JP7245604B2 - friction material - Google Patents

friction material Download PDF

Info

Publication number
JP7245604B2
JP7245604B2 JP2017242331A JP2017242331A JP7245604B2 JP 7245604 B2 JP7245604 B2 JP 7245604B2 JP 2017242331 A JP2017242331 A JP 2017242331A JP 2017242331 A JP2017242331 A JP 2017242331A JP 7245604 B2 JP7245604 B2 JP 7245604B2
Authority
JP
Japan
Prior art keywords
friction material
inorganic fibers
less
fibers
mohs hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017242331A
Other languages
Japanese (ja)
Other versions
JP2019108470A (en
Inventor
嵩 江崎
茂智 山田
文教 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Astemo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Astemo Ltd filed Critical Hitachi Astemo Ltd
Priority to JP2017242331A priority Critical patent/JP7245604B2/en
Publication of JP2019108470A publication Critical patent/JP2019108470A/en
Application granted granted Critical
Publication of JP7245604B2 publication Critical patent/JP7245604B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Braking Arrangements (AREA)

Description

本発明は、高性能化を達成でき、またブレーキ鳴き現象を抑制できる摩擦材に関する。 TECHNICAL FIELD The present invention relates to a friction material capable of achieving high performance and suppressing brake squeal.

二輪車や三輪車等のバーハンドル車両のブレーキの摩擦材としては、高い摩擦係数や安定した摩擦特性、耐熱性、耐摩耗性、ブレーキ鳴きの低減が要求される。
例えば、特許文献1~4においては、環境への影響が少なく、安定した効力が得られ、錆落とし性の向上、ブレーキ鳴きの低減として、無機繊維、生体溶解性無機繊維を用いた摩擦材が開示されている。
Friction materials for brakes of bar-handle vehicles such as motorcycles and tricycles are required to have a high friction coefficient, stable friction characteristics, heat resistance, wear resistance, and reduction in brake squeal.
For example, in Patent Documents 1 to 4, friction materials using inorganic fibers and biosoluble inorganic fibers have little impact on the environment, have stable effects, improve rust removal properties, and reduce brake squeal. disclosed.

すなわち、特許文献1には、モース硬度が5以上7以下の生体溶解性無機繊維を含む摩擦材が開示されている。
特許文献2には、チタン酸化合物と生体溶解性無機繊維を含む摩擦材が開示されている。
特許文献3には、モース硬度6以上の生体溶解性無機繊維を摩擦材全体の10~45質量%含む摩擦材が開示されている。
また特許文献4には、モース硬度が4.5未満の無機繊維を含む摩擦材が開示されている。
That is, Patent Document 1 discloses a friction material containing a biosoluble inorganic fiber having a Mohs hardness of 5 or more and 7 or less.
Patent Document 2 discloses a friction material containing a titanate compound and a biosoluble inorganic fiber.
Patent Document 3 discloses a friction material containing 10 to 45% by mass of a biosoluble inorganic fiber having a Mohs hardness of 6 or more based on the total friction material.
Further, Patent Document 4 discloses a friction material containing inorganic fibers having a Mohs hardness of less than 4.5.

特開2016-132702JP 2016-132702 特開2013-76058JP 2013-76058 特許第5469805号公報Japanese Patent No. 5469805 特開2002-275452JP 2002-275452

生体溶解性無機繊維は、ブレーキの摩擦材としての効力安定性に優れ、ブレーキ鳴き現象の抑制性も大きい。
しかしながら、発明者が検討したところ、特許文献3に示されるように、多量の生体溶解性無機繊維を用いると、低減速時においてブレーキ鳴きを良好に抑制できないという課題がある。
The biosoluble inorganic fiber has excellent efficacy stability as a friction material for brakes, and is highly suppressive of brake squeal.
However, as a result of examination by the inventor, as shown in Patent Document 3, there is a problem that if a large amount of biosoluble inorganic fiber is used, brake squeal cannot be satisfactorily suppressed during deceleration.

本実施の形態に係る摩擦材は、上記課題を解決すべくなされたものであり、その目的とするところは、ブレーキ鳴きをさらに低減した摩擦材を提供することにある。 The friction material according to the present embodiment has been made to solve the above problems, and its object is to provide a friction material that further reduces brake squeal.

本実施の形態に係る摩擦材は、炭素元素を含む有機材料と、無機繊維とを含有する摩擦材において、前記有機材料の合計含有量が、摩擦材組成物全体の30質量%以下で、前記無機繊維として、モース硬度が5以上7以下の無機繊維である生体溶解性無機繊維およびガラス繊維と、モース硬度が5以下の無機繊維とを含み、モース硬度8以上の硬質無機粉末材を含まないで、前記生体溶解性無機繊維を摩擦材組成物全体の0.5~5.0質量%含有し、前記ガラス繊維を摩擦材組成物全体の3.0~15.0質量%含有し、前記モース硬度が5以下の無機繊維を摩擦材組成物全体の2.0~12.0質量%含有し、前記有機材料は、アラミド繊維、ゴム粉、樹脂を含有し、前記生体溶解性無機繊維は、バルクファイバーで、前記モース硬度が5以下である無機繊維は、板状繊維のチタン酸カリウムであることを特徴とする。 The friction material according to the present embodiment is a friction material containing an organic material containing a carbon element and inorganic fibers, wherein the total content of the organic material is 30% by mass or less of the entire friction material composition, and the The inorganic fibers include biosoluble inorganic fibers and glass fibers that are inorganic fibers with a Mohs hardness of 5 or more and 7 or less, inorganic fibers with a Mohs hardness of 5 or less, and do not contain hard inorganic powder materials with a Mohs hardness of 8 or more. The biosoluble inorganic fiber is contained in an amount of 0.5 to 5.0% by mass of the entire friction material composition, the glass fiber is contained in an amount of 3.0 to 15.0% by mass of the entire friction material composition, and 2.0 to 12.0% by mass of the total friction material composition contains inorganic fibers having a Mohs hardness of 5 or less, the organic material contains aramid fibers, rubber powder, and resin, and the biosoluble inorganic fibers are In the bulk fiber, the inorganic fiber having a Mohs hardness of 5 or less is potassium titanate, which is a plate-like fiber.

また、本実施の形態に係る摩擦材は、ドラムブレーキ用のシューライニングに好適に用いることができる。 Further , the friction material according to the present embodiment can be suitably used for shoe linings for drum brakes.

請求項1によれば、無機繊維としてモース硬度が5以上7以下の生体溶解性無機繊維とガラス繊維、およびモース硬度が5以下の無機繊維を添加し、モース硬度8以上の硬質無機粉末材を含まないことで、硬度の異なる無機繊維により、ブレーキ鳴きを低減することができる。また、ガラス繊維を含有することで、モーニングエフェクト現象を防止することができる。
また、生体溶解性無機繊維の含有量を少なくする代わりに、モース硬度5以下の無機繊維を含有することで、低減速時のブレーキ鳴きを抑制することができる。また、雨天等で摩擦面が濡れた状態においても、効力の低下を抑制することができる。
請求項に示すように、長期にわたり高効力が必要なドラムブレーキに好適に用いることができる。
According to claim 1, as inorganic fibers, biosoluble inorganic fibers and glass fibers having a Mohs hardness of 5 or more and 7 or less, and inorganic fibers having a Mohs hardness of 5 or less are added, and a hard inorganic powder material having a Mohs hardness of 8 or more is added. By not including inorganic fibers having different hardnesses, brake squeal can be reduced. Moreover, the morning effect phenomenon can be prevented by containing the glass fiber.
In addition , instead of reducing the content of the biosoluble inorganic fiber, by containing the inorganic fiber having a Mohs hardness of 5 or less, it is possible to suppress brake squeal during deceleration. Moreover, even when the friction surface is wet due to rain or the like, the reduction in effectiveness can be suppressed.
As shown in claim 2 , it can be suitably used for drum brakes that require high efficacy over a long period of time.

実施例1~5および比較例1~8における各種原材料の配合比と各種ブレーキ特性を示す表である。4 is a table showing blending ratios of various raw materials and various brake characteristics in Examples 1 to 5 and Comparative Examples 1 to 8. FIG. 実施例1および比較例1のシューライニングを用いた場合の、ブレーキ作動回数に対する摩擦係数の変化を測定したグラフである。4 is a graph showing changes in friction coefficient with respect to the number of braking operations when using the shoe linings of Example 1 and Comparative Example 1. FIG. 実施例1および比較例1のシューライニングを用いた場合の、ウォーターリカバリー性(効力変化率)を測定したグラフである。1 is a graph showing measurement of water recoverability (effectiveness change rate) when shoe linings of Example 1 and Comparative Example 1 are used.

以下、本発明の実施の形態について詳細に説明する。
本実施の形態に係る摩擦材は、一例として、ドラムブレーキのシューライニングに用いられる。本実施の形態に係る摩擦材は、上記のように、炭素元素を含む有機材料と、無機繊維とを含有する摩擦材において、前記有機材料の合計含有量が、摩擦材組成物全体の30質量%以下で、前記無機繊維として、モース硬度が5以上7以下の無機繊維である生体溶解性無機繊維およびガラス繊維と、モース硬度が5以下の無機繊維とを含み、モース硬度8以上の硬質無機粉末材を含まないことを特徴としている。
また、当然に一般的なベース材料として、炭酸カルシウム等の無機粉末材を含む。また、アルミニウム粉等の金属材を含んでもよい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail.
As an example, the friction material according to the present embodiment is used for a shoe lining of a drum brake. As described above, the friction material according to the present embodiment is a friction material containing an organic material containing a carbon element and inorganic fibers, wherein the total content of the organic material is 30 mass of the entire friction material composition. % or less, the inorganic fibers include biosoluble inorganic fibers and glass fibers that are inorganic fibers with a Mohs hardness of 5 or more and 7 or less, and inorganic fibers with a Mohs hardness of 5 or less, and hard inorganic fibers with a Mohs hardness of 8 or more It is characterized by not containing powder material.
Also, of course, common base materials include inorganic powder materials such as calcium carbonate. Moreover, metal materials, such as aluminum powder, may also be included.

炭素元素を含む有機材料としては、アラミド繊維等の有機繊維、フェノールレジン等の樹脂、ゴム粉(NBR、SBR等)を用いることができる。さらには、黒鉛等の潤滑材やカシューダスト等の摩擦調整材を含んでもよい。
これら炭素材料を含む有機材料の合計含有量は、摩擦材組成物全体の30質量%以下とする。これにより、相手のドラム摺動面への炭素成分の移着量を抑えることができ、安定したブレーキ効力が得られる。炭素繊維を含む有機材料の含有量が30質量%を超えると、ドラム摺動面への移着量が多くなりすぎ、摩擦係数が変動し、安定した効力が得られなくなる。
Organic fibers such as aramid fibers, resins such as phenol resins, and rubber powders (NBR, SBR, etc.) can be used as organic materials containing carbon elements. Further, it may contain a lubricant such as graphite and a friction modifier such as cashew dust.
The total content of organic materials including these carbon materials should be 30 mass % or less of the entire friction material composition. As a result, the amount of carbon components transferred to the mating drum sliding surface can be suppressed, and a stable braking effect can be obtained. If the content of the organic material containing carbon fiber exceeds 30% by mass, the transfer amount to the drum sliding surface becomes too large, the coefficient of friction fluctuates, and stable efficacy cannot be obtained.

本実施の形態における摩擦材は、前記のように、無機繊維として、モース硬度が5以上7以下の無機繊維である生体溶解性無機繊維およびガラス繊維と、モース硬度が5以下の3種類の無機繊維を含む。
モース硬度が5以上7以下の無機繊維は、生体溶解性無機繊維とガラス繊維の2種類とする。
As described above, the friction material in the present embodiment includes, as inorganic fibers, biosoluble inorganic fibers and glass fibers, which are inorganic fibers having a Mohs hardness of 5 or more and 7 or less, and three types of inorganic fibers having a Mohs hardness of 5 or less. Contains fiber.
Inorganic fibers having a Mohs hardness of 5 or more and 7 or less are of two types: biosoluble inorganic fibers and glass fibers.

生体溶解性無機繊維は、特に限定されるものではないが、人造のバルクファイバーを好適に用いることができる。バルクファイバーは、SiO2-CaO-MgOの成分系をなし、モース硬度が5以上7以下であり、1000℃以上の耐熱性を有する。
生体溶解性無機繊維は、生体内で溶解するので、生体への影響が少なく、またブレーキの摩擦材としての効力安定性に優れ、無機繊維のなかでブレーキ鳴きが生じにくい。
The biosoluble inorganic fibers are not particularly limited, but artificial bulk fibers can be preferably used. The bulk fiber has a component system of SiO 2 --CaO--MgO, has a Mohs hardness of 5 or more and 7 or less, and has a heat resistance of 1000° C. or more.
Since the biosoluble inorganic fiber dissolves in the living body, it has little effect on the living body, is excellent in efficacy stability as a brake friction material, and is less likely to cause brake squeal among inorganic fibers.

しかしながら、前記のように、多量の生体溶解性無機繊維を用いると、低減速時においてブレーキ鳴きを良好に抑制できないという課題が発生した。
そこで本実施の形態では、生体溶解性無機繊維の含有量は、従来のものより減量し、その含有量を摩擦材組成物全体の0.5~5.0質量%とすると好適である。これにより、低減速時におけるブレーキ鳴きを低減することができた。なお、ブレーキ鳴きを低減できる効果、さらには、ウォーターリカバリー特性を向上できる効果(モーニングエフェクト現象を低減できる効果を含む)は、上記のように、無機繊維として、上記3種類の無機繊維を併用することによって得られる。
However, as described above, when a large amount of biosoluble inorganic fiber is used, there arises a problem that brake squeal cannot be satisfactorily suppressed during deceleration.
Therefore, in the present embodiment, the content of the biosoluble inorganic fiber is reduced from that of the conventional one, and the content is preferably 0.5 to 5.0% by mass based on the total friction material composition. As a result, it was possible to reduce the brake squeal at the time of deceleration. The effect of reducing brake squeal and the effect of improving water recovery characteristics (including the effect of reducing the morning effect phenomenon) can be obtained by using the above three types of inorganic fibers in combination as inorganic fibers. obtained by

モース硬度が5以上7以下の生体溶解性無機繊維の含有量を従来よりも減らし、モース硬度が5以上7以下のガラス繊維(人造のガラスファイバー等)を併用する。ガラス繊維の含有量は、生体溶解性無機繊維の含有量を考慮して、摩擦材組成物全体の3.0~15.0%とするのが好適である。上記のように、モース硬度が5以上7以下の生体溶解性無機繊維の含有量を従来よりも減らし、ガラス繊維を含有させることでモーニングエフェクト現象を低減できる。 The content of biosoluble inorganic fibers with a Mohs hardness of 5 or more and 7 or less is reduced more than before, and glass fibers with a Mohs hardness of 5 or more and 7 or less (artificial glass fibers, etc.) are used in combination. The content of the glass fiber is preferably 3.0 to 15.0% of the total friction material composition in consideration of the content of the biosoluble inorganic fiber. As described above, the morning effect phenomenon can be reduced by reducing the content of the biosoluble inorganic fibers having a Mohs hardness of 5 or more and 7 or less than in the past and adding glass fibers.

本実施の形態に係る摩擦材は、上記のように、無機繊維として、モース硬度5以下の無機繊維を含む。モース硬度5以下の無機繊維の含有量は、摩擦材組成物全体の2.0~12.0質量%とすると好適である。
モース硬度5以下の無機繊維としては、板状、ウィスカー状のチタン酸カリウムを好適に用いることができる。なお、チタン酸マグネシウム、チタン酸リチウム、チタン酸ナトリウム、硫酸マグネシウム、炭酸カルシウム等の無機繊維を用いることもできる。
As described above, the friction material according to the present embodiment includes inorganic fibers having a Mohs hardness of 5 or less as inorganic fibers. The content of inorganic fibers having a Mohs hardness of 5 or less is preferably 2.0 to 12.0 mass % of the total friction material composition.
Plate-like or whisker-like potassium titanate can be preferably used as the inorganic fiber having a Mohs hardness of 5 or less. Inorganic fibers such as magnesium titanate, lithium titanate, sodium titanate, magnesium sulfate, and calcium carbonate can also be used.

上記3種類の無機繊維を併用して用いることで、摩擦材中で、無機繊維が互いに絡みあって網目状に配置されやすくなる。ブレーキに用いられる摩擦材は、空気中に含まれる水蒸気が結露して付着した水分や、雨水等によって、水膜が形成されることがある。水膜が形成されると、摩擦係数が上昇して効力が高くなる現象が生じることがある(モーニングエフェクト現象など)。 By using the above three types of inorganic fibers in combination, the inorganic fibers are easily entangled with each other and arranged in a mesh shape in the friction material. Friction materials used for brakes may form a water film due to water vapor condensed in the air, rainwater, and the like. When a water film is formed, the coefficient of friction increases and a phenomenon of increased efficacy may occur (such as the morning effect phenomenon).

本実施の形態に係る摩擦材は、上記3種類の無機繊維が絡み合って網目状になって、微細な空隙が形成され、これにより水分を逃がして水膜を切るという水切り効果が得られる。これにより、モーニングエフェクト現象を防止できる。また、付着した雨水が網目状の繊維間に入り込み、非制動時に蒸発しやすくなることから、ウォーターリカバリー性も良好となる。 In the friction material according to the present embodiment, the above three types of inorganic fibers are entangled to form a mesh, forming fine voids, thereby releasing moisture and cutting off the water film. This can prevent the morning effect phenomenon. In addition, since the attached rainwater enters between the mesh-like fibers and easily evaporates when the brake is not applied, the water recovery property is also improved.

また、本実施の形態では、特に、モース硬度が5以下の無機繊維と、モース硬度が5以上7以下の無機繊維とがバランスよく混入される。このように硬度の低い部分と硬度の高い部分が摩擦材表面に交互に適度に存在することから、ドラム摺動面への攻撃性が適度となり、これにより、低速度時におけるブレーキ鳴きも低減できると考えられる。 Moreover, in the present embodiment, inorganic fibers having a Mohs hardness of 5 or less and inorganic fibers having a Mohs hardness of 5 or more and 7 or less are mixed in a well-balanced manner. In this way, since the low-hardness portion and the high-hardness portion alternately exist on the surface of the friction material, the aggression to the drum sliding surface becomes moderate, thereby reducing brake squeal at low speeds. it is conceivable that.

図1の表に示す配合割合の原材料を撹拌、混合し、仮成形した。仮成形した摩擦材を成形型に収容し、公知の手法により加圧、加熱成形して、実施例1~5の摩擦材および比較例1~8の摩擦材を製造した。
実施例1~5の摩擦材、および比較例1~8の摩擦材について、効力安定性(制動力およびその安定性)、ウォーターリカバリー性、モーニングエフェクト現象、ブレーキ鳴きの各特性について調べた結果を図1の表の下段に示す。
The raw materials of the compounding ratio shown in the table of FIG. 1 were stirred and mixed to form a temporary molding. The temporarily molded friction materials were placed in a molding die, and pressurized and heat-molded by a known method to manufacture the friction materials of Examples 1-5 and Comparative Examples 1-8.
The friction materials of Examples 1 to 5 and the friction materials of Comparative Examples 1 to 8 were investigated with respect to their respective characteristics of efficacy stability (braking force and its stability), water recovery, morning effect phenomenon, and brake squeal. It is shown in the lower part of the table in FIG.

図1の表に示すように、本実施の形態に係る実施例1~5の各摩擦材はいずれも、効力安定性(制動力およびその安定性)、ウォーターリカバリー性、モーニングエフェクト現象の抑制に優れ、またブレーキ鳴き(特に低速度時におけるブレーキ鳴き)についても良好に抑制できた。 As shown in the table of FIG. 1, each of the friction materials of Examples 1 to 5 according to the present embodiment is effective in stability of efficacy (braking force and its stability), water recovery, and suppression of the morning effect phenomenon. In addition, brake squeal (especially brake squeal at low speed) could be suppressed satisfactorily.

比較例1、6、7は、生体溶解性無機繊維を含まず、効力安定性、ウォーターリカバリー性に劣る。
比較例2のシューライニングは、生体溶解性無機繊維を含まず、板状繊維をなすチタン酸カリウムからなる無機繊維を比較的多量に用いたものであり、効力安定性は良好であるが、ウォーターリカバリー性に劣り、またブレーキ鳴きも良好には抑制できなかった。
比較例3は、生体溶解性無機繊維を用いているが、無機繊維に、人造スラグウールを用いたところ、ブレーキ鳴きは抑制できなかった例を示している。また、比較例4は、生体溶解性無機繊維を用いているが、モース硬度5以下の無機繊維として粒子状のチタン酸カリウムを用いたところ、ウォーターリカバリー性があまり良好でなかった例を示している。実施例1~5に示されるように、モース硬度5以下の無機繊維としては、板状繊維(断面扁平)の形態をなすチタン酸カリウムの無機繊維が良好であった。
比較例5は、生体溶解性無機繊維を実施例2、4以上に多量に用いており、且つガラス繊維を含んでいないのでブレーキ鳴きとモーニングエフェクト現象が劣る。
比較例8は、ガラス繊維の含有量は実施例1-5と同じであるが、生体溶解性無機繊維を実施例2、4以上に多量に用いているものでありブレーキ鳴きが抑制できなかった例を示している。
Comparative Examples 1, 6, and 7 do not contain biosoluble inorganic fibers, and are inferior in efficacy stability and water recoverability.
The shoe lining of Comparative Example 2 did not contain biosoluble inorganic fibers, and used a relatively large amount of inorganic fibers made of potassium titanate forming plate-like fibers. The recovery performance was poor, and brake squeal could not be suppressed satisfactorily.
Comparative Example 3 shows an example in which a biosoluble inorganic fiber is used, but brake squeal cannot be suppressed when artificial slag wool is used as the inorganic fiber. In Comparative Example 4, although biosoluble inorganic fibers were used, when particulate potassium titanate was used as the inorganic fibers having a Mohs hardness of 5 or less, the water recovery property was not very good. there is As shown in Examples 1 to 5, inorganic fibers of potassium titanate in the form of plate-like fibers (flat in cross section) were excellent as inorganic fibers having a Mohs hardness of 5 or less.
Comparative Example 5 uses a larger amount of biosoluble inorganic fibers than those of Examples 2 and 4, and does not contain glass fiber, so brake squeal and morning effect phenomenon are inferior.
Comparative Example 8 had the same glass fiber content as that of Examples 1-5, but used a larger amount of biosoluble inorganic fiber than Examples 2 and 4, and thus brake squeal could not be suppressed. shows an example.

図2は、実施例1および比較例1のシューライニングを用いて、ブレーキ作動回数に対する摩擦係数の変化を測定したグラフである。図2に示すように、実施例1に示すシューライニングは、ブレーキ回数が増えても効力の変化が少なく効力安定性に優れることがわかる。一方、比較例1に示すシューライニングは、ブレーキ回数が増えると効力が低くなることがわかる。 FIG. 2 is a graph showing changes in friction coefficient with respect to the number of braking operations using the shoe linings of Example 1 and Comparative Example 1. In FIG. As shown in FIG. 2, it can be seen that the shoe lining of Example 1 is excellent in efficacy stability with little change in efficacy even when the number of times of braking increases. On the other hand, it can be seen that the effectiveness of the shoe lining shown in Comparative Example 1 decreases as the number of times of braking increases.

図3は、実施例1および比較例1のシューライニングを用いて、ウォーターリカバリー性(効力変化率)を測定したグラフである。
図3より、実施例1のシューライニングの方が比較例1のシューライニングよりも、制動初期における効力変化率が少なく(100%からの低下率)、ウォーターリカバリー性に優れていることがわかる。
FIG. 3 is a graph showing water recoverability (efficacy change rate) measured using the shoe linings of Example 1 and Comparative Example 1. FIG.
3 that the shoe lining of Example 1 has a smaller rate of change in efficacy (reduction rate from 100%) in the early stage of braking than the shoe lining of Comparative Example 1, and is superior in water recovery.

Claims (2)

炭素元素を含む有機材料と、無機繊維とを含有する摩擦材において、
前記有機材料の合計含有量が、摩擦材組成物全体の30質量%以下で、
前記無機繊維として、
モース硬度が5以上7以下の無機繊維である生体溶解性無機繊維およびガラス繊維と、
モース硬度が5以下の無機繊維とを含み、
モース硬度8以上の硬質無機粉末材を含まないで、
前記生体溶解性無機繊維を摩擦材組成物全体の0.5~5.0質量%含有し、
前記ガラス繊維を摩擦材組成物全体の3.0~15.0質量%含有し、
前記モース硬度が5以下の無機繊維を摩擦材組成物全体の2.0~12.0質量%含有し、
前記有機材料は、アラミド繊維、ゴム粉、樹脂を含有し、
前記生体溶解性無機繊維は、バルクファイバーで、
前記モース硬度が5以下である無機繊維は、板状繊維のチタン酸カリウムである
ことを特徴とする摩擦材。
In a friction material containing an organic material containing a carbon element and an inorganic fiber,
The total content of the organic material is 30% by mass or less of the entire friction material composition,
As the inorganic fiber,
biosoluble inorganic fibers and glass fibers, which are inorganic fibers having a Mohs hardness of 5 or more and 7 or less;
Inorganic fibers with a Mohs hardness of 5 or less,
Does not contain a hard inorganic powder material with a Mohs hardness of 8 or more,
0.5 to 5.0% by mass of the entire friction material composition containing the biosoluble inorganic fiber,
Containing 3.0 to 15.0% by mass of the glass fiber in the entire friction material composition,
2.0 to 12.0% by mass of the total friction material composition containing inorganic fibers having a Mohs hardness of 5 or less,
The organic material contains aramid fiber, rubber powder, resin,
The biosoluble inorganic fibers are bulk fibers,
The friction material, wherein the inorganic fiber having a Mohs hardness of 5 or less is a plate-like fiber of potassium titanate.
請求項1記載の摩擦材において、
ドラムブレーキ用のシューライニングに用いられる
ことを特徴とする摩擦材。
The friction material according to claim 1,
A friction material characterized by being used for a shoe lining for a drum brake.
JP2017242331A 2017-12-19 2017-12-19 friction material Active JP7245604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017242331A JP7245604B2 (en) 2017-12-19 2017-12-19 friction material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017242331A JP7245604B2 (en) 2017-12-19 2017-12-19 friction material

Publications (2)

Publication Number Publication Date
JP2019108470A JP2019108470A (en) 2019-07-04
JP7245604B2 true JP7245604B2 (en) 2023-03-24

Family

ID=67179063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017242331A Active JP7245604B2 (en) 2017-12-19 2017-12-19 friction material

Country Status (1)

Country Link
JP (1) JP7245604B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275452A (en) 2001-01-12 2002-09-25 Nisshinbo Ind Inc Non-asbestos-based friction material
JP4290621B2 (en) 2004-09-01 2009-07-08 日本メクトロン株式会社 Electroless copper plating method for multilayer flexible printed circuit board
JP2016132702A (en) 2015-01-16 2016-07-25 日信工業株式会社 Friction material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6157071B2 (en) * 2011-09-14 2017-07-05 曙ブレーキ工業株式会社 Friction material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275452A (en) 2001-01-12 2002-09-25 Nisshinbo Ind Inc Non-asbestos-based friction material
JP4290621B2 (en) 2004-09-01 2009-07-08 日本メクトロン株式会社 Electroless copper plating method for multilayer flexible printed circuit board
JP2016132702A (en) 2015-01-16 2016-07-25 日信工業株式会社 Friction material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
飯田一 編集、「大車林:自動車情報事典」、三栄書房、2004年2月2日、第2刷発行

Also Published As

Publication number Publication date
JP2019108470A (en) 2019-07-04

Similar Documents

Publication Publication Date Title
JP6760449B2 (en) Non-asbestos friction material composition, friction material and friction member using this
JP5051330B2 (en) Non-asbestos friction material composition, friction material and friction member using the same
JP5979003B2 (en) Non-asbestos friction material composition, friction material and friction member using the same
JP5981839B2 (en) Friction material
JP5071604B2 (en) Non-asbestos friction material composition, friction material and friction member using the same
WO2012066966A1 (en) Non-asbestos friction material composition, friction material using same, and friction member
KR20190017068A (en) Friction material composition, friction material using same and friction member
WO2014034878A1 (en) Friction material composition, friction material using friction material composition, and friction member
JP6425894B2 (en) Friction material composition, friction material using friction material composition and friction member
WO2017130332A1 (en) Friction material composition, friction material, and friction member
JP7169981B2 (en) Friction material composition, friction material and friction member using friction material composition
WO2012066964A1 (en) Non-asbestos friction-material composition, and friction material and friction member using same
JP7240424B2 (en) Friction material composition, friction material and friction member
JP6493956B2 (en) Friction material composition, friction material and friction member
JP2013185016A (en) Friction material composition, and friction material and friction member using the friction material composition
JP2008174705A (en) Friction material composition and friction material using the same
JP7245604B2 (en) friction material
JP2008184594A (en) Friction material
JP6629411B2 (en) Friction material composition, friction material using friction material composition, and friction member
JP6480145B2 (en) Friction material composition, friction material and friction member
JP5958624B2 (en) Non-asbestos friction material composition
JP6753579B2 (en) Friction material composition, friction material and friction member
KR102218092B1 (en) Friction material composition
JP6629412B2 (en) Friction material composition, friction material using friction material composition, and friction member
JP6531807B2 (en) Non-asbestos friction material composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210608

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210907

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220719

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221004

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20221108

C28A Non-patent document cited

Free format text: JAPANESE INTERMEDIATE CODE: C2838

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221220

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230117

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20230214

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230313

R150 Certificate of patent or registration of utility model

Ref document number: 7245604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150