JP2006070908A - Vacuum heat insulating material and refrigerator - Google Patents

Vacuum heat insulating material and refrigerator Download PDF

Info

Publication number
JP2006070908A
JP2006070908A JP2004251333A JP2004251333A JP2006070908A JP 2006070908 A JP2006070908 A JP 2006070908A JP 2004251333 A JP2004251333 A JP 2004251333A JP 2004251333 A JP2004251333 A JP 2004251333A JP 2006070908 A JP2006070908 A JP 2006070908A
Authority
JP
Japan
Prior art keywords
heat insulating
vacuum heat
core material
insulating material
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004251333A
Other languages
Japanese (ja)
Inventor
Hisashi Echigoya
恒 越後屋
Kuninari Araki
邦成 荒木
Atsumi Takahashi
厚美 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Home and Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Home and Life Solutions Inc filed Critical Hitachi Home and Life Solutions Inc
Priority to JP2004251333A priority Critical patent/JP2006070908A/en
Publication of JP2006070908A publication Critical patent/JP2006070908A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide such structure in which a sheathing material is not damaged by a core material having a surface layer hardened by an inorganic binder of a vacuum heat insulating material or an edge and a ridge of the core material used by cutting to a predetermined dimension. <P>SOLUTION: The core material is composed of the core material 31 of a single layered fibrous material layered product, and a coating layer 32 of a flexible fibrous material. After the core material 31 is covered with the coating layer 32, the core material 31 is arranged in the sheathing material 33 having a deposited film layer 33f, etc. inside to manufacture the vacuum insulating material by decompressing and sealing the inside of the sheathing material 33. Since a workpiece particle 31a of the core material 31 hardened with the binder, and a foreign substance 31b are directly brought in contact with the sheathing material 33, the sheathing material 33 is not damaged, it becomes easy to handle in manufacturing process of the vacuum insulating material itself, and it is easy to handle in each manufacturing process at assembling the vacuum insulating material into a refrigerator box body and door, so that a highly reliable refrigerator can be manufactured. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、真空断熱材およびその製造方法並びに真空断熱材を用いた冷蔵庫に関する。   The present invention relates to a vacuum heat insulating material, a method for manufacturing the same, and a refrigerator using the vacuum heat insulating material.

従来の真空断熱材の製造方法は、繊維材料を所定形状に積層して積層繊維を作成し、積層繊維の外面の少なくとも一面に水で希釈したバインダを塗布し、バインダを塗布した積層繊維を100℃以下の温度で圧縮し、さらに、圧縮した積層繊維を100℃以上の温度で加熱圧縮し、芯材を製造していた。   A conventional method for manufacturing a vacuum heat insulating material is to fabricate a laminated fiber by laminating fiber materials into a predetermined shape, apply a binder diluted with water to at least one of the outer surfaces of the laminated fiber, and apply the laminated fiber coated with the binder to 100 The core material was produced by compressing the laminated fiber at a temperature of 100 ° C. or lower and further heating and compressing the compressed laminated fiber at a temperature of 100 ° C. or higher.

また、従来の真空断熱材を用いた冷蔵庫においては、外箱と内箱とにより形成される空間に真空断熱材を貼り付け、真空断熱材以外の空間に発泡断熱材を充填していた。この真空断熱材は、繊維材料からなる芯材と、少なくともガスバリア層および熱融着層を含むラミネートフィルムを有し芯材を覆って内部を減圧する外被材とからなる。芯材の表面層の繊維材料には、無機バインダが付いており、内側の層の繊維材料には、無機バインダがないか表面層よりも低濃度の無機バインダが付いていた(例えば、特許文献1参照)。   Moreover, in the refrigerator using the conventional vacuum heat insulating material, the vacuum heat insulating material was stuck on the space formed by the outer box and the inner box, and the space other than the vacuum heat insulating material was filled with the foam heat insulating material. This vacuum heat insulating material is composed of a core material made of a fiber material and an outer cover material that has a laminate film including at least a gas barrier layer and a heat sealing layer and covers the core material to decompress the inside. The fiber material of the surface layer of the core material has an inorganic binder, and the fiber material of the inner layer has no inorganic binder or an inorganic binder at a lower concentration than the surface layer (for example, patent document) 1).

このような構造の芯材は、バインダ濃度が高い部分に芯材の剛性を持たせるとともに、バインダ濃度が低い部分に断熱性を担当させ、固体熱伝導を小さくし、断熱性能を高めることができるとしている。   The core material having such a structure can impart the rigidity of the core material to the portion where the binder concentration is high, and can make the heat insulating property responsible for the portion where the binder concentration is low, thereby reducing the solid heat conduction and improving the heat insulating performance. It is said.

特許第3497500号公報 (第5〜6頁、図3,図4)Japanese Patent No. 3497500 (Pages 5-6, FIGS. 3 and 4)

上記従来技術では、芯材の表面層の繊維材料に無機バインダが付いているので、無機バインダにより硬化した表面層が、表面層を覆う外被材を傷付けるおそれがあった。真空断熱材を製造する製造工程のうち、ガスバリア層を含むラミネートフィルムを有する袋状外被材中に芯材を挿入する工程において、または、袋状外被材中に芯材を挿入した後の工程において、無機バインダにより硬化した表面層を持つ芯材が、袋状外被材に当接して、袋状外被材のガスバリア層を傷付ける場合があった。   In the above prior art, since the inorganic binder is attached to the fiber material of the surface layer of the core material, the surface layer cured by the inorganic binder may damage the jacket material covering the surface layer. Among the manufacturing processes for manufacturing the vacuum heat insulating material, in the process of inserting the core material into the bag-shaped jacket material having the laminate film including the gas barrier layer, or after the core material is inserted into the bag-shaped jacket material In the process, a core material having a surface layer hardened by an inorganic binder may come into contact with the bag-like jacket material and damage the gas barrier layer of the bag-like jacket material.

製造コストを削減するために、一枚の大きい板状芯材を製造し、芯材を所定寸法に切断して複数個の芯材を製造する方式の場合、または、製造寸法上の誤差を少なくするために、芯材を成形した後に芯材を後加工により所定寸法に切断して使用する場合、芯材表面が、無機バインダにより硬化しているために、切断後の芯材の角や稜線がナイフエッジとなって、袋状外被材のガスバリア層を傷付けるおそれがより大きかった。   In order to reduce the manufacturing cost, a large plate-shaped core material is manufactured, and the core material is cut into a predetermined size to manufacture a plurality of core materials, or errors in manufacturing dimensions are reduced. Therefore, when the core material is cut into a predetermined size by post-processing after forming the core material, the core material surface is cured by an inorganic binder, so the corners and ridge lines of the core material after cutting There was a greater risk that the would become a knife edge and damage the gas barrier layer of the bag-shaped outer jacket material.

図11は、従来の芯材の構造を示す断面図である。無機バインダにより硬化した芯材2の表面2eには、芯材を構成する素材のうち径や粒の大きい素材粒2a,異物2b,しわ2cが生ずることがある。芯材2が無機バインダにより硬化しているので、素材粒2a,異物2b,しわ2cが、表面2eから寸法K1,寸法K2,寸法K3だけ突出してしまうことがあった。これらの素材粒2a,異物2b,しわ2cが、外被材を傷付け、長期間経過すると、傷が付いた部分をガスが透過することもあった。   FIG. 11 is a cross-sectional view showing the structure of a conventional core material. On the surface 2e of the core material 2 cured by the inorganic binder, material grains 2a, foreign matters 2b, and wrinkles 2c having large diameters and grains among the materials constituting the core material may occur. Since the core material 2 is hardened by the inorganic binder, the material particles 2a, the foreign matter 2b, and the wrinkle 2c may protrude from the surface 2e by the dimensions K1, K2, and K3. These raw material particles 2a, foreign matter 2b, and wrinkle 2c damage the outer cover material, and after a long period of time, gas may permeate through the damaged portion.

本発明の課題は、真空断熱材の無機バインダにより硬化した表面層を持つ芯材または所定寸法に切断して使われる芯材の角や稜線が外被材を傷付けない構造とすることである。   An object of the present invention is to provide a structure in which a core material having a surface layer hardened by an inorganic binder of a vacuum heat insulating material or a corner or a ridge line of a core material used after being cut to a predetermined size does not damage an outer cover material.

本発明は、上記課題を達成するために、コア材と前記コア材を被覆する外被材とからなる真空断熱材において、コア材を繊維材料積層体の芯材と柔軟性の繊維材料の被覆層とで構成し、芯材を被覆層で覆って形成したコア材を外被材内に配置した真空断熱材を提案する。   In order to achieve the above object, the present invention provides a vacuum heat insulating material comprising a core material and a jacket material covering the core material, wherein the core material is coated with a core material of a fiber material laminate and a flexible fiber material. A vacuum heat insulating material is proposed in which a core material formed by covering a core material with a coating layer is disposed in a jacket material.

本発明は、また、コア材と前記コア材を被覆する外被材とからなる真空断熱材において、コア材を繊維材料積層体の芯材と柔軟性の繊維材料の被覆層とで構成し、芯材が、無機バインダ液を塗布して加熱成形した芯材であり、芯材を被覆層で覆って形成したコア材を外被材内に配置した真空断熱材を提案する。   The present invention is also a vacuum heat insulating material comprising a core material and a jacket material covering the core material, wherein the core material is composed of a core material of a fiber material laminate and a covering layer of a flexible fiber material, We propose a vacuum heat insulating material in which a core material is a core material formed by applying an inorganic binder solution and heat-molded, and a core material formed by covering the core material with a coating layer is disposed in an outer cover material.

コア材を繊維材料積層体の芯材と柔軟性の繊維材料の被覆層とで構成し、芯材を被覆層で覆って形成したコア材を外被材内に配置したので、バインダにより硬化した芯材による外被材の傷付きを防止できる。また、バインダにより硬化されて表面に凹凸のある芯材表面を柔軟性の被覆層が覆う構造では、真空断熱材の平面度を出し易い。   The core material is composed of the core material of the fiber material laminate and the coating layer of the flexible fiber material, and the core material formed by covering the core material with the coating layer is disposed in the jacket material, so it is cured by the binder. It is possible to prevent the outer cover material from being damaged by the core material. Moreover, in the structure where the flexible coating layer covers the surface of the core material which is hardened by the binder and has an uneven surface, the flatness of the vacuum heat insulating material is easily obtained.

バインダにより硬化されて表面に凹凸のある芯材表面を柔軟性の被覆層が覆い、外被材中に芯材を配置する製造工程などにおいて、無機バインダにより硬化した表面層を持つ芯材が外被材に当接しないので、芯材が外被材を傷付けない真空断熱材が得られる。   A core material having a surface layer hardened by an inorganic binder is externally applied in a manufacturing process in which a core material that is hardened by a binder and the surface of the core material having an uneven surface is covered with a flexible coating layer and the core material is disposed in the outer shell material. Since it does not contact the workpiece, a vacuum heat insulating material is obtained in which the core does not damage the jacket.

コア材の強度メンバーとなる芯材の表面に柔軟性の被覆層を設けた結果、被覆層を含むコア材の表面硬度が柔らかくなり、真空断熱材の表面硬度が柔らかくなるので、柔らかくなった表面への耐衝撃性が高まる。したがって、真空断熱材を冷蔵庫箱体や扉に組み込むときの真空断熱材自体の製造工程などで取り扱い易い真空断熱材が得られる。   As a result of providing a flexible coating layer on the surface of the core material that is a strength member of the core material, the surface hardness of the core material including the coating layer is softened, and the surface hardness of the vacuum heat insulating material is softened, so the softened surface Improves impact resistance. Therefore, it is possible to obtain a vacuum heat insulating material that is easy to handle in the manufacturing process of the vacuum heat insulating material itself when the vacuum heat insulating material is incorporated into the refrigerator box or the door.

柔軟性の繊維材料を用いる被覆層の層厚を1mm以上としたので、バインダにより硬化した芯材による外被材の傷付きを防止した真空断熱材を提供できる。   Since the layer thickness of the coating layer using the flexible fiber material is 1 mm or more, a vacuum heat insulating material that prevents the outer cover material from being damaged by the core material cured by the binder can be provided.

より具体的には、被覆層の厚さを1mm以上とし、厚さ50μm以下の溶着フィルム層を採用すると、溶着フィルム層からのガスリークを低減でき、真空度を長期に亘って保持し、信頼性の高い冷蔵庫を提供できる。   More specifically, when the thickness of the coating layer is set to 1 mm or more and a welded film layer having a thickness of 50 μm or less is employed, gas leakage from the welded film layer can be reduced, and the degree of vacuum is maintained over a long period of time. A high refrigerator can be provided.

芯材として材料取りした後の繊維材料廃材をバインダを用いて加熱成形したものを芯材として採用すると、材料歩留りが改善され、環境負荷を軽減できる。   If the fiber material waste material after taking the material as the core material is heat-molded using a binder, the material yield is improved and the environmental load can be reduced.

芯材として軽量で表面平坦性が良好な連通ウレタンや、冷蔵庫などの断熱箱体廃棄時に出る廃ウレタン成形体を用い、被覆層と組み合わせると、凹凸面やR形状材面になじみ易い真空断熱材が得られる。また、廃ウレタン成形体の使用により、リサイクル性が良くなる。   Vacuum heat insulating material that is easy to adjust to uneven surfaces and R-shaped material surfaces when combined with a coating layer using lightweight urethane with good surface flatness as a core material and waste urethane molded products that are produced when heat insulating boxes such as refrigerators are discarded. Is obtained. Moreover, recyclability improves by use of a waste urethane molding.

外板と真空断熱材との間に温熱放熱パイプを有し、温熱放熱パイプの外径分寸法の凹凸を真空断熱材の柔軟性の被覆層で吸収するようにすると、真空断熱材の平面度を出し易く、真空断熱材と外板との間にウレタンなどの発泡断熱材が侵入しにくく、外板表面に歪みが少ない冷蔵庫を提供できる。   If a thermal radiation pipe is provided between the outer plate and the vacuum heat insulating material, and the unevenness of the outer diameter of the thermal heat radiation pipe is absorbed by the flexible coating layer of the vacuum heat insulating material, the flatness of the vacuum heat insulating material Therefore, it is possible to provide a refrigerator in which a foamed heat insulating material such as urethane is less likely to enter between the vacuum heat insulating material and the outer plate, and the outer plate surface is less distorted.

真空断熱材の近傍に真空断熱材以外の突起物を有し、被覆層を突起物が当接するおそれのある芯材の表面または角や稜線のみに設ければ、バインダにより硬化した芯材の表面を柔軟性の被覆層で覆ってあるので、突起物が真空断熱材に当接しても、柔軟性の被覆層が緩衝部材となり、真空断熱材の外被材を傷付けることが少ない。また、突起物が当接するおそれのある芯材の表面または角や稜線にのみ被覆層を設けたので、広い面積の真空断熱材を製造するときも、製造効率が良い。   If there is a protrusion other than the vacuum heat insulating material in the vicinity of the vacuum heat insulating material and the coating layer is provided only on the surface of the core material or the corners or ridges where the protrusion may contact, the surface of the core material hardened by the binder Is covered with a flexible covering layer, so that even if the projection comes into contact with the vacuum heat insulating material, the flexible covering layer serves as a buffer member and hardly damages the outer cover material of the vacuum heat insulating material. In addition, since the coating layer is provided only on the surface, corners, or ridgelines of the core material with which the protrusions may come into contact, the production efficiency is good when producing a large area vacuum heat insulating material.

断熱壁内の外板側に真空断熱材を設置し、真空断熱材の外板に接する側にのみ被覆層を形成すると、柔軟性の被覆層が曲面を有する外板の曲面部になじんで密着するので、曲面部の外観意匠がきれいな冷蔵庫を提供できる。   When a vacuum heat insulating material is installed on the outer plate side in the heat insulating wall, and a coating layer is formed only on the side of the vacuum heat insulating material that contacts the outer plate, the flexible coating layer fits closely to the curved surface portion of the outer plate having a curved surface. Therefore, a refrigerator having a beautiful appearance design of the curved surface portion can be provided.

本発明の冷蔵庫は、表面に接着部材を取り付ける工程を有した真空断熱材を、冷蔵庫箱体や扉を形成する断熱空間内に、上記接着部材を使って設置した後、空間内に発泡断熱材を充填し、真空断熱材を固着したので、バインダにより硬化した芯材による外被材の傷付きを防止し信頼性の高い冷蔵庫を提供できる。   The refrigerator of the present invention is a foam heat insulating material in the space after the vacuum heat insulating material having a step of attaching the adhesive member on the surface is installed in the heat insulating space forming the refrigerator box and the door using the adhesive member. Since the vacuum heat insulating material is fixed, it is possible to prevent the outer cover material from being damaged by the core material hardened by the binder and to provide a highly reliable refrigerator.

バインダにより硬化されて表面に凹凸のある芯材表面を柔軟性の被覆層が覆うので、真空断熱材の平面度が確保され、真空断熱材と外板との間にウレタンなどの発泡断熱材が侵入しにくく、外板表面に歪みが少ない冷蔵庫を提供できるとともに、外観デザインの自由度が高まる。   Since the flexible coating layer covers the surface of the core material that is hardened by the binder and has irregularities on the surface, the flatness of the vacuum heat insulating material is ensured, and a foam heat insulating material such as urethane is provided between the vacuum heat insulating material and the outer plate. It is possible to provide a refrigerator that is hard to penetrate and has less distortion on the outer plate surface, and the degree of freedom in external design is increased.

本発明によれば、真空断熱材の無機バインダにより硬化した表面層を持つ芯材または所定寸法に切断して使われる芯材の角や稜線が外被材を傷付けない構造を実現できる。   According to the present invention, it is possible to realize a structure in which a core material having a surface layer hardened by an inorganic binder of a vacuum heat insulating material or a corner or a ridge line of a core material used after being cut to a predetermined size does not damage an outer cover material.

図1から図10を参照して、本発明による真空断熱材およびその製造方法並びに冷蔵庫の実施例を説明する。   With reference to FIGS. 1-10, the vacuum heat insulating material by this invention, its manufacturing method, and the Example of a refrigerator are demonstrated.

(冷蔵庫の実施例1)
図1は、本発明による冷蔵庫の実施例を示す縦断面図であり、図2は、本発明による冷蔵庫の実施例1のA−A線に沿った横断面図である。
(Example 1 of a refrigerator)
FIG. 1 is a longitudinal sectional view showing an embodiment of a refrigerator according to the present invention, and FIG. 2 is a transverse sectional view taken along the line AA of Embodiment 1 of the refrigerator according to the present invention.

冷蔵庫箱体10は、外板21と内板12とを備え、外板21と内板12とによって形成される空間の外板側または内板側に真空断熱材30を貼り付け、真空断熱材30以外の空間に発泡断熱材13を充填してある。   The refrigerator box 10 includes an outer plate 21 and an inner plate 12, and a vacuum heat insulating material 30 is attached to the outer plate side or the inner plate side of the space formed by the outer plate 21 and the inner plate 12. The space other than 30 is filled with the foam heat insulating material 13.

冷蔵庫箱体10は、その内部に冷蔵温度室14と製氷室や冷凍室を有する冷凍温度室15とをそれぞれ区画し形成してある。
冷蔵庫内を所定温度に冷却する冷却器18は、配管19により圧縮機20に接続され、一連の冷凍サイクルの一部を形成している。
送風機16は、配線コード17を通じて給電され、冷却器18により冷却した冷気を冷蔵庫庫内で循環させ所定の低温を保持する。
The refrigerator box 10 is formed by partitioning a refrigeration temperature chamber 14 and a freezing temperature chamber 15 having an ice making chamber and a freezing chamber.
A cooler 18 that cools the inside of the refrigerator to a predetermined temperature is connected to a compressor 20 by a pipe 19 and forms a part of a series of refrigeration cycles.
The blower 16 is supplied with power through the wiring cord 17 and circulates the cool air cooled by the cooler 18 in the refrigerator cabinet to maintain a predetermined low temperature.

本発明の対象となる真空断熱材30は、ウレタンなどの発泡断熱材13よりも熱伝導率の小さい真空断熱材である。真空断熱材30は、コア材30aとコア材30aを被覆するガスバリア層を有する外被材33とからなる。コア材30aは、表面が無機バインダにより硬化され強度部材になる芯材31と、外被材33が直接接触しないように芯材31表面を被覆する被覆層32とからなる。   The vacuum heat insulating material 30 which is the object of the present invention is a vacuum heat insulating material having a lower thermal conductivity than the foamed heat insulating material 13 such as urethane. The vacuum heat insulating material 30 includes a core material 30a and a jacket material 33 having a gas barrier layer covering the core material 30a. The core material 30a is composed of a core material 31 whose surface is hardened by an inorganic binder and becomes a strength member, and a coating layer 32 that covers the surface of the core material 31 so that the jacket material 33 does not come into direct contact.

芯材31は、ホウ酸やリン酸などの無機バインダを付けた板状繊維材料であり、被覆層32は、バインダが付いてない繊維材料で形成された柔軟性の繊維材料である。   The core material 31 is a plate-like fiber material with an inorganic binder such as boric acid or phosphoric acid, and the coating layer 32 is a flexible fiber material formed with a fiber material without a binder.

柔軟性の被覆層32は、バインダにより硬化した芯材31と、ガスバリア層を有する外被材33とが直接当接しないように、また、真空断熱材が外部から加重を受けても、バインダにより硬化した芯材31表面の硬化層が、外被材33を傷付けることがないように、芯材31と外被材33との間の緩衝材となっている。   The flexible coating layer 32 is formed by the binder so that the core material 31 cured by the binder and the jacket material 33 having the gas barrier layer are not in direct contact with each other, and even if the vacuum heat insulating material is externally loaded. The cured layer on the surface of the hardened core material 31 serves as a buffer material between the core material 31 and the jacket material 33 so that the jacket material 33 is not damaged.

係止具25aは、図示しない引き出しレールの回転ローラや冷蔵庫庫内の係止具であり、回転ローラや係止具25aは補強部材25に止められている。補強部材25は、外板11と内板12とにより形成された空間内に設置された突起物であり、真空断熱材30の近傍に設置されている。   The locking tool 25 a is a rotation roller of a drawer rail (not shown) or a locking tool in the refrigerator cabinet, and the rotation roller and the locking tool 25 a are fixed to the reinforcing member 25. The reinforcing member 25 is a protrusion that is installed in a space formed by the outer plate 11 and the inner plate 12, and is installed in the vicinity of the vacuum heat insulating material 30.

冷蔵庫箱体10の製造工程においては、まず、外板11の側板21の内面21aに、ホットメルト接着剤や両面粘着テープなどの接着部材により、真空断熱材30を設置する。   In the manufacturing process of the refrigerator box 10, first, the vacuum heat insulating material 30 is installed on the inner surface 21 a of the side plate 21 of the outer plate 11 with an adhesive member such as a hot melt adhesive or a double-sided adhesive tape.

真空断熱材30を設置した側板21に内板12を組み込む。例えば、側板21の前嵌め合い部21aに内板12のフランジ12aを挿入し、嵌め合わせる。   The inner plate 12 is incorporated in the side plate 21 on which the vacuum heat insulating material 30 is installed. For example, the flange 12a of the inner plate 12 is inserted into the front fitting portion 21a of the side plate 21 and fitted.

内板12の背面部12bに、冷凍サイクルの配管19と送風機の配線コード17とを設置する。   A pipe 19 for the refrigeration cycle and a wiring cord 17 for the blower are installed on the back surface portion 12 b of the inner plate 12.

側板21の後嵌め合い部21bに背面板のフランジ22aを挿入し、別工程で予め真空断熱材30を設置した外板11の背面板22を嵌め合わせる。   The flange 22a of the back plate is inserted into the rear fitting portion 21b of the side plate 21, and the back plate 22 of the outer plate 11 on which the vacuum heat insulating material 30 is previously installed is fitted in another process.

ここまで組み立てた箱体を金型などで補強し、外板11と内板12との間に形成された空間にウレタンなどの発泡断熱材を所定温度で発泡させ充填し、箱体に冷却器18や送風機16などを組み込み、冷蔵庫箱体10を形成する。   The box assembled so far is reinforced with a mold or the like, and the space formed between the outer plate 11 and the inner plate 12 is filled with foamed heat insulating material such as urethane at a predetermined temperature, and the box is cooled. The refrigerator box 10 is formed by incorporating 18 and the blower 16.

柔軟性の被覆層32が、バインダなどにより硬化されて表面に凹凸のある芯材31の表面を覆うので、真空断熱材の平面度を出し易く、コンパクトな冷蔵庫を提供できる。   Since the flexible coating layer 32 is cured by a binder or the like and covers the surface of the core material 31 having irregularities on the surface, the flatness of the vacuum heat insulating material can be easily obtained, and a compact refrigerator can be provided.

コア材30aの強度メンバーとなる芯材31の表面に柔軟性の被覆層32を配置した構造では、被覆層を含むコア材の表面硬度が柔らかくなり、耐衝撃性が高まり、製造工程時に取り扱い易い真空断熱材を提供できる。   In the structure in which the flexible coating layer 32 is disposed on the surface of the core material 31 that is a strength member of the core material 30a, the surface hardness of the core material including the coating layer is softened, the impact resistance is increased, and it is easy to handle during the manufacturing process. Vacuum insulation can be provided.

バインダが付いてない柔軟性の被覆層32でバインダにより硬化した芯材31の表面を覆ってあるので、補強部材25や前嵌め合い部21a,後嵌め合い部21c,冷凍サイクルの配管19,配線コード17などの部材が真空断熱材30に当接しても、柔軟性の被覆層32が緩衝部材となって、真空断熱材30の損傷が防止される。   Since the surface of the core material 31 hardened by the binder is covered with a flexible coating layer 32 without a binder, the reinforcing member 25, the front fitting portion 21a, the rear fitting portion 21c, the piping 19 of the refrigeration cycle, the wiring Even if a member such as the cord 17 comes into contact with the vacuum heat insulating material 30, the flexible covering layer 32 serves as a buffer member, and the vacuum heat insulating material 30 is prevented from being damaged.

すなわち、冷蔵庫箱体10の組み込み作業中、真空断熱材の表面または角部や稜線部30bと側板の前嵌め合い部21bや後嵌め合い部21c,冷凍サイクルの配管19,送風機の配線コード17,補強部材25などとが当接しても、柔軟性の被覆層32が緩衝部材となり、真空断熱材の外被材33を傷付けることが少なくなる。
したがって、真空断熱材の真空度の低下が少なく、長期間経過しても熱伝導率の優れた真空断熱材を有する冷蔵庫構造を提供できる。
That is, during the assembling work of the refrigerator box 10, the surface or corners of the vacuum heat insulating material, the ridgeline part 30 b and the front fitting part 21 b and the rear fitting part 21 c of the side plate, the piping 19 of the refrigeration cycle, the wiring cord 17 of the blower, Even if the reinforcing member 25 or the like comes into contact, the flexible coating layer 32 becomes a buffer member, and the outer covering material 33 of the vacuum heat insulating material is less likely to be damaged.
Therefore, the vacuum degree of the vacuum heat insulating material is hardly lowered, and a refrigerator structure having a vacuum heat insulating material having excellent thermal conductivity even after a long period of time can be provided.

なお、芯材31のすべての面を柔軟性の被覆層32で覆う代わりに、補強部材25,側板21の前嵌め合い部21bや後嵌め合い部21c,冷凍サイクルの配管19,送風機の配線コード17などが当接すると予想される芯材31の面または角や稜線30bのみに柔軟性の被覆層32を配置すれば、広い面積の真空断熱材30を製造するときも、製造効率の良い構成になる。このような構造でも、バインダにより硬化した芯材31の突起物などが真空断熱材30に当接しても、被覆層32が緩衝部材となって、真空断熱材30の傷付きを少なくできる。   Instead of covering all the surfaces of the core material 31 with the flexible coating layer 32, the reinforcing member 25, the front fitting portion 21b and the rear fitting portion 21c of the side plate 21, the piping 19 of the refrigeration cycle, and the wiring cord of the blower If the flexible covering layer 32 is disposed only on the face or corner or the ridgeline 30b of the core material 31 that is expected to come into contact, the structure with good production efficiency even when the vacuum heat insulating material 30 with a large area is manufactured. become. Even in such a structure, even if the protrusions of the core material 31 cured by the binder come into contact with the vacuum heat insulating material 30, the coating layer 32 serves as a buffer member, and the damage to the vacuum heat insulating material 30 can be reduced.

芯材31は、繊維材料積層体のみならず、繊維材料廃材をバインダにより成形した廃繊維材料成形品,連通ウレタンからなるボード状成形体.廃ウレタンをバインダにより成形した廃ウレタン成形品でもよい。   The core material 31 is not only a fiber material laminate, but also a waste fiber material molded product obtained by molding a fiber material waste material with a binder, and a board-like molded body made of continuous urethane. A waste urethane molded product obtained by molding waste urethane with a binder may be used.

被覆層32は、層厚1mm以上であり、柔軟性の繊維材料で形成してある。したがって、繊維材料積層体を用いた芯材31の表面は、無機バインダにより硬化しているが、被覆層32は、例えばバインダが付いてない柔軟性の繊維材料で形成してあるので、柔軟性および緩衝作用を備えている。   The covering layer 32 has a layer thickness of 1 mm or more and is formed of a flexible fiber material. Therefore, although the surface of the core material 31 using the fiber material laminate is cured by the inorganic binder, the coating layer 32 is formed of a flexible fiber material without a binder, for example. And has a buffering action.

(真空断熱材の実施例)
図3は、本発明による真空断熱材の構造を示す断面図である。
(Example of vacuum insulation)
FIG. 3 is a cross-sectional view showing the structure of the vacuum heat insulating material according to the present invention.

真空断熱材30は、コア材30aと、コア材30aを被覆するガスバリア性の外被材33とからなり、コア材30aは、コア材の強度メンバーとなる芯材31と、芯材31表面に外被材33が直接接触しないように芯材31の表面を被覆する被覆層32とからなる。   The vacuum heat insulating material 30 includes a core material 30a and a gas barrier outer covering material 33 that covers the core material 30a. The core material 30a is formed on the surface of the core material 31 and a core material 31 that is a strength member of the core material. It consists of the coating layer 32 which coat | covers the surface of the core material 31 so that the jacket material 33 may not contact directly.

芯材31は、ホウ酸やリン酸などの無機バインダを付けた繊維材料であり、被覆層32は、緩衝効果を持つ柔軟性の繊維材料である。   The core material 31 is a fiber material provided with an inorganic binder such as boric acid or phosphoric acid, and the coating layer 32 is a flexible fiber material having a buffering effect.

真空断熱材30は、ガスバリア性の外被材33で覆われた内部およびコア材30a内を所定の真空度に減圧して形成され、真空断熱材として所定の断熱性能を発揮する。   The vacuum heat insulating material 30 is formed by depressurizing the inside covered with the gas barrier outer covering material 33 and the inside of the core material 30a to a predetermined degree of vacuum, and exhibits a predetermined heat insulating performance as a vacuum heat insulating material.

外被材33は、ナイロン樹脂やポリエチレンテレフタレート樹脂などで形成された表面保護フィルム33aと、その内側でガスバリア性の良好なアルミニウムなどの金属箔33eと、その内側で高密度ポリエチレン樹脂またはポリアクリロニトリル樹脂などの熱溶着可能な溶着フィルム層33fとを一体に積層して形成されている。   The outer covering material 33 includes a surface protective film 33a formed of nylon resin or polyethylene terephthalate resin, a metal foil 33e such as aluminum having a good gas barrier property inside thereof, and a high density polyethylene resin or polyacrylonitrile resin inside thereof. It is formed by integrally laminating a welding film layer 33f that can be thermally welded.

表面保護フィルム33aと金属箔33eとの間に、ポリエチレンテレフタレート樹脂やポリプロピレン樹脂などの支持層33cにアルミニウムなどの金属を蒸着した金属蒸着膜33bを介在させて、ガスバリア性をより良くする場合もある。   In some cases, the gas barrier property is further improved by interposing a metal deposition film 33b in which a metal such as aluminum is deposited on a support layer 33c such as a polyethylene terephthalate resin or a polypropylene resin between the surface protection film 33a and the metal foil 33e. .

図4は、図3の真空断熱材の要部の構造を示す拡大断面図である。   FIG. 4 is an enlarged cross-sectional view showing the structure of the main part of the vacuum heat insulating material of FIG.

無機バインダにより硬化した芯材31の表面31eには、芯材を構成する素材のうちで径や粒の大きい素材粒31a,異物31b,しわ31cが生ずる。これらの素材粒31a,異物31b,しわ31cが、芯材31が無機バインダにより硬化しているので、表面31eからH1寸法,H2寸法,H3寸法だけ突出している。
32は芯材31が外被材33と直接接触しないように、芯材表面に被覆した被覆層であり、被覆層32は柔軟性の繊維材料で形成してあるので、硬化した素材粒31aや異物31bまたはしわ31cが、外被材33のガスバリア層を傷付けることがないように構成されている。
換言すれば、バインダにより硬化した素材粒31aや異物31bまたはしわ31cが、芯材表面31eから寸法H1,寸法H2,」寸法H3だけ突出しても、突出した寸法を吸収できるように、柔軟性を有する被覆層32の厚さT1を設定してある。
On the surface 31e of the core material 31 cured by the inorganic binder, material grains 31a, foreign matter 31b, and wrinkles 31c having large diameters and grains among the materials constituting the core material are generated. Since the core material 31 is hardened by the inorganic binder, the material particles 31a, the foreign matter 31b, and the wrinkle 31c protrude from the surface 31e by the H1, H2, and H3 dimensions.
32 is a coating layer coated on the surface of the core material so that the core material 31 is not in direct contact with the jacket material 33. Since the coating layer 32 is formed of a flexible fiber material, the cured material grains 31a and The foreign matter 31b or the wrinkle 31c is configured so as not to damage the gas barrier layer of the covering material 33.
In other words, even if the material particles 31a, foreign matter 31b or wrinkle 31c cured by the binder protrude from the core surface 31e by the dimension H1, dimension H2, “dimension H3”, the flexibility is provided so that the protruding dimension can be absorbed. A thickness T1 of the covering layer 32 is set.

芯材の表面に現れる素材粒31a,異物31b,しわ31cなどが大気圧や製造時の加圧圧力により、または、組み込み時の取り扱い中に外部からの当接圧力により、外被材33を局部的に圧縮変形しても、金属箔33eがガスバリア性を損なわないように、被覆層32の厚さT1を設定してある。   The material particles 31a, foreign matters 31b, wrinkles 31c, etc. appearing on the surface of the core material are localized on the outer cover material 33 by atmospheric pressure, pressure applied during manufacture, or contact pressure from the outside during handling during assembly. The thickness T1 of the coating layer 32 is set so that the metal foil 33e does not impair the gas barrier property even if it is compressively deformed.

図5は、人造鉱物繊維保温材の特性値を示す図表であり、芯材31の表面31eに現れる素材粒など31a,31b,31cの寸法H1,寸法H2,寸法H3の実例を示している。   FIG. 5 is a chart showing the characteristic values of the artificial mineral fiber heat insulating material, and shows examples of the dimensions H1, H2, and H3 of the material grains 31a, 31b, and 31c appearing on the surface 31e of the core 31.

芯材31は、「人造鉱物繊維保温材」(JISA9504)を原料としている。「人造鉱物繊維保温材」の製造方法によって、素材粒31aなどの大きさ分布が異なるので、火炎法と遠心法の両方について、3つの区分A,B,Cに分け、その比率をパーセント(%)で表示してある。寸法H1,寸法H2,寸法H3が10μm未満のものを区分Cとし、寸法が10μm〜20μmのものを区分Bとし、寸法が20μmを越えるものを区分Aとして表示する。   The core material 31 is made of “artificial mineral fiber heat insulating material” (JISA9504). Since the size distribution of the raw material grains 31a differs depending on the manufacturing method of “artificial mineral fiber heat insulating material”, the flame method and the centrifugal method are divided into three categories A, B, and C, and the ratio is expressed as a percentage (% ). A dimension H1, a dimension H2, and a dimension H3 of less than 10 μm are designated as category C, those having a dimension of 10 μm to 20 μm are designated as category B, and those having a dimension exceeding 20 μm are designated as category A.

素材粒などの最大突出寸法は、10μm未満のものが最も多いが、生産効率を考慮すると20μm以下のものを使用すべきである。   The largest protruding dimension such as a material grain is most often less than 10 μm, but in consideration of production efficiency, the maximum protruding dimension should be 20 μm or less.

また、量産性に優れた遠心法により製造した「人造鉱物繊維保温材」を使用すれば真空断熱材の製造コストを削減できる。   In addition, the use of “artificial mineral fiber heat insulating material” manufactured by a centrifugal method excellent in mass productivity can reduce the manufacturing cost of the vacuum heat insulating material.

なお、発明者らの実験によれば、寸法H1,寸法H2,寸法H3を吸収するには、被覆層32の厚さT1を1mm以上にすれば、長期的にも金属箔33eのガスバリア性が損なわれないことが判明した。   According to the experiments by the inventors, in order to absorb the dimensions H1, H2, and H3, the gas barrier property of the metal foil 33e can be maintained over a long period of time if the thickness T1 of the coating layer 32 is 1 mm or more. It was found that it was not damaged.

また、芯材を成型後切断して使用する場合は、切断によるバリ(かえり)が、寸法H1,寸法H2,寸法H3を超える場合が多い。しかし、被覆層32の厚さT1を1mm以上にすれば、バリ(かえり)があっても、金属箔33eのガスバリア性が損なわれないことが判明した。   Further, when the core material is cut and used after being molded, the burr due to cutting often exceeds the dimensions H1, H2, and H3. However, it has been found that if the thickness T1 of the covering layer 32 is 1 mm or more, the gas barrier property of the metal foil 33e is not impaired even if there is a burr.

図3および図4に示すように、バインダにより硬化した素材粒31a,異物31b,しわ31cが、芯材表面31eから寸法H1,寸法H2,寸法H3だけ突出しても、突出した寸法を吸収できるように、柔軟性の被覆層32の厚さT1を設定し、また、バインダにより硬化した芯材が外被材に直接当接しないようにしてあるので、真空断熱材自体の製造工程時に、外被材を芯材に押し付けても、または、真空断熱材を冷蔵庫箱体や扉に組み込むときの取り扱い中に、外部からの部材が真空断熱材に当接しても、外被材のガスバリア性を損なうことがない真空断熱材およびそれを用いた冷蔵庫を提供できる。   As shown in FIGS. 3 and 4, even if the raw material particles 31a, foreign matter 31b, and wrinkle 31c hardened by the binder protrude from the core surface 31e by the dimensions H1, H2, and H3, the protruding dimensions can be absorbed. Further, the thickness T1 of the flexible coating layer 32 is set, and the core material cured by the binder is not directly brought into contact with the outer jacket material. Therefore, during the manufacturing process of the vacuum heat insulating material itself, Even if the material is pressed against the core material, or even when the vacuum heat insulating material is incorporated into the refrigerator box or door, even if an external member comes into contact with the vacuum heat insulating material, the gas barrier property of the jacket material is impaired. There can be provided a vacuum heat insulating material and a refrigerator using the same.

図6は、本発明による真空断熱材の実施例1,実施例2,比較例1の特性を比較して示す図表である。本実施例の真空断熱材は、図5の区分Bの原料を使用して製造した。   FIG. 6 is a chart comparing the characteristics of Example 1, Example 2 and Comparative Example 1 of the vacuum heat insulating material according to the present invention. The vacuum heat insulating material of the present Example was manufactured using the raw material of the division B of FIG.

図6の実施例1は、表面保護フィルムとして15μmのナイロン樹脂を使用し、アルミニウム金属蒸着膜を400〜500Åとし、蒸着膜の支持層として12μmのポリエチレンテレフタレート樹脂を使用し、アルミ箔を6μmとし、溶着フィルム層として50μmの高密度ポリエチレン樹脂を使用した。柔軟性の被覆層42の原料として、遠心法により製造した「人造鉱物繊維保温材」(JISA9504)を使用し、表面層の厚さを1mmとした。   Example 1 in FIG. 6 uses a 15 μm nylon resin as a surface protective film, an aluminum metal vapor deposition film of 400 to 500 mm, a 12 μm polyethylene terephthalate resin as a support layer of the vapor deposition film, and an aluminum foil of 6 μm. A 50 μm high density polyethylene resin was used as the welding film layer. As a raw material for the flexible coating layer 42, “artificial mineral fiber heat insulating material” (JISA9504) manufactured by a centrifugal method was used, and the thickness of the surface layer was set to 1 mm.

また、長期的にもガスバリア性を損なわないことの検証として、熱伝導率の経時劣化を判断できるように、熱伝導率の初期値と試料を70℃の空気中に4ヶ月間放置した後の値とを計測した。英弘精機製の熱伝導率測定装置HC−071を用いて、平均温度24℃で熱伝導率を測定した。   In order to verify that the gas barrier properties are not impaired over the long term, the initial value of the thermal conductivity and the sample after being left in the air at 70 ° C. for 4 months so that the deterioration of the thermal conductivity with time can be determined. Values were measured. The thermal conductivity was measured at an average temperature of 24 ° C. using a thermal conductivity measuring device HC-071 manufactured by Eihiro Seiki.

実施例2は、溶着フィルム層として20μmの高密度ポリエチレン樹脂を使用し、それ以外は実施例1と同一の条件とした。   In Example 2, a high-density polyethylene resin having a thickness of 20 μm was used as the welding film layer, and the other conditions were the same as those in Example 1.

図6に示すように、70℃,4ヶ月、加熱後の計測値は、実施例1,実施例2とも7〜8mW/mKであり、比較例1の9〜11mW/mKと比較して良好であった。   As shown in FIG. 6, the measured value after heating at 70 ° C. for 4 months is 7 to 8 mW / mK in both Examples 1 and 2, which is better than 9 to 11 mW / mK in Comparative Example 1. Met.

本発明の真空断熱材によれば、真空断熱材の芯材表面に径や粒が大きい素材粒,異物,しわなどが生じても、また、芯材41の角や稜線にナイフエッジが生じても、芯材41と外被材43との間に、柔軟性の繊維材料で層厚1mm以上の被覆層42を形成すれば、ガスバリア層を持つ外被材43が傷付かないので、長期間経過しても熱伝導率の優れた真空断熱材を含む冷蔵庫が得られる。   According to the vacuum heat insulating material of the present invention, even if material particles, foreign matters, wrinkles or the like having large diameters or grains are generated on the surface of the core material of the vacuum heat insulating material, a knife edge is generated at the corner or ridge line of the core material 41. However, if the covering layer 42 having a layer thickness of 1 mm or more is formed of a flexible fiber material between the core material 41 and the covering material 43, the covering material 43 having the gas barrier layer will not be damaged. Even if it passes, the refrigerator containing the vacuum heat insulating material excellent in thermal conductivity is obtained.

また、柔軟性の繊維材料で形成した層厚1mm以上の被覆層42を設ければ、溶着層である溶着フィルム層の厚さを50μm以下と薄くしても、芯材の角や稜線にナイフエッジが生じても、ガスバリア層を持つ外被材43が傷付かないので、長期間経過しても熱伝導率の優れた真空断熱材を含む冷蔵庫を提供できる。   Further, if a covering layer 42 made of a flexible fiber material and having a layer thickness of 1 mm or more is provided, a knife can be applied to the corners and ridgelines of the core material even if the thickness of the welding film layer as the welding layer is reduced to 50 μm or less. Even if an edge occurs, the jacket material 43 having the gas barrier layer is not damaged, so that a refrigerator including a vacuum heat insulating material having excellent thermal conductivity can be provided even after a long period of time.

なお、溶着フィルム層43fの厚さを薄くすると、溶着フィルム層43fの溶着部からの長期的ガスリークが小さくなるので、長期間経過しても熱伝導率の優れた真空断熱材が得られる。   If the thickness of the welded film layer 43f is reduced, long-term gas leakage from the welded portion of the welded film layer 43f is reduced, so that a vacuum heat insulating material with excellent thermal conductivity can be obtained even after a long period of time.

(冷蔵庫の実施例2)
図7は、本発明による冷蔵庫の実施例2の(図1で)A−A線に沿った横断面図である。
(Example 2 of a refrigerator)
FIG. 7 is a cross-sectional view of the refrigerator according to the second embodiment of the present invention along the line AA (in FIG. 1).

外板11の露付き防止用パイプ23および凝縮器用パイプ24は、図示しない冷凍サイクルを構成する温熱放熱パイプである。   The dew prevention pipe 23 and the condenser pipe 24 of the outer plate 11 are thermal heat radiating pipes constituting a refrigeration cycle (not shown).

真空断熱材45は、ウレタンなどの発泡断熱材13中に設置され、発泡断熱材13よりも断熱性能が良好な真空断熱材であり、露付き防止用パイプ23や凝縮器用パイプ24の温熱が冷蔵庫内に侵入しないように、これらのパイプ23,24を覆い、側板21の内面21aに接着剤などにより固定されている。   The vacuum heat insulating material 45 is a vacuum heat insulating material that is installed in the foam heat insulating material 13 such as urethane and has better heat insulating performance than the foam heat insulating material 13, and the heat of the dew prevention pipe 23 and the condenser pipe 24 is stored in the refrigerator. The pipes 23 and 24 are covered so as not to enter the inside, and are fixed to the inner surface 21a of the side plate 21 with an adhesive or the like.

真空断熱材45は、コア材45aとコア材を被覆しガスバリア層を有する外被材48とからなる。
コア材45aは、コア材の強度メンバーとなる芯材46と、芯材表面を被覆する被覆層47とからなる。被覆層47は、芯材46表面の少なくとも露付き防止用パイプ23や凝縮器用パイプ24と真空断熱材45とが接する面側に、芯材46と外被材48とが直接接触しないように、芯材46の表面を被覆する。
芯材46は、ホウ酸やリン酸などの無機バインダを付けた板状繊維材料であり、被覆層47は柔軟性の繊維材料である。
The vacuum heat insulating material 45 includes a core material 45a and a jacket material 48 that covers the core material and has a gas barrier layer.
The core material 45a includes a core material 46 serving as a strength member of the core material, and a coating layer 47 that covers the surface of the core material. The coating layer 47 is arranged so that the core material 46 and the jacket material 48 are not in direct contact with at least the surface of the surface of the core material 46 where the dew prevention pipe 23 or the condenser pipe 24 and the vacuum heat insulating material 45 are in contact. The surface of the core material 46 is covered.
The core material 46 is a plate-like fiber material provided with an inorganic binder such as boric acid or phosphoric acid, and the coating layer 47 is a flexible fiber material.

したがって、芯材46の表面が無機バインダにより硬化していても、柔軟性の繊維材料である被覆層47が、製造上の寸法誤差などを吸収し、真空断熱材45が、露付き防止用パイプ23や凝縮器用パイプ24を覆い、しかも、側板21の内面21aに密着できるようにしている。   Therefore, even if the surface of the core material 46 is cured by an inorganic binder, the coating layer 47 that is a flexible fiber material absorbs dimensional errors in manufacturing, and the vacuum heat insulating material 45 is used to prevent dew condensation. 23 and the condenser pipe 24 are covered with each other, and can be in close contact with the inner surface 21a of the side plate 21.

真空断熱材45の表面に設けられた溝45b、45cは、露付き防止用パイプ23や凝縮器用パイプ24の凹凸を真空断熱材の柔軟性の被覆層で吸収できるような大きさおよび寸法を有し、かつ、発泡断熱材が浸入しない寸法に設定してある。   The grooves 45b and 45c provided on the surface of the vacuum heat insulating material 45 have such a size and dimensions that the unevenness of the dew prevention pipe 23 and the condenser pipe 24 can be absorbed by the flexible covering layer of the vacuum heat insulating material. However, the dimensions are set so that the foam insulation does not enter.

溝45b,45cの形状寸法および露付き防止用パイプ23や凝縮器用パイプ24の外径寸法には、製造上の寸法誤差や成型誤差が生じる。   A manufacturing dimensional error and a molding error occur in the shape dimensions of the grooves 45b and 45c and the outer diameter dimensions of the dew prevention pipe 23 and the condenser pipe 24.

そこで、本発明においては、真空断熱材表面に形成された溝45b,45cの周辺を柔軟性の繊維材料で形成した被覆層47で覆ってあり、温熱放熱パイプの外径分寸法の凹凸および寸法誤差を吸収できるようにしてある。   Therefore, in the present invention, the periphery of the grooves 45b and 45c formed on the surface of the vacuum heat insulating material is covered with a coating layer 47 formed of a flexible fiber material, and the irregularities and dimensions of the outer diameter of the thermal heat radiation pipe are measured. The error can be absorbed.

溝45b,45cの製造方法は、大別して2通りある。芯材46および被覆層47の表面を予め凹状にして形成する方法と、芯材46と被覆層47の表面を初期製造段階では平面状に製造し、真空断熱材として完成した後に溝45b,溝45cをプレス加工やローラ押し付け加工により形成する方法である。   There are roughly two methods for manufacturing the grooves 45b and 45c. A method of forming the surfaces of the core material 46 and the coating layer 47 in a concave shape in advance, and the surfaces of the core material 46 and the coating layer 47 are manufactured in a flat shape in the initial manufacturing stage and completed as a vacuum heat insulating material. 45c is formed by pressing or roller pressing.

冷蔵庫の製造効率上は、所定寸法の平板状真空断熱材を複数枚製造しておいて、各真空断熱材の用途にあわせて、後加工で溝45b,溝45cを形成する方法が有利である。   From the viewpoint of manufacturing efficiency of the refrigerator, it is advantageous to manufacture a plurality of flat plate vacuum heat insulating materials having predetermined dimensions and form grooves 45b and 45c by post-processing according to the use of each vacuum heat insulating material. .

本発明の真空断熱材を採用すると、溝45b,溝45cをプレス加工やローラ押し付け加工により形成する場合、プレス圧やローラ圧が外被材48に加わっても、外被材48裏面に柔軟性の被覆層47があるので、外被材48のガスバリア層を損傷することが少なくなる。   When the vacuum heat insulating material of the present invention is employed, when the grooves 45b and 45c are formed by pressing or roller pressing, even if press pressure or roller pressure is applied to the outer covering 48, the back surface of the outer covering 48 is flexible. Therefore, the gas barrier layer of the jacket material 48 is less likely to be damaged.

冷蔵庫の実施例2においては、真空断熱材45の被覆層47の厚さ寸法T41を例示してある。被覆層47の厚さ寸法T41は、露付き防止用パイプ23や凝縮器用パイプ24のパイプ外径寸法よりも大きく設定してある。したがって、真空断熱材45の芯材46は、その表面をほぼ平面状に製造できるので、溝加工により芯材46の繊維が分断されないため、断熱性能を悪化させないで、芯材46の製造時の製造効率が改善される。   In Example 2 of the refrigerator, the thickness dimension T41 of the coating layer 47 of the vacuum heat insulating material 45 is illustrated. The thickness dimension T41 of the covering layer 47 is set larger than the pipe outer diameter dimension of the dew prevention pipe 23 and the condenser pipe 24. Therefore, the core material 46 of the vacuum heat insulating material 45 can be manufactured to have a substantially flat surface. Therefore, the fibers of the core material 46 are not divided by the groove processing, so that the heat insulating performance is not deteriorated. Manufacturing efficiency is improved.

露付き防止用パイプ23や凝縮器用パイプ24の外径寸法は、通常2mm〜6mm程度に設定されるので、寸法T41は、3mm〜8mm程度が望ましい。また、真空断熱材45の厚さT40は、通常7mm〜40mm程度に設定されるので、コア材の強度メンバーとなる芯材46の厚さT43は、4mm〜32mm程度に設定される。したがって、芯材46の強度が確保され、芯材46が取り扱い易くなるとともに、芯材を内包した真空断熱材45も取り扱い易くなる。   Since the outer diameter of the dew prevention pipe 23 and the condenser pipe 24 is normally set to about 2 mm to 6 mm, the dimension T41 is preferably about 3 mm to 8 mm. Moreover, since the thickness T40 of the vacuum heat insulating material 45 is normally set to about 7 mm to 40 mm, the thickness T43 of the core material 46 serving as a strength member of the core material is set to about 4 mm to 32 mm. Therefore, the strength of the core material 46 is ensured, the core material 46 is easy to handle, and the vacuum heat insulating material 45 containing the core material is also easy to handle.

冷蔵庫の実施例2においては、露付き防止用パイプ23や凝縮器用パイプ24を覆うように形成した溝部45bや45cの外被材裏面に、柔軟性の繊維材料で形成した被覆層47があるので、溝部45b,45cの製造上の寸法誤差を吸収できるとともに、露付き防止用パイプ23や凝縮器用パイプ24が溝部45b,45cに圧接しても、外被材のガスバリア性を損なうことが少ない。   In the second embodiment of the refrigerator, there is a coating layer 47 formed of a flexible fiber material on the back surface of the outer cover material of the grooves 45b and 45c formed so as to cover the dew prevention pipe 23 and the condenser pipe 24. In addition, it is possible to absorb the manufacturing dimensional error of the grooves 45b and 45c, and even if the dew prevention pipe 23 and the condenser pipe 24 are pressed against the grooves 45b and 45c, the gas barrier property of the jacket material is hardly impaired.

また、板状芯材の片面のみに被覆層47を形成すればよいので、製造コスト上有利な冷蔵庫を提供できる。   Moreover, since the coating layer 47 should just be formed only in the single side | surface of a plate-shaped core material, the refrigerator advantageous in terms of manufacturing cost can be provided.

(冷蔵庫の実施例3)
図8は、本発明による冷蔵庫の実施例3の横断面図である。
(Example 3 of refrigerator)
FIG. 8 is a cross-sectional view of a third embodiment of the refrigerator according to the present invention.

冷蔵庫の箱体や扉などの断熱壁断熱壁26は、外板27と、内板28と、外板27および内板28の間に充填されたウレタンなどの発泡断熱材29とからなる。真空断熱材55は、ホットメルト接着剤や粘着テープなどにより、外板27に固定される。真空断熱材55は、コア材55aとこのコア材55aを被覆するガスバリア性の外被材58とからなる。コア材55aは、無機バインダを付けた繊維材料であり、コア材の強度メンバーとなる芯材56と、被覆層57とからなる。被覆層57は、柔軟性の繊維材料であり、外板27に貼り付ける側の真空断熱材の外被材58aと、外板27とが密着できるように、かつ、外板27と密着した外被材58aが芯材56と直接接触しないように、芯材56と外被材58aとの間に柔軟性の被覆層57を介在させてある。外板27と真空断熱材55とが、被覆層57の柔軟性により密着する結果、ウレタンなどの発泡断熱材は、外板27と真空断熱材55との間に侵入できない。   The heat insulation wall 26 such as a refrigerator box or door is composed of an outer plate 27, an inner plate 28, and a foam heat insulating material 29 such as urethane filled between the outer plate 27 and the inner plate 28. The vacuum heat insulating material 55 is fixed to the outer plate 27 with a hot-melt adhesive or an adhesive tape. The vacuum heat insulating material 55 includes a core material 55a and a gas barrier outer covering material 58 that covers the core material 55a. The core material 55 a is a fiber material with an inorganic binder, and includes a core material 56 that is a strength member of the core material and a covering layer 57. The covering layer 57 is a flexible fiber material, and the outer cover material 58a on the side to be attached to the outer plate 27 and the outer plate 27 are in close contact with each other, and the outer layer 27 is in close contact with the outer plate 27. A flexible coating layer 57 is interposed between the core material 56 and the jacket material 58a so that the material 58a does not directly contact the core material 56. As a result of the outer plate 27 and the vacuum heat insulating material 55 being in close contact with each other due to the flexibility of the covering layer 57, the foam heat insulating material such as urethane cannot enter between the outer plate 27 and the vacuum heat insulating material 55.

冷蔵庫の外観意匠を高める目的で曲面状にする場合と、断熱壁26の表面層27aを薄板で形成し、断熱壁26内にウレタンなどの発泡断熱材を充填するときに、ウレタンなどの発泡圧力を緩和し、かつ、薄板表面層27aのたるみを吸収する目的で曲面状にする場合とがある。   For the purpose of enhancing the appearance design of the refrigerator, when the surface layer 27a of the heat insulating wall 26 is formed of a thin plate, and the foam insulating material such as urethane is filled in the heat insulating wall 26, the foaming pressure of urethane or the like In some cases, the surface of the thin plate surface layer 27a may be curved so as to reduce the slack.

上記目的で曲面状に形成した外板と真空断熱材55とが密着して、外板の薄板表面層27aと真空断熱材55との間に、ウレタンなどの発泡断熱材が浸入しないように、曲面寸法T9を考慮して、被覆層57の厚さT8を設定してある。   The outer plate formed into a curved surface for the above purpose and the vacuum heat insulating material 55 are in close contact so that a foam heat insulating material such as urethane does not enter between the thin plate surface layer 27a of the outer plate and the vacuum heat insulating material 55. The thickness T8 of the covering layer 57 is set in consideration of the curved surface dimension T9.

冷蔵庫の実施例3は、真空断熱材55の外板に接する側の被覆層57を柔軟性の繊維材料で形成し、バインダにより硬化されて表面に凹凸のある芯材表面56を柔軟性の被覆層が覆うので、真空断熱材55の平面度を出し易く、真空断熱材55と外板27との間にウレタンなどの発泡断熱材が侵入しにくく、外板表面に歪みや凹凸などが少ないきれいな外観の冷蔵庫を提供できる。
また、柔軟性の被覆層が曲面を有する外板の曲面部になじんで密着して貼れるので、曲面部が当初計画された通りのきれいな曲面状に形成されるので、外観デザインが損なわれない冷蔵庫を提供できることになり、デザイナーの設計自由度が大幅に改善される。
In the third embodiment of the refrigerator, the coating layer 57 on the side in contact with the outer plate of the vacuum heat insulating material 55 is formed of a flexible fiber material, and the core material surface 56 that is cured by a binder and has unevenness on the surface is coated with flexibility. Since the layer covers, the flatness of the vacuum heat insulating material 55 can be easily obtained, and a foam heat insulating material such as urethane does not easily enter between the vacuum heat insulating material 55 and the outer plate 27, and the surface of the outer plate is less distorted and uneven. An external refrigerator can be provided.
In addition, since the flexible coating layer can be adhered and adhered to the curved surface portion of the outer plate having a curved surface, the curved surface portion is formed into a beautiful curved shape as originally planned, so that the external appearance design is not impaired. The design freedom of the designer is greatly improved.

(真空断熱材の製造方法の実施例1)
図9は、本発明による真空断熱材の製造方法の実施例1における製造工程を示す図である。
(Example 1 of the manufacturing method of a vacuum heat insulating material)
FIG. 9 is a diagram showing manufacturing steps in Example 1 of the method for manufacturing a vacuum heat insulating material according to the present invention.

前処理:芯材成形工程:芯材原料61は、繊維材料積層体からなる原綿にバインダを付けて成形する芯材成形工程により形成される。芯材原料61を作成するには、例えば、原綿として「人造鉱物繊維保温材」(JISA9504)を使用し、原綿を所定枚数積層し、ホウ酸やリン酸などの無機バインダ液を含浸させる。原綿中の無機バインダが所定の含浸率になったら、原綿を熱プレス加工し、所定寸法に切断する。   Pretreatment: Core material forming step: The core material raw material 61 is formed by a core material forming step in which a raw material made of a fiber material laminate is attached with a binder to form. In order to create the core material 61, for example, “artificial mineral fiber heat insulating material” (JISA9504) is used as raw cotton, a predetermined number of raw cottons are laminated, and impregnated with an inorganic binder liquid such as boric acid or phosphoric acid. When the inorganic binder in the raw cotton reaches a predetermined impregnation rate, the raw cotton is hot-pressed and cut into predetermined dimensions.

前処理:被覆層成形工程:被覆層の原料62は、柔軟性の繊維材料であり、例えば、原綿として「人造鉱物繊維保温材」(JISA9504)を使用して、芯材原料61の矩形状の各辺を覆うのに十分な大きさの所定寸法に切断する。   Pretreatment: Cover layer forming step: The raw material 62 of the cover layer is a flexible fiber material. For example, using “artificial mineral fiber heat insulating material” (JISA9504) as raw cotton, the core material 61 has a rectangular shape. Cut into predetermined dimensions large enough to cover each side.

図9(a):被覆工程:柔軟性の被覆層原料62の長辺面62aと62bとにより芯材成形工程で形成された芯材原料61の各面を覆い、被覆する。   FIG. 9A: Covering process: Covering and covering each surface of the core material 61 formed in the core material forming process by the long side surfaces 62a and 62b of the flexible coating layer material 62.

図9(b):乾燥工程:被覆工程で形成されたコア材原料63を例えば110℃から250℃の乾燥炉内で10〜60分間乾燥させる。   FIG. 9B: Drying step: The core material raw material 63 formed in the coating step is dried for 10 to 60 minutes in a drying furnace at 110 to 250 ° C., for example.

図9(c):溶着工程:被覆工程および乾燥工程を経て形成されたコア材原料63を外被材64の中に挟み込む。外被材64は、ガスバリア性のラミネートフィルムからなる。コア材原料63を外被材64の中に挟み込むには、袋状の外被材64内にコア材原料63を挿入する方法、または、シート状の外被材64の間にコア材原料63を載せて2枚の外被材の各辺を溶着する連続成形方法などを採用する。コア材原料63を外被材64の中に挟み込んだら、ラミネートフィルムを溶着させる。   FIG. 9 (c): welding process: the core material 63 formed through the coating process and the drying process is sandwiched in the jacket material 64. The jacket material 64 is made of a gas barrier laminate film. In order to sandwich the core material 63 in the jacket material 64, a method of inserting the core material 63 into the bag-shaped jacket material 64, or a core material material 63 between the sheet-like jacket materials 64. A continuous molding method or the like is used in which each side of the two jacket materials is welded. After the core material 63 is sandwiched between the jacket materials 64, a laminate film is welded.

図9(d):減圧密封工程:作成した真空断熱材原料の外被材64およびコア材原料63の中を所定の真空度まで減圧し、外被材の入口64aを封止し、真空断熱材65を作成する。   FIG. 9 (d): Depressurization sealing process: The vacuum jacket material 64 and the core material 63 prepared are decompressed to a predetermined degree of vacuum, the inlet 64a of the jacket material is sealed, and vacuum insulation is performed. A material 65 is created.

真空断熱材65は、コア材原料63内を減圧密封したコア材65aと、コア材65aを被覆する外被材64内を減圧密封したガスバリア性の外被材68とからなる。コア材65aは、コア材の強度メンバーとなる無機バインダの付いた繊維材料で形成され芯材原料61内を減圧密封した芯材66と、芯材表面を覆う柔軟性の繊維材料で形成され被覆層の原料62内を減圧密封した被覆層67とからなる。   The vacuum heat insulating material 65 includes a core material 65a in which the inside of the core material 63 is sealed under reduced pressure, and a gas barrier coating material 68 in which the inside of the jacket material 64 covering the core material 65a is sealed under reduced pressure. The core material 65a is formed of a fiber material with an inorganic binder that serves as a strength member of the core material, and the core material 66 is sealed with reduced pressure inside the core material raw material 61. The core material 65a is formed of a flexible fiber material that covers the surface of the core material. It comprises a coating layer 67 in which the inside of the layer raw material 62 is sealed under reduced pressure.

耳65cは、所定の真空度に減圧したときに、コア材原料63が所定の厚さまで圧縮され、袋状外被材64の端縁にできた耳である。耳65cは、真空断熱材65の周囲空間をウレタン発泡断熱材などで充填する場合は、ウレタン発泡断熱材の充填流動を阻害するため、折り曲げる場合が多い。   The ear 65c is an ear that is formed on the edge of the bag-shaped outer covering material 64 by compressing the core material raw material 63 to a predetermined thickness when the pressure is reduced to a predetermined degree of vacuum. When the space around the vacuum heat insulating material 65 is filled with a urethane foam heat insulating material or the like, the ear 65c is often bent because the filling flow of the urethane foam heat insulating material is hindered.

図9(e):耳折り曲げ工程:真空断熱材65の外表面に密着するように折り返し成形し、密着耳65dとする。   FIG. 9 (e): Ear folding step: Folding is performed so as to be in close contact with the outer surface of the vacuum heat insulating material 65, thereby forming an adhesive ear 65 d.

図9(f):塗布工程:塗布ローラ72および支持ローラ73により、粘着テープやホットメルト接着剤などの接着部材71を真空断熱材65の任意面65fに均一に塗布する。   FIG. 9 (f): Application process: The application member 72 such as an adhesive tape or hot melt adhesive is uniformly applied to an arbitrary surface 65 f of the vacuum heat insulating material 65 by the application roller 72 and the support roller 73.

図9(g):貼り付け工程:圧着ローラ74などを使用して、真空断熱材65の任意面65fを冷蔵庫の外板または扉外板75の裏面75aに貼り付け、真空断熱材65を冷蔵庫の断熱壁内に固定する。   FIG. 9G: Affixing step: Using a pressure roller 74 or the like, the arbitrary surface 65f of the vacuum heat insulating material 65 is affixed to the outer plate of the refrigerator or the back surface 75a of the door outer plate 75, and the vacuum heat insulating material 65 is attached to the refrigerator. Secure inside the insulation wall.

このような構造の真空断熱材65は、バインダにより硬化した芯材66が外被材68に当接しないので、真空断熱材自体の製造工程において取り扱い易くなる。   The vacuum heat insulating material 65 having such a structure is easy to handle in the manufacturing process of the vacuum heat insulating material itself because the core material 66 hardened by the binder does not contact the outer cover material 68.

図9(a)(b)(c)に示すように、バインダにより硬化した芯材原料61の表面を被覆層の原料62で覆ってコア材原料63としているので、コア材原料63の製造工程における運搬時または保管中の出し入れ時に、バインダにより硬化した芯材原料61の表面から発生する微細粉が、柔軟性の被覆層の原料に吸着され、周囲の作業環境を汚さない。この点でも、製造工程において取り扱い易くなる。   As shown in FIGS. 9A, 9B and 9C, the surface of the core material 61 cured with the binder is covered with the coating material 62 to form the core material 63. At the time of transportation or storage during storage, fine powder generated from the surface of the core raw material 61 hardened by the binder is adsorbed by the raw material of the flexible coating layer and does not pollute the surrounding work environment. This also makes it easier to handle in the manufacturing process.

図9(c)に示すように、外被材64の中にコア材原料63を設置する場合、芯材原料61の表面にバインダにより硬化した素材粒や異物またはしわがあっても、または、芯材原料61の切断により生じる角や稜線のナイフエッジがあっても、芯材原料61を柔軟性の被覆層の原料62が覆っているので、外被材64を傷付けることが少なくなる。   As shown in FIG. 9 (c), when the core material raw material 63 is installed in the jacket material 64, the surface of the core material raw material 61 has material particles, foreign matter or wrinkles hardened by the binder, or Even if there is a corner or ridge knife edge generated by cutting the core material 61, the core material 61 is covered with the material 62 of the flexible coating layer, so that the jacket material 64 is less likely to be damaged.

また、外被材64を2枚のシート状として、シート状外被材の間にコア材原料63を配置した後、2枚のシート状の各辺を溶着する連続成形方式においても、芯材原料61を柔軟性の被覆層の原料62が覆っているので、同様の効果が得られる
図9(d)に示すように、真空断熱材原料の外被材中を所定の真空度まで減圧する場合、外被材の外表面には相対的に大気圧近くの大きな圧力が加わる。芯材66の表面にバインダにより硬化した素材粒や異物またはしわがあった場合、または、芯材66の切断により生じる角や稜線のナイフエッジがあった場合には、外被材が傷付くおそれがあった。
Also, in the continuous molding method in which the outer cover material 64 is formed into two sheets and the core material raw material 63 is disposed between the sheet-shaped outer cover materials, and then each side of the two sheets is welded. Since the raw material 61 is covered with the raw material 62 of the flexible coating layer, the same effect can be obtained. As shown in FIG. 9D, the inside of the jacket of the vacuum heat insulating material is depressurized to a predetermined degree of vacuum. In this case, a large pressure that is relatively close to the atmospheric pressure is applied to the outer surface of the jacket material. If the surface of the core material 66 has material particles, foreign matter, or wrinkles cured by a binder, or if there is a corner or ridge knife edge generated by cutting the core material 66, the outer cover material may be damaged. was there.

これに対して、本発明においては、芯材66と外被材68とが直接接触しないように、芯材66と外被材68との間に柔軟性の被覆層67を介在させているので、外被材64を傷付けることが少なく、取り扱い易くなる。   On the other hand, in the present invention, a flexible coating layer 67 is interposed between the core material 66 and the jacket material 68 so that the core material 66 and the jacket material 68 do not directly contact each other. The outer covering material 64 is hardly damaged and is easy to handle.

図9(e)に示すように、耳65cを真空断熱材65の外表面に密着するように折り返し成形して密着耳65dとする場合、密着耳65dを真空断熱材に押圧するので、外被材68の角部や稜線部68bが、バインダにより硬化した芯材66の角部や稜線部66bに強く押圧される。したがって、芯材66の角部や稜線部66bにナイフエッジがあった場合には、外被材68が傷付くおそれがあった。   As shown in FIG. 9E, when the ear 65c is folded back so as to be in close contact with the outer surface of the vacuum heat insulating material 65 to form the close ear 65d, the close ear 65d is pressed against the vacuum heat insulating material. The corners and ridge lines 68b of the material 68 are strongly pressed against the corners and ridge lines 66b of the core material 66 cured by the binder. Accordingly, when the corner or ridge line portion 66b of the core material 66 has a knife edge, the outer covering material 68 may be damaged.

これに対して、本発明においては、芯材66の角部や稜線部66bと外被材68の角部や稜線部68bとが直接接触しないように、柔軟性の被覆層67bを介在させているので、外被材68bを傷付けることが少なく、取り扱いが容易になる。   On the other hand, in the present invention, the flexible covering layer 67b is interposed so that the corners and the ridgeline part 66b of the core material 66 and the corners and the ridgeline part 68b of the covering material 68 are not in direct contact. Therefore, the outer covering material 68b is hardly damaged and the handling becomes easy.

図9(f)(g)に示すように、塗布ローラ72,支持ローラ73,圧着ローラ74などを使用して真空断熱材65を加工する場合、真空断熱材の外被材68cに大きな押圧力がかかるので、芯材66cの表面にバインダにより硬化した素材粒や異物またはしわがあった場合、または、芯材66cの切断により生じる角や稜線のナイフエッジがあった場合には、外被材が傷付くおそれがあった。   As shown in FIGS. 9F and 9G, when the vacuum heat insulating material 65 is processed using the application roller 72, the support roller 73, the pressure roller 74, etc., a large pressing force is applied to the vacuum heat insulating material 68c. Therefore, when there are material particles, foreign matter or wrinkles hardened by the binder on the surface of the core material 66c, or when there is a corner or ridge knife edge generated by cutting the core material 66c, the jacket material Could be damaged.

これに対して、本発明においては、芯材66cと外被材68cとが直接接触しないように、芯材66cと外被材68cとの間に柔軟性の被覆層67cを介在させてあるので、袋状外被材64のガスバリア層を傷付けることが少なく、真空断熱材68を冷蔵庫箱体や扉に組み込むときの各製造工程で取り扱い易い真空断熱材が得られる。   On the other hand, in the present invention, the flexible coating layer 67c is interposed between the core material 66c and the jacket material 68c so that the core material 66c and the jacket material 68c are not in direct contact with each other. In addition, it is possible to obtain a vacuum heat insulating material that is less likely to damage the gas barrier layer of the bag-shaped outer covering material 64 and is easy to handle in each manufacturing process when the vacuum heat insulating material 68 is incorporated into a refrigerator box or a door.

(真空断熱材の製造方法の実施例2)
図10は、本発明による真空断熱材の製造方法の実施例2における製造工程を示す図である。
(Example 2 of the manufacturing method of a vacuum heat insulating material)
FIG. 10 is a diagram showing manufacturing steps in Example 2 of the method for manufacturing a vacuum heat insulating material according to the present invention.

図10(a)において、繊維材料81は、「人造鉱物繊維保温材」(JISA9504)を使用した柔軟性の繊維材料であり、所定寸法に切断加工してある被覆層原料である。芯材原料82は、原綿として「人造鉱物繊維保温材」(JISA9504)を使用し、原綿を所定枚数積層した後、その表面一面82aにのみホウ酸やリン酸などの無機バインダ液を塗布した芯材原料である。   In FIG. 10A, a fiber material 81 is a flexible fiber material using “artificial mineral fiber heat insulating material” (JISA9504), and is a coating layer raw material cut into a predetermined size. The core material 82 uses “artificial mineral fiber heat insulating material” (JISA9504) as a raw cotton, and after a predetermined number of raw cottons are laminated, an inorganic binder liquid such as boric acid or phosphoric acid is applied only to one surface 82a of the core. The raw material.

まず、図10(b)に示すように、無機バインダ液を塗布した面82aを内側にして、二つ折りにする。   First, as shown in FIG. 10 (b), it is folded in half with the surface 82a coated with the inorganic binder liquid facing inside.

次に、図10(c)に示すように、無機バインダ液を塗布して二つ折りにした芯材原料82の上下から柔軟性の被覆層原料81で覆い、コア材原料83とする。   Next, as shown in FIG. 10 (c), a core material 82 is covered with a flexible coating layer material 81 from above and below a core material 82 that is coated with an inorganic binder solution and folded in half to obtain a core material 83.

その後は、このコア材原料83を使用し、製造方法の実施例1の図9(c)から図9(g)と同様の製造工程により真空断熱材を完成させる。   Thereafter, this core material raw material 83 is used, and a vacuum heat insulating material is completed by the same manufacturing process as in FIGS. 9C to 9G of Example 1 of the manufacturing method.

真空断熱材の製造方法の実施例2によれば、バインダにより硬化した面が図10(c)に示すように、コア材の中央面82aにのみ存在するので、コア材表面層の繊維成形体の合着状態が少ないので、コア材表面層の固体熱伝導率が小さくなり、真空断熱材としての断熱性能が高まる。   According to Example 2 of the manufacturing method of a vacuum heat insulating material, since the surface hardened by the binder exists only on the center surface 82a of the core material as shown in FIG. 10C, the fiber molded body of the core material surface layer Therefore, the solid thermal conductivity of the surface layer of the core material is reduced, and the heat insulating performance as a vacuum heat insulating material is increased.

また、コア材表面層の繊維成形体の合着状態が少ないので、真空排気時の排気抵抗が小さくなり、真空断熱材内部の真空度が下がり易いから、所定の断熱性能を得るための排気時間が短くなり、真空断熱材の生産性が良くなる。   In addition, since there are few coalescence states of the fiber molded body of the core material surface layer, the exhaust resistance during vacuum evacuation decreases, and the degree of vacuum inside the vacuum heat insulating material tends to decrease. This shortens the productivity of the vacuum heat insulating material.

本発明による冷蔵庫の実施例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the Example of the refrigerator by this invention. 本発明による冷蔵庫の実施例1の図1でA−A線に沿った横断面図である。It is a cross-sectional view which followed the AA line in FIG. 1 of Example 1 of the refrigerator by this invention. 本発明による真空断熱材の構造を示す断面図である。It is sectional drawing which shows the structure of the vacuum heat insulating material by this invention. 図3の真空断熱材の要部の構造を示す拡大断面図である。It is an expanded sectional view which shows the structure of the principal part of the vacuum heat insulating material of FIG. 人造鉱物繊維保温材の特性値を示す図表である。It is a graph which shows the characteristic value of an artificial mineral fiber heat insulating material. 本発明による真空断熱材の実施例1,実施例2,比較例1の特性を比較して示す図表である。It is a graph which compares and shows the characteristic of Example 1, Example 2, and Comparative Example 1 of the vacuum heat insulating material by this invention. 本発明による冷蔵庫の実施例2の(図1で)A−A線に沿った横断面図である。It is a cross-sectional view along the AA line (in FIG. 1) of the second embodiment of the refrigerator according to the present invention. 本発明による冷蔵庫の実施例3の横断面図である。It is a cross-sectional view of Example 3 of the refrigerator according to the present invention. 本発明による真空断熱材の製造方法の実施例1における製造工程を示す図である。It is a figure which shows the manufacturing process in Example 1 of the manufacturing method of the vacuum heat insulating material by this invention. 本発明による真空断熱材の製造方法の実施例2における製造工程を示す図である。It is a figure which shows the manufacturing process in Example 2 of the manufacturing method of the vacuum heat insulating material by this invention. 従来の芯材の構造を示す断面図である。It is sectional drawing which shows the structure of the conventional core material.

符号の説明Explanation of symbols

2 芯材
2a 素材粒
2b 異物
2c しわ
2e 表面
10 冷蔵庫箱体
11 外板
12 内板
12a フランジ
13 発泡断熱材
14 冷蔵温度室
15 冷凍温度室
16 送風機
17 配線コード
18 冷却器
19 配管
20 圧縮機
21 側板
21a 前嵌め合い部
21b,21c 後嵌め合い部
22 背面板
22a フランジ
23 露付き防止用パイプ
24 凝縮器用パイプ
25 補強部材
25a 係止具
26 断熱壁
27 外板
27a 表面層
28 内板
29 発泡断熱材
30,40,45,55,65 真空断熱材
30a,40a,45a,65a コア材
30b 稜線部
31,41,46,56,66 芯材
31b 異物
31c しわ
31e 表面
32,42,47,57.67 被覆層
33,43,48,58,68 外被材
33a 表面保護フィルム
33b 金属蒸着膜
33c 支持層
33e 金属箔
33f 溶着フィルム層
41c しわ
45 真空断熱材
45a コア材
45b,45c 溝
55a コア材
61 芯材原料
62 被覆層原料
62a 長辺面
62b 長辺面
63 コア材原料
64 袋状外被材
64a 入口
65a コア材
65c 耳
65d 密着耳
65f 任意面
66b 角部/稜線部
66c 芯材
67b,67c 被覆層
68b,68c 外被材
71 接着部材
72 塗布ローラ
73 支持ローラ
74 圧着ローラ
75 扉外板
75a 裏面
81 繊維材料
82 芯材原料
82a 塗布面/中央面
83 コア材原料
H 寸法
T 厚さ
2 Core material 2a Material grain 2b Foreign matter 2c Wrinkle 2e Surface 10 Refrigerator box body 11 Outer plate 12 Inner plate 12a Flange 13 Foam heat insulating material 14 Refrigeration temperature chamber 15 Refrigeration temperature chamber 16 Blower 17 Wiring cord 18 Cooler 19 Piping 20 Compressor 21 Side plate 21a Front fitting portion 21b, 21c Rear fitting portion 22 Back plate 22a Flange 23 Dew prevention pipe 24 Condenser pipe 25 Reinforcement member 25a Locking tool 26 Heat insulation wall 27 Outer plate 27a Surface layer 28 Inner plate 29 Foam insulation Materials 30, 40, 45, 55, 65 Vacuum insulation materials 30a, 40a, 45a, 65a Core material 30b Ridge line portions 31, 41, 46, 56, 66 Core material 31b Foreign material 31c Wrinkle 31e Surfaces 32, 42, 47, 57. 67 Coating layer 33, 43, 48, 58, 68 Cover material 33a Surface protection film 33b Metal vapor deposition film 33c Support layer 3 3e Metal foil 33f Welding film layer 41c Wrinkle 45 Vacuum heat insulating material 45a Core material 45b, 45c Groove 55a Core material 61 Core material raw material 62 Cover layer raw material 62a Long side surface 62b Long side surface 63 Core material raw material 64 Bag-shaped outer covering material 64a Entrance 65a Core material 65c Ear 65d Adhesion ear 65f Arbitrary surface 66b Corner / ridge line portion 66c Core material 67b, 67c Cover layer 68b, 68c Cover material 71 Adhesive member 72 Application roller 73 Support roller 74 Pressure roller 75 Door outer plate 75a Back surface 81 Textile material 82 Core material raw material 82a Application surface / center surface 83 Core material raw material H Dimension T Thickness

Claims (12)

コア材と前記コア材を被覆する外被材とからなる真空断熱材において、
前記コア材を繊維材料積層体の芯材と柔軟性の繊維材料の被覆層とで構成し、
前記芯材を前記被覆層で覆って形成した前記コア材を前記外被材内に配置したことを特徴とする真空断熱材。
In a vacuum heat insulating material consisting of a core material and a jacket material covering the core material,
The core material is composed of a core material of a fiber material laminate and a flexible fiber material coating layer,
A vacuum heat insulating material, wherein the core material formed by covering the core material with the coating layer is disposed in the jacket material.
コア材と前記コア材を被覆する外被材とからなる真空断熱材において、
前記コア材を繊維材料積層体の芯材と柔軟性の繊維材料の被覆層とで構成し、
前記芯材が、無機バインダ液を塗布して加熱成形した芯材であり、
前記芯材を前記被覆層で覆って形成した前記コア材を前記外被材内に配置したことを特徴とする真空断熱材。
In a vacuum heat insulating material consisting of a core material and a jacket material covering the core material,
The core material is composed of a core material of a fiber material laminate and a flexible fiber material coating layer,
The core material is a core material formed by applying an inorganic binder solution and thermoforming,
A vacuum heat insulating material, wherein the core material formed by covering the core material with the coating layer is disposed in the jacket material.
請求項1または2に記載の真空断熱材において、
前記被覆層の厚さが1mm以上であることを特徴とする真空断熱材。
In the vacuum heat insulating material according to claim 1 or 2,
A vacuum heat insulating material, wherein the coating layer has a thickness of 1 mm or more.
請求項1ないし3のいずれか一項に記載の真空断熱材において、
前記外被材が、厚さ50μm以下の溶着フィルム層からなることを特徴とする真空断熱材。
In the vacuum heat insulating material as described in any one of Claims 1 thru | or 3,
A vacuum heat insulating material, wherein the jacket material comprises a welded film layer having a thickness of 50 μm or less.
請求項1ないし4のいずれか一項に記載の真空断熱材において、
前記芯材が、繊維材料廃材の成形体であることを特徴とする真空断熱材。
In the vacuum heat insulating material as described in any one of Claim 1 thru | or 4,
A vacuum heat insulating material, wherein the core material is a molded body of waste fiber material.
請求項1ないし4のいずれか一項に記載の真空断熱材において、
前記芯材が、連通ウレタンまたは廃ウレタンからなるボード状成形体であることを特徴とする真空断熱材。
In the vacuum heat insulating material as described in any one of Claim 1 thru | or 4,
The vacuum heat insulating material, wherein the core material is a board-like molded body made of continuous urethane or waste urethane.
コア材と前記コア材を被覆する外被材とからなる真空断熱材の製造方法において、
繊維材料積層体の芯材を柔軟性の繊維材料の被覆層で覆って前記コア材を形成し、
前記コア材を前記外被材内に配置し、
前記外被材の内部を減圧密封することを特徴とする真空断熱材の製造方法。
In the method of manufacturing a vacuum heat insulating material comprising a core material and a jacket material covering the core material,
Covering the core material of the fiber material laminate with a coating layer of a flexible fiber material to form the core material,
Placing the core material in the jacket material;
A method for manufacturing a vacuum heat insulating material, wherein the inside of the outer jacket material is sealed under reduced pressure.
コア材と前記コア材を被覆する外被材とからなる真空断熱材の製造方法において、
無機バインダ液を含浸させプレス加工し繊維材料積層体の芯材を作成し、
前記芯材を覆う大きさの柔軟性の繊維材料で被覆層を作成し、
柔軟性の繊維材料の被覆層で覆って前記コア材を形成し、
前記コア材を所定温度で乾燥させ、
前記コア材をラミネートフィルムからなる前記外被材内に挿入し、
前記外被材の内部を減圧密封することを特徴とする真空断熱材の製造方法。
In the method of manufacturing a vacuum heat insulating material comprising a core material and a jacket material covering the core material,
Impregnated with an inorganic binder solution and pressed to create a core material for the fiber material laminate,
Create a coating layer with a flexible fiber material of a size covering the core material,
Covering with a covering layer of flexible fiber material to form the core material,
Drying the core material at a predetermined temperature;
Insert the core material into the jacket material made of a laminate film,
A method for manufacturing a vacuum heat insulating material, wherein the inside of the outer jacket material is sealed under reduced pressure.
外板と内板とにより形成される空間の前記外板側または前記内板側に真空断熱材を固定し、前記真空断熱材以外の空間に発泡断熱材を充填し断熱壁とした冷蔵庫において、
前記真空断熱材が、請求項1ないし5のいずれか一項に記載の真空断熱材であることを特徴とする冷蔵庫。
In the refrigerator that fixes the vacuum heat insulating material on the outer plate side or the inner plate side of the space formed by the outer plate and the inner plate, and fills the space other than the vacuum heat insulating material with a foam heat insulating material to form a heat insulating wall,
The said vacuum heat insulating material is a vacuum heat insulating material as described in any one of Claim 1 thru | or 5, The refrigerator characterized by the above-mentioned.
請求項9に記載の冷蔵庫において、
前記外板と真空断熱材との間に温熱放熱パイプを有し、
前記温熱放熱パイプの外径分寸法の凹凸を前記真空断熱材の柔軟性の被覆層で吸収することを特徴とする冷蔵庫。
The refrigerator according to claim 9,
A thermal heat radiating pipe is provided between the outer plate and the vacuum heat insulating material,
A refrigerator characterized in that irregularities of the outer diameter of the thermal heat radiation pipe are absorbed by a flexible coating layer of the vacuum heat insulating material.
請求項9に記載の冷蔵庫において、
前記真空断熱材の近傍に前記真空断熱材以外の突起物を有し、
前記被覆層を前記突起物が当接するおそれのある前記芯材の表面または角や稜線のみに設けたことを特徴とする冷蔵庫。
The refrigerator according to claim 9,
In the vicinity of the vacuum heat insulating material has a projection other than the vacuum heat insulating material,
The refrigerator characterized by providing the said coating layer only on the surface of the said core material, or a corner | angular line, or a ridgeline with which the said protrusion may contact | abut.
請求項9に記載の冷蔵庫において、
前記断熱壁内の外板側に前記真空断熱材を設置し、前記真空断熱材の前記外板に接する側にのみ前記被覆層を形成したことを特徴とする冷蔵庫。
The refrigerator according to claim 9,
The refrigerator, wherein the vacuum heat insulating material is installed on the outer plate side in the heat insulating wall, and the coating layer is formed only on the side of the vacuum heat insulating material in contact with the outer plate.
JP2004251333A 2004-08-31 2004-08-31 Vacuum heat insulating material and refrigerator Pending JP2006070908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004251333A JP2006070908A (en) 2004-08-31 2004-08-31 Vacuum heat insulating material and refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004251333A JP2006070908A (en) 2004-08-31 2004-08-31 Vacuum heat insulating material and refrigerator

Publications (1)

Publication Number Publication Date
JP2006070908A true JP2006070908A (en) 2006-03-16

Family

ID=36151766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004251333A Pending JP2006070908A (en) 2004-08-31 2004-08-31 Vacuum heat insulating material and refrigerator

Country Status (1)

Country Link
JP (1) JP2006070908A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263334A (en) * 2006-03-30 2007-10-11 Hitachi Appliances Inc Vacuum heat insulator and manufacturing method therefor
JP2010223510A (en) * 2009-03-24 2010-10-07 Toshiba Corp Refrigerator
WO2011058678A1 (en) * 2009-11-11 2011-05-19 株式会社 東芝 Refrigerator
JP2012057838A (en) * 2010-09-07 2012-03-22 Toshiba Corp Refrigerator
JP2013119975A (en) * 2011-12-06 2013-06-17 Toshiba Corp Refrigerator
JP2019168001A (en) * 2018-03-22 2019-10-03 東芝ライフスタイル株式会社 Vacuum heat insulating material and refrigerator using vacuum heat insulating material
JPWO2021132457A1 (en) * 2019-12-24 2021-07-01

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263334A (en) * 2006-03-30 2007-10-11 Hitachi Appliances Inc Vacuum heat insulator and manufacturing method therefor
JP2010223510A (en) * 2009-03-24 2010-10-07 Toshiba Corp Refrigerator
WO2011058678A1 (en) * 2009-11-11 2011-05-19 株式会社 東芝 Refrigerator
JP2011102679A (en) * 2009-11-11 2011-05-26 Toshiba Corp Refrigerator
JP2012057838A (en) * 2010-09-07 2012-03-22 Toshiba Corp Refrigerator
JP2013119975A (en) * 2011-12-06 2013-06-17 Toshiba Corp Refrigerator
JP2019168001A (en) * 2018-03-22 2019-10-03 東芝ライフスタイル株式会社 Vacuum heat insulating material and refrigerator using vacuum heat insulating material
JPWO2021132457A1 (en) * 2019-12-24 2021-07-01
JP7325053B2 (en) 2019-12-24 2023-08-14 パナソニックIpマネジメント株式会社 Thermal insulation bag, thermal insulation bag, and method for manufacturing thermal insulation bag

Similar Documents

Publication Publication Date Title
US7449227B2 (en) Vacuum insulation panel and refrigerator incorporating the same
JPH11159693A (en) Vacuum heat insulating panel and manufacture therefor and heat insulating box body using it
JP3513142B2 (en) Vacuum insulation, insulation, insulation box, insulation door, storage and refrigerator
KR20060032656A (en) Vacuum thermally insulating material and method for production thereof, thermally insulated equipment having the vacuum thermally insulating material, and thermally insulated board
JP2009063064A (en) Vacuum heat insulating material and refrigerator using the same
KR102037044B1 (en) Insulation-box and its manufacturing method
WO2015072099A1 (en) Vacuum insulation case
US9487953B2 (en) Vacuum insulated panel
JP5865581B2 (en) refrigerator
JP2006070908A (en) Vacuum heat insulating material and refrigerator
US20180339490A1 (en) Vacuum insulation material, vacuum insulation material manufacturing method, and refrigerator including vacuum insulation material
JP5571610B2 (en) Vacuum insulation material manufacturing method, vacuum insulation material and refrigerator equipped with the same
JP4576197B2 (en) Vacuum insulation and refrigerator
KR101880167B1 (en) Car heater protector
WO2015115149A1 (en) Vacuum heat-insulating material, heat-insulating box using vacuum heat-insulating material, and method for manufacturing vacuum heat-insulating material
JP2012062905A (en) Vacuum heat insulating material and refrigerator equipped with the same
CN209877463U (en) Vacuum heat insulator and refrigerator using the same
TWI622747B (en) Refrigerator
JP2011149624A (en) Refrigerator
JP2012032014A (en) Refrigerator
JP2004286252A (en) Heat insulation panel
JP5982276B2 (en) Refrigerator using vacuum heat insulating material and vacuum heat insulating material
JP2012063022A (en) Vacuum heat insulating material and refrigerator equipped with the same
WO2019171566A1 (en) Vacuum heat-insulation material and heat-insulating box
CN110494706B (en) Vacuum heat insulation box body and refrigerator using same