JP2006067742A - Balance correcting device for secondary battery connected in series and correcting method thereof - Google Patents

Balance correcting device for secondary battery connected in series and correcting method thereof Download PDF

Info

Publication number
JP2006067742A
JP2006067742A JP2004249212A JP2004249212A JP2006067742A JP 2006067742 A JP2006067742 A JP 2006067742A JP 2004249212 A JP2004249212 A JP 2004249212A JP 2004249212 A JP2004249212 A JP 2004249212A JP 2006067742 A JP2006067742 A JP 2006067742A
Authority
JP
Japan
Prior art keywords
inductor
battery
series
balance correction
batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004249212A
Other languages
Japanese (ja)
Other versions
JP4140585B2 (en
Inventor
Fumiaki Nakao
文昭 中尾
Kazuo Takehara
和男 竹原
Yasuo Yamashita
康雄 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2004249212A priority Critical patent/JP4140585B2/en
Publication of JP2006067742A publication Critical patent/JP2006067742A/en
Priority to JP2008122115A priority patent/JP4689694B2/en
Priority to JP2008122116A priority patent/JP5182804B2/en
Application granted granted Critical
Publication of JP4140585B2 publication Critical patent/JP4140585B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a balance correcting device for secondary battery connected in series that miniaturizes each element by limiting a current flowing in an inductor to a predetermined value, that can correct balance in a short time efficiently, and that has good responsiveness to a sudden load change; and to provide a correcting method thereof. <P>SOLUTION: In a first mode, a first closed circuit is formed to circulate a current with one end of the inductor L connected to the connection point of two batteries B1, B2 and its other end to the other end of the battery B1. In a second mode, a second closed circuit is formed to circulate the current by connecting the other end of the inductor L to the other end of the battery B2. The operation of the first and second modes are repeated alternately on a predetermined cycle for a proper period of time to perform balance-correcting operation of equalizing the voltages of the battery B1 and the battery B2. Currents that flow in switching elements S1, S2 are detected. If the detected values are overcurrents exceeding predetermined values, the operation of the signal generating circuit 10 is limited so that the overcurrents decrease. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、直列接続した2次電池のバランス補正装置およびその補正方法に関するもので、より具体的には、直列に接続した複数の2次電池について各電圧を均等化するような補正動作の改良に関する。   The present invention relates to a balance correction apparatus for a secondary battery connected in series and a correction method thereof, and more specifically, an improvement of a correction operation that equalizes each voltage for a plurality of secondary batteries connected in series. About.

複数・多数の2次電池を直列に接続した電源では、電力の有効利用,長寿命化などの面から各電圧を均等化させる必要がある。係る各電圧を均等化させる技術としては、例えば特許文献1,2などに見られるように、インダクタが発現する誘導起電力の性質を利用するようにしたバランス補正のための装置および方法が提案されている。   In a power source in which a plurality of secondary batteries are connected in series, it is necessary to equalize each voltage from the viewpoint of effective use of power and long life. As a technique for equalizing each voltage, there has been proposed a device and method for balance correction using the property of the induced electromotive force generated by the inductor, as seen in Patent Documents 1 and 2, for example. ing.

図1は、2次電池のバランス補正装置の従来例を示す回路図であり、特許文献2に示されたものである。同図に示すバランス補正装置は、2つの2次電池B1,B2を直列に接続し、インダクタLの一端を電池B1,B2の接続点に接続している。そして、電池B1の他端(正極端子)とインダクタLの他端との間にスイッチング素子S1を接続し、電池B2の他端(負極端子)とインダクタLの他端との間にスイッチング素子S2を接続している。   FIG. 1 is a circuit diagram showing a conventional example of a balance correction apparatus for a secondary battery, which is disclosed in Patent Document 2. As shown in FIG. In the balance correction apparatus shown in the figure, two secondary batteries B1 and B2 are connected in series, and one end of an inductor L is connected to a connection point of the batteries B1 and B2. The switching element S1 is connected between the other end (positive terminal) of the battery B1 and the other end of the inductor L, and the switching element S2 is connected between the other end (negative terminal) of the battery B2 and the other end of the inductor L. Is connected.

2つのスイッチング素子S1,S2は、MOSFETからなり、相補動作するゲートドライバD1,D2をゲート端子に接続している。これらゲートドライバD1,D2に対して信号発生回路10から駆動信号を送ることにより、一方のスイッチング素子をオンにする際は、他方のスイッチング素子はオフとなるような駆動を行う構成になっている。   The two switching elements S1 and S2 are formed of MOSFETs, and gate drivers D1 and D2 that perform complementary operations are connected to gate terminals. A drive signal is sent from the signal generation circuit 10 to the gate drivers D1 and D2, so that when one switching element is turned on, the other switching element is turned off. .

信号発生回路10は、これら2つの電池B1,B2のバランス補正を実行する期間に、デューティ比が50%の所定周期のパルス列(矩形波)を発生してゲートドライバD1,D2に入力する。これにより、2つのスイッチング素子S1,S2は相補的にオン,オフを繰り返し、オン時間とオフ時間とは等しくなる。   The signal generation circuit 10 generates a pulse train (rectangular wave) having a predetermined cycle with a duty ratio of 50% and inputs it to the gate drivers D1 and D2 during the period of executing the balance correction of these two batteries B1 and B2. Thus, the two switching elements S1 and S2 are repeatedly turned on and off in a complementary manner, and the on time and the off time become equal.

スイッチング素子S1がオンでスイッチング素子S2がオフでは、電池B1,スイッチング素子S1,インダクタLが連なり閉回路(B1ループと呼ぶ)を形成し、スイッチング素子S1がオフでスイッチング素子S2がオンでは、電池B2,インダクタL,スイッチング素子S2が連なり閉回路(B2ループと呼ぶ)を形成する。   When switching element S1 is on and switching element S2 is off, battery B1, switching element S1, and inductor L are connected to form a closed circuit (referred to as a B1 loop). When switching element S1 is off and switching element S2 is on, the battery B2, the inductor L, and the switching element S2 are connected to form a closed circuit (referred to as a B2 loop).

B1ループの期間において、電池B1の起電力により順方向に循環する電流が流れる際は、その順方向の電流は、(e1/Li)の変化率で時間と共に増加する。ここで、e1は電池B1の電圧、LiはインダクタLのインダクタンスである。次に、その順方向の電流が流れている状態からスイッチング素子S1,S2を反転させて、B2ループの期間に切り替えると、このときインダクタLに流れていた電流は電池B2の起電力に対して逆方向となる。   When a current circulating in the forward direction flows due to the electromotive force of the battery B1 during the period of the B1 loop, the forward current increases with time at a rate of change of (e1 / Li). Here, e1 is the voltage of the battery B1, and Li is the inductance of the inductor L. Next, when the switching elements S1 and S2 are reversed from the state in which the forward current flows, and switched to the period of the B2 loop, the current flowing in the inductor L at this time is compared with the electromotive force of the battery B2. The reverse direction.

つまり、B1ループの期間に電池B1の起電力に順方向の電流は、B2ループの期間では電池B2の起電力に対して逆方向の電流となる。この逆方向の電流は、電池B2の起電力により徐々に減少する。その変化率は(e2/Li)となり、e2は電池B2の電圧である。   That is, the current in the forward direction with respect to the electromotive force of the battery B1 during the period of the B1 loop is a current in the reverse direction with respect to the electromotive force of the battery B2 during the period of the B2 loop. This reverse current gradually decreases due to the electromotive force of the battery B2. The rate of change is (e2 / Li), where e2 is the voltage of battery B2.

したがって、インダクタLに流れる電流は、デューティ比50%の矩形波に同期してノコギリ状の波形となり、その電流は傾きが(e1/Li),(e2/Li)で増減し、単位周期で見ると、前半が誘導起電力(逆起電力)の部分になるので充電の時間となり、後半はインダクタLにエネルギーを蓄積する放電の時間になる。   Therefore, the current flowing through the inductor L has a sawtooth waveform in synchronization with a rectangular wave with a duty ratio of 50%, and the current increases or decreases with the inclinations (e1 / Li) and (e2 / Li), and is viewed in unit cycles. Then, since the first half is the portion of the induced electromotive force (counterelectromotive force), the charging time is required, and the latter half is the discharging time for storing energy in the inductor L.

ここで、電池B1の電圧e1が電池B2の電圧e2より高いと、B1ループ期間中では単位周期前半で充電の時間が短くて後半で放電の時間が長くなり、反対にB2ループ期間では単位周期前半で充電の時間が長くて後半で放電の時間が短くなる。このため、電圧の高い側の電池B1がトータル的には放電が進み、電圧の低い側の電池B2がトータル的には充電が進むことになる。   Here, when the voltage e1 of the battery B1 is higher than the voltage e2 of the battery B2, the charging time is short in the first half of the unit period and the discharging time is long in the second half during the B1 loop period, and conversely, the unit period is in the B2 loop period. The charging time is longer in the first half and the discharging time is shorter in the second half. For this reason, the battery B1 on the higher voltage side is totally discharged, and the battery B2 on the lower voltage side is totally charged.

すなわち、電池B1の出力で電池B2を充電することになり、その結果、電池B1の電圧e1が順次に低下していくと共に、電池B2の電圧e2が順次に上昇してゆき、電圧e1と電圧e2とが均等化する。
特許第3328656号公報 特開2001−185229号公報
That is, the battery B2 is charged with the output of the battery B1, and as a result, the voltage e1 of the battery B1 decreases sequentially, the voltage e2 of the battery B2 increases sequentially, and the voltage e1 and the voltage e2 is equalized.
Japanese Patent No. 3328656 JP 2001-185229 A

ところで、このような2次電池による電源は、小型化の要求がある。しかし、負荷の側からは容量が大きいことが望ましい。各電池の容量を上げるためには、バランス補正を短時間で完了させる面からインダクタLに流れる電流を大きな値にし、このためインダクタL,スイッチング素子S1,S2は対応させて仕様を上げることになり、電流の増大に見合う電流容量が必要になるので各素子が大型化してしまうという問題がある。   By the way, such a power source using a secondary battery is required to be downsized. However, it is desirable that the capacity is large from the load side. In order to increase the capacity of each battery, the current flowing through the inductor L is increased from the viewpoint of completing the balance correction in a short time. For this reason, the specifications of the inductor L and the switching elements S1 and S2 are increased correspondingly. Since the current capacity corresponding to the increase in current is required, there is a problem that each element becomes large.

一方、各電池の電圧を均等化させるバランス補正が完了した後には、インダクタに流れる三角波の電流は正負のピークが同値になって流れることになり、これは無効電流になるので小さい値にしたい。この面から、インダクタLはインダクタンスが大きな値であることが有利であるが、素子が大型化してしまう。また、インダクタLのインダクタンスが大値であると、電流ピークを高く得られず、バランス補正に時間がかかる。   On the other hand, after the balance correction for equalizing the voltage of each battery is completed, the current of the triangular wave flowing through the inductor flows with the positive and negative peaks having the same value. From this aspect, it is advantageous that the inductor L has a large inductance value, but the element becomes large. Further, if the inductance of the inductor L is a large value, a high current peak cannot be obtained, and it takes time to correct the balance.

そしてまた、バランス補正は、効率よく短時間で完了したい要求はもちろんであり、負荷の急変に対する応答性能を高くしたい要求もある。このように、相反する問題が存在しており、従来は、使用目的などに応じて優先する課題の解決をはかり、他の弊害部分はある程度犠牲にしている。   In addition, the balance correction is required not only to be completed efficiently and in a short time, but also to increase the response performance against a sudden change in load. In this way, there are conflicting problems. Conventionally, the priority issues are solved according to the purpose of use, and other adverse effects are sacrificed to some extent.

この発明は上記した課題を解決するもので、その目的は、インダクタに流れる電流を所定に制限することにより各素子を小型化することができ、バランス補正の動作を短時間で行えて効率がよく、負荷の急変に対する応答性能が良好である直列接続した2次電池のバランス補正装置およびその補正方法を提供することにある。   SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and its object is to reduce the size of each element by restricting the current flowing through the inductor to a predetermined value, and to perform the balance correction operation in a short time and efficiently. Another object of the present invention is to provide a balance correction device for a series-connected secondary battery having good response performance against a sudden load change and a correction method thereof.

上記した目的を達成するために、本発明に係る直列接続した2次電池のバランス補正装置は、直列に接続した複数の2次電池について各電圧を均等化させるものであって、前記2次電池の並び列で前後する2つの電池B1,B2の接続点に一端を接続するインダクタLと、前記インダクタLの他端と前記電池B1の他端とに接続してオン動作時に第1閉回路を形成する第1スイッチング素子S1と、前記インダクタLの他端と前記電池B2の他端とに接続してオン動作時に第2閉回路を形成する第2スイッチング素子S2と、前記スイッチング素子S1,S2を所定サイクルで相補的にオン動作させる信号発生回路と、前記スイッチング素子S1,S2に流れる電流を検出する検出手段と、前記検出手段の検出値が所定値を越える過電流であるときに当該過電流が低減するように前記信号発生回路の動作に制限をかける制限手段とを備える構成とした。   In order to achieve the above-described object, a balance correction apparatus for secondary batteries connected in series according to the present invention equalizes each voltage for a plurality of secondary batteries connected in series, and the secondary battery Inductor L having one end connected to the connection point of two batteries B1 and B2 which are arranged in the front and rear rows, and connected to the other end of the inductor L and the other end of the battery B1, and a first closed circuit at the time of an on operation. A first switching element S1 to be formed; a second switching element S2 that is connected to the other end of the inductor L and the other end of the battery B2 to form a second closed circuit during an on-operation; and the switching elements S1, S2 Is a signal generation circuit that complementarily turns on in a predetermined cycle, detection means for detecting the current flowing through the switching elements S1 and S2, and an overcurrent in which the detection value of the detection means exceeds a predetermined value. The overcurrent is configured to include a limiting means for applying a limit to the operation of the signal generating circuit so as to reduce the time.

また、前記検出手段は、副スイッチング素子と電流検出のための抵抗とを直列に接続した直列素子を前記スイッチング素子に並列に接続し、前記副スイッチング素子を前記スイッチング素子と連動させて2重に動かす構成とし、前記制限手段は、前記抵抗に接続するコンパレータを備えて所定の基準電圧と比較することにより過電流を検出し、当該コンパレータの出力を前記信号発生回路に戻して過電流の制限を行う構成とするとよい。   Further, the detecting means connects a series element in which a sub-switching element and a resistor for current detection are connected in series to the switching element in parallel, and the sub-switching element is linked with the switching element in a double manner. The limiting means includes a comparator connected to the resistor, detects an overcurrent by comparing with a predetermined reference voltage, and returns the output of the comparator to the signal generation circuit to limit the overcurrent. It is good to have a configuration to do.

また、前記2次電池の並び列で前後する2つの電池B1,B2の接続点に一端を接続するインダクタLと、前記インダクタLの他端と前記電池B1の他端とに接続してオン動作時に第1閉回路を形成する第1スイッチング素子S1と、前記インダクタLの他端と前記電池B2の他端とに接続してオン動作時に第2閉回路を形成する第2スイッチング素子S2と、前記2つのスイッチング素子S1,S2を所定サイクルで相補的にオン動作させる信号発生回路と、前記インダクタLに流れる電流を検出して所定値を越える過電流であるときに当該過電流が低減するように制限をかける制限手段とを備えるように構成しても良い。   In addition, an inductor L having one end connected to a connection point between two batteries B1 and B2 that are arranged in the row of the secondary batteries, and an ON operation by connecting the other end of the inductor L and the other end of the battery B1. A first switching element S1 that sometimes forms a first closed circuit; a second switching element S2 that connects to the other end of the inductor L and the other end of the battery B2 to form a second closed circuit during an on-operation; A signal generating circuit that complementarily turns on the two switching elements S1 and S2 in a predetermined cycle, and a current that flows through the inductor L to detect an overcurrent that exceeds a predetermined value so that the overcurrent is reduced. It may be configured to include a restricting means for restricting the above.

また、直列に接続した複数の2次電池について各電圧を均等化させるバランス補正方法であって、2次電池の並び列で前後する2つの電池B1,B2の接続点にインダクタLの一端を接続しておき、前記インダクタLの他端を前記電池B1の他端に接続することで第1の閉回路を形成して電流を循環させる第1モードと、前記インダクタLの他端を前記電池B2の他端に接続することで第2の閉回路を形成して電流を循環させる第2モードとを所定周期で交互に繰り返す動作を適宜な期間実行し、電池B1と電池B2の電圧を均等化させるバランス補正の動作において、前記スイッチング素子S1,S2に流れる電流を検出し、当該検出値が所定値を越える過電流であるときに、前記第1,第2モードの繰り返し周期に対して過電流が低減するように制限をかけるようにすることもできる。   Further, it is a balance correction method for equalizing each voltage for a plurality of secondary batteries connected in series, and one end of an inductor L is connected to a connection point between two batteries B1 and B2 that are arranged in a line of secondary batteries. A first mode in which the other end of the inductor L is connected to the other end of the battery B1 to form a first closed circuit and current is circulated, and the other end of the inductor L is connected to the battery B2. By connecting to the other end of the battery, a second closed circuit is formed and the second mode in which current is circulated is alternately repeated at a predetermined period, and the voltages of the batteries B1 and B2 are equalized. In the balance correction operation, when the current flowing through the switching elements S1 and S2 is detected and the detected value is an overcurrent exceeding a predetermined value, an overcurrent is detected with respect to the repetition period of the first and second modes. Reduce It is also possible to make apply the restriction to.

また、前記2次電池の並び列で前後する2つの電池B1,B2の接続点に一端を接続するインダクタLと、前記インダクタLの他端と前記電池B1の他端とに接続してオン動作時に第1閉回路を形成する第1スイッチング素子S1と、前記インダクタLの他端と前記電池B2の他端とに接続してオン動作時に第2閉回路を形成する第2スイッチング素子S2と、前記2つのスイッチング素子S1,S2を所定サイクルで相補的にオン動作させる信号発生回路とを備えて、前記インダクタLを非線形型のインダクタとするとよい。   In addition, an inductor L having one end connected to a connection point between two batteries B1 and B2 that are arranged in the row of the secondary batteries, and an ON operation by connecting the other end of the inductor L and the other end of the battery B1. A first switching element S1 that sometimes forms a first closed circuit; a second switching element S2 that connects to the other end of the inductor L and the other end of the battery B2 to form a second closed circuit during an on-operation; The inductor L may be a non-linear inductor provided with a signal generation circuit that complementarily turns on the two switching elements S1 and S2 in a predetermined cycle.

また、前記2次電池の並び列で前後する2つの電池B1,B2の接続点に一端を接続するインダクタLと、前記インダクタLの他端と前記電池B1の他端とに接続してオン動作時に第1閉回路を形成する第1スイッチング素子S1と、前記インダクタLの他端と前記電池B2の他端とに接続してオン動作時に第2閉回路を形成する第2スイッチング素子S2と、前記2つのスイッチング素子S1,S2を所定サイクルで相補的にオン動作させる信号発生回路と、前記電池B1,B2について両電圧の和値を等分した基準電圧を出力する基準電圧手段と、前記接続点に接続するコンパレータであり前記基準電圧との比較を行って当該コンパレータの出力を前記信号発生回路に戻してデューティ比をバランス補正の変化量が収束する向きに修正する調整手段とを備える構成にするとよい。   In addition, an inductor L having one end connected to a connection point between two batteries B1 and B2 that are arranged in the row of the secondary batteries, and an ON operation by connecting the other end of the inductor L and the other end of the battery B1. A first switching element S1 that sometimes forms a first closed circuit; a second switching element S2 that connects to the other end of the inductor L and the other end of the battery B2 to form a second closed circuit during an on-operation; A signal generating circuit for complementarily turning on the two switching elements S1 and S2 in a predetermined cycle; a reference voltage means for outputting a reference voltage obtained by equally dividing the sum of both voltages for the batteries B1 and B2; and the connection Comparator connected to a point, compares with the reference voltage, returns the output of the comparator to the signal generation circuit, and corrects the duty ratio so that the amount of change in balance correction converges Better to structure and an adjusting means.

また、前記基準電圧手段は、値が同一な2つの抵抗R1,R2を直列に接続して当該直列素子の両端を前記電池B1,B2に並列に接続する構成とすると共に、前記直列素子には直列に介在してオフ動作時に前記電池B1,B2側との接続を切り離すスイッチ手段を設けるといよい。   Further, the reference voltage means has a configuration in which two resistors R1 and R2 having the same value are connected in series and both ends of the series element are connected in parallel to the batteries B1 and B2, and the series element includes It is advisable to provide a switch means that is interposed in series and disconnects the connection with the batteries B1 and B2 during the off operation.

また、直列に接続した複数の2次電池について各電圧を均等化させるバランス補正方法であって、2次電池の並び列で前後する2つの電池B1,B2の接続点にインダクタLの一端を接続しておき、前記インダクタLの他端を前記電池B1の他端に接続することで第1の閉回路を形成して電流を循環させる第1モードと、前記インダクタLの他端を前記電池B2の他端に接続することで第2の閉回路を形成して電流を循環させる第2モードとを所定周期で交互に繰り返す動作を適宜な期間実行し、電池B1と電池B2の電圧を均等化させるバランス補正の動作において、前記電池B1,B2について両電圧の和値を等分した基準電圧を検出し、当該基準電圧と前記接続点の電圧との比較を行って、前記第1,第2モードの繰り返し周期に対してデューティ比をバランス補正の変化量が収束する向きに修正する。   Further, it is a balance correction method for equalizing each voltage for a plurality of secondary batteries connected in series, and one end of an inductor L is connected to a connection point between two batteries B1 and B2 that are arranged in a line of secondary batteries. A first mode in which the other end of the inductor L is connected to the other end of the battery B1 to form a first closed circuit and current is circulated, and the other end of the inductor L is connected to the battery B2. By connecting to the other end of the battery, a second closed circuit is formed and the second mode in which current is circulated is alternately repeated at a predetermined period, and the voltages of the batteries B1 and B2 are equalized. In the balance correction operation, a reference voltage obtained by equally dividing the sum of both voltages for the batteries B1 and B2 is detected, and the reference voltage and the voltage at the connection point are compared to determine the first and second voltages. For the repetition period of the mode Variation of the balance correction is corrected in a direction to converge the duty ratio.

係る構成にすることにより本発明では、スイッチング素子S1,S2に流れる電流を検出し、当該検出値が所定値を越える過電流であるときに、過電流が低減するように信号発生回路の動作に制限をかける。そして、これには、第1,第2モードの繰り返し周期に対して制限をかけてデューティ比をコントロールする動作になる。したがって、インダクタLに流れる電流を所定に制限することができ、その結果、インダクタLおよびスイッチング素子S1,S2を小型化することができる。   With this configuration, in the present invention, the current flowing through the switching elements S1 and S2 is detected, and when the detected value is an overcurrent exceeding a predetermined value, the signal generation circuit is operated so that the overcurrent is reduced. Put a limit. In this case, the duty ratio is controlled by limiting the repetition period of the first and second modes. Therefore, the current flowing through the inductor L can be limited to a predetermined value, and as a result, the inductor L and the switching elements S1 and S2 can be reduced in size.

また、インダクタLに流れる電流を検出して所定値を越える過電流であるときに当該過電流が低減するように制限をかけることでもよく、制限手段としては、インダクタに抵抗を直列に接続すること、あるいは、インダクタが固有に有する抵抗成分を適正に調整すること、等によりインダクタに流れる電流を制限することができる。   Further, the current flowing through the inductor L may be detected and a restriction may be applied so that the overcurrent is reduced when the overcurrent exceeds a predetermined value. As a limiting means, a resistor is connected in series with the inductor. Alternatively, the current flowing through the inductor can be limited by appropriately adjusting the resistance component inherent in the inductor.

また、インダクタLを非線形型のインダクタとすることでは、インダクタンスが電流の増加に対して負の傾きで低減する特性になるので、各電池B1,B2の電圧が均等化してバランスが概ね良好な状況では、B1ループ,B2ループの何れでも電流が小さいのでインダクタンスが大値となる。その結果、バランス補正の回路にあっては、無効電流が小さくなりロスが少なく、効率がよい。逆に、各電池で電圧差が大きくバランスが取れていない状況では、バランス補正に係る電流が大きく、短い時間で早く補正動作が行えて、このときインダクタンスが小値になる。   In addition, when the inductor L is a non-linear inductor, the inductance decreases with a negative slope with respect to an increase in current, so that the voltages of the batteries B1 and B2 are equalized and the balance is generally good. Then, since the current is small in both the B1 loop and the B2 loop, the inductance becomes a large value. As a result, in the balance correction circuit, the reactive current is reduced, loss is reduced, and efficiency is improved. On the other hand, in a situation where the voltage difference between the batteries is large and unbalanced, the current for balance correction is large, and the correction operation can be performed quickly in a short time, and at this time, the inductance becomes a small value.

また、電池B1,B2について両電圧の和値を等分した基準電圧を検出し、当該基準電圧と電池接続点の電圧との比較を行って、第1,第2モードの繰り返し周期に対してデューティ比をバランス補正の変化量が収束する向きに修正することでは、デューティ比を可変するパルス幅制御になり、バランス補正が自動化するようなデューティ比になる。その結果、バランス補正の動作を短時間で行えて効率がよく、負荷の急変に対する応答性能が良好である。また、基準電圧手段はスイッチ手段によって電池B1,B2側から接続を切り離しするので、不必要な電流の消費を止めることができる。   Further, a reference voltage obtained by equally dividing the sum of both voltages for the batteries B1 and B2 is detected, and the reference voltage and the voltage at the battery connection point are compared, and the repetition cycle of the first and second modes is determined. Modifying the duty ratio so that the amount of change in balance correction converges results in pulse width control that varies the duty ratio, resulting in a duty ratio that automates balance correction. As a result, the balance correction operation can be performed in a short time, and the efficiency is high, and the response performance to a sudden load change is good. Further, since the reference voltage means disconnects the connection from the battery B1, B2 side by the switch means, it is possible to stop unnecessary current consumption.

本発明に係る直列接続した2次電池のバランス補正装置では、スイッチング素子S1,S2に流れる電流を検出し、当該検出値が所定値を越える過電流であるときに、過電流が低減するように信号発生回路の動作に制限をかけるので、インダクタLに流れる電流を所定に制限することができる。その結果、インダクタLおよびスイッチング素子S1,S2を小型化することができ、バランス補正装置を小型にできる。   The balance correction device for secondary batteries connected in series according to the present invention detects the current flowing through the switching elements S1 and S2, and reduces the overcurrent when the detected value is an overcurrent exceeding a predetermined value. Since the operation of the signal generation circuit is limited, the current flowing through the inductor L can be limited to a predetermined value. As a result, the inductor L and the switching elements S1 and S2 can be reduced in size, and the balance correction device can be reduced in size.

また、インダクタLを非線形型のインダクタとした場合、そのインダクタンスは電流の増加に対して負の傾きで低減する特性になる。このため、各電池B1,B2の電圧が均等化してバランスが概ね良好な状況では、無効電流が小さくなりロスが少なくなり効率がよい。逆に、各電池における電圧差が大きくバランスが取れていない状況では、バランス補正の動作を短時間で行えて効率がよい。   Further, when the inductor L is a non-linear inductor, the inductance decreases with a negative slope with respect to an increase in current. For this reason, in the situation where the voltages of the batteries B1 and B2 are equalized and the balance is generally good, the reactive current is reduced, the loss is reduced, and the efficiency is improved. On the other hand, in a situation where the voltage difference between the batteries is large and unbalanced, the balance correction operation can be performed in a short time, which is efficient.

また、電池B1,B2について両電圧の和値を等分した基準電圧を検出し、当該基準電圧と電池接続点の電圧との比較を行って、デューティ比をバランス補正の変化量が収束する向きに修正するので、デューティ比を可変するパルス幅制御が行える。これは、バランス補正が自動化するようなデューティ比になることから、バランス補正の動作を短時間で行えて効率がよく、負荷の急変に対する応答性能が良好である。   Further, a reference voltage obtained by equally dividing the sum of both voltages for the batteries B1 and B2 is detected, the reference voltage is compared with the voltage at the battery connection point, and the duty ratio is changed so that the amount of change in the balance correction converges. Therefore, the pulse width control for changing the duty ratio can be performed. Since the duty ratio is such that the balance correction is automated, the balance correction operation can be performed in a short time and the efficiency is high, and the response performance to a sudden load change is good.

(第1の実施の形態)
図2は、本発明に係るバランス補正装置の第1の実施の形態を示す回路図である。本実施の形態では、バランス補正装置は、インダクタが発現する誘導起電力の性質を利用するようにした構成であり、基本的には前述した図1に示す従来例と同一になっている。
(First embodiment)
FIG. 2 is a circuit diagram showing a first embodiment of a balance correction apparatus according to the present invention. In the present embodiment, the balance correction apparatus is configured to use the property of the induced electromotive force generated by the inductor, and is basically the same as the conventional example shown in FIG.

つまり、バランス補正装置は、2つの2次電池B1,B2を直列に接続してあり、インダクタLの一端を電池B1,B2の接続点に接続している。そして、電池B1の他端(正極端子)とインダクタLの他端との間にスイッチング素子S1を接続し、電池B2の他端(負極端子)とインダクタLの他端との間にスイッチング素子S2を接続している。   That is, in the balance correction device, two secondary batteries B1 and B2 are connected in series, and one end of the inductor L is connected to the connection point of the batteries B1 and B2. The switching element S1 is connected between the other end (positive terminal) of the battery B1 and the other end of the inductor L, and the switching element S2 is connected between the other end (negative terminal) of the battery B2 and the other end of the inductor L. Is connected.

各スイッチング素子S1,S2には、副スイッチング素子S3(S4)と電流検出のための抵抗R1(R2)とを直列に接続した直列素子を、それぞれ並列に接続し、副スイッチング素子S3,S4を各スイッチング素子S1,S2と連動させて2重に動かす構成になっている。これは、スイッチング素子S1,S2をオン動作する際は、副スイッチング素子S3,S4も2重にオン動作し、電流が分流するので、各抵抗R1,R2の副スイッチング素子側について電圧をモニタすることにより、スイッチング素子S1,S2に流れる電流を知ることができ、電流の検出手段になっている。   Each switching element S1, S2 is connected in parallel with a series element in which a sub switching element S3 (S4) and a resistor R1 (R2) for current detection are connected in series, and the sub switching elements S3, S4 are connected in parallel. It is configured to move in a double manner in conjunction with each switching element S1, S2. This is because when the switching elements S1 and S2 are turned on, the sub-switching elements S3 and S4 are also turned on twice, and the current is shunted, so the voltage is monitored on the sub-switching element side of each resistor R1 and R2. As a result, the current flowing through the switching elements S1 and S2 can be known, which serves as a current detection means.

2つのスイッチング素子S1,S2および2つの副スイッチング素子S3,S4は、MOSFETからなり、相補動作するゲートドライバD1,D2をゲート端子に接続し、これらゲートドライバD1,D2に対して信号発生回路10から駆動信号を送ることにより、一方の2重のスイッチング素子をオンとする際は他方の2重はオフとする駆動を行う構成になっている。   The two switching elements S1 and S2 and the two sub-switching elements S3 and S4 are made of MOSFETs, and gate drivers D1 and D2 that operate in a complementary manner are connected to gate terminals, and a signal generation circuit 10 is connected to these gate drivers D1 and D2. By sending a drive signal from, when one of the double switching elements is turned on, the other double is turned off.

信号発生回路10は、これら電池B1,B2のバランス補正を実行する期間に、デューティ比が50%の所定周期のパルス列(矩形波)を発生してゲートドライバD1,D2に入力する。これにより、2つのスイッチング素子S1,S2は相補的にオン,オフを繰り返し、オン時間とオフ時間とは等しい。   The signal generation circuit 10 generates a pulse train (rectangular wave) having a predetermined cycle with a duty ratio of 50% and inputs it to the gate drivers D1 and D2 during a period of executing the balance correction of the batteries B1 and B2. Thus, the two switching elements S1 and S2 are repeatedly turned on and off in a complementary manner, and the on time and the off time are equal.

各抵抗R1,R2の副スイッチング素子側は、コンパレータ20の入力端に接続してあり、コンパレータ20は、他方の入力端に基準電圧V1(V2)を接続し、出力端はゲートドライバD3(D4)を介して信号発生回路10の動作制御部に接続している。   The sub-switching element side of each resistor R1, R2 is connected to the input terminal of the comparator 20. The comparator 20 connects the reference voltage V1 (V2) to the other input terminal, and the output terminal is the gate driver D3 (D4). ) To the operation control unit of the signal generation circuit 10.

このコンパレータ20は、予め設定した基準電圧V1(V2)と比較することで過電流を検出し、検出手段の検出値が所定値を越える過電流であるときに、信号発生回路10の動作制御部に信号を送る動作を行い、過電流が低減するように制限をかける制限手段になっている。制限の動作としては、スイッチング素子S1,S2の片方に過電流を検出した場合、その該当側のスイッチング素子をオフするように動作し、デューティ比をコントロールすることになる。   The comparator 20 detects an overcurrent by comparing with a preset reference voltage V1 (V2), and when the detected value of the detection means is an overcurrent exceeding a predetermined value, the operation control unit of the signal generation circuit 10 This is a limiting means for performing a signal sending operation to limit the overcurrent to be reduced. As a limiting operation, when an overcurrent is detected in one of the switching elements S1 and S2, an operation is performed to turn off the corresponding switching element, and the duty ratio is controlled.

このように、スイッチング素子S1,S2に流れる電流を検出し、当該検出値が所定値を越える過電流であるときに、過電流が低減するように信号発生回路10の動作に制限をかけ、デューティ比をコントロールする動作になることから、インダクタLに流れる電流を所定に制限することができる。その結果、インダクタLおよびスイッチング素子S1,S2を小型化することができ、バランス補正装置を小型にできる。   In this way, the current flowing through the switching elements S1 and S2 is detected, and when the detected value is an overcurrent exceeding a predetermined value, the operation of the signal generation circuit 10 is limited so that the overcurrent is reduced, and the duty is Since the ratio is controlled, the current flowing through the inductor L can be limited to a predetermined value. As a result, the inductor L and the switching elements S1 and S2 can be reduced in size, and the balance correction device can be reduced in size.

ところで、バランス補正における電流の制限には、インダクタLを流れる電流について制限をかける構成にすることもよい。具体的には、図3,図4に示すような構成にすればよい。   By the way, it is good also as a structure which restrict | limits the electric current which flows through the inductor L in the electric current limitation in balance correction. Specifically, the configuration shown in FIGS. 3 and 4 may be used.

図3に示す例1では、インダクタLに対して抵抗R3を直列に接続してあり、抵抗R3はインダクタLにおける電流を抑えるリミッタになる。また、図4に示す例2では、インダクタLが等価的に有する抵抗成分Rdcを利用する構成であり、抵抗成分Rdcそのものを適宜に設定することにより、インダクタLにおける電流を抑えるリミッタとして機能させる。   In Example 1 shown in FIG. 3, a resistor R3 is connected in series to the inductor L, and the resistor R3 serves as a limiter that suppresses a current in the inductor L. In addition, the example 2 shown in FIG. 4 is configured to use the resistance component Rdc that the inductor L has equivalently. By appropriately setting the resistance component Rdc itself, the inductor L functions as a limiter that suppresses the current in the inductor L.

インダクタLが固有する抵抗成分Rdcの調整は、巻線の断面積(線径),長さを適正に設定すること、およびインダクタLの周波数特性に係るR成分を適正に設定すること、そして両者の総合特性値を適正化することにより行うことができる。この場合、インダクタLに流れる電流を制限することに係る部品点数が少なく、バランス補正装置をシンプルに小型化することができる。   The adjustment of the resistance component Rdc inherent to the inductor L is to appropriately set the cross-sectional area (wire diameter) and length of the winding, and to appropriately set the R component related to the frequency characteristics of the inductor L, and both This can be done by optimizing the overall characteristic value. In this case, the number of parts related to limiting the current flowing through the inductor L is small, and the balance correction apparatus can be simply downsized.

(第2の実施の形態)
図5は、本発明に係るバランス補正装置の第2の実施の形態を示すの回路図である。この第2の実施の形態では、第1の実施の形態に備えた電流の検出手段および過電流が低減するように制限をかける制限手段は外してあって、基本的には前述した図1に示す従来例と同一であるが、インダクタLは非線形型のインダクタにしている。なお、前述した第1の実施の形態と同様な構成要素には同一符号を付してその説明を省略する。
(Second Embodiment)
FIG. 5 is a circuit diagram showing a second embodiment of the balance correction apparatus according to the present invention. In the second embodiment, the current detecting means and the restricting means for limiting the overcurrent to be reduced are removed, and basically the same as in FIG. Although the same as the conventional example shown, the inductor L is a non-linear type inductor. In addition, the same code | symbol is attached | subjected to the component similar to 1st Embodiment mentioned above, and the description is abbreviate | omitted.

図6は、非線形型インダクタの電流特性を示すグラフ図である。そして、図7は、バランス補正の動作における各部の波形を示すタイミング図であり、スイッチング素子S1,S2のゲート端子に送る相補的なパルス波形と、それらパルス列(S1,S2)に同期するインダクタ電流の波形を示している。   FIG. 6 is a graph showing the current characteristics of the nonlinear inductor. FIG. 7 is a timing chart showing the waveforms of the respective parts in the balance correction operation. The complementary pulse waveforms sent to the gate terminals of the switching elements S1 and S2 and the inductor current synchronized with the pulse trains (S1, S2). The waveform is shown.

非線形型インダクタは、電流特性が図6に示すように、電流の増加に対して負の傾きでインダクタンスが低減する。このため、各電池B1,B2の電圧が均等化してバランスが概ね良好な状況では、B1ループ,B2ループの何れでも電流が小さいのでインダクタンスが大きな値となる。その結果、バランス補正の回路にあっては、無効電流が小さくなりロスが少なく、効率がよい。逆に、各電池で電圧差が大きくバランスが取れていない状況では、図7に示すように、バランス補正に係る電流が大きく、短い時間で早く補正動作が行えて、このときインダクタンスが小値になる。   As shown in FIG. 6, the non-linear inductor has an inductance that decreases with a negative slope as the current increases. For this reason, in a situation where the voltages of the batteries B1 and B2 are equalized and the balance is generally good, the current is small in both the B1 loop and the B2 loop, so the inductance becomes a large value. As a result, in the balance correction circuit, the reactive current is reduced, loss is reduced, and efficiency is improved. On the other hand, in the situation where the voltage difference between each battery is large and unbalanced, as shown in FIG. 7, the current for balance correction is large, and the correction operation can be performed quickly in a short time. At this time, the inductance becomes a small value. Become.

磁束密度Bは、
B =(AL/A)× N・I
で示すことができる。ここで、ALはインダクタの1ターン当たりのインダクタンス,AはインダクタLのコア断面積,NはインダクタLの巻き数,Iは電流である。そして、インダクタLのコアをフェライト材料により形成する場合は、磁束密度Bは0.4以下にしないと飽和するため、この条件を考慮すると、
B ≦ 0.4
なので、コア断面積Aは小値でよいと言える。すなわち、インダクタLは、非線形型インダクタとすることでは、よりさらに小型化することができ、効率がよい。
Magnetic flux density B is
B = (AL / A) x N · I
Can be shown. Here, AL is the inductance per turn of the inductor, A is the core cross-sectional area of the inductor L, N is the number of turns of the inductor L, and I is the current. When the core of the inductor L is formed of a ferrite material, the magnetic flux density B is saturated unless it is 0.4 or less.
B ≤ 0.4
Therefore, it can be said that the core sectional area A may be small. That is, if the inductor L is a non-linear inductor, it can be further reduced in size and efficiency is improved.

(第3の実施の形態)
図8は、本発明に係るバランス補正装置の第3の実施の形態を示すの回路図である。この第3の実施の形態では、第1の実施の形態では備えた電流の検出手段および過電流が低減するように制限をかける制限手段は外してある。そして、基本的には前述した図1に示す従来例と同一であるが、直列に接続した抵抗R4,R5による基準電圧手段とコンパレータ20による調整手段とを備えて、デューティ比をバランス補正の変化量が収束する向きに修正する構成になっている。なお、前述した第1形態と同様な構成要素には同一符号を付してその説明を省略する。
(Third embodiment)
FIG. 8 is a circuit diagram showing a third embodiment of the balance correction apparatus according to the present invention. In the third embodiment, the current detecting means and the limiting means for limiting the overcurrent to be reduced in the first embodiment are omitted. Basically, it is the same as the conventional example shown in FIG. 1 described above, but includes a reference voltage means using resistors R4 and R5 connected in series and an adjusting means using a comparator 20, and changes the duty ratio in balance correction. It is configured to correct the amount to converge. In addition, the same code | symbol is attached | subjected to the component similar to the 1st form mentioned above, and the description is abbreviate | omitted.

基準電圧手段としては、値が同一な2つの抵抗R4,R5を直列に接続して当該直列素子の両端を電池B1,B2に並列に接続してある。そして、抵抗R4,R5の接続点(基準電圧)と、電池B1,B2の接続点とはコンパレータ20の入力端に接続し、当該コンパレータ20の出力端は信号発生回路10の動作制御部に接続している。   As the reference voltage means, two resistors R4 and R5 having the same value are connected in series, and both ends of the series element are connected in parallel to the batteries B1 and B2. The connection point (reference voltage) of the resistors R4 and R5 and the connection point of the batteries B1 and B2 are connected to the input terminal of the comparator 20, and the output terminal of the comparator 20 is connected to the operation control unit of the signal generation circuit 10. is doing.

このため、抵抗R4,R5の接続点には、電池B1,B2について両電圧の和値を等分した基準電圧が現れることになる。そして、コンパレータ20では実際の電圧値と基準電圧との比較を行うことになるので、その出力は基準電圧に対するズレ量つまり補正値となり、これを信号発生回路10の動作制御部に送るので、デューティ比をバランス補正の変化量が収束する向きに修正する動作になる。   For this reason, a reference voltage obtained by equally dividing the sum of both voltages of the batteries B1 and B2 appears at the connection point of the resistors R4 and R5. Since the comparator 20 compares the actual voltage value with the reference voltage, the output becomes a deviation amount, that is, a correction value with respect to the reference voltage, and this is sent to the operation control unit of the signal generation circuit 10. The operation is to correct the ratio so that the amount of change in balance correction converges.

つまり、ここでの制御は、電池B1,B2について両電圧の和値を等分した基準電圧を検出し、当該基準電圧と前記接続点の電圧との比較を行って、B1ループ,B2ループの繰り返し周期に対して、デューティ比をバランス補正の変化量が収束する向きに修正する動作となり、デューティ比を可変するパルス幅制御になっている。   In other words, the control here detects a reference voltage obtained by equally dividing the sum of both voltages for the batteries B1 and B2, compares the reference voltage with the voltage at the connection point, and performs a comparison between the B1 loop and the B2 loop. With respect to the repetition period, the duty ratio is corrected so that the amount of change in balance correction converges, and pulse width control is performed to vary the duty ratio.

パルス幅制御によれば、2つの電池B1,B2において等価直列抵抗が相違した状態で負荷に急変があると、等価直列抵抗の小さい電池が大きい電池の電流の変化分を補うので、電圧変動を小さくすることができる。すなわち、パルス幅制御によって、バランス補正が自動化するようなデューティ比になり、その結果、バランス補正の動作を短時間で行えて効率がよく、負荷の急変に対する応答性能が良好である。   According to the pulse width control, if there is a sudden change in the load in the state where the equivalent series resistances of the two batteries B1 and B2 are different, the battery with a small equivalent series resistance compensates for the change in the current of the large battery, Can be small. That is, the duty ratio is such that the balance correction is automated by the pulse width control. As a result, the balance correction operation can be performed in a short time with high efficiency, and the response performance to a sudden load change is good.

(第4の実施の形態)
図9は、本発明に係るバランス補正装置の第4の実施の実施の形態を示すの回路図である。この第4の実施の形態では、第3の実施の形態のものに対し、基準電圧手段を切り離すためのスイッチ手段30を加えてあり、前述した第1の実施の形態と同様な構成要素には同一符号を付してその説明を省略する。
(Fourth embodiment)
FIG. 9 is a circuit diagram showing a fourth embodiment of the balance correction apparatus according to the present invention. In the fourth embodiment, switch means 30 for separating the reference voltage means is added to the third embodiment, and the same components as those in the first embodiment described above are included. The same reference numerals are given and description thereof is omitted.

スイッチ手段30は、抵抗R4,R5による直列素子に、トランジスタ31のエミッタ,コレクタを直列に介在させてスイッチ動作させる構成であり、トランジスタ31のベース,コレクタ間に抵抗32を接続するとともに、そのベースには抵抗33,ダイオード34を接続して信号端子35とし、その信号端子35にHレベルあるいはLレベルの信号を加えるようになっている。   The switch means 30 has a configuration in which an emitter and a collector of a transistor 31 are interposed in series with a series element formed of resistors R4 and R5, and a switch 32 is connected between the base and collector of the transistor 31, and the base A resistor 33 and a diode 34 are connected to form a signal terminal 35, and an H level or L level signal is applied to the signal terminal 35.

したがって、信号端子35をLレベルにすることで、トランジスタ31がオンとなり、抵抗R4,R5による基準電圧手段が機能し、信号発生回路10に対してデューティ比を可変するパルス幅制御が行える。逆に、信号端子35をHレベルにした状態では、トランジスタ31がオフ状態となり、抵抗R4,R5を電池B1,B2の側から接続を切り離すことができる。つまり、オフ動作の際には、抵抗R4,R5の側に不必要な電流が流れず、パルス幅制御に係る回路は動作を停止できる。   Therefore, by setting the signal terminal 35 to the L level, the transistor 31 is turned on, the reference voltage means by the resistors R4 and R5 functions, and the pulse width control for varying the duty ratio can be performed on the signal generation circuit 10. Conversely, when the signal terminal 35 is at the H level, the transistor 31 is turned off, and the resistors R4 and R5 can be disconnected from the batteries B1 and B2. That is, during the off operation, unnecessary current does not flow to the resistances R4 and R5, and the circuit related to the pulse width control can stop the operation.

2次電池のバランス補正装置の従来例を示す回路図である。It is a circuit diagram which shows the prior art example of the balance correction apparatus of a secondary battery. 本発明に係るバランス補正装置の第1の実施の形態を示すの回路図である。1 is a circuit diagram showing a first embodiment of a balance correction apparatus according to the present invention. バランス補正装置の他例1を示す回路図である。It is a circuit diagram which shows the other example 1 of a balance correction apparatus. バランス補正装置の他例2を示す回路図である。It is a circuit diagram which shows the other example 2 of a balance correction apparatus. 本発明に係るバランス補正装置の第2の実施の形態を示すの回路図である。It is a circuit diagram which shows 2nd Embodiment of the balance correction apparatus which concerns on this invention. 非線形型インダクタの電流特性を示すグラフ図である。It is a graph which shows the current characteristic of a nonlinear inductor. バランス補正の動作における各部の波形を示すタイミング図である。It is a timing diagram which shows the waveform of each part in the operation | movement of balance correction. 本発明に係るバランス補正装置の第3の実施の形態を示すの回路図である。It is a circuit diagram which shows 3rd Embodiment of the balance correction apparatus which concerns on this invention. 本発明に係るバランス補正装置の第4の実施の形態を示すの回路図である。It is a circuit diagram which shows 4th Embodiment of the balance correction apparatus which concerns on this invention.

符号の説明Explanation of symbols

10 信号発生回路
20 コンパレータ
30 スイッチ手段
31 トランジスタ
32,33 抵抗
34 ダイオード
35 信号端子
B1,B2 電池
L インダクタ
S1,S2 スイッチング素子
S3,S4 副スイッチング素子
R1,R2,R3,R4,R5 抵抗
D1,D2,D3,D4 ゲートドライバ
V1,V2 基準電圧
DESCRIPTION OF SYMBOLS 10 Signal generation circuit 20 Comparator 30 Switch means 31 Transistor 32, 33 Resistor 34 Diode 35 Signal terminal B1, B2 Battery L Inductor S1, S2 Switching element S3, S4 Sub switching element R1, R2, R3, R4, R5 Resistor D1, D2 , D3, D4 Gate drivers V1, V2 Reference voltage

Claims (8)

直列に接続した複数の2次電池について各電圧を均等化させるバランス補正装置であって、
前記2次電池の並び列で前後する2つの電池B1,B2の接続点に一端を接続するインダクタLと、前記インダクタLの他端と前記電池B1の他端とに接続してオン動作時に第1閉回路を形成する第1スイッチング素子S1と、前記インダクタLの他端と前記電池B2の他端とに接続してオン動作時に第2閉回路を形成する第2スイッチング素子S2と、前記スイッチング素子S1,S2を所定サイクルで相補的にオン動作させる信号発生回路と、前記スイッチング素子S1,S2に流れる電流を検出する検出手段と、前記検出手段の検出値が所定値を越える過電流であるときに当該過電流が低減するように前記信号発生回路の動作に制限をかける制限手段とを備えることを特徴とする直列接続した2次電池のバランス補正装置。
A balance correction device that equalizes each voltage for a plurality of secondary batteries connected in series,
An inductor L having one end connected to a connection point between the two batteries B1 and B2 that are arranged in the row of the secondary batteries, and the other end of the inductor L and the other end of the battery B1 are connected at the time of an on operation. A first switching element S1 that forms one closed circuit, a second switching element S2 that connects to the other end of the inductor L and the other end of the battery B2 to form a second closed circuit during an on-operation, and the switching A signal generating circuit for complementarily turning on the elements S1 and S2 in a predetermined cycle, a detecting means for detecting a current flowing through the switching elements S1 and S2, and an overcurrent in which a detection value of the detecting means exceeds a predetermined value A balance correction device for a series-connected secondary battery, comprising: limiting means for limiting the operation of the signal generation circuit so that the overcurrent is sometimes reduced.
前記検出手段は、副スイッチング素子と電流検出のための抵抗とを直列に接続した直列素子を前記スイッチング素子に並列に接続し、前記副スイッチング素子を前記スイッチング素子と連動させて2重に動かす構成とし、前記制限手段は、前記抵抗に接続するコンパレータを備えて所定の基準電圧と比較することにより過電流を検出し、当該コンパレータの出力を前記信号発生回路に戻して過電流の制限を行う構成であることを特徴とする請求項1に記載の直列接続した2次電池のバランス補正装置。   The detection means has a configuration in which a series element in which a sub-switching element and a resistor for current detection are connected in series is connected in parallel to the switching element, and the sub-switching element is moved in a double manner in conjunction with the switching element. The limiting means includes a comparator connected to the resistor, detects an overcurrent by comparing with a predetermined reference voltage, and limits the overcurrent by returning the output of the comparator to the signal generation circuit. The balance correction apparatus for a secondary battery connected in series according to claim 1. 直列に接続した複数の2次電池について各電圧を均等化させるバランス補正装置であって、
前記2次電池の並び列で前後する2つの電池B1,B2の接続点に一端を接続するインダクタLと、前記インダクタLの他端と前記電池B1の他端とに接続してオン動作時に第1閉回路を形成する第1スイッチング素子S1と、前記インダクタLの他端と前記電池B2の他端とに接続してオン動作時に第2閉回路を形成する第2スイッチング素子S2と、前記2つのスイッチング素子S1,S2を所定サイクルで相補的にオン動作させる信号発生回路と、前記インダクタLに流れる電流を検出して所定値を越える過電流であるときに当該過電流が低減するように制限をかける制限手段とを備えることを特徴とする直列接続した2次電池のバランス補正装置。
A balance correction device that equalizes each voltage for a plurality of secondary batteries connected in series,
An inductor L having one end connected to a connection point between the two batteries B1 and B2 that are arranged in the row of the secondary batteries, and the other end of the inductor L and the other end of the battery B1 are connected at the time of an on operation. A first switching element S1 that forms one closed circuit; a second switching element S2 that connects to the other end of the inductor L and the other end of the battery B2 to form a second closed circuit during an on-operation; A signal generating circuit that complementarily turns on the two switching elements S1 and S2 in a predetermined cycle, and a limit that the overcurrent is reduced when the current flowing through the inductor L is detected and the overcurrent exceeds a predetermined value A balance correction device for secondary batteries connected in series, comprising:
直列に接続した複数の2次電池について各電圧を均等化させるバランス補正方法であって、
2次電池の並び列で前後する2つの電池B1,B2の接続点にインダクタLの一端を接続しておき、前記インダクタLの他端を前記電池B1の他端に接続することで第1の閉回路を形成して電流を循環させる第1モードと、前記インダクタLの他端を前記電池B2の他端に接続することで第2の閉回路を形成して電流を循環させる第2モードとを所定周期で交互に繰り返す動作を適宜な期間実行し、電池B1と電池B2の電圧を均等化させるバランス補正の動作において、
前記スイッチング素子S1,S2に流れる電流を検出し、当該検出値が所定値を越える過電流であるときに、前記第1,第2モードの繰り返し周期に対して過電流が低減するように制限をかけることを特徴とする直列接続した2次電池のバランス補正方法。
A balance correction method for equalizing each voltage for a plurality of secondary batteries connected in series,
One end of the inductor L is connected to a connection point between two batteries B1 and B2 that are arranged in the row of secondary batteries, and the other end of the inductor L is connected to the other end of the battery B1. A first mode in which a current is circulated by forming a closed circuit; and a second mode in which a second closed circuit is formed by circulating the current by connecting the other end of the inductor L to the other end of the battery B2. In an operation of balance correction for performing the operation of alternately repeating at predetermined intervals for an appropriate period and equalizing the voltages of the batteries B1 and B2,
The current flowing through the switching elements S1 and S2 is detected, and when the detected value is an overcurrent exceeding a predetermined value, a limit is set so that the overcurrent is reduced with respect to the repetition period of the first and second modes. A balance correction method for a series-connected secondary battery, wherein:
直列に接続した複数の2次電池について各電圧を均等化させるバランス補正装置であって、
前記2次電池の並び列で前後する2つの電池B1,B2の接続点に一端を接続するインダクタLと、前記インダクタLの他端と前記電池B1の他端とに接続してオン動作時に第1閉回路を形成する第1スイッチング素子S1と、前記インダクタLの他端と前記電池B2の他端とに接続してオン動作時に第2閉回路を形成する第2スイッチング素子S2と、前記2つのスイッチング素子S1,S2を所定サイクルで相補的にオン動作させる信号発生回路とを備えて、前記インダクタLを非線形型のインダクタとすることを特徴とする直列接続した2次電池のバランス補正装置。
A balance correction device that equalizes each voltage for a plurality of secondary batteries connected in series,
An inductor L having one end connected to a connection point between the two batteries B1 and B2 that are arranged in the row of the secondary batteries, and the other end of the inductor L and the other end of the battery B1 are connected at the time of an on operation. A first switching element S1 that forms one closed circuit; a second switching element S2 that connects to the other end of the inductor L and the other end of the battery B2 to form a second closed circuit during an on-operation; A balance correction device for a series-connected secondary battery, comprising: a signal generation circuit that complementarily turns on the two switching elements S1 and S2 in a predetermined cycle, and wherein the inductor L is a non-linear inductor.
直列に接続した複数の2次電池について各電圧を均等化させるバランス補正装置であって、
前記2次電池の並び列で前後する2つの電池B1,B2の接続点に一端を接続するインダクタLと、前記インダクタLの他端と前記電池B1の他端とに接続してオン動作時に第1閉回路を形成する第1スイッチング素子S1と、前記インダクタLの他端と前記電池B2の他端とに接続してオン動作時に第2閉回路を形成する第2スイッチング素子S2と、前記2つのスイッチング素子S1,S2を所定サイクルで相補的にオン動作させる信号発生回路と、前記電池B1,B2について両電圧の和値を等分した基準電圧を出力する基準電圧手段と、前記接続点に接続するコンパレータであり前記基準電圧との比較を行って当該コンパレータの出力を前記信号発生回路に戻してデューティ比をバランス補正の変化量が収束する向きに修正する調整手段とを備えることを特徴とする直列接続した2次電池のバランス補正装置。
A balance correction device that equalizes each voltage for a plurality of secondary batteries connected in series,
An inductor L having one end connected to a connection point between the two batteries B1 and B2 that are arranged in the row of the secondary batteries, and the other end of the inductor L and the other end of the battery B1 are connected at the time of an on operation. A first switching element S1 that forms one closed circuit; a second switching element S2 that connects to the other end of the inductor L and the other end of the battery B2 to form a second closed circuit during an on-operation; A signal generating circuit for complementarily turning on the two switching elements S1 and S2 in a predetermined cycle; a reference voltage means for outputting a reference voltage obtained by equally dividing the sum of both voltages for the batteries B1 and B2; A comparator that is connected and compares with the reference voltage and returns the output of the comparator to the signal generation circuit to adjust the duty ratio so that the amount of change in balance correction converges 2 battery balance correction device connected in series, characterized in that it comprises a stage.
前記基準電圧手段は、値が同一な2つの抵抗R1,R2を直列に接続して当該直列素子の両端を前記電池B1,B2に並列に接続する構成とすると共に、前記直列素子には直列に介在してオフ動作時に前記電池B1,B2側との接続を切り離すスイッチ手段を設けることを特徴とする請求項6に記載の直列接続した2次電池のバランス補正装置。   The reference voltage means has a configuration in which two resistors R1 and R2 having the same value are connected in series and both ends of the series element are connected in parallel to the batteries B1 and B2, and in series with the series element. 7. The balance correction apparatus for a series-connected secondary battery according to claim 6, further comprising switch means for interposing and disconnecting the connection to the battery B1, B2 side during an off operation. 直列に接続した複数の2次電池について各電圧を均等化させるバランス補正方法であって、
2次電池の並び列で前後する2つの電池B1,B2の接続点にインダクタLの一端を接続しておき、前記インダクタLの他端を前記電池B1の他端に接続することで第1の閉回路を形成して電流を循環させる第1モードと、前記インダクタLの他端を前記電池B2の他端に接続することで第2の閉回路を形成して電流を循環させる第2モードとを所定周期で交互に繰り返す動作を適宜な期間実行し、電池B1と電池B2の電圧を均等化させるバランス補正の動作において、
前記電池B1,B2について両電圧の和値を等分した基準電圧を検出し、当該基準電圧と前記接続点の電圧との比較を行って、前記第1,第2モードの繰り返し周期に対してデューティ比をバランス補正の変化量が収束する向きに修正することを特徴とする直列接続した2次電池のバランス補正方法。
A balance correction method for equalizing each voltage for a plurality of secondary batteries connected in series,
One end of the inductor L is connected to a connection point between two batteries B1 and B2 that are arranged in the row of secondary batteries, and the other end of the inductor L is connected to the other end of the battery B1. A first mode in which a current is circulated by forming a closed circuit; and a second mode in which a second closed circuit is formed by circulating the current by connecting the other end of the inductor L to the other end of the battery B2. In an operation of balance correction for performing the operation of alternately repeating at predetermined intervals for an appropriate period and equalizing the voltages of the batteries B1 and B2,
For the batteries B1 and B2, a reference voltage obtained by equally dividing the sum of both voltages is detected, the reference voltage is compared with the voltage at the connection point, and the repetition cycle of the first and second modes is determined. A method for correcting a balance of secondary batteries connected in series, wherein the duty ratio is corrected so that the amount of change in balance correction converges.
JP2004249212A 2004-08-27 2004-08-27 Balance correction device for secondary batteries connected in series and correction method thereof Active JP4140585B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004249212A JP4140585B2 (en) 2004-08-27 2004-08-27 Balance correction device for secondary batteries connected in series and correction method thereof
JP2008122115A JP4689694B2 (en) 2004-08-27 2008-05-08 Balance correction device for secondary batteries connected in series
JP2008122116A JP5182804B2 (en) 2004-08-27 2008-05-08 Balance correction device for secondary batteries connected in series

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004249212A JP4140585B2 (en) 2004-08-27 2004-08-27 Balance correction device for secondary batteries connected in series and correction method thereof

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2008122116A Division JP5182804B2 (en) 2004-08-27 2008-05-08 Balance correction device for secondary batteries connected in series
JP2008122115A Division JP4689694B2 (en) 2004-08-27 2008-05-08 Balance correction device for secondary batteries connected in series

Publications (2)

Publication Number Publication Date
JP2006067742A true JP2006067742A (en) 2006-03-09
JP4140585B2 JP4140585B2 (en) 2008-08-27

Family

ID=36113712

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2004249212A Active JP4140585B2 (en) 2004-08-27 2004-08-27 Balance correction device for secondary batteries connected in series and correction method thereof
JP2008122116A Active JP5182804B2 (en) 2004-08-27 2008-05-08 Balance correction device for secondary batteries connected in series
JP2008122115A Active JP4689694B2 (en) 2004-08-27 2008-05-08 Balance correction device for secondary batteries connected in series

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2008122116A Active JP5182804B2 (en) 2004-08-27 2008-05-08 Balance correction device for secondary batteries connected in series
JP2008122115A Active JP4689694B2 (en) 2004-08-27 2008-05-08 Balance correction device for secondary batteries connected in series

Country Status (1)

Country Link
JP (3) JP4140585B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011501937A (en) * 2007-10-16 2011-01-13 エスケー エナジー カンパニー リミテッド Uniform charging method and apparatus for series connected battery strings
JP2011041467A (en) * 2006-07-05 2011-02-24 Fdk Corp Method for correcting voltage balance of power storage system, and power storage system
JP2012023925A (en) * 2010-07-16 2012-02-02 Visteon Global Technologies Inc Residual capacity equalization device and method, and residual capacity equalization device set
WO2012124291A1 (en) 2011-03-11 2012-09-20 電動車両技術開発株式会社 Balance correction device, power storage system, and transportation device
JP2012213246A (en) * 2011-03-30 2012-11-01 Dendo Sharyo Gijutsu Kaihatsu Kk Balance correction apparatus and power storage system
WO2013035238A1 (en) 2011-09-06 2013-03-14 Kabushiki Kaisha Toyota Jidoshokki Voltage balance correction circuit
WO2013140710A1 (en) 2012-03-19 2013-09-26 Evtd株式会社 Balance correction device and power storage system
WO2013140709A1 (en) 2012-03-19 2013-09-26 Evtd株式会社 Balance correction device and power storage system
WO2013157576A1 (en) * 2012-04-18 2013-10-24 株式会社豊田自動織機 Battery balancing system and method
US8692515B2 (en) 2006-06-22 2014-04-08 Fdk Corporation Series-connected rechargeable cells, series-connected rechargeable cell device, voltage-balance correcting circuit for series-connected cells
US8917059B2 (en) 2008-08-06 2014-12-23 Fdk Corporation Inter-module voltage balance correcting circuit of a power storage system
US9083188B2 (en) 2011-03-31 2015-07-14 Evtd Inc. Balance correcting apparatus and electricity storage system
CN105449771A (en) * 2015-12-25 2016-03-30 孙庆华 Battery equalizer and application thereof
US9385553B2 (en) 2011-03-18 2016-07-05 Asahi Kasei Microdevices Corporation Balance charging circuit for series-connected storage cells and balance charging method for series-connected storage cells
JP2016152649A (en) * 2015-02-16 2016-08-22 ソニー株式会社 Power controller, power control method and power control system
US9853461B2 (en) 2013-04-09 2017-12-26 Evtd Inc. Balance correction apparatus and electric storage system
CN109586350A (en) * 2017-09-29 2019-04-05 艾达司股份有限公司 Control device, balance correction system, power storage system, and power storage device
US10312553B2 (en) 2017-02-13 2019-06-04 Next-E Solutions Inc. Control device, balance correction device, electric storage system and apparatus
US10581121B2 (en) 2014-06-25 2020-03-03 Next-E Solutions Inc. Balance correction control apparatus, balance correction system and electric storage system
DE112020005397T5 (en) 2019-11-01 2022-08-11 Next-E Solutions Inc. ELECTRICAL STORAGE SYSTEM

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8493028B2 (en) * 2009-04-03 2013-07-23 Marvell World Trade Ltd. Power management circuit for rechargeable battery stack
KR101042833B1 (en) 2009-08-11 2011-06-20 삼성에스디아이 주식회사 Circuit for balancing cells and secondary battery with the same
US8525478B2 (en) 2010-01-06 2013-09-03 Marvell World Trade Ltd. Power management circuit of rechargeable battery stack
JP2012191679A (en) * 2011-03-08 2012-10-04 Dendo Sharyo Gijutsu Kaihatsu Kk Balance correction apparatus and power storage system
JP2013046433A (en) * 2011-08-22 2013-03-04 Seiko Instruments Inc Cell balance device and battery system
CN102593900B (en) * 2012-02-22 2015-05-13 无锡金雨电子科技有限公司 Equalization device for battery electric quantity
KR101326103B1 (en) 2012-03-29 2013-11-06 숭실대학교산학협력단 Apparatus for balancing of battery charge amount, and system thereof
CN109088112A (en) * 2018-02-07 2018-12-25 无锡瓴芯电子科技有限公司 A kind of series-connected cell group modularization management system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088116B2 (en) * 1988-07-01 1996-01-29 トヨタ自動車株式会社 Complete discharge method for equalization of metal / halogen battery and metal / halogen battery used for the same
JPH0349540A (en) * 1989-07-15 1991-03-04 Matsushita Electric Works Ltd Charging circuit
JP3277566B2 (en) * 1992-09-17 2002-04-22 ソニー株式会社 Battery protection circuit
JP3328656B2 (en) * 1994-05-25 2002-09-30 株式会社岡村研究所 Battery charge control device and method
JP3292431B2 (en) * 1994-07-13 2002-06-17 太陽誘電株式会社 Method for preventing overdischarge of secondary battery and battery pack
US5982142A (en) * 1998-05-22 1999-11-09 Vanner, Inc. Storage battery equalizer with improved, constant current output filter, overload protection, temperature compensation and error signal feedback
US6150795A (en) * 1999-11-05 2000-11-21 Power Designers, Llc Modular battery charge equalizers and method of control
JP4378009B2 (en) * 1999-12-28 2009-12-02 Fdk株式会社 Balance correction method and apparatus for secondary batteries connected in series
JP2003174732A (en) * 2001-12-05 2003-06-20 Jeol Ltd Storage power supply apparatus

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8692515B2 (en) 2006-06-22 2014-04-08 Fdk Corporation Series-connected rechargeable cells, series-connected rechargeable cell device, voltage-balance correcting circuit for series-connected cells
JP2011041467A (en) * 2006-07-05 2011-02-24 Fdk Corp Method for correcting voltage balance of power storage system, and power storage system
JP2011501937A (en) * 2007-10-16 2011-01-13 エスケー エナジー カンパニー リミテッド Uniform charging method and apparatus for series connected battery strings
US8917059B2 (en) 2008-08-06 2014-12-23 Fdk Corporation Inter-module voltage balance correcting circuit of a power storage system
JP2012023925A (en) * 2010-07-16 2012-02-02 Visteon Global Technologies Inc Residual capacity equalization device and method, and residual capacity equalization device set
WO2012124291A1 (en) 2011-03-11 2012-09-20 電動車両技術開発株式会社 Balance correction device, power storage system, and transportation device
US9059588B2 (en) 2011-03-11 2015-06-16 Evtd Inc. Balance correcting apparatus, electricity storage system, and transportation device
JP2012191804A (en) * 2011-03-11 2012-10-04 Dendo Sharyo Gijutsu Kaihatsu Kk Balance correction apparatus and power storage system
CN103430419A (en) * 2011-03-11 2013-12-04 Evtd株式会社 Balance correction device, power storage system, and transportation device
EP2685593A1 (en) * 2011-03-11 2014-01-15 EVTD Inc. Balance correction device, power storage system, and transportation device
EP2685593A4 (en) * 2011-03-11 2014-10-01 Evtd Inc Balance correction device, power storage system, and transportation device
US9385553B2 (en) 2011-03-18 2016-07-05 Asahi Kasei Microdevices Corporation Balance charging circuit for series-connected storage cells and balance charging method for series-connected storage cells
JP2012213246A (en) * 2011-03-30 2012-11-01 Dendo Sharyo Gijutsu Kaihatsu Kk Balance correction apparatus and power storage system
US9083188B2 (en) 2011-03-31 2015-07-14 Evtd Inc. Balance correcting apparatus and electricity storage system
WO2013035238A1 (en) 2011-09-06 2013-03-14 Kabushiki Kaisha Toyota Jidoshokki Voltage balance correction circuit
WO2013140709A1 (en) 2012-03-19 2013-09-26 Evtd株式会社 Balance correction device and power storage system
JPWO2013140710A1 (en) * 2012-03-19 2015-08-03 Evtd株式会社 Balance correction device and power storage system
US9178367B2 (en) 2012-03-19 2015-11-03 Evtd Inc. Balance correction apparatus and electric storage system
CN104170205A (en) * 2012-03-19 2014-11-26 Evtd株式会社 Balance correction device and power storage system
WO2013140710A1 (en) 2012-03-19 2013-09-26 Evtd株式会社 Balance correction device and power storage system
US10559963B2 (en) 2012-03-19 2020-02-11 Next-E Solutions Inc. Balance correction apparatus and electric storage system
TWI571030B (en) * 2012-03-19 2017-02-11 Evtd股份有限公司 Balance correcting device and electricity accumulation system
WO2013157576A1 (en) * 2012-04-18 2013-10-24 株式会社豊田自動織機 Battery balancing system and method
US9853461B2 (en) 2013-04-09 2017-12-26 Evtd Inc. Balance correction apparatus and electric storage system
US10581121B2 (en) 2014-06-25 2020-03-03 Next-E Solutions Inc. Balance correction control apparatus, balance correction system and electric storage system
JP2016152649A (en) * 2015-02-16 2016-08-22 ソニー株式会社 Power controller, power control method and power control system
CN105449771A (en) * 2015-12-25 2016-03-30 孙庆华 Battery equalizer and application thereof
US10312553B2 (en) 2017-02-13 2019-06-04 Next-E Solutions Inc. Control device, balance correction device, electric storage system and apparatus
CN109586350A (en) * 2017-09-29 2019-04-05 艾达司股份有限公司 Control device, balance correction system, power storage system, and power storage device
US10700536B2 (en) 2017-09-29 2020-06-30 Next-E Solutions Inc. Control device, balance correcting system, electric storage system and device
CN109586350B (en) * 2017-09-29 2023-09-29 艾达司股份有限公司 Control device, balance correction system, power storage system, and device
DE112020005397T5 (en) 2019-11-01 2022-08-11 Next-E Solutions Inc. ELECTRICAL STORAGE SYSTEM

Also Published As

Publication number Publication date
JP2008206395A (en) 2008-09-04
JP5182804B2 (en) 2013-04-17
JP2008206396A (en) 2008-09-04
JP4140585B2 (en) 2008-08-27
JP4689694B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
JP4689694B2 (en) Balance correction device for secondary batteries connected in series
JP5021732B2 (en) Charge equalization device
US9647544B2 (en) Magnetic component, power converter and power supply system
EP1605576B1 (en) Device and method for extending the input voltage range of a DC/DC converter
JP4378009B2 (en) Balance correction method and apparatus for secondary batteries connected in series
US10819233B2 (en) Switched common-mode current control for single-inductor-multiple-output (SIMO) power converters
US8711584B2 (en) Reducing voltage stress in a flyback converter design
JP2008306786A (en) Step-up chopper
JP2004328868A (en) Voltage equalization apparatus of storage element
CN105743350A (en) Two-transistor forward converter with dual RCD clamping circuits
US9557628B2 (en) Actuator driving device for executing positive and negative energization method under pulse width modulation control
CN112039330B (en) Method for solving magnetic bias
JP5285322B2 (en) Voltage equalizing device, charging device, battery assembly, and charging system
JP2013162540A (en) Battery equalization device and method
JP2015119614A (en) Power storage state adjustment circuit, power storage state adjustment apparatus, and battery pack
CN114756075A (en) Peak current load control circuit
CN205544945U (en) Double -barrelled positive violent change parallel operation of two RCD clamps
JP2004274894A (en) Charging control circuit
CN110168890A (en) Adjust the control circuit with two point adjuster of clock-driven converter
JP2009065741A (en) Dc-dc converter
TW202110052A (en) Dc pulse power supply device
JP2004194452A (en) Dc-dc converter
CN217739799U (en) Peak current load control circuit
US20150222186A1 (en) Adaptive Critical-Duty-Cycle Clamp for Power Converters
JP5587691B2 (en) Inverter drive system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080528

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4140585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250