JP2006070318A - Electroless copper plating method of multilayer flexible printed circuit board - Google Patents

Electroless copper plating method of multilayer flexible printed circuit board Download PDF

Info

Publication number
JP2006070318A
JP2006070318A JP2004254743A JP2004254743A JP2006070318A JP 2006070318 A JP2006070318 A JP 2006070318A JP 2004254743 A JP2004254743 A JP 2004254743A JP 2004254743 A JP2004254743 A JP 2004254743A JP 2006070318 A JP2006070318 A JP 2006070318A
Authority
JP
Japan
Prior art keywords
circuit board
printed circuit
aqueous solution
manufacturing
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004254743A
Other languages
Japanese (ja)
Other versions
JP4290621B2 (en
Inventor
Masaichi Suzuki
木 政 一 鈴
Jun Tateno
野 純 舘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mektron KK
Original Assignee
Nippon Mektron KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mektron KK filed Critical Nippon Mektron KK
Priority to JP2004254743A priority Critical patent/JP4290621B2/en
Priority to TW094125488A priority patent/TW200622032A/en
Priority to CN 200510098003 priority patent/CN1744801B/en
Publication of JP2006070318A publication Critical patent/JP2006070318A/en
Application granted granted Critical
Publication of JP4290621B2 publication Critical patent/JP4290621B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Chemically Coating (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a printed circuit board manufacturing method having an electroless copper plating process capable of preventing generation of voids in a wall surface of a through hole by modifying the surface of filler substance. <P>SOLUTION: In the printed circuit board manufacturing method for forming a metal conductor for interlayer connection by applying electroless plating in a through hole of a multilayer flexible printed circuit board, a conditioning step being the pretreatment is performed in two stages of a first conditioning step of immersing a work in aqueous solution mainly consisting of amine-based surfactant and a second conditioning step of immersing the work in aqueous solution mainly consisting of diols. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子機器に使用されるフレキシブルプリント基板の製造方法に関わり、とくにスルーホールの導電化処理方法に関する。   The present invention relates to a method for manufacturing a flexible printed circuit board used in an electronic device, and more particularly to a method for conducting through holes.

多層フレキシブルプリント基板における層間接続は、スルーホールの内壁面に導電膜を形成して行なうことが多い。そして、プリント基板のスルーホール内壁への導電化処理方法については、従来から無電解銅メッキが広く使用されており、Pd−Snコロイドを用いた導電化処理が行われる。この導電化処理において0.1〜1.0μmの銅析出層を形成し、次に電解メッキによって15〜25μmの銅メッキ層が形成される。   Interlayer connection in a multilayer flexible printed circuit board is often performed by forming a conductive film on the inner wall surface of the through hole. And as for the conductive treatment method for the inner wall of the through hole of the printed circuit board, electroless copper plating has been widely used so far, and conductive treatment using Pd—Sn colloid is performed. In this conductive treatment, a copper deposit layer of 0.1 to 1.0 μm is formed, and then a copper plating layer of 15 to 25 μm is formed by electrolytic plating.

多層フレキシブルプリント基板において、積層に使用される接着剤には耐熱性を有する各種フィラーが充填されている。主に添加される物質としては、ガラス体や酸化アルミニウム・酸化マグネシウムなどの金属酸化物があるが、これらのフィラー物質は粒子界面が疎水性を有し、Pd−Snコロイドが吸着し難いという問題点がある。   In a multilayer flexible printed board, the adhesive used for lamination is filled with various heat-resistant fillers. Mainly added substances include glass bodies and metal oxides such as aluminum oxide and magnesium oxide, but these filler substances have a hydrophobic particle interface and are difficult to adsorb Pd—Sn colloids. There is a point.

従来のコンディショニング工程で使用されているコンディショナーは、トリエタノールアミンなどのアミン系界面活性剤からなり、親水性を付与する効能およびスルーホール内の基材をプラス側に帯電させる効能を有している。   Conditioners used in conventional conditioning processes are composed of amine surfactants such as triethanolamine and have the effect of imparting hydrophilicity and the effect of charging the substrate in the through hole to the plus side. .

しかし、ガラス体や酸化アルミニウム・酸化マグネシウムなどの金属酸化物の粒子界面を完全に親水性にするほどの効能はない。このため、従来のコンディショニング工程よりもさらに有効な親水化処理を行なう方法が望まれていた。   However, it is not effective to make the particle interface of glass oxide or metal oxide such as aluminum oxide and magnesium oxide completely hydrophilic. For this reason, the method of performing a hydrophilic treatment more effective than the conventional conditioning process was desired.

また、ガラス体や酸化アルミニウム・酸化マグネシウムなどの金属酸化物の粒子界面を親水性にする方法として、シランカップリング処理を行なうものがある。シランカップリングの方法としては、例えば特許文献1に示されるようなガラス基板表面の親水化処理などの方法が知られている。   In addition, as a method for making the particle interface of a metal body such as a glass body or aluminum oxide / magnesium oxide hydrophilic, there is a method in which silane coupling treatment is performed. As a silane coupling method, for example, a method of hydrophilizing the surface of a glass substrate as disclosed in Patent Document 1 is known.

この方法は、表面に親水基を付与し、親水性を向上させる有効な手段であるが、反応中に脱水結合させる過程があり、一般的には強アルカリ液中で処理しなければならない。   This method is an effective means for imparting a hydrophilic group to the surface and improving the hydrophilicity, but there is a process of dehydration bonding during the reaction, and generally it must be treated in a strong alkaline solution.

しかし、強アルカリ液中にプリント基板を浸漬すると、絶縁層主成分であるポリイミドが溶解するという問題がある。
特公昭59-52701号公報
However, when a printed circuit board is immersed in a strong alkaline solution, there is a problem that polyimide as a main component of the insulating layer is dissolved.
Japanese Patent Publication No.59-52701

本発明は、上述の点を考慮してなされたもので、フィラー物質の表面を改質し、スルーホール壁面にボイドが生じない無電解銅メッキプロセスを持つプリント基板の製造方法を提供することを目的とする。   The present invention has been made in view of the above points, and provides a method for manufacturing a printed circuit board having an electroless copper plating process in which the surface of a filler material is modified and voids are not generated on the wall surface of the through hole. Objective.

本発明は、絶縁層を形成するポリイミドと、フィラー物質であるガラス体や酸化アルミニウム・酸化マグネシウムなどの金属酸化物の粒子界面を親水性にする方法を提供することをより具体的な目的とする。   It is a more specific object of the present invention to provide a method for making the particle interface between polyimide forming an insulating layer and a filler metal such as glass body or aluminum oxide / magnesium oxide hydrophilic. .

上記目的達成のため、本発明では、
多層フレキシブルプリント基板のスルーホールに、無電解メッキを施して層間接続用金属導体を形成するプリント基板の製造方法において、前処理となるコンディショニング工程を、アミン系界面活性剤を主成分とする水溶液に被処理物を浸漬する第1コンディショニング工程と、ジオール類を主成分とする水溶液に被処理物を浸漬する第2コンディショニング工程との2段階で行なうことを特徴とする、プリント基板の製造方法、
を提供するものである。
In order to achieve the above object, in the present invention,
In the method of manufacturing a printed circuit board in which through-holes of a multilayer flexible printed circuit board are subjected to electroless plating to form a metal conductor for interlayer connection, a conditioning process as a pretreatment is performed with an aqueous solution mainly composed of an amine-based surfactant. A method for producing a printed circuit board, characterized in that it is performed in two stages: a first conditioning step for immersing the object to be processed and a second conditioning step for immersing the object to be processed in an aqueous solution containing diols as a main component,
Is to provide.

本発明は上述のように、第1、第2の2段階に別けて被処理物をコンディショニングすることによって、従来のアミン系界面活性剤だけで被処理物をコンディショニングしていたときは2〜3ppm位の頻度でボイドが発生していたが、全くボイドが発生しなくなった。このことから、本発明による2段階でコンディショニングする方法の優位性が確認できた。   In the present invention, as described above, the object to be treated is conditioned in two stages, the first and second stages, so that when the object to be treated is conditioned only with a conventional amine surfactant, 2 to 3 ppm. Voids were generated with a frequency of approximately 5%, but no voids were generated at all. This confirms the superiority of the two-stage conditioning method according to the present invention.

以下、本発明の実施例に到る経緯および実施例を説明する。被処理物であるプリント基板のスルーホール内壁の導電化処理は、一般に、次の7工程、すなわち
(1)脱脂:未硬化樹脂成分などの非水溶性物質の除去。
(2)コンディショニング:触媒であるPd−Snコロイドがマイナスの電荷を有しているので、スルーホール内の基材をプラス側に帯電させる。
(3)ソフトエッチング:銅箔表面の酸化膜除去と、凹凸を付与してメッキ剥離を抑止する。
(4)プレディップ:Pd−Snコロイドの溶媒と同じ成分に浸漬し、Pd−Snコロイドとの親和性を持たせる。
(5)アクチベーター:Pd−Snコロイドを吸着させる。
(6)アクセレレーター:Pd−SnコロイドからSnを除去し、Pd単体を析出させる。
(7)無電解メッキ:Pdを核として銅イオンを還元して析出させる。
によって行なわれる。
Hereinafter, the background to the embodiments of the present invention and the embodiments will be described. The conductive treatment of the inner wall of the through hole of the printed circuit board that is the object to be processed is generally the following seven steps:
(1) Degreasing: Removal of water-insoluble substances such as uncured resin components.
(2) Conditioning: Since the Pd—Sn colloid as a catalyst has a negative charge, the substrate in the through hole is charged to the positive side.
(3) Soft etching: The removal of the oxide film on the surface of the copper foil and the provision of irregularities to suppress plating peeling.
(4) Pre-dip: Immerse in the same component as the solvent of the Pd—Sn colloid to give it an affinity for the Pd—Sn colloid.
(5) Activator: Pd-Sn colloid is adsorbed.
(6) Accelerator: Removes Sn from the Pd—Sn colloid and precipitates Pd alone.
(7) Electroless plating: Copper ions are reduced and deposited using Pd as a nucleus.
Is done by.

多層フレキシブルプリント基板において、積層に使用される接着剤には耐熱性を有する各種フィラーが充填されている。フィラーとして主に添加される物質としては、ガラス体や酸化アルミニウム・酸化マグネシウムなどの金属酸化物であるが、これらのフィラー物質は粒子界面が疎水性を有し、Pd−Snコロイドが吸着し難いという特性がある。ただし、これらフィラー物質は、スルーホール穴明け時には、接着剤樹脂に埋没しているか、ごく一部が穴壁表面に露出しているに過ぎない(図3)から、とくに問題がない。   In a multilayer flexible printed board, the adhesive used for lamination is filled with various heat-resistant fillers. Substances mainly added as fillers are metal oxides such as glass bodies and aluminum oxide / magnesium oxide, but these filler substances have hydrophobic particle interfaces and are difficult to adsorb Pd—Sn colloids. There is a characteristic. However, since these filler substances are buried in the adhesive resin at the time of through-hole drilling or only a part is exposed on the hole wall surface (FIG. 3), there is no particular problem.

しかし、多層基板に欠かせないデスミア処理の後に問題が生じる。このデスミア処理によって、接着剤樹脂がより多く除去されて、フィラー物質がスルーホール穴壁に露出して疎水性が強くなる(図4(a),(b))。このため、「ボイド(図5(a),(b))」と呼ばれる無電解銅メッキが付かない箇所が生じ易くなる。   However, problems arise after desmear processing, which is essential for multilayer substrates. By this desmear treatment, more adhesive resin is removed, and the filler material is exposed to the through-hole hole wall, so that the hydrophobicity becomes strong (FIGS. 4A and 4B). For this reason, a portion called “void (FIGS. 5A and 5B)” that is not attached with electroless copper plating tends to occur.

デスミア処理によって、樹脂成分であるポリイミドがより多く除去されてフィラー物質がスルーホール穴壁に露出するが、シランカップリング処理を行なうとさらに穴壁がエッチングされ、エグレが生じる(図6)。このエグレは、マイグレーションを引き起こす要因となるため、シランカップリングのような親水化処理は不適当である。   By the desmear treatment, more polyimide as a resin component is removed and the filler material is exposed to the through-hole hole wall. However, when the silane coupling treatment is performed, the hole wall is further etched to cause an egress (FIG. 6). Since this aggression causes migration, a hydrophilic treatment such as silane coupling is inappropriate.

他方、前述したような強アルカリ溶液の問題を避けるものとして、弱アルカリ溶液のような穏やかな条件下で親水化処理を行なう方法があり、側鎖アルキル基や水酸基、カルボキシル基、アミノ基などを有する変性ポリビニルアルコールを粗水物質表面にカップリングする方法が知られている。   On the other hand, as a method for avoiding the problem of the strong alkali solution as described above, there is a method of performing a hydrophilization treatment under a mild condition such as a weak alkali solution, and a side chain alkyl group, a hydroxyl group, a carboxyl group, an amino group, etc. There is known a method for coupling the modified polyvinyl alcohol having a surface to a crude water substance.

しかし、通常、ポリビニルアルコールは増粘剤にも使用されるもので、水溶液にした場合でも一般的に粘度が高いものが多いため、使用する変性ポリビニルアルコールの架橋度、プリント基板のスルーホール内径、このスルーホール内径と基板厚みとの比率によっては、プリント基板に適用しようとすると、処理溶液がスルーホール内に浸透していかない場合がある。   However, usually polyvinyl alcohol is also used as a thickener, and even when it is made into an aqueous solution, since there are many generally high viscosity, the degree of crosslinking of the modified polyvinyl alcohol used, the through-hole inner diameter of the printed circuit board, Depending on the ratio between the inner diameter of the through hole and the thickness of the substrate, the treatment solution may not penetrate into the through hole when applied to a printed circuit board.

数々のコンディショナー・親水化処理の方法を試みた結果、フィラー物質であるガラス体や酸化アルミニウム・酸化マグネシウムなどの金属酸化物の粒子界面を親水性にする方法として、変性ポリビニルアルコールを使用する代りに、プロピレングリコール、トリメチレングリコールなどのジオール類をフィラー物質とカップリングする方法によって親水性付与の効果が得られることを突き止めた。   As a result of trying various conditioner and hydrophilization methods, instead of using modified polyvinyl alcohol as a method to make the particle interface of filler metal such as glass body and aluminum oxide / magnesium oxide hydrophilic. It was found that the effect of imparting hydrophilicity can be obtained by a method of coupling diols such as propylene glycol and trimethylene glycol with a filler substance.

これらのジオール類は、水に溶解した状態で表面張力を低下させ、プリント基板のスルーホール内に容易に浸透していく性質を有する。したがって、プリント基板のスルーホール内に露出したフィラー物質であるガラス体や酸化アルミニウム・酸化マグネシウムなどの金属酸化物の粒子界面を親水性にする手段として有効である。   These diols have the property of reducing the surface tension in a state dissolved in water and easily penetrating into the through holes of the printed circuit board. Therefore, it is effective as a means for making the particle interface of a glass body or metal oxide such as aluminum oxide / magnesium oxide, which is a filler material exposed in the through hole of the printed circuit board, hydrophilic.

カップリング剤として、Ca,Mgなどのリン化合物塩もしくはホウ素化合物塩を添加することが行なわれるが、リンを含む化合物は排水処理に難があり、ホウ素化合物塩を使用することが好ましい。例えば、ホウ素酸ナトリウム、ホウフッ酸ナトリウム、ホウフッ酸マグネシウムなどが挙げられる。   As a coupling agent, phosphorus compound salts such as Ca and Mg or boron compound salts are added. However, phosphorus-containing compounds have difficulty in wastewater treatment, and boron compound salts are preferably used. For example, sodium borate, sodium borofluoride, magnesium borofluoride and the like can be mentioned.

但し、上記方法は、ガラス体や酸化アルミニウム・酸化マグネシウムなどの金属酸化物の粒子界面のみを親水性にする効果しか得られず、これだけではポリイミド等の樹脂を親水化してプラス側に帯電させることはできない。   However, the above method can only obtain the effect of making only the particle interface of glass oxide or metal oxide such as aluminum oxide / magnesium oxide hydrophilic, and this only makes the resin such as polyimide hydrophilic and charges it to the plus side. I can't.

そこで、従来のコンディショナーであるトリエタノールアミンなどのアミン系界面活性剤を併用すれば、スルーホール内すべての組成物質をPd−Snコロイドが吸着できる表面状態にすることができる。   Thus, when an amine surfactant such as triethanolamine, which is a conventional conditioner, is used in combination, all the composition substances in the through hole can be brought into a surface state on which the Pd—Sn colloid can be adsorbed.

すなわち、アミン系界面活性剤を主成分とするコンディショニング工程を、ジオール類を主成分とするコンディショニング工程に組み合わせることにより、Pd−Snコロイドを吸着し易い処理を行なうことができる。
このことから、
1) まず、従来のコンディショナーであるアミン系界面活性剤による第1のコンディショニング工程で、ポリイミド等の樹脂を親水化しプラス側に帯電させる。
That is, by combining the conditioning step mainly containing an amine surfactant with the conditioning step mainly containing a diol, a treatment that easily adsorbs the Pd—Sn colloid can be performed.
From this,
1) First, in a first conditioning process using an amine surfactant, which is a conventional conditioner, a resin such as polyimide is made hydrophilic and charged positively.

2) 次いで水洗の後、ジオール類による第2のコンディショニング工程で、フィラー物質の親水化を行なう。   2) Next, after washing with water, the filler material is hydrophilized in the second conditioning step with diols.

3) この2段階のコンディショニング工程の後、従来方法にしたがって無電解メッキまでの工程を行なう。   3) After the two-stage conditioning process, the process up to electroless plating is performed according to the conventional method.

なお、アミン系界面活性剤とジオール類とを混ぜて、一度にコンディショニングを行なうこともできなくはないが、アミン系界面活性剤が効率よく反応するためのpHが12〜13であるのに対して、ジオール類での親水化の有効pH領域が9〜11であるため、好ましくない。また、先にジオール類の親水化を行なうと、アミン系界面活性剤によってジオール類が除去されてしまうため、上記順序で別々に行なうことが好ましい。   In addition, although it is not impossible to mix amine surfactant and diol and perform conditioning at once, the pH for amine surfactant to react efficiently is 12-13. In addition, the effective pH range for hydrophilization with diols is 9 to 11, which is not preferable. In addition, if the diols are hydrophilized first, the diols are removed by the amine-based surfactant.

上記の知見の結果、第1および第2のコンディショニング工程を下記のように行なうことが最適であることが分った。   As a result of the above findings, it has been found that it is optimal to perform the first and second conditioning steps as follows.

第1のコンディショニング工程は、アミン系界面活性剤を用いて処理を行なう。この第1のコンディショニング工程で使用されるアミン系界面活性剤には、トリエタノールアミン、2−アミノエタノールなどのうちのどれか一つ、あるいは2種類が使用され、アミン系界面活性剤水溶液としての濃度は0.04〜0.16モル当量で管理される。液温は50〜60℃が好ましく、この溶液中に被処理物が60〜300秒浸漬される。   In the first conditioning step, treatment is performed using an amine surfactant. As the amine surfactant used in the first conditioning step, one or two of triethanolamine, 2-aminoethanol and the like are used, and the amine surfactant aqueous solution is used as the amine surfactant aqueous solution. The concentration is controlled at 0.04 to 0.16 molar equivalent. The liquid temperature is preferably 50 to 60 ° C., and the object to be treated is immersed in this solution for 60 to 300 seconds.

水洗の後、ジオール類を用いる第2のコンディショニング工程となる。この第2のコンディショニング工程で使用されるジオール類には、プロピレングリコール、トリメチレングリコール、ジメチレングリコールなどのうちのどれか一つ、あるいは2種類以上が使用され、水溶液としての濃度は0.05〜0.20モル当量で管理される。さらにこの中に、ホウ酸ナトリウムを0.01〜0.04g/リットルになるように添加する。液温は40〜50℃が好ましく、この溶液中に被処理物が60〜720秒浸漬される。   After the water washing, the second conditioning process using diols is performed. As the diol used in the second conditioning step, one or more of propylene glycol, trimethylene glycol, dimethylene glycol and the like are used, and the concentration as an aqueous solution is 0.05. Managed at ˜0.20 molar equivalents. Furthermore, sodium borate is added to this so that it may become 0.01-0.04 g / liter. The liquid temperature is preferably 40 to 50 ° C., and the object to be treated is immersed in this solution for 60 to 720 seconds.

そして水洗の後、従来通りの無電解メッキ工程を経て、プリント基板のスルーホール導通を得ることができる。その際、パラジウム(Pd)、スズ(Sn)コロイド触媒をより効率的に吸着させることができる。   After washing with water, through-hole conduction of the printed circuit board can be obtained through a conventional electroless plating process. At that time, palladium (Pd) and tin (Sn) colloidal catalyst can be adsorbed more efficiently.

このような2段階のコンディショニング処理を行ってから、2年以上に亘り1日当り3000シート処理のモニタリング期間中、一度もボイドが発生しなかった。   No void was generated during the monitoring period of 3000 sheets per day for 2 years or more after the two-stage conditioning process.

図1におけるスルーホールの壁面11、図2におけるスルーホールの壁面12は、図3のそれと対比すれば分るように、ともに一様に滑らかであり、ボイドのない状態を示している。このように、本発明によるコンディショニング処理方法はスルーホールの壁面処理に有効性である。   The wall surface 11 of the through hole in FIG. 1 and the wall surface 12 of the through hole in FIG. 2 are both uniformly smooth and free of voids, as can be seen from the comparison with that in FIG. As described above, the conditioning method according to the present invention is effective for the wall treatment of the through hole.

プリント基板のスルーホールの断面を示しており、本発明によりコンディショニング処理した後の壁面状態を示す写真。The photograph which shows the cross section of the through hole of a printed circuit board, and shows the wall surface state after the conditioning process by this invention. プリント基板のスルーホールの断面を示しており、本発明によりコンディショニング処理した後の壁面状態を示す写真。The photograph which shows the cross section of the through hole of a printed circuit board, and shows the wall surface state after the conditioning process by this invention. 従来の処理により、回路基板におけるボイドが発生したスルーホールの断面を示す顕微鏡写真。The microscope picture which shows the cross section of the through hole which the void in the circuit board generate | occur | produced by the conventional process. プリント基板のスルーホールが穴加工された直後の断面全体を撮影した顕微鏡写真。A photomicrograph of the entire cross section immediately after the through hole of the printed circuit board has been drilled. プリント基板のスルーホールが穴加工された直後の断面を拡大して撮影した顕微鏡写真。A micrograph taken by enlarging the cross section immediately after the through hole of the printed circuit board was drilled. デスミア後のスルーホールの断面全体を撮影した顕微鏡写真。A photomicrograph of the entire cross-section of the through-hole after desmearing. デスミア後のスルーホールの断面を拡大して撮影した顕微鏡写真。A micrograph taken by enlarging the cross-section of the through-hole after desmearing. エグレが発生したスルーホールの断面を撮影した顕微鏡写真。A photomicrograph of a cross-section of a through-hole where an egre was generated.

符号の説明Explanation of symbols

1 ボイド発生箇所、2 ポリイミド樹脂部分、3 ガラス体、
4 フィラー物質、5 エグレ発生箇所、
11,12 スルーホール壁面。
1 Void generation place 2 Polyimide resin part 3 Glass body
4 Filler substance, 5 Aegle occurrence point,
11, 12 Through hole wall surface.

Claims (7)

多層フレキシブルプリント基板のスルーホールに、無電解メッキを施して層間接続用金属導体を形成するプリント基板の製造方法において、
前処理となる被処理物のコンディショニング工程を、
アミン系界面活性剤を主成分とする水溶液に被処理物を浸漬する第1コンディショニング工程と、
ジオール類を主成分とする水溶液に被処理物を浸漬する第2コンディショニング工程と
の2段階で行なうことを特徴とする、プリント基板の製造方法。
In the method for manufacturing a printed circuit board, in which a metal conductor for interlayer connection is formed by performing electroless plating on the through hole of the multilayer flexible printed circuit board,
The conditioning process for the pre-treatment object
A first conditioning step of immersing the object to be treated in an aqueous solution containing an amine-based surfactant as a main component;
A method for producing a printed circuit board, comprising: a second conditioning step in which an object to be treated is immersed in an aqueous solution containing diol as a main component.
請求項1記載のプリント基板の製造方法において、
前記アミン系界面活性剤には、トリエタノールアミン、2−アミノエタノールのうちの1または2種類を用いることを特徴とするプリント基板の製造方法。
In the manufacturing method of the printed circuit board of Claim 1,
1 or 2 types of triethanolamine and 2-aminoethanol are used for the said amine type surfactant, The manufacturing method of the printed circuit board characterized by the above-mentioned.
請求項2記載のプリント基板の製造方法において、
前記アミン系界面活性剤の水溶液としての濃度は、0.04〜0.16モル当量であることを特徴とするプリント基板の製造方法。
In the manufacturing method of the printed circuit board of Claim 2,
The concentration of the amine surfactant as an aqueous solution is 0.04 to 0.16 molar equivalent.
請求項2記載のプリント基板の製造方法において、
前記アミン系界面活性剤の水溶液の液温は50〜60℃とし、この水溶液中に60〜300秒浸漬することを特徴とするプリント基板の製造方法。
In the manufacturing method of the printed circuit board of Claim 2,
The method for producing a printed circuit board, wherein the temperature of the aqueous solution of the amine-based surfactant is 50 to 60 ° C. and the substrate is immersed in the aqueous solution for 60 to 300 seconds.
請求項1記載のプリント基板の製造方法において、
前記ジオール類には、プロピレングリコール、トリメチレングリコール、ジメチレングリコールのうちの少なくとも1、およびホウ酸ナトリウムを用いることを特徴とするプリント基板の製造方法。
In the manufacturing method of the printed circuit board of Claim 1,
As the diol, at least one of propylene glycol, trimethylene glycol, and dimethylene glycol, and sodium borate are used.
請求項5記載のプリント基板の製造方法において、
前記ジオール類の水溶液としての濃度は、0.05〜0.20モル当量であり、ホウ酸ナトリウムの濃度は0.01〜0.04g/リットルであることを特徴とするプリント基板の製造方法。
In the manufacturing method of the printed circuit board of Claim 5,
The concentration of the diol as an aqueous solution is 0.05 to 0.20 molar equivalent, and the concentration of sodium borate is 0.01 to 0.04 g / liter.
請求項5記載のプリント基板の製造方法において、
前記ジオール類の水溶液の液温は40〜50℃とし、この水溶液中に60〜720秒浸漬することを特徴とするプリント基板の製造方法。
In the manufacturing method of the printed circuit board of Claim 5,
The method for producing a printed circuit board, wherein the temperature of the aqueous solution of the diol is 40 to 50 ° C., and the aqueous solution is immersed in the aqueous solution for 60 to 720 seconds.
JP2004254743A 2004-09-01 2004-09-01 Electroless copper plating method for multilayer flexible printed circuit board Active JP4290621B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004254743A JP4290621B2 (en) 2004-09-01 2004-09-01 Electroless copper plating method for multilayer flexible printed circuit board
TW094125488A TW200622032A (en) 2004-09-01 2005-07-27 Electroless copper plating method of multilayer flexible printed circuit board
CN 200510098003 CN1744801B (en) 2004-09-01 2005-09-01 Electrolytic copper free electroplating method of multi-layer flexible printing substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004254743A JP4290621B2 (en) 2004-09-01 2004-09-01 Electroless copper plating method for multilayer flexible printed circuit board

Publications (2)

Publication Number Publication Date
JP2006070318A true JP2006070318A (en) 2006-03-16
JP4290621B2 JP4290621B2 (en) 2009-07-08

Family

ID=36139927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004254743A Active JP4290621B2 (en) 2004-09-01 2004-09-01 Electroless copper plating method for multilayer flexible printed circuit board

Country Status (3)

Country Link
JP (1) JP4290621B2 (en)
CN (1) CN1744801B (en)
TW (1) TW200622032A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102758193A (en) * 2012-07-31 2012-10-31 湖南利尔电子材料有限公司 Electroless copper plating pretreatment solution used for high-frequency circuit board
JP2015088710A (en) * 2013-11-01 2015-05-07 日本酢ビ・ポバール株式会社 Etchant, liquid additive agent for etchant, uneven substrate and method for manufacturing uneven substrate, and solar battery
CN105612821A (en) * 2013-10-09 2016-05-25 日立化成株式会社 Method for manufacturing multilayer wiring substrate
US10165691B2 (en) 2013-10-09 2018-12-25 Hitachi Chemical Company, Ltd. Method for manufacturing multilayer wiring substrate
KR20220038341A (en) 2019-08-02 2022-03-28 우에무라 고교 가부시키가이샤 Electroless plating pretreatment method and electroless plating pretreatment solution

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6350062B2 (en) * 2013-10-09 2018-07-04 日立化成株式会社 Manufacturing method of multilayer wiring board
CN105517348B (en) * 2015-11-27 2018-04-06 上海英内物联网科技股份有限公司 The preparation method of copper facing aluminium base FPC
CN105430927B (en) * 2015-12-29 2017-12-26 潍坊学院 A kind of method and apparatus of printed circuit board chemical palladium-plating
JP7245604B2 (en) 2017-12-19 2023-03-24 日立Astemo株式会社 friction material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256096A (en) * 1998-03-12 1999-09-21 Nippon Parkerizing Co Ltd Surface treatment agent composition for metallic material and treatment process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102758193A (en) * 2012-07-31 2012-10-31 湖南利尔电子材料有限公司 Electroless copper plating pretreatment solution used for high-frequency circuit board
CN105612821A (en) * 2013-10-09 2016-05-25 日立化成株式会社 Method for manufacturing multilayer wiring substrate
US10076044B2 (en) 2013-10-09 2018-09-11 Hitachi Chemical Company, Ltd. Method for manufacturing multilayer wiring substrate
US10165691B2 (en) 2013-10-09 2018-12-25 Hitachi Chemical Company, Ltd. Method for manufacturing multilayer wiring substrate
JP2015088710A (en) * 2013-11-01 2015-05-07 日本酢ビ・ポバール株式会社 Etchant, liquid additive agent for etchant, uneven substrate and method for manufacturing uneven substrate, and solar battery
KR20220038341A (en) 2019-08-02 2022-03-28 우에무라 고교 가부시키가이샤 Electroless plating pretreatment method and electroless plating pretreatment solution

Also Published As

Publication number Publication date
TW200622032A (en) 2006-07-01
JP4290621B2 (en) 2009-07-08
TWI379918B (en) 2012-12-21
CN1744801A (en) 2006-03-08
CN1744801B (en) 2011-12-14

Similar Documents

Publication Publication Date Title
US4425380A (en) Hole cleaning process for printed circuit boards using permanganate and caustic treating solutions
JP5715748B2 (en) Conditioner for electroless plating
TWI379918B (en)
JP2011162806A (en) Pretreatment liquid for electroless plating
KR102440121B1 (en) Method for manufacturing a printed wiring board
KR102502531B1 (en) Pretreatment liquid for electroless plating used simultaneously with reduction treatment, and manufacturing method of printed wiring board
JPS6389674A (en) Metal plating method
JP7448539B2 (en) Aqueous alkaline pretreatment solution used before deposition of palladium activation layer, method and use thereof
JP3223814B2 (en) Manufacturing method of multilayer printed wiring board
JP2591500B2 (en) Manufacturing method of printed wiring board
JPS63129692A (en) Manufacture of printed wiring board
JPH05145221A (en) Manufacture of printed circuit board
JP2001247973A (en) Cleaning and conditioning agent and electroless copper plating method for printed circuit board
JPS60241291A (en) Method of producing printed circuit board
JP2008166720A (en) Manufacturing method for multilayer printed wiring board
JPS58218193A (en) Method of producing printed circuit board
JPS63131596A (en) Manufacture of printed wiring board
JP2005171318A (en) Printed wiring board and method of manufacturing printed wiring board
JPH07240579A (en) Manufacture of multilayer printed wiring
JP2005232501A (en) Method for forming thin film, and substrate using it for electronic equipment
JPS59121994A (en) Method of producing printed circuit board
JPS59117294A (en) Method of producing printed circuit board
JPS59151494A (en) Method of producing printed board
JPH11261221A (en) Manufacture of multilayered printed wiring board
JPH07202431A (en) Production of printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090401

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4290621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250