefied liquid air (the amount equivalent to the R / L) is returned to the nitrogen rectification column and the rest is sub-refined. By supplying a reflux liquid to the top of the distillation column, oxygen can be efficiently produced without affecting the original nitrogen production apparatus.

具体的には、窒素製造装置からその副生物であるR/L(窒素製造装置にとっては、低濃度成分)をサブ精留塔に供給し、逆にサブ精留塔において生成した略同量の液化空気(窒素製造装置にとっては、上記R/Lよりも高濃度成分)の供給を受けることによって、窒素製造装置としてはその生産量を加増することができる。同時に、サブ精留塔にはR/L(酸素製造装置にとっては、高濃度成分)が供給され、上記液化空気の一部が還流されることによって、酸素製造装置としては少段数で高濃度酸素の製造が可能となる。このように、本発明によれば、窒素の製造と酸素の製造で両方のプロセスに対して同時補完的に原料や副生物などの利用を図ることが可能となる。   Specifically, R / L (a low concentration component for the nitrogen production apparatus), which is a by-product, is supplied from the nitrogen production apparatus to the sub rectification column. By receiving the supply of liquefied air (for nitrogen production equipment, a higher concentration component than the above R / L), the production volume of the nitrogen production equipment can be increased. At the same time, R / L (high concentration component for oxygen production apparatus) is supplied to the sub rectification column, and a part of the liquefied air is refluxed, so that the oxygen production apparatus has high concentration oxygen in a small number of stages. Can be manufactured. As described above, according to the present invention, it is possible to simultaneously use raw materials, by-products and the like for both processes in the production of nitrogen and the production of oxygen in a complementary manner.

本発明は、上記酸素製造装置であって、前記サブ精留塔頂部からの窒素富化ガスを、酸素製造装置用の原料空気に合流、あるいは窒素精留塔の原料空気の一部またはリサイクル空気の一部に合流することを特徴とする。   The present invention is the above oxygen production apparatus, wherein the nitrogen-enriched gas from the top of the sub rectification column is merged with the raw air for the oxygen production apparatus, or a part of the raw air of the nitrogen rectification tower or the recycle air It is characterized by merging with a part of.

空気を原料とした場合、物質収支の面からは、窒素製造装置からの酸素リッチな副生物が酸素の製造原料となり、酸素製造装置からの窒素リッチな副生物が窒素の製造原料となることによって、空気の導入量および廃ガス排出量を軽減することができることが好ましい。さらに理想的には、そうした還流時の供給元の状態が、供給先が求める気液の状態あるいは温度および圧力と合致することによって、非常に効率の高い窒素・酸素製造システムを構成することができる。本発明においては、サブ精留塔頂部からの冷却・加圧状態の窒素富化ガスを、原料となる圧縮空気あるいは原料にも利用されるリサイクル空気に合流させることによって、窒素の収率の向上を図ることができるとともに、エネルギー的にも原料空気の処理工程における付加を軽減することができるという優れた効果を生み出すことができる。従って、もとの窒素製造プロセスに影響を与えることなく、酸素を効率的に製造する装置を提供することが可能となる。ここで、リサイクル空気(RA)とは、本明細書では、酸素分が21Vol%以下の場合を含み使用される。   When air is used as a raw material, from the standpoint of mass balance, oxygen-rich by-products from the nitrogen production device become oxygen production raw materials, and nitrogen-rich by-products from the oxygen production device become nitrogen production raw materials. It is preferable that the amount of introduced air and the amount of exhausted exhaust gas can be reduced. More ideally, a highly efficient nitrogen / oxygen production system can be configured by matching the state of the supply source at the time of such reflux with the gas-liquid state or temperature and pressure required by the supply destination. . In the present invention, the nitrogen-enriched gas in the cooled / pressurized state from the top of the sub rectification column is merged with compressed air as a raw material or recycled air also used as a raw material, thereby improving the yield of nitrogen. In addition, it is possible to produce an excellent effect that the addition of the raw material air in the treatment process can be reduced in terms of energy. Therefore, it is possible to provide an apparatus for efficiently producing oxygen without affecting the original nitrogen production process. Here, the recycle air (RA) is used in this specification including the case where the oxygen content is 21 Vol% or less.

本発明は、上記酸素製造装置であって、前記酸素リッチ液化空気の一部を加圧手段によって圧縮し、前記サブ精留塔に供給することを特徴とする。   The present invention is the above oxygen production apparatus, characterized in that a part of the oxygen-rich liquefied air is compressed by a pressurizing means and supplied to the sub rectification column.

上述のように、従来の窒素製造装置に付加される酸素製造装置からは、有圧の酸素の要請に対応することが困難であった。本発明においては、上記のように、窒素精留塔からのR/Lを昇圧された状態でサブ精留塔に供給することによって、効率よく精留が行われ、かつ有圧の酸素ガスあるいは液化酸素を製造することが可能となる。ここで、窒素精留塔からのR/Lを原料とすることで多少の加圧状態にはなっているが、さらなる昇圧のためには、本発明のように、加圧手段によって圧縮し、前記サブ精留塔に供給することが好ましい。   As described above, it has been difficult for an oxygen production apparatus added to a conventional nitrogen production apparatus to meet the demand for pressurized oxygen. In the present invention, as described above, by supplying the R / L from the nitrogen rectification column to the sub rectification column in a pressurized state, the rectification is performed efficiently, and the pressurized oxygen gas or It becomes possible to produce liquefied oxygen. Here, the R / L from the nitrogen rectification column is used as a raw material, but it is in a somewhat pressurized state, but for further pressurization, as in the present invention, it is compressed by a pressurizing means, It is preferable to supply to the sub rectification column.

本発明は、上記酸素製造装置であって、前記サブ精留塔下部から一部の液化酸素を抜き出した後、蒸発して、酸素ガスを製造することを特徴とする。   The present invention is the above oxygen production apparatus, wherein a part of liquefied oxygen is extracted from the lower part of the sub rectification column and then evaporated to produce oxygen gas.

酸素ガスのみを産出する場合にはサブ精留塔下部に炭化水素等が濃縮し爆発する恐れがある。これは、サブ精留塔下部から一部の液化酸素を抜き出すことにより防止される。この液化酸素の寒冷は原料あるいは中間生成物との熱交換に生かすことによって、さらにエネルギー効率の高い酸素ガスの製造が可能となる。   When only oxygen gas is produced, hydrocarbons and the like may concentrate and explode in the lower part of the sub rectification column. This is prevented by extracting a part of the liquefied oxygen from the lower part of the sub rectification column. By utilizing this cooling of liquefied oxygen for heat exchange with the raw materials or intermediate products, it becomes possible to produce oxygen gas with higher energy efficiency.

上記のように、本発明によれば、単に窒素製造装置と酸素製造装置の組合せではなく、双方で余剰となる部分を利用し合うとともに、そのときに双方が求める気液の状態あるいは温度および圧力とを合致させることで、非常に効率の高い窒素・酸素製造システムを構成することが可能となる。つまり、窒素製造プロセスにおける排出流体および副生流体を利用するとともに、もとの窒素製造プロセスに影響を与えることなく、有圧の酸素を効率的に製造する装置を提供することができる。   As described above, according to the present invention, not only a combination of a nitrogen production device and an oxygen production device, but also a surplus portion is used in both, and the gas liquid state or temperature and pressure required by both at that time are used. Therefore, it is possible to configure a highly efficient nitrogen / oxygen production system. In other words, it is possible to provide an apparatus that efficiently uses the exhaust fluid and by-product fluid in the nitrogen production process and efficiently produces pressurized oxygen without affecting the original nitrogen production process.

特に、既設の窒素製造装置に酸素製造プロセスを付設する場合において、窒素製造装置の改造をほとんどすることなく、効率の高い酸素製造装置を提供することができる点、従来にない優位性を有している。   In particular, when an oxygen production process is added to an existing nitrogen production apparatus, it is possible to provide a highly efficient oxygen production apparatus with almost no modification of the nitrogen production apparatus. ing.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に、本発明に係る窒素製造プロセスを利用した酸素製造装置の1の構成例を示す。窒素製造プロセスNと酸素製造プロセスPとが、主として窒素製造プロセスNからのR/L供給路と酸素製造プロセスPからの液化空気供給路によって結合した構成である。例えば既設の窒素製造プロセスNに酸素製造プロセスPを付設した場合に適用することが可能である。   FIG. 1 shows a configuration example of an oxygen production apparatus 1 using a nitrogen production process according to the present invention. The nitrogen production process N and the oxygen production process P are configured to be coupled mainly by an R / L supply path from the nitrogen production process N and a liquefied air supply path from the oxygen production process P. For example, the present invention can be applied when an oxygen production process P is attached to an existing nitrogen production process N.

窒素製造プロセスNにおいては、原料空気供給手段(MAC)1によって加圧状態となって原料空気精製手段(APU)2を介して供給された空気を、後述の圧縮手段(RAC)4からのリサイクル空気とともに、空気分離手段3に導入し、高純度窒素(GN2)を生成する。また、廃ガス(WG)が生成され、リサイクル空気が戻される。このとき、空気分離手段3からR/Lを取り出し、酸素製造の原料として酸素製造プロセスPに供給される。リサイクル空気の一部(G.Airで示す)は、リボイラの温熱源として酸素製造プロセスPに供給され、それ以外は、窒素製造のリサイクル原料として還流するため上記APU2で処理後の原料空気と合流される。WGについては、熱交換手段(図示せず)に導入して常温に戻され、APU2の再生ガスに利用された後排出される。   In the nitrogen production process N, the air supplied in the pressurized state by the raw material air supply means (MAC) 1 and supplied through the raw material air purification means (APU) 2 is recycled from the compression means (RAC) 4 described later. It introduce | transduces into the air separation means 3 with air, and produces | generates high purity nitrogen (GN2). Also, waste gas (WG) is generated and recycle air is returned. At this time, R / L is taken out from the air separation means 3 and supplied to the oxygen production process P as a raw material for oxygen production. Part of the recycle air (indicated by G. Air) is supplied to the oxygen production process P as a reheater heat source, and the other recycles as a recycle raw material for nitrogen production, so that it joins with the raw air processed by the APU 2 above. Is done. About WG, it introduce | transduces into a heat exchange means (not shown), is returned to normal temperature, is discharged | emitted after being utilized for the regeneration gas of APU2.

一方、酸素製造プロセスPにおいては、供給されたR/Lを加圧手段5によって圧縮し、原料としてコールドボックス6に導入され、所定の処理工程を経て、高純度酸素ガス(GO2)および高純度液化酸素(図示せず)を生成する。前記G.Airは酸素製造プロセスPから帰還したリサイクル空気(RA)とともに圧縮手段7によって圧縮後コールドボックス6に供給される。このとき、副生物として生成する酸素21%以下の窒素リッチ液化空気(L.Air)は、R/Lおよびリサイクル空気の補充として、窒素製造プロセスPに戻される。なお、図1では、加圧手段5として加圧ポンプのような機械的手段を例示したが、これに限定されるものではなく、例えば液ヘッドを利用することも可能である。   On the other hand, in the oxygen production process P, the supplied R / L is compressed by the pressurizing means 5 and introduced into the cold box 6 as a raw material, and after a predetermined treatment step, high purity oxygen gas (GO2) and high purity are introduced. Liquefied oxygen (not shown) is generated. G. Air is supplied to the cold box 6 after compression by the compression means 7 together with the recycle air (RA) returned from the oxygen production process P. At this time, nitrogen-rich liquefied air (L. Air) with 21% or less oxygen generated as a by-product is returned to the nitrogen production process P as a supplement to R / L and recycle air. In FIG. 1, mechanical means such as a pressurizing pump is illustrated as the pressurizing means 5. However, the present invention is not limited to this, and a liquid head, for example, can be used.

以上のように、本装置によれば、窒素の製造プロセスと酸素の製造プロセスの両方に対して、同時補完的に原料や副生物などの利用を図ることが可能となる。   As described above, according to the present apparatus, it is possible to simultaneously use raw materials, by-products and the like for both the nitrogen production process and the oxygen production process.

また、上記は、別々に各プロセスにおける原料、生成物および副生成物について述べたが、これを両者が一体化した空気分離プロセスとして捉えることも可能である。つまり、製品製造工程からすれば、第1工程においてMAC1およびAPU2によって圧縮・精製された原料空気から、空気分離手段3によって窒素を抽出する。第2工程では、その残余を加圧手段5によって圧縮後コールドボックス6によって酸素を抽出し、その残余を再度空気分離手段3に還流する。これによって非常に原料を効率的に利用することができる。また、リサイクル空気に関しても、窒素製造プロセス用RAC4と酸素製造プロセス用RAC7を上手く組み合わせることにより有効利用を図ることができる。   Moreover, although the above mentioned separately about the raw material in each process, a product, and a by-product, it is also possible to grasp this as an air separation process in which both were integrated. That is, in terms of the product manufacturing process, nitrogen is extracted by the air separation means 3 from the raw air compressed and purified by the MAC1 and APU2 in the first process. In the second step, the residue is compressed by the pressurizing means 5 and then the oxygen is extracted by the cold box 6, and the remainder is returned to the air separating means 3 again. This makes it possible to use the raw material very efficiently. Recycled air can also be effectively utilized by combining the nitrogen production process RAC4 and the oxygen production process RAC7 well.

なお、図1では酸素製造プロセスPのリサイクル空気の補充用ガスとして窒素製造プロセスNの高圧リサイクル空気の一部を利用する場合を示した。製品窒素および製品酸素の圧力の関係によっては窒素製造プロセスNの低圧リサイクル空気の一部を利用することもできる。また、窒素製造プロセスNの原料空気の一部を利用したり、新たに、酸素製造プロセスP用原料空気圧縮手段および原料空気精製手段を追加し、これらで処理後の圧縮空気を利用することも可能である。   FIG. 1 shows a case where a part of the high-pressure recycle air of the nitrogen production process N is used as a supplementary gas for the recycle air of the oxygen production process P. Depending on the relationship between the product nitrogen and product oxygen pressures, a portion of the low pressure recycle air of the nitrogen production process N can be utilized. In addition, a part of the raw material air of the nitrogen production process N may be used, or a new raw material air compression means and a raw material air purification means for the oxygen production process P may be added, and the processed compressed air may be used with these. Is possible.

本発明に係る酸素製造装置の1の実施形態の詳細を、図2に例示する。既設の高回収型窒素製造装置(例えば高純度窒素生産量15,000Nm/hrとする)に、この酸素製造プロセスP(例えば高純度酸素生産量3,000Nm/hr,0.5MPaAとする)を併設した場合を例にとって説明する。 Details of one embodiment of the oxygen production apparatus according to the present invention are illustrated in FIG. A high recovery type nitrogen producing apparatus of existing (eg, high purity nitrogen production 15,000Nm 3 / hr), and the oxygen production process P (for example, high purity oxygen production 3,000Nm 3 /hr,0.5MPaA ) Will be described as an example.

(1)窒素製造プロセスNから供出された、例えば酸素濃度約80.8%のR/L約3,625Nm/hrを、昇圧ポンプによって0.53MPaAまで圧縮し、サブ精留搭(酸素精留塔)8の中間段に導入する。 (1) R / L of about 3,625 Nm 3 / hr with an oxygen concentration of about 80.8%, for example, supplied from the nitrogen production process N is compressed to 0.53 MPaA by a booster pump, Introducing to the middle stage of the distillation column 8).

(2)サブ精留塔8の下部にはリボイラ9が設置され、窒素製造プロセスNから戻されたG.Airを含む約7,000Nm/hrの空気(RA、酸素21%以下のリサイクルガス)が、リボイラ9の温熱源として供給される。RAは、圧縮手段7によって約1.52MPaAに加圧され(高圧RA)、熱交換器10(図2では10aおよび10bが相当)を介して露点(DP)付近まで冷却された後、リボイラ9に導入される。これは、サブ精留塔8のリボイラ9において、塔底液(液酸)の蒸発に使われ、自らは液化し、約7,000Nm/hrの高圧の液化空気が生成する。 (2) A reboiler 9 is installed at the bottom of the sub rectifying column 8 and the G. About 7,000 Nm 3 / hr of air (RA, recycle gas with oxygen of 21% or less) containing Air is supplied as a heat source for the reboiler 9. The RA is pressurized to about 1.52 MPaA by the compression means 7 (high pressure RA), cooled to the vicinity of the dew point (DP) through the heat exchanger 10 (corresponding to 10a and 10b in FIG. 2), and then the reboiler 9 To be introduced. This is used to evaporate the bottom liquid (liquid acid) in the reboiler 9 of the sub rectifying column 8, and liquefies itself, generating high-pressure liquefied air of about 7,000 Nm 3 / hr.

(3)該高圧の液化空気の内、約4,072Nm/hrは、R/Lに相当する寒冷源L.Airとして窒素製造プロセスNに戻される。残りの約2,928Nm/hrは、サブ精留塔8の塔頂部へ還流液として供給される。 (3) About 4,072 Nm 3 / hr in the high-pressure liquefied air is a cold source L.L. corresponding to R / L. It returns to the nitrogen production process N as Air. The remaining about 2,928 Nm 3 / hr is supplied to the top of the sub rectifying column 8 as a reflux liquid.

(4)サブ精留塔8では、上記塔頂の還流液、中間段に導入されたR/Lは塔内を流下し、サブ精留塔8の塔底部からの上昇蒸気と気液接触することにより精留され、塔底には液体酸素が生成される。このとき、サブ精留塔8の塔底部からは約3,107Nm/hrの95%酸素ガスと約50Nm/hrの炭化水素等濃縮防止用液化97.5%酸素が取り出される。また、サブ精留塔8の塔頂部からは、約3,396Nm/hrの中圧のリサイクル空気が取り出される。 (4) In the sub rectifying column 8, the reflux liquid at the top of the column and the R / L introduced into the intermediate stage flow down in the column and come into gas-liquid contact with the rising vapor from the bottom of the sub rectifying column 8. As a result, liquid oxygen is produced at the bottom of the column. At this time, about 3,107 Nm 3 / hr of 95% oxygen gas and about 50 Nm 3 / hr of hydrocarbon liquefied 97.5% oxygen such as hydrocarbons are taken out from the bottom of the sub rectifying column 8. Further, from the top of the sub rectification column 8, medium pressure recycle air of about 3,396 Nm 3 / hr is taken out.

(5)上記酸素ガスおよび液化酸素は、上記高圧RAと向流する熱交換器10(図2では10aおよび10bが相当)によって常温まで加熱され、GO2として供出される。また、中圧の空気も同様に熱交換器10aによって常温まで加熱され、本システムでは上記RAの一部としリサイクル利用される。一方、図2では、高圧RAは2つの流路に分岐して、熱交換器10aおよび10bにおいて放熱し冷却された後、再度合流してリボイラ9に導入する方法を例示した。   (5) The oxygen gas and liquefied oxygen are heated to room temperature by the heat exchanger 10 (corresponding to 10a and 10b in FIG. 2) that counter-flows with the high pressure RA, and are supplied as GO2. Similarly, medium-pressure air is also heated to room temperature by the heat exchanger 10a, and is recycled as part of the RA in this system. On the other hand, FIG. 2 illustrates a method in which the high-pressure RA branches into two flow paths, radiates heat in the heat exchangers 10a and 10b, cools, and then joins again to be introduced into the reboiler 9.

(6)以上によって、本発明の酸素製造装置は、既設の窒素製造装置と非常に効率よく機能する組合せを形成することができる。   (6) By the above, the oxygen production apparatus of this invention can form the combination which functions very efficiently with the existing nitrogen production apparatus.

例示した数値をもとに、本装置の必要電力を概算すると、圧縮手段7における消費電力391kW(7,000Nm/hのRAを0.5MPaAから1.52MpaAまで圧縮)加圧手段5(加圧ポンプ)における消費電力1kW以下、原料空気(G.Air)の圧縮動力417kW(3,604Nm/hを大気圧から1MPaAまで圧縮)合計約809kW程度であり、純酸素ベースの原単位としては約0.27kW/Nmとなる。通常このサイズの酸素分離装置に必要とされる電力は、0.45〜0.5kW/Nmといわれる。従って、本装置におけるこの数値は、酸素を0.53MPaAまで圧縮する動力を含んでいるにもかかわらず、通常の装置に比べはるかに低く、優位性を示している。 Approximating the required power of this apparatus based on the exemplified numerical values, the power consumption in the compression means 7 is 391 kW (RA of 7,000 Nm 3 / h is compressed from 0.5 MPaA to 1.52 MPaA). Pressure pump) power consumption of 1 kW or less, raw material air (G. Air) compression power of 417 kW (compressing 3,604 Nm 3 / h from atmospheric pressure to 1 MPaA) total of about 809 kW, and the basic unit of pure oxygen base This is about 0.27 kW / Nm 3 . Usually, the electric power required for an oxygen separator of this size is said to be 0.45 to 0.5 kW / Nm 3 . Therefore, this numerical value in the present apparatus is much lower than that of a normal apparatus and shows an advantage in spite of including power for compressing oxygen to 0.53 MPaA.

次に、図3に、本発明に係る窒素製造プロセスを利用した酸素製造装置の他の構成例を示す。新設の窒素製造装置に、この酸素製造プロセスPを応用した場合を例にとって説明する。   Next, FIG. 3 shows another configuration example of the oxygen production apparatus using the nitrogen production process according to the present invention. A case where this oxygen production process P is applied to a new nitrogen production apparatus will be described as an example.

基本的には上記1の実施形態と同様であるが、窒素製造プロセスの具体例を明示し、主熱交換器などが統合されている点相違する。図3に基づいて、本発明に係る酸素製造装置を上記1の構成例と相違する点を中心に説明する。   Basically, it is the same as that of the first embodiment except that a specific example of the nitrogen production process is clearly shown and the main heat exchanger and the like are integrated. Based on FIG. 3, an oxygen production apparatus according to the present invention will be described focusing on differences from the above-described configuration example 1.

原料空気は、フィルター(図示せず)で除塵後、MAC1aで約1MPaAに圧縮され、常温精製部(図示せず)で不純物を除去、リサイクル空気と合流後、熱交換器10aで後述する冷媒との間接熱交換によりほぼ液化温度まで冷却されて、窒素精留塔12の中圧精留部A下部へ供給される。   The raw material air is dedusted by a filter (not shown), compressed to about 1 MPaA by MAC 1a, impurities are removed by a room temperature purification unit (not shown), joined with recycle air, and a refrigerant described later in heat exchanger 10a. The liquid is cooled to substantially the liquefaction temperature by indirect heat exchange, and supplied to the lower part of the medium pressure rectification section A of the nitrogen rectification column 12.

中圧精留部Aへ供給された原料空気は中圧精留部Aの中を上昇して、上方から流下する液体窒素を主成分とする還流液と向流し気液接触を行う。これによって、気相中の酸素が還流液の中に溶け込み、他方、還流液中の窒素が気化して気相中に放出される。この結果、中圧精留部Aの上部には窒素ガスが溜まり、中圧精留部Aの下部には液体空気が溜まる。該液体空気は取り出され、約0.4MPaAに膨張後、補助精留部B上部へ還流液として供給される。   The raw material air supplied to the intermediate pressure rectification section A rises in the intermediate pressure rectification section A and counterflows with the reflux liquid mainly composed of liquid nitrogen flowing down from above to make gas-liquid contact. As a result, oxygen in the gas phase dissolves in the reflux liquid, while nitrogen in the reflux liquid is vaporized and released into the gas phase. As a result, nitrogen gas accumulates in the upper part of the intermediate pressure rectification part A, and liquid air accumulates in the lower part of the intermediate pressure rectification part A. The liquid air is taken out, expanded to about 0.4 MPaA, and then supplied to the upper part of the auxiliary rectifying unit B as a reflux liquid.

中圧精留部Aの上部に溜まった窒素ガスの一部は、中圧精留部Aから供出され、熱交換器10aに導入され、原料空気と熱交換され常温となり、原料空気よりわずかに圧力の低い製品窒素ガスGN2として供給される。   A part of the nitrogen gas accumulated in the upper part of the intermediate pressure rectification part A is supplied from the intermediate pressure rectification part A, introduced into the heat exchanger 10a, and heat-exchanged with the raw air to become room temperature. Supplied as low-pressure product nitrogen gas GN2.

中圧精留部Aの上部に溜まった窒素ガスの残部は、窒素凝縮器13に導入され、冷媒としての酸素リッチ液体空気(R/L)との間接熱交換により冷却され、凝縮した液体窒素は、還流液として戻される。   The remaining nitrogen gas accumulated in the upper portion of the intermediate pressure rectification section A is introduced into the nitrogen condenser 13, cooled by indirect heat exchange with oxygen-rich liquid air (R / L) as a refrigerant, and condensed liquid nitrogen. Is returned as reflux.

補助精留部Bでは、上記液体空気を元に精留が行われ底部に酸素リッチ液体R/Lが生成される。その一部は、上記窒素凝縮器13に冷媒として導入され、自らは蒸発気化される。気化された酸素リッチガスの一部は、塔内の上昇蒸気となる。また、その残部は補助精留部B下部から取り出され、中間温度に加温後、膨張タービンETに供給される。膨張タービンETを出た酸素リッチガスは、上記熱交換器10aで加温され、本プロセスの寒冷源の一部として使われた後、常温精製部(図示せず)の再生手段に利用される。   In the auxiliary rectification section B, rectification is performed based on the liquid air, and an oxygen-rich liquid R / L is generated at the bottom. A part of the refrigerant is introduced into the nitrogen condenser 13 as a refrigerant and is evaporated by itself. A part of the vaporized oxygen-rich gas becomes ascending steam in the tower. Further, the remaining part is taken out from the lower part of the auxiliary rectification part B, heated to an intermediate temperature, and then supplied to the expansion turbine ET. The oxygen-rich gas exiting the expansion turbine ET is heated by the heat exchanger 10a, used as a part of the cold source of this process, and then used as a regeneration means for a room temperature purification unit (not shown).

補助精留部Bの塔頂部からはリサイクル空気が戻される。リサイクル空気は、熱交換器10aに導入し、ここで冷媒として原料空気の冷却に使用して常温に戻され、圧縮手段4で圧縮された後、分岐される。分岐された一方は、前述の如く原料空気と合流され、残りのリサイクル空気は、後述の酸素精留塔8塔頂部から帰還したリサイクル空気とともに、さらに圧縮手段7によって圧縮され、酸素精留塔8下部のリボイラ9に供給される。   Recycled air is returned from the top of auxiliary rectification section B. Recycled air is introduced into the heat exchanger 10a, where it is used to cool the raw material air as a refrigerant, returned to room temperature, compressed by the compression means 4, and then branched. One of the branched air is combined with the raw material air as described above, and the remaining recycle air is further compressed by the compression means 7 together with the recycle air returned from the top of the oxygen rectification column 8 described later, and the oxygen rectification column 8 The lower reboiler 9 is supplied.

窒素精留塔12において冷媒として用いられたR/Lは、その一部を取り出し、さらに加圧手段5によって約0.53MPaAに圧縮された後、酸素精留塔8の中間段に供給される。酸素精留塔8では還流液として流下し、下方から上昇する気体と向流気液接触により低沸点成分を放出し、酸素濃度を高めて酸素精留塔8の下部に溜まる。酸素精留塔8の下部にはリボイラ9が設置されていて、加熱源として上記RAが圧縮されて導入される。そして、酸素精留塔8の下部に溜まった液体を加熱し、酸素と共に酸素より低沸点の成分(アルゴン、一酸化炭素、窒素等)を選択的に気化させて酸素精留塔8を上昇させる。   A part of R / L used as a refrigerant in the nitrogen rectification column 12 is taken out, further compressed to about 0.53 MPaA by the pressurizing means 5, and then supplied to the intermediate stage of the oxygen rectification column 8. . In the oxygen rectification column 8, it flows down as a reflux liquid, and a low boiling point component is released by contact with a gas rising from below and countercurrent gas-liquid, and the oxygen concentration is increased and accumulated in the lower part of the oxygen rectification column 8. A reboiler 9 is installed in the lower part of the oxygen rectification column 8, and the RA is compressed and introduced as a heating source. Then, the liquid accumulated in the lower portion of the oxygen rectifying column 8 is heated, and components having a boiling point lower than oxygen (argon, carbon monoxide, nitrogen, etc.) are selectively vaporized together with oxygen to raise the oxygen rectifying column 8. .

また、リボイラ9の温熱源として使用された高圧RAは、リボイラ9で凝縮し高圧の液化空気を形成する。これをリボイラ9から取り出して分岐し、一方は、酸素精留塔8の上部に導入され、酸素精留塔8の還流液となる。他方は、R/Lに相当する寒冷源として窒素精留塔12に戻される。   The high pressure RA used as a heat source for the reboiler 9 is condensed by the reboiler 9 to form high pressure liquefied air. This is taken out from the reboiler 9 and branched, and one is introduced into the upper part of the oxygen rectification column 8 and becomes the reflux liquid of the oxygen rectification column 8. The other is returned to the nitrogen fractionator 12 as a cold source corresponding to R / L.

この結果、酸素精留塔8の上部には酸素より低沸点の成分を含む窒素ガスが溜まり、酸素精留塔8の下部には酸素ガスおよび液体酸素が溜まる。酸素精留塔8の上部に溜まった窒素チッチガスは、塔頂部から排出され、冷媒として熱交換器10aに導入された後リサイクル空気として利用される。一方、酸素精留塔8の下部に溜まった酸素ガスは、熱交換器10aで熱交換され常温に戻される。また、液体酸素はサブ熱交換器10bで気化され上記酸素ガスと合流し、製品酸素ガスGO2として使用先に供給される。   As a result, nitrogen gas containing a component having a boiling point lower than that of oxygen accumulates in the upper portion of the oxygen rectifying column 8, and oxygen gas and liquid oxygen accumulate in the lower portion of the oxygen rectifying column 8. The nitrogen gas that has accumulated in the upper part of the oxygen rectification column 8 is discharged from the top of the column, introduced into the heat exchanger 10a as a refrigerant, and then used as recycle air. On the other hand, the oxygen gas accumulated in the lower part of the oxygen rectification column 8 is heat-exchanged by the heat exchanger 10a and returned to room temperature. The liquid oxygen is vaporized in the sub heat exchanger 10b, merges with the oxygen gas, and is supplied to the user as the product oxygen gas GO2.

以上のように、本発明の酸素製造装置は、既設の窒素製造設備に付設する場合だけでなく、新設の酸素・窒素製造装置を設置する場合においても適用することが可能であり、また、既設の酸素製造ラインの置き換えにも適用可能である。   As described above, the oxygen production apparatus of the present invention can be applied not only when it is attached to an existing nitrogen production facility but also when a new oxygen / nitrogen production apparatus is installed. It is also applicable to the replacement of the oxygen production line.

また、上記においては、窒素製造プロセスとして空気リサイクルを用いた複精留塔による場合を説明したが、他の、例えば、単精留塔によるプロセスにも利用できる。この場合、R/Lは、窒素精留塔のコンデンサから抜き出して酸素製造プロセスPに引渡し、酸素製造プロセスPで生成したL.Airは、膨張後、窒素精留塔のコンデンサに戻すことができる。   In the above description, the case of using a double rectification column using air recycling as a nitrogen production process has been described. However, the present invention can also be used for other processes such as a single rectification column. In this case, R / L is extracted from the condenser of the nitrogen rectification column and delivered to the oxygen production process P. Air can be returned to the condenser of the nitrogen rectification column after expansion.

本発明の酸素製造装置は既設・新設を問わず利用できる。また、実施形態の説明では、低純度酸素の生成の数値例を示したが、これに限定されるものでない。また、組み合わせる窒素製造プロセスの方式に自由度があり、高い汎用性を有する技術といえる。   The oxygen production apparatus of the present invention can be used regardless of existing or new installation. In the description of the embodiment, a numerical example of generation of low-purity oxygen is shown, but the present invention is not limited to this. Moreover, it can be said that the combined nitrogen production process has a high degree of freedom and is highly versatile.

本発明に係る窒素製造プロセスを利用した酸素製造装置の1の構成例を示す説明図Explanatory drawing which shows the example of 1 structure of the oxygen production apparatus using the nitrogen production process which concerns on this invention 上記構成例の詳細を示す説明図Explanatory drawing showing details of the above configuration example 本発明に係る窒素製造プロセスを利用した酸素製造装置の他の構成例を示す説明図Explanatory drawing which shows the other structural example of the oxygen production apparatus using the nitrogen production process which concerns on this invention 従来技術に係る窒素製造プロセスを利用した酸素製造装置の第1の構成例を示す説明図Explanatory drawing which shows the 1st structural example of the oxygen manufacturing apparatus using the nitrogen manufacturing process which concerns on a prior art. 従来技術に係る窒素製造プロセスを利用した酸素製造装置の第2の構成例を示す説明図Explanatory drawing which shows the 2nd structural example of the oxygen manufacturing apparatus using the nitrogen manufacturing process which concerns on a prior art. 従来技術に係る窒素製造プロセスを利用した酸素製造装置の第3の構成例を示す説明図Explanatory drawing which shows the 3rd structural example of the oxygen manufacturing apparatus using the nitrogen manufacturing process which concerns on a prior art.

符号の説明Explanation of symbols

1、1a 原料空気供給手段(MAC)
2 原料空気精製手段(APU)
3 空気分離手段
4、7 圧縮手段
5 加圧手段
6 コールドボックス
8 サブ精留塔(酸素精留搭)
9 リボイラ
10a、10b 熱交換器
11a、11b 調整弁
12 窒素精留搭
13 窒素凝縮器
N 窒素製造プロセス
P 酸素製造プロセス
1, 1a Raw material air supply means (MAC)
2 Raw material air purification means (APU)
3 Air separation means 4, 7 Compression means 5 Pressurization means 6 Cold box 8 Sub rectification tower (oxygen rectification tower)
9 Reboiler 10a, 10b Heat exchanger 11a, 11b Regulating valve 12 Nitrogen fractionator 13 Nitrogen condenser N Nitrogen production process P Oxygen production process

Claims (4)

酸素製造装置であって、(1)窒素製造装置の酸素リッチ液化空気の一部を、窒素精留塔または窒素精留塔コンデンサから抜き出して、下部にリボイラを有するサブ精留塔中間段に導入し、(2)圧縮空気を前記サブ精留塔の下部リボイラに導入して該リボイラで液化空気を生成し、その一部を前記窒素精留塔に戻すとともに、残りを前記サブ精留塔の搭頂部に還流液として供給し、(3)前記サブ精留塔下部から酸素を製造する、ことを特徴とする酸素製造装置。 (1) A part of the oxygen-rich liquefied air of the nitrogen production apparatus is extracted from the nitrogen rectification column or nitrogen rectification column condenser and introduced into the intermediate stage of the sub rectification column having a reboiler at the bottom. (2) Compressed air is introduced into the lower reboiler of the sub rectification column to generate liquefied air in the reboiler, a part thereof is returned to the nitrogen rectification column, and the remainder is returned to the sub rectification column. An oxygen production apparatus characterized in that it is supplied to the top as a reflux liquid and (3) produces oxygen from the lower part of the sub rectification column. 前記サブ精留塔頂部からの窒素富化ガスを、酸素製造装置用の原料空気に合流、あるいは窒素精留塔の原料空気の一部またはリサイクル空気の一部に合流することを特徴とする請求項1記載の酸素製造装置。   The nitrogen-enriched gas from the top of the sub rectifying column is merged with the raw air for an oxygen production apparatus, or is merged with a part of the raw air of the nitrogen rectifying column or a part of the recycle air. Item 2. The oxygen production apparatus according to Item 1. 前記酸素リッチ液化空気の一部を加圧手段によって圧縮し、前記サブ精留塔に供給することを特徴とする請求項1または2記載の酸素製造装置。   The oxygen production apparatus according to claim 1 or 2, wherein a part of the oxygen-rich liquefied air is compressed by a pressurizing means and supplied to the sub rectification column. 前記サブ精留塔下部から一部の液化酸素を抜き出した後、蒸発して、酸素ガスを製造することを特徴とする請求項1〜3いずれかに記載の酸素製造装置。
The oxygen production apparatus according to any one of claims 1 to 3, wherein a part of liquefied oxygen is extracted from the lower part of the sub rectification column and then evaporated to produce oxygen gas.
JP2004255787A 2004-09-02 2004-09-02 Oxygen production equipment Expired - Fee Related JP4698989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004255787A JP4698989B2 (en) 2004-09-02 2004-09-02 Oxygen production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004255787A JP4698989B2 (en) 2004-09-02 2004-09-02 Oxygen production equipment

Publications (2)

Publication Number Publication Date
JP2006071190A true JP2006071190A (en) 2006-03-16
JP4698989B2 JP4698989B2 (en) 2011-06-08

Family

ID=36152009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004255787A Expired - Fee Related JP4698989B2 (en) 2004-09-02 2004-09-02 Oxygen production equipment

Country Status (1)

Country Link
JP (1) JP4698989B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013158250A (en) * 2012-02-01 2013-08-19 Panasonic Corp Culture apparatus and culture method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038578A (en) * 1983-08-12 1985-02-28 株式会社神戸製鋼所 Method of separating air
JPH07305953A (en) * 1993-07-22 1995-11-21 Praxair Technol Inc Cryogenic rectifying system for manufacturing low-purity oxygen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038578A (en) * 1983-08-12 1985-02-28 株式会社神戸製鋼所 Method of separating air
JPH07305953A (en) * 1993-07-22 1995-11-21 Praxair Technol Inc Cryogenic rectifying system for manufacturing low-purity oxygen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013158250A (en) * 2012-02-01 2013-08-19 Panasonic Corp Culture apparatus and culture method

Also Published As

Publication number Publication date
JP4698989B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
JP2865274B2 (en) Cryogenic distillation of air for the simultaneous production of oxygen and nitrogen as gaseous and / or liquid products
JP4450886B2 (en) High purity oxygen production method and apparatus
JPH087019B2 (en) High-pressure low-temperature distillation method for air
US6178774B1 (en) Process and plant for the combined production of an ammonia synthesis mixture and carbon monoxide
JP6546504B2 (en) Oxygen production system and oxygen production method
JP5655104B2 (en) Air separation method and air separation device
JPH07305953A (en) Cryogenic rectifying system for manufacturing low-purity oxygen
JPH09318245A (en) High purity nitrogen manufacturing device and method therefor
JP6092804B2 (en) Air liquefaction separation method and apparatus
JP2007147113A (en) Nitrogen manufacturing method and device
JPH0914832A (en) Method and equipment for manufacturing ultra-high purity oxygen
JP3737611B2 (en) Method and apparatus for producing low purity oxygen
JPH10115486A (en) Low temperature distilling method of raw air to manufacture high pressure nitrogen
JP5032407B2 (en) Nitrogen production method and apparatus
JP4401999B2 (en) Air separation method and air separation device
JP2006329615A (en) Method and device for separating air by low temperature distillation
JP4698989B2 (en) Oxygen production equipment
JP4447501B2 (en) Air liquefaction separation method and apparatus
JP3738213B2 (en) Nitrogen production method and apparatus
JP3748677B2 (en) Method and apparatus for producing low purity oxygen
JP2004205076A (en) Air liquefying and separating device and its method
JP4177507B2 (en) Method and apparatus for producing low purity oxygen
JP4515225B2 (en) Nitrogen production method and apparatus
JP6159242B2 (en) Air separation method and apparatus
KR100694376B1 (en) Sub-zero air separation apparatus and an operating method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110302

R150 Certificate of patent or registration of utility model

Ref document number: 4698989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees