JP2004274894A - Charging control circuit - Google Patents

Charging control circuit Download PDF

Info

Publication number
JP2004274894A
JP2004274894A JP2003062801A JP2003062801A JP2004274894A JP 2004274894 A JP2004274894 A JP 2004274894A JP 2003062801 A JP2003062801 A JP 2003062801A JP 2003062801 A JP2003062801 A JP 2003062801A JP 2004274894 A JP2004274894 A JP 2004274894A
Authority
JP
Japan
Prior art keywords
voltage
control circuit
battery
switch
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003062801A
Other languages
Japanese (ja)
Inventor
Hisashi Tokuda
尚志 徳田
Katsuya Sakuma
勝也 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsumi Electric Co Ltd
Original Assignee
Mitsumi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsumi Electric Co Ltd filed Critical Mitsumi Electric Co Ltd
Priority to JP2003062801A priority Critical patent/JP2004274894A/en
Priority to KR1020030084847A priority patent/KR100997495B1/en
Priority to TW092136339A priority patent/TW200418214A/en
Priority to CNA2004100393613A priority patent/CN1531163A/en
Publication of JP2004274894A publication Critical patent/JP2004274894A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charging control circuit which can pulse charge a secondary battery in a short time. <P>SOLUTION: An error amplifier 22 generates an output voltage in response to a difference between a battery voltage and a reference voltage. A triangular wave generating circuit 23 generates a triangular pulse voltage having a predetermined period/predetermined amplitude. A comparator 24 compares the output voltage of the error amplifier with that of the triangular wave generating circuit, and outputs a high level or a low level in response to the compared result. A switch SW1 connected between a constant-voltage circuit 21 and the secondary battery 40 turns ON/OFF in response to the output of the comparator. Since the high level period of the comparator becomes long if the battery voltage is low and the low level period of the comparator becomes long if the battery voltage is high, the width of the charging current pulse supplied to the secondary battery becomes wide if the battery voltage is low and becomes narrow if the battery voltage is high. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、充電制御回路に関し、特に、二次電池をパルス充電するための充電制御回路に関する。
【0002】
【従来の技術】
リチウムイオン電池等の二次電池の充電は、定電流・定電圧で行われるのが一般的である。この充電方法によれば、充電開始から二次電池の電池電圧が所定値(=定電圧制御電圧)に達するまでは定電流充電が行われ、電池電圧が所定値に達した後は定電圧制御電圧での定電圧充電が行われる。
【0003】
このような一般的な定電流・定電圧方法においては、定電流充電は、比較的短時間(例えば、30分)で終了する(充電率90%)。ところが、定電圧充電では、定電流充電に要する時間の何倍もの時間(例えば、3時間)を要する(充電率95%以上)。これは、二次電池が満充電状態に近づくにしたがって二次電池へ流れる充電電流が減少し、充電率を僅かに上昇させるのに長時間を要するようになるからである。また、二次電池の内部抵抗による電圧低下を考慮して、定電圧充電による充電時間が長めに設定されるからである。
【0004】
従って、一般的な定電流・定電圧充電方法には、二次電池が満充電状態になるまでに長時間を要するという問題点がある。
【0005】
この問題点を解決するには、定電流充電を行う際の充電電流を大きくすればよいが、充電電流を大きくすると二次電池の性能劣化を招く。そこで、二次電池の性能劣化を招くことなく、より大きな電流での充電を可能にする充電方法として、パルス充電が知られている(例えば、特許文献1参照。)。
【0006】
パルス充電は、図1に実線で示されるように、一定の大きさの充電電流をパルス的に(周期的に、ここでは2秒周期で)二次電池に供給する充電方法である。パルス充電では、充電電流として、二次電池に関して規定されている充電最大電流を超える大きな電流を使用できるので、二次電池を短時間で充電することができる。
【0007】
また、パルス充電では、電池電圧は、図1の点線で示されるように充電電流の供給による上昇と、供給停止による下降とを繰り返しながら、次第に上昇する。この充電方法では、充電電流の供給を停止してから所定時間後(ここでは、0.5秒後)の電池電圧が、満充電電圧(ここでは、4.2V)以上となったときに、充電完了とする。つまり、この充電方法では、定電圧充電を行う必要がないので、二次電池を短時間で充電することができる。
【0008】
【特許文献1】
特開2001−169474号公報(段落0002−0003)
【0009】
【発明が解決しようとする課題】
上述したように、従来の一般的な定電流・定電圧充電方法には、充電時間が長いという問題点がある。また、パルス充電は、一般的な定電流・定電圧充電方法に比べ、充電時間を短縮できるが、より一層の短縮が望まれている。
【0010】
本発明は、より短い時間でリチウムイオン電池等の二次電池をパルス充電することができる充電制御回路を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明によれば、二次電池(40)へ定電流を供給するための定電流回路(21)と、該定電流回路(21)と前記二次電池(40)との間を電気的に接続/切断するためのスイッチ(SW1)と、前記スイッチ(SW1)のオン/オフを繰り返し制御して前記定電流回路(21)から前記二次電池(40)へパルス電流を供給するためのスイッチ制御回路(22,23,24)とを備え、該スイッチ制御回路(22,23,24)が、前記二次電池(40)の電池電圧に基づいて前記パルス電流のパルス幅を変化させるようにしたことを特徴とする充電制御回路が得られる。
【0012】
具体的には、前記スイッチ制御回路(22,23,24)は、所定周期・所定振幅の三角波パルス電圧を発生する三角波発生回路(23)を含み、前記三角波パルス電圧と前記電池電圧とに基づいて前記パルス電流のパルス幅を変化させる。
【0013】
また、前記スイッチ制御回路(22,23,24)は、さらに、前記電池電圧と基準電圧との差を表す出力電圧を発生するエラーアンプ(22)と、該エラーアンプ(22)の出力電圧と前記電池電圧とを比較し、比較結果に応じて前記スイッチ(SW1)をオン又はオフさせるコンパレータ(24)とを備えている。
【0014】
なお、上記括弧内の符号は、本発明の理解を容易にするためのものであって、何ら本発明を限定するものではない。
【0015】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について詳細に説明する。
【0016】
図2に、本発明の一実施の形態に係る充電制御回路20を示す。この充電制御回路20は、電源30と二次電池(例えば、リチウムイオン電池)40との間に介在し、二次電池40の充電を制御する。
【0017】
充電制御回路20は、定電流回路21と、スイッチSW1と、エラーアンプ22と、三角波発生回路23と、コンパレータ24と、電圧検出回路25とを備えている。
【0018】
定電流回路21は、電源30に接続され、電源30から供給される電流を定電流化する。
【0019】
スイッチSW1は、定電流回路21と二次電池40との間に接続され、これらの間を電気的に接続し、また切断する。
【0020】
エラーアンプ22は、差動増幅器と抵抗器とで構成され、反転入力端子に入力される二次電池40の電池電圧と、非反転入力端子に入力される基準電圧との差に応じた出力電圧を発生する。
【0021】
三角波発生回路23は、所定の周期の三角波パルス電圧を発生する。また、同周期の同期パルスを発生する。
【0022】
コンパレータ24は、その反転入力端子にエラーアンプ22の出力端子が接続され、非反転入力端子に三角波発生回路23が接続されている。コンパレータ24は、エラーアンプ22の出力電圧と三角波発生回路23からの三角波パルス電圧とを比較し、その比較結果に基づいてスイッチSW1を制御するためのスイッチ制御信号を発生する。
【0023】
電圧検出回路25は、スイッチSW1の制御端子と、二次電池40と、三角波発生回路23とに接続されている。電圧検出回路25は、三角波発生回路からの同期パルスに同期して、二次電池40の電池電圧を検出し、検出した電池電圧が所定の電圧(満充電電圧、リチウムイオン電池の場合4.2V)以上の場合に、スイッチSW1をオフする制御信号を発生する。
【0024】
エラーアンプ22、三角波発生回路23、コンパレータ24及び電圧検出回路25は、協働してスイッチ制御回路として働く。
【0025】
次に、図2に加え、図3をも参照して電圧検出回路25の動作について説明する。
【0026】
エラーアンプ22は、二次電池40の電池電圧に応じた出力電圧を出力する。例えば、電池電圧が、充電に伴って図3(a)のように変化するものとすると、エラーアンプ22は、図3(b)に曲線で示すような出力電圧を発生する。
【0027】
一方、三角波発生回路23は、図3(b)に示すような所定周期・所定振幅の三角波パルス電圧を発生する。
【0028】
エラーアンプ22の出力及び三角波発生回路23の出力を受けたコンパレータ24は、図3(c)に示すように、エラーアンプ22の出力電圧が三角波パルス電圧より高い場合にハイレベルを、エラーアンプ22の出力電圧が三角波パルス電圧以下の場合にローレベルを、出力する。図3から容易に理解されるように、コンパレータ22の出力は、三角波パルス電圧の周期に従いハイレベル/ローレベルを繰り返す。また、コンパレータ22の出力は、電池電圧が低いときは、コンパレータ24のハイレベル期間が長くなり、電池電圧が高いときは、ローレベル期間が長くなる。このコンパレータ24の出力は、スイッチ制御信号としてスイッチSW1の制御端子に供給される。
【0029】
スイッチSW1は、コンパレータ24からの出力がハイレベルのときオンし、ローレベルのときオフする。つまり、スイッチSW1のオン/オフは、三角波パルス電圧の周期に従って繰り返され、電池電圧が低いときは、オン期間が長くなり、電池電圧が高いときは、オフ期間が長くなる。
【0030】
定電流回路21は、電源30から二次電池40へ流れる充電電流を所定値以下に制限する。その結果、二次電池40には、スイッチSW1がオンしている間だけ所定の大きさの電流パルスが供給される。つまり、二次電池40は、パルス充電される。
【0031】
上述のように、コンパレータ24の出力におけるハイレベル期間は、電池電圧に依存している。したがって、二次電池へ流れる充電電流も電池電圧に依存し、電池電圧が低いとき高いデューティ比を持ち、電池電圧が高いときは低いデューティー比を持つ。
【0032】
三角波発生回路23が発生する三角波パルス電圧の周期・振幅を適切に設定すれば、図4に示すように、充電初期においてほぼ定電流充電と同じ充電が可能となり、従来の周期一定のパルス充電に比べて短時間で充電を終えることができる。
【0033】
電圧検出回路25は、三角波発生回路23に同期した同期パルスに応答して、電池電圧を検出する。つまり、電圧検出回路25は、スイッチSW1がオフした状態で、電池電圧を検出する。検出した電池電圧が満充電電圧よりも高い場合、電圧検出回路は、充電完了と判断してスイッチSW1をオフさせる。
【0034】
以上、本発明について一実施の形態に即して説明したが、本発明はこの実施の形態に限定されるものではない。例えば、上記実施の形態では、満充電状態に近づくにしたがって、充電電流のパルスの幅が狭くなるが、所定の幅以下とならないように、エラーアンプ22の出力を所定値以上に保つリミッタを設けるようにしてもよい。
【0035】
【発明の効果】
本発明によれば、充電電流パルスの幅を電池電圧に基づいて変化させるようにしたことで、より短時間で二次電池をパルス充電することができる。
【0036】
また、一定周期の三角波パルスを利用するようにしたことで、周期変動に伴うノイズの発生がない。
【図面の簡単な説明】
【図1】従来のパルス充電方式による電池電圧及び充電電流の時間変化を示すグラフである。
【図2】本発明の一実施の形態に係る充電制御回路のブロック図である。
【図3】図2の充電制御回路の各部の出力のタイムチャートである。
【図4】図2の充電制御回路を用いて充電を行った場合の電池電圧及び充電電流の時間変化を示すグラフである。
【符号の説明】
20 充電制御回路
21 定電流回路
SW1 スイッチ
22 エラーアンプ
23 三角波発生回路
24 コンパレータ
25 電圧検出回路
30 電源
40 二次電池
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a charge control circuit, and more particularly, to a charge control circuit for pulse charging a secondary battery.
[0002]
[Prior art]
Generally, a secondary battery such as a lithium ion battery is charged with a constant current and a constant voltage. According to this charging method, constant current charging is performed from the start of charging until the battery voltage of the secondary battery reaches a predetermined value (= constant voltage control voltage), and after the battery voltage reaches the predetermined value, constant voltage control is performed. Constant voltage charging with voltage is performed.
[0003]
In such a general constant current / constant voltage method, constant current charging is completed in a relatively short time (for example, 30 minutes) (charge rate 90%). However, the constant voltage charging requires many times (for example, 3 hours) the time required for the constant current charging (the charging rate is 95% or more). This is because the charging current flowing to the secondary battery decreases as the secondary battery approaches a fully charged state, and it takes a long time to slightly increase the charging rate. Also, charging time by constant voltage charging is set longer in consideration of voltage drop due to the internal resistance of the secondary battery.
[0004]
Therefore, the conventional constant current / constant voltage charging method has a problem that it takes a long time until the secondary battery is fully charged.
[0005]
In order to solve this problem, it is only necessary to increase the charging current when performing the constant current charging. However, if the charging current is increased, the performance of the secondary battery is deteriorated. Therefore, pulse charging is known as a charging method that enables charging with a larger current without causing performance degradation of the secondary battery (for example, see Patent Document 1).
[0006]
The pulse charging is a charging method in which a charging current of a fixed magnitude is supplied to the secondary battery in a pulsed manner (periodically, here, every two seconds), as shown by a solid line in FIG. In the pulse charging, a large current exceeding the maximum charging current specified for the secondary battery can be used as the charging current, so that the secondary battery can be charged in a short time.
[0007]
In pulse charging, the battery voltage gradually rises while repeating a rise due to the supply of the charging current and a fall due to the stop of the supply, as shown by the dotted line in FIG. In this charging method, when the battery voltage after a predetermined time (in this case, 0.5 seconds) after stopping the supply of the charging current becomes equal to or higher than the full charge voltage (here, 4.2 V), It is assumed that charging is completed. That is, in this charging method, there is no need to perform constant-voltage charging, so that the secondary battery can be charged in a short time.
[0008]
[Patent Document 1]
JP 2001-169474 A (paragraph 0002-0003)
[0009]
[Problems to be solved by the invention]
As described above, the conventional general constant current / constant voltage charging method has a problem that the charging time is long. Pulse charging can reduce the charging time as compared with a general constant current / constant voltage charging method, but further reduction is desired.
[0010]
An object of the present invention is to provide a charge control circuit that can pulse-charge a secondary battery such as a lithium ion battery in a shorter time.
[0011]
[Means for Solving the Problems]
According to the present invention, a constant current circuit (21) for supplying a constant current to the secondary battery (40), and an electrical connection between the constant current circuit (21) and the secondary battery (40). A switch (SW1) for connecting / disconnecting, and a switch for supplying a pulse current from the constant current circuit (21) to the secondary battery (40) by repeatedly controlling ON / OFF of the switch (SW1). Control circuit (22, 23, 24), and the switch control circuit (22, 23, 24) changes the pulse width of the pulse current based on the battery voltage of the secondary battery (40). As a result, a charge control circuit characterized by the following is obtained.
[0012]
Specifically, the switch control circuit (22, 23, 24) includes a triangular wave generating circuit (23) for generating a triangular wave pulse voltage having a predetermined period and a predetermined amplitude, and based on the triangular wave pulse voltage and the battery voltage. To change the pulse width of the pulse current.
[0013]
The switch control circuits (22, 23, 24) further include an error amplifier (22) for generating an output voltage representing a difference between the battery voltage and a reference voltage, and an output voltage of the error amplifier (22). A comparator (24) for comparing the battery voltage and turning on or off the switch (SW1) according to the comparison result.
[0014]
In addition, the code | symbol in the said parenthesis is for making an understanding of this invention easy, and does not limit this invention at all.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0016]
FIG. 2 shows a charge control circuit 20 according to one embodiment of the present invention. The charge control circuit 20 is interposed between the power supply 30 and a secondary battery (for example, a lithium ion battery) 40 and controls charging of the secondary battery 40.
[0017]
The charge control circuit 20 includes a constant current circuit 21, a switch SW1, an error amplifier 22, a triangular wave generation circuit 23, a comparator 24, and a voltage detection circuit 25.
[0018]
The constant current circuit 21 is connected to the power supply 30 and converts a current supplied from the power supply 30 into a constant current.
[0019]
The switch SW1 is connected between the constant current circuit 21 and the secondary battery 40, and electrically connects and disconnects between them.
[0020]
The error amplifier 22 includes a differential amplifier and a resistor, and has an output voltage corresponding to a difference between a battery voltage of the secondary battery 40 input to the inverting input terminal and a reference voltage input to the non-inverting input terminal. Occurs.
[0021]
The triangular wave generating circuit 23 generates a triangular wave pulse voltage having a predetermined cycle. In addition, a synchronization pulse having the same period is generated.
[0022]
The comparator 24 has an inverting input terminal connected to the output terminal of the error amplifier 22, and a non-inverting input terminal connected to the triangular wave generating circuit 23. The comparator 24 compares the output voltage of the error amplifier 22 with the triangular wave pulse voltage from the triangular wave generation circuit 23, and generates a switch control signal for controlling the switch SW1 based on the comparison result.
[0023]
The voltage detection circuit 25 is connected to the control terminal of the switch SW1, the secondary battery 40, and the triangular wave generation circuit 23. The voltage detection circuit 25 detects the battery voltage of the secondary battery 40 in synchronization with the synchronization pulse from the triangular wave generation circuit, and detects the battery voltage at a predetermined voltage (full charge voltage, 4.2 V in the case of a lithium ion battery). In the above case, a control signal for turning off the switch SW1 is generated.
[0024]
The error amplifier 22, the triangular wave generation circuit 23, the comparator 24, and the voltage detection circuit 25 work together as a switch control circuit.
[0025]
Next, the operation of the voltage detection circuit 25 will be described with reference to FIG. 3 in addition to FIG.
[0026]
The error amplifier 22 outputs an output voltage according to the battery voltage of the secondary battery 40. For example, assuming that the battery voltage changes as shown in FIG. 3A with charging, the error amplifier 22 generates an output voltage as shown by a curve in FIG. 3B.
[0027]
On the other hand, the triangular wave generating circuit 23 generates a triangular wave pulse voltage having a predetermined period and a predetermined amplitude as shown in FIG.
[0028]
As shown in FIG. 3C, the comparator 24 receiving the output of the error amplifier 22 and the output of the triangular wave generation circuit 23 sets the high level when the output voltage of the error amplifier 22 is higher than the triangular wave pulse voltage, and sets the error amplifier 22 to the high level. Outputs a low level when the output voltage of is less than or equal to the triangular pulse voltage. As can be easily understood from FIG. 3, the output of the comparator 22 repeats high level / low level in accordance with the cycle of the triangular wave pulse voltage. When the battery voltage is low, the output of the comparator 22 has a long high-level period of the comparator 24, and when the battery voltage is high, the low-level period is long. The output of the comparator 24 is supplied to the control terminal of the switch SW1 as a switch control signal.
[0029]
The switch SW1 turns on when the output from the comparator 24 is at a high level, and turns off when the output is at a low level. That is, the ON / OFF of the switch SW1 is repeated in accordance with the cycle of the triangular wave pulse voltage. When the battery voltage is low, the ON period is long, and when the battery voltage is high, the OFF period is long.
[0030]
The constant current circuit 21 limits the charging current flowing from the power supply 30 to the secondary battery 40 to a predetermined value or less. As a result, a current pulse of a predetermined magnitude is supplied to the secondary battery 40 only while the switch SW1 is on. That is, the secondary battery 40 is pulse-charged.
[0031]
As described above, the high level period in the output of the comparator 24 depends on the battery voltage. Therefore, the charging current flowing to the secondary battery also depends on the battery voltage, and has a high duty ratio when the battery voltage is low, and has a low duty ratio when the battery voltage is high.
[0032]
If the cycle and amplitude of the triangular wave pulse voltage generated by the triangular wave generating circuit 23 are appropriately set, as shown in FIG. Charging can be completed in a shorter period of time.
[0033]
The voltage detection circuit 25 detects a battery voltage in response to a synchronization pulse synchronized with the triangular wave generation circuit 23. That is, the voltage detection circuit 25 detects the battery voltage while the switch SW1 is off. If the detected battery voltage is higher than the full charge voltage, the voltage detection circuit determines that charging is completed and turns off the switch SW1.
[0034]
As described above, the present invention has been described in accordance with one embodiment, but the present invention is not limited to this embodiment. For example, in the above-described embodiment, the limiter for keeping the output of the error amplifier 22 equal to or higher than a predetermined value is provided so that the width of the pulse of the charging current decreases as the state approaches the full charge state, but does not become lower than the predetermined width. You may do so.
[0035]
【The invention's effect】
According to the present invention, by changing the width of the charging current pulse based on the battery voltage, the secondary battery can be pulse-charged in a shorter time.
[0036]
Further, since a triangular wave pulse having a constant cycle is used, there is no generation of noise due to the periodic fluctuation.
[Brief description of the drawings]
FIG. 1 is a graph showing a time change of a battery voltage and a charging current according to a conventional pulse charging method.
FIG. 2 is a block diagram of a charge control circuit according to one embodiment of the present invention.
FIG. 3 is a time chart of the output of each unit of the charge control circuit of FIG. 2;
FIG. 4 is a graph showing a change over time of a battery voltage and a charging current when charging is performed using the charging control circuit of FIG. 2;
[Explanation of symbols]
Reference Signs List 20 charge control circuit 21 constant current circuit SW1 switch 22 error amplifier 23 triangular wave generation circuit 24 comparator 25 voltage detection circuit 30 power supply 40 secondary battery

Claims (5)

二次電池へ定電流を供給するための定電流回路と、該定電流回路と前記二次電池との間を電気的に接続/切断するためのスイッチと、前記スイッチのオン/オフを繰り返し制御して前記定電流回路から前記二次電池へパルス電流を供給するためのスイッチ制御回路とを備え、該スイッチ制御回路が、前記二次電池の電池電圧に基づいて前記パルス電流のパルス幅を変化させるようにしたことを特徴とする充電制御回路。A constant current circuit for supplying a constant current to the secondary battery, a switch for electrically connecting / disconnecting the constant current circuit and the secondary battery, and on / off control of the switch repeatedly A switch control circuit for supplying a pulse current from the constant current circuit to the secondary battery, wherein the switch control circuit changes a pulse width of the pulse current based on a battery voltage of the secondary battery. A charge control circuit characterized in that the charge control circuit is configured to cause the charge control circuit to charge the battery. 請求項1に記載の充電制御回路において、
前記スイッチ制御回路が、所定周期・所定振幅の三角波パルス電圧を発生する三角波発生回路を含み、前記三角波パルス電圧と前記電池電圧とに基づいて前記パルス電流のパルス幅を変化させるようにしたことを特徴とする充電制御回路。
The charge control circuit according to claim 1,
The switch control circuit includes a triangular wave generating circuit that generates a triangular wave pulse voltage having a predetermined cycle and a predetermined amplitude, and changes a pulse width of the pulse current based on the triangular wave pulse voltage and the battery voltage. Characteristic charge control circuit.
請求項2に記載の充電制御回路において、
前記スイッチ制御回路が、さらに、前記電池電圧と基準電圧との差を表す出力電圧を発生するエラーアンプと、該エラーアンプの出力電圧と前記電池電圧とを比較し、比較結果に応じて前記スイッチをオン又はオフさせるコンパレータとを備えていることを特徴とする充電制御回路。
The charge control circuit according to claim 2,
The switch control circuit further compares an error amplifier that generates an output voltage indicating a difference between the battery voltage and a reference voltage, an output voltage of the error amplifier and the battery voltage, and the switch according to a comparison result. And a comparator for turning on or off the charge control circuit.
請求項1,2又は3に記載の充電制御回路において、
前記電池電圧が所定の電圧に達したことを検出して前記スイッチをオフさせる電圧検出回路を有していることを特徴とする充電制御回路。
The charging control circuit according to claim 1, 2, or 3,
A charge control circuit comprising: a voltage detection circuit that detects that the battery voltage has reached a predetermined voltage and turns off the switch.
前記電圧検出回路が、前記スイッチ制御回路からの同期信号に同期して、電池電圧を検出するようにしたことを特徴とする充電制御回路。A charge control circuit, wherein the voltage detection circuit detects a battery voltage in synchronization with a synchronization signal from the switch control circuit.
JP2003062801A 2003-03-10 2003-03-10 Charging control circuit Withdrawn JP2004274894A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003062801A JP2004274894A (en) 2003-03-10 2003-03-10 Charging control circuit
KR1020030084847A KR100997495B1 (en) 2003-03-10 2003-11-27 Charge control circuit
TW092136339A TW200418214A (en) 2003-03-10 2003-12-19 Charging control circuit
CNA2004100393613A CN1531163A (en) 2003-03-10 2004-01-30 Charging controlling circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003062801A JP2004274894A (en) 2003-03-10 2003-03-10 Charging control circuit

Publications (1)

Publication Number Publication Date
JP2004274894A true JP2004274894A (en) 2004-09-30

Family

ID=33124565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003062801A Withdrawn JP2004274894A (en) 2003-03-10 2003-03-10 Charging control circuit

Country Status (4)

Country Link
JP (1) JP2004274894A (en)
KR (1) KR100997495B1 (en)
CN (1) CN1531163A (en)
TW (1) TW200418214A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009159814A (en) * 2007-12-04 2009-07-16 Mitsuba Corp Charging monitor and charger equipped with charging monitor
JP2014170741A (en) * 2013-02-08 2014-09-18 Semiconductor Energy Lab Co Ltd Method of driving electrochemical device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7378819B2 (en) 2005-01-13 2008-05-27 Dell Products Lp Systems and methods for regulating pulsed pre-charge current in a battery system
US7391184B2 (en) * 2005-02-16 2008-06-24 Dell Products L.P. Systems and methods for integration of charger regulation within a battery system
US8035353B2 (en) * 2005-12-15 2011-10-11 St-Ericsson Sa Battery recharge prevention principle for short battery voltage dips
US7436149B2 (en) 2006-09-26 2008-10-14 Dell Products L.P. Systems and methods for interfacing a battery-powered information handling system with a battery pack of a physically separable battery-powered input or input/output device
CN101777674B (en) * 2010-03-04 2012-07-18 飞毛腿(福建)电子有限公司 High-capacity lithium-ion battery backup state managing method
JP5803446B2 (en) * 2011-09-02 2015-11-04 ミツミ電機株式会社 Semiconductor integrated circuit, protection circuit and battery pack

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0785893A (en) 1993-09-17 1995-03-31 Sony Corp Method for charging battery
JP2001169474A (en) 1999-12-02 2001-06-22 Hitachi Ltd Secondary battery charging device and battery pack with charge-controlling function using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009159814A (en) * 2007-12-04 2009-07-16 Mitsuba Corp Charging monitor and charger equipped with charging monitor
JP2014170741A (en) * 2013-02-08 2014-09-18 Semiconductor Energy Lab Co Ltd Method of driving electrochemical device

Also Published As

Publication number Publication date
CN1531163A (en) 2004-09-22
KR100997495B1 (en) 2010-11-30
TW200418214A (en) 2004-09-16
KR20040080908A (en) 2004-09-20
TWI328301B (en) 2010-08-01

Similar Documents

Publication Publication Date Title
JP4499966B2 (en) Secondary battery charging circuit
JP3926699B2 (en) Secondary battery charging device and charging method thereof
JP3763415B1 (en) Average current detection circuit
US5206579A (en) Battery charger and charge controller therefor
CN110024280B (en) Variable ratio charge pump with peak current and average current limiting circuit
JP2008206214A (en) Switching regulator
JP2008206396A (en) Balance correcting device for secondary batteries connected in series, and its correcting method
JP2007252116A (en) Pulse charger
JP2011019387A (en) Device for monitoring battery pack
WO2018037660A1 (en) Charging device
JP2010263726A (en) Power supply device, control circuit, and method of controlling power supply device
JP2006304504A (en) Controller of generator for vehicle
JP2009213222A (en) Power generation controller for vehicle
JP2004208342A (en) Power generation controller for vehicle
US9276473B1 (en) Voltage converting controller and method of voltage converting control
JP2004274894A (en) Charging control circuit
CN107733000B (en) Charging method and charger
JP2004274962A (en) Secondary cell charging method and device using the same
JP4461842B2 (en) Switching regulator and switching regulator control method
JP4091010B2 (en) Charge control device
CN105680692A (en) Switching power supply device
WO2014026016A2 (en) Battery charger and system and method for use of same
JP2018148654A (en) Charging apparatus
JP3667803B2 (en) Secondary battery charging circuit
US6559624B1 (en) Voltage converter capable of outputting a stable output voltage

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606