JP3328656B2 - Battery charge control device and method - Google Patents

Battery charge control device and method

Info

Publication number
JP3328656B2
JP3328656B2 JP11070894A JP11070894A JP3328656B2 JP 3328656 B2 JP3328656 B2 JP 3328656B2 JP 11070894 A JP11070894 A JP 11070894A JP 11070894 A JP11070894 A JP 11070894A JP 3328656 B2 JP3328656 B2 JP 3328656B2
Authority
JP
Japan
Prior art keywords
battery
batteries
series
voltage
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11070894A
Other languages
Japanese (ja)
Other versions
JPH07322516A (en
Inventor
政章 山岸
雅彦 清水
廸夫 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP11070894A priority Critical patent/JP3328656B2/en
Publication of JPH07322516A publication Critical patent/JPH07322516A/en
Application granted granted Critical
Publication of JP3328656B2 publication Critical patent/JP3328656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、直列に接続した複数の
電池を充電用電源に接続して各電池に均等に充電を行う
ための充電制御に関し、特に、電気二重層コンデンサを
含む二次電池の各単位セル毎の充電を均一化する電池の
充電制御装置及び方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to charge control for connecting a plurality of batteries connected in series to a charging power source to charge each battery equally, and more particularly to a secondary battery including an electric double layer capacitor. The present invention relates to a battery charge control device and method for equalizing the charge of each unit cell of a battery.

【0002】[0002]

【従来の技術】近年、電気二重層コンデンサを電力用の
電池として利用することが可能となってきている。しか
し、コンデンサでは、電池の単位セルに相当する単位コ
ンデンサの耐電圧が数ボルトと低いため、実用上従来の
電池のセルと同様に複数個を直列に接続したり、それら
からなる組電池を直列に接続することにより所望の使用
電圧を得ている。しかし、電気二重層コンデンサを電池
として使用したときの電圧は、従来の電池と異なり充電
されたエネルギーにより大幅に変化する特性を持ってい
る。電池電圧とエネルギーとの関係は、コンデンサ電圧
をE〔V〕、コンデンサ容量をC〔F〕、充電されたエ
ネルギーをW〔J〕とすると、W=0.5CE2 で示さ
れる。つまり、この電気二重層コンデンサによる新電池
では、過充電されると、コンデンサ端子電圧の上昇とな
って表れて容易に耐電圧を越えてしまい、ついには電池
が劣化にいたる恐れがあるという特性を持っている。特
に、実用に際しては、複数個の電池を直列に接続して使
用することがほとんどであるため、当然のこととして直
列に接続されたままで充電されることになる。ところが
各々のコンデンサの漏洩電流が異なり自己放電による影
響でコンデンサ端子電圧がバラツキを持っているため、
同一の電流で充電されると、あるものはすぐに満充電と
なるにもかかわらず、あるものは全く不十分な充電しか
行われないという現象が発生する。
2. Description of the Related Art In recent years, it has become possible to use an electric double layer capacitor as a battery for electric power. However, with capacitors, since the withstand voltage of a unit capacitor corresponding to a unit cell of a battery is as low as several volts, a plurality of cells may be connected in series similarly to a conventional battery cell, or an assembled battery composed of them may be connected in series. To obtain a desired operating voltage. However, unlike the conventional battery, the voltage when the electric double layer capacitor is used as a battery has a characteristic that varies greatly depending on the charged energy. The relationship between the battery voltage and the energy is represented by W = 0.5CE 2 where the capacitor voltage is E [V], the capacitor capacity is C [F], and the charged energy is W [J]. In other words, this new battery with an electric double layer capacitor has the characteristic that, when overcharged, it appears as an increase in the capacitor terminal voltage, easily exceeding the withstand voltage, and eventually causing the battery to deteriorate. have. Particularly, in practical use, most of the batteries are connected in series and used in most cases. Therefore, the battery is naturally charged while being connected in series. However, since the leakage current of each capacitor is different and the capacitor terminal voltage varies due to the effect of self-discharge,
When charged with the same current, a phenomenon occurs in which some are fully charged immediately, but some are only completely insufficiently charged.

【0003】図7は直列接続されたコンデンサの端子電
圧のバラツキをなくす回路の従来例を示す図である。直
列接続されたコンデンサC1、C2の端子電圧のバラツ
キをなくすため従来からある手段としては、図7(a)
に示すように単位コンデンサ各々に漏洩電流以上を流す
抵抗R1、R2を並列に接続し、或いは図7(b)に示
すようにツェナーダイオードCR4、CR5を並列に接
続することによって、過充電防止を行っている。また、
図7(c)に示すように単位コンデンサ各々にシャント
・レギュレータMC1、MC2を取り付けて過充電を防
止するなどの対策も採用されている。
FIG. 7 is a diagram showing a conventional example of a circuit for eliminating variations in terminal voltages of capacitors connected in series. As a conventional means for eliminating variations in terminal voltages of the series-connected capacitors C1 and C2, FIG.
By connecting resistors R1 and R2, each of which passes a leakage current or more to each unit capacitor, as shown in FIG. 7 in parallel, or by connecting zener diodes CR4, CR5 in parallel as shown in FIG. Is going. Also,
As shown in FIG. 7C, measures such as attaching shunt regulators MC1 and MC2 to each unit capacitor to prevent overcharging are also employed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、電気二
重層コンデンサを電池として使用する場合、コンデンサ
端子電圧のバラツキをなくすための上記従来の対策には
以下に述べるような問題点がある。直列接続されたコン
デンサの漏洩電流のバラツキによりコンデンサ端子電圧
がアンバランスになるのを防ぐ回路として、例えば図7
(a)に示すように抵抗R1、R2を並列に接続した回
路では、確かにコンデンサC1、C2の持つ最大の漏洩
電流値以上の電流が流れるように抵抗R1(=R2)の
値を選定すれば、コンデンサC1、C2の端子電圧が抵
抗R1で均等に分割される。しかし、これらのコンデン
サC1、C2の目的が従来の電解コンデンサを直列接続
して構成される「平滑回路」として使用するものではな
く、エネルギーを蓄積する「電池」として使用するもの
である場合には、蓄積エネルギーを抵抗R1で熱として
自己消費してしまうため、非常に具合の悪いものになっ
てしまう。すなわち、図7(a)に示したような対策で
は、すべての新しい電池から常に最大の漏れ電流を流し
続けるように動作するため、電池としての用途目的に反
することになる。
However, when an electric double layer capacitor is used as a battery, the above-mentioned conventional measures for eliminating variations in capacitor terminal voltage have the following problems. As a circuit for preventing the capacitor terminal voltage from becoming unbalanced due to the variation of the leakage current of the capacitors connected in series, for example, FIG.
In the circuit in which the resistors R1 and R2 are connected in parallel as shown in (a), the value of the resistor R1 (= R2) must be selected so that a current larger than the maximum leakage current value of the capacitors C1 and C2 flows. For example, the terminal voltages of the capacitors C1 and C2 are equally divided by the resistor R1. However, when the purpose of these capacitors C1 and C2 is not to be used as a “smoothing circuit” configured by connecting conventional electrolytic capacitors in series, but to be used as a “battery” that stores energy. However, since the stored energy is self-consumed as heat by the resistor R1, the condition becomes extremely inconvenient. In other words, the countermeasure shown in FIG. 7A operates so that the maximum leakage current always flows from all new batteries, which is contrary to the purpose of use as a battery.

【0005】図7(b)に示すように電池に並列にツェ
ナーダイオードを接続した回路では、万一、過充電され
ても電池にはツェナー電圧以上は印加されない設計にな
っており、また、図7(c)に示すように誤差増幅器を
備えたシャント・レギュレータを採用した回路では、同
様に過充電された場合に充電電流をバイパスするように
なっているため、電池の端子電圧を一定値に抑える効果
があるが、いずれの回路もバイパスされた電流は熱とし
て消費される。そのため、発生する熱の処理が大きな問
題になる。特に、発生した熱の大小にかかわらず放熱処
理が困難な用途であるとか、あるいは蓄積される電力量
が大きく放熱のために特別の装置が必要になるような例
えば電力貯蔵や、電気自動車などの用途では、その設計
上熱が大きな問題になる。さらに決定的にこのシャント
・レギュレータ方式の欠点をクローズアップさせたの
が、急速充電の要請であった。
[0005] As shown in FIG. 7B, a circuit in which a Zener diode is connected in parallel with a battery is designed so that a battery does not exceed the Zener voltage even if it is overcharged. In a circuit employing a shunt regulator having an error amplifier as shown in FIG. 7 (c), the charging current is similarly bypassed when overcharged, so that the terminal voltage of the battery is kept at a constant value. Although there is an effect of suppressing the current, the bypassed current is consumed as heat in all the circuits. Therefore, treatment of the generated heat becomes a major problem. In particular, applications where heat treatment is difficult regardless of the amount of heat generated, or where the amount of stored power is large and special devices are required for heat dissipation, such as electric power storage and electric vehicles In applications, heat is a major problem in design. The demand for quick charging further decisively highlighted the shortcomings of the shunt regulator system.

【0006】電気二重層コンデンサによる電池は、従来
の鉛蓄電池を中心とした化学反応を動作原理とする電池
と異なり物理的なコンデンサであるため、原理的に急速
充電に適している。つまり、充電は大電流で行われるこ
とがその特長を生かした使用方法になる。しかし、その
場合に各電池電圧のバラツキが大きいと、先に満充電に
達した電池のシャント・レギュレータでの発熱は非常に
大きくなり過ぎてしまう。そのため、直列に接続された
電池の一つが満充電された時点で急速充電を停止しなけ
ればならず、急速充電の目的である短時間の充電ができ
なくなってしまい、何らかの対策が必要になっていた。
A battery using an electric double-layer capacitor is a physical capacitor, unlike a battery mainly based on a conventional lead-acid battery that operates on a chemical reaction. Therefore, the battery is suitable for quick charging in principle. In other words, charging is performed with a large current, which is a usage method that takes advantage of its features. However, in such a case, if the variation in the voltage of each battery is large, the heat generated by the shunt regulator of the battery which has been fully charged first becomes extremely large. For this reason, rapid charging must be stopped when one of the batteries connected in series is fully charged, and the short-time charging, which is the purpose of rapid charging, cannot be performed. Was.

【0007】本発明は、上記の課題を解決するものであ
って、直列接続されたコンデンサに対して発熱を抑えて
急速充電を行うことが可能な電池の充電制御装置及び方
法を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a battery charge control device and method capable of performing rapid charging while suppressing heat generation of a capacitor connected in series. It is the purpose.

【0008】[0008]

【課題を解決するための手段】そのために本発明は、直
列に接続した複数の電池に均等に充電を行うための電池
の充電制御装置であって、前記複数の電池の直列回路に
並列に接続される2つのスイッチ手段の直列回路と、前
記スイッチ手段の直列接続中点と電池の直列接続中点と
の間に接続されるインダクティブ素子と、充電を行う際
に前記複数の電池の端子電圧に応じて一方の前記スイッ
チ手段をスイッチング制御して他方の前記スイッチ手段
を前記一方の前記スイッチ手段がオフの期間に前記イン
ダクティブ素子からの整流電流が流れるように同期整流
器としてスイッチング動作させる制御手段とを備え、さ
らに、前記スイッチ手段のそれぞれに並列に接続される
2つの整流手段と、前記直列接続された各電池の電圧を
検出する電圧検出手段と、前記電圧検出手段により検出
された電圧と予め設定されている比較電圧との差に応じ
パルス幅変調して前記スイッチ手段をスイッチング制御
する制御手段とを備え、前記複数の電池の直列回路に充
電用電源が接続され充電されるようにしたことを特徴と
するものである。
SUMMARY OF THE INVENTION To this end, the present invention is a battery charge control device for evenly charging a plurality of batteries connected in series, and connected in parallel to a series circuit of the plurality of batteries. A series circuit of the two switch means, an inductive element connected between a series connection midpoint of the switch means and a series connection midpoint of the battery, and a terminal voltage of the plurality of batteries when charging. Control means for performing switching control of one of the switch means in response to the switching operation of the other switch means as a synchronous rectifier such that a rectified current flows from the inductive element during a period in which the one switch means is off. And two rectifiers connected in parallel to each of the switch means, and a voltage detector for detecting a voltage of each battery connected in series. And a control means for performing pulse width modulation in accordance with a difference between a voltage detected by the voltage detection means and a preset comparison voltage to control switching of the switch means, and a series circuit of the plurality of batteries. And a charging power supply is connected to the charging device.

【0009】また、充電制御方法は、複数の電池の直列
回路に充電用電源を接続して、2つのスイッチ手段の直
列回路を前記複数の電池の直列回路に並列に接続すると
共に、前記スイッチ手段の直列接続中点と電池の直列接
続中点との間にインダクティブ素子を接続して充電し、
各電池の端子電圧を検出して前記直列回路の全電圧の平
均電圧と比較し該平均電圧より高い一方の電池側のスイ
ッチ手段をスイッチング制御し、他方の電池側のスイッ
チ手段を前記一方のスイッチ手段がオフの期間に前記イ
ンダクティブ素子からの整流電流が流れるように同期整
流器としてスイッチング動作させ、さらに、前記スイッ
チ手段にそれぞれ並列に整流手段を接続して、前記スイ
ッチ手段の直列接続中点と電池の直列接続中点との間に
インダクティブ素子を接続して充電し、各電池の端子電
圧を検出して設定電圧と比較し該設定電圧より高い電池
側のスイッチ手段を電圧の差に応じパルス幅変調してス
イッチング制御することを特徴とするものである。
The charging control method further comprises connecting a charging power supply to a series circuit of a plurality of batteries, connecting a series circuit of two switch means in parallel to the series circuit of the plurality of batteries, and The inductive element is connected and charged between the series connection midpoint of the battery and the series connection midpoint of the battery,
The terminal voltage of each battery is detected, compared with the average voltage of all voltages in the series circuit, and switching control of one battery side switch means higher than the average voltage is performed. A switching operation is performed as a synchronous rectifier so that a rectified current flows from the inductive element during a period when the means is off, and a rectifying means is connected in parallel to each of the switch means, and a midpoint of the series connection of the switch means and a battery. The inductive element is connected and charged between the series connection midpoints, and the terminal voltage of each battery is detected and compared with the set voltage, and the switch means on the battery side higher than the set voltage is set to the pulse width according to the voltage difference. It is characterized by performing switching control by modulation.

【0010】[0010]

【作用】本発明に係る電池の充電制御方法及び装置で
は、複数の電池の直列回路に並列に接続される2つのス
イッチ手段の直列回路と、スイッチ手段の直列接続中点
と電池の直列接続中点との間に接続されるインダクティ
ブ素子とを備えたので、各電池が同電位になるように電
圧の高い電池から低い電池へスイッチ手段のスイッチン
グ制御によって電流を移送することができる。また、各
電池の端子電圧と直列回路の全電圧の分電圧とを比較し
て各電池の端子電圧が均等になるように各スイッチ手段
をスイッチング制御するので、大電流で行われる急速充
電などの前の初期における電池の端子電圧のバラツキを
なくし、各電池の端子電圧を均等にすることができる。
さらには、各電池の端子電圧と設定電圧とを比較して各
電池の端子電圧を設定電圧以下になるように各スイッチ
手段をスイッチング制御するので、各々の電池電圧が設
定値以上に充電されないように満充電された電池から未
充電の電池へ電荷を効率よく移動させることができる。
In the battery charging control method and apparatus according to the present invention, a series circuit of two switch means connected in parallel to a series circuit of a plurality of batteries, a midpoint between the series connection of the switch means and the series connection of the batteries. Since an inductive element is provided between the battery and the point, current can be transferred from a battery having a higher voltage to a battery having a lower voltage by switching control of a switch so that each battery has the same potential. In addition, since the terminal voltage of each battery is compared with the divided voltage of all voltages of the series circuit, each switch means is switched and controlled so that the terminal voltage of each battery is equalized. Variations in the terminal voltages of the batteries in the previous initial stage can be eliminated, and the terminal voltages of the batteries can be equalized.
Furthermore, since the terminal voltage of each battery is compared with the set voltage and the switching means is controlled so that the terminal voltage of each battery becomes equal to or less than the set voltage, each battery voltage is not charged to a set value or more. Charges can be efficiently transferred from a fully charged battery to an uncharged battery.

【0011】[0011]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。図1は本発明に係る電池の充電制御装置及び方
法の1実施例を説明するための図、図2は本発明に係る
電池の充電制御装置及び方法の他の実施例を説明するた
めの図であり、C1、C2は電池、L1はインダクティ
ブ素子、SW1、SW2はスイッチ装置、T1、T2は
充電用電源端子、CR3、CR4は整流素子を示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram for explaining an embodiment of a battery charge control device and method according to the present invention, and FIG. 2 is a diagram for explaining another embodiment of a battery charge control device and method according to the present invention. Where C1 and C2 are batteries, L1 is an inductive element, SW1 and SW2 are switch devices, T1 and T2 are charging power supply terminals, and CR3 and CR4 are rectifying elements.

【0012】図1において、電池C1、C2は、例えば
電気二重層コンデンサを用いたものであり、直列接続し
てその両端を充電用電源端子T1、T2に接続すると共
に、その直列回路と並列にスイッチ装置SW1、SW2
の直列回路を接続する。そして、電池C1、C2の直列
接続中点とスイッチ装置SW1、SW2の直列接続中点
との間にインダクティブ素子L1を接続し、一方のスイ
ッチ装置SW1(SW2)によりスイッチング制御を行
うとき他方のスイッチ装置SW2(SW1)は同期整流
器として動作することによって、一方の電池の電荷、充
電電流を他方の電池へ移送する昇圧、昇降圧コンバータ
を構成するものである。
In FIG. 1, batteries C1 and C2 use, for example, electric double layer capacitors, are connected in series, and both ends thereof are connected to charging power supply terminals T1 and T2, and are connected in parallel with the series circuit. Switch device SW1, SW2
Connected in series. Then, an inductive element L1 is connected between the series connection middle point of the batteries C1 and C2 and the series connection middle point of the switch devices SW1 and SW2, and when the switching control is performed by one switch device SW1 (SW2), the other switch is used. By operating as a synchronous rectifier, the device SW2 (SW1) constitutes a step-up / step-down converter that transfers the charge and charging current of one battery to the other battery.

【0013】次に、動作を説明する。上記構成の回路に
おいて、いま、仮に電池C1の端子電圧が電池C2に比
較して高電位であるとすると、この電池C1の電荷は、
スイッチ装置SW1、インダクティブ素子L1と、同期
整流器として働くスイッチ装置SW2から構成される昇
圧コンバータにより、他方の電池C2の充電に振り向け
られる。そして、電池C1、C2が同電位になると昇圧
コンバータは停止する。また逆に電池C2の端子電圧の
方が高電位にあると、この電池C2の電荷は、スイッチ
装置SW2、インダクティブ素子L1と、同期整流器と
して働くスイッチ装置SW1から構成される昇降圧コン
バータにより、他方の電池C1の充電に振り向けられ、
やはり、電池C1、C2が同電位になると停止する。
Next, the operation will be described. In the circuit having the above configuration, if the terminal voltage of the battery C1 is higher than that of the battery C2, the charge of the battery C1 is
The booster converter including the switch device SW1, the inductive element L1, and the switch device SW2 serving as a synchronous rectifier directs the charge to the other battery C2. Then, when the batteries C1 and C2 have the same potential, the boost converter stops. On the other hand, when the terminal voltage of the battery C2 is higher than the potential of the battery C2, the charge of the battery C2 is transferred to the other side by the buck-boost converter composed of the switch device SW2, the inductive element L1, and the switch device SW1 acting as a synchronous rectifier. To charge the battery C1 of
Again, when the batteries C1 and C2 have the same potential, the operation stops.

【0014】本発明の電池の充電制御装置及び方法は、
このようにして電池の端子電圧を均等にするものであ
り、急速充電の準備のプロセスとして非常に有効であ
る。それは、大電流により急速充電を行う場合、充電前
の各電池電圧を均等にし、全ての電池が同一電位から充
電を開始させると、短時間で高い充電率が得られるから
である。このように直列接続された電池C1、C2の各
電圧を平順化する制御は、充電の前など、必要な時だけ
動作させればよく、しかも、電池C1、C2の電荷の移
動は、スイッチ装置で電流をスイッチング制御すること
により行うので、通常の電池のエネルギー消費は極僅か
ですみ高効率で行うことができる。
The battery charging control device and method according to the present invention include:
In this way, the terminal voltages of the batteries are equalized, which is very effective as a process for preparing for quick charging. This is because when performing rapid charging with a large current, if the battery voltages before charging are equalized and all batteries start charging from the same potential, a high charging rate can be obtained in a short time. The control for leveling the voltages of the batteries C1 and C2 connected in series as described above may be performed only when necessary, such as before charging, and the movement of the charges of the batteries C1 and C2 is controlled by a switch device. In this case, the current is controlled by switching the current, so that the energy consumption of a normal battery is very small and the battery can be operated with high efficiency.

【0015】また、上記構成の本発明によれば、通常充
電時の機能として、自分自身の電池電圧を設定電圧値以
下に制御すること、つまり過充電保護も可能であり、し
かも従来のシャント・レギュレータのように充電のエネ
ルギーを熱として損失しないようにすることも可能であ
る。次に、充電時や、負荷からの電力回生時に電池を過
充電から保護する動作を説明する。
Further, according to the present invention having the above configuration, as a function during normal charging, it is possible to control its own battery voltage to be equal to or lower than a set voltage value, that is, to provide overcharge protection. It is also possible to prevent charging energy from being lost as heat as in a regulator. Next, an operation of protecting the battery from overcharging during charging or during power regeneration from a load will be described.

【0016】充電中に、電池C1の端子電圧が設定値に
達したとすると、余分な充電電流は、スイッチ装置SW
1をスイッチング動作させることによりインダクティブ
素子L1に流して磁束の形で蓄え、次にスイッチ装置S
W2をスイッチ装置SW1がオフの期間にインダクティ
ブ素子L1からの整流電流が流れるように同期整流器と
してスイッチング動作させることにより、インダクティ
ブ素子L1から他方の電池C2へ新たな充電電流として
移動させることができる。つまり、同期整流器付の昇圧
コンバータで余分な充電電流を移動することができる。
また、電池C2の方が先に設定電圧に達した場合には、
スイッチ装置SW2をスイッチング制御することによ
り、インダクティブ素子L1と同期整流器として制御さ
れるスイッチ装置SW1から構成される昇降圧コンバー
タで電池C2に流れ込む余分な充電電流を電池C1へ移
送する。そのために発熱が少なく充電時間が短い、充電
効率の良い充電制御が可能となる。
Assuming that the terminal voltage of the battery C1 reaches a set value during charging, an extra charging current is generated by the switching device SW
1 by switching operation, the current flows through the inductive element L1 and is stored in the form of magnetic flux.
By performing the switching operation of W2 as a synchronous rectifier such that the rectified current from inductive element L1 flows while switch device SW1 is off, it is possible to move W2 from inductive element L1 to another battery C2 as a new charging current. In other words, the extra charge current can be moved by the boost converter with the synchronous rectifier.
If the battery C2 reaches the set voltage first,
By controlling the switching of the switch device SW2, an extra charge current flowing into the battery C2 is transferred to the battery C1 by a step-up / step-down converter including the inductive element L1 and the switch device SW1 controlled as a synchronous rectifier. Therefore, charge control with low heat generation and short charge time and high charge efficiency can be performed.

【0017】なお、図2に示すようにスイッチ装置SW
1、SW2の各々に並列に例えばダイオードを用いた整
流素子CR3、CR4を接続すると、同期整流の制御を
簡略化し、あるいは省略して制御を簡素化することがで
きる。また、予め直列に接続された各電池の容量に違い
を持たせるとか、各電池の負荷を意図的に不平衡に設計
しておくことにより、各電池の電圧配分に一定の規則性
を持たせ、また満充電の順位をコントロールして、一方
向のみの電流移動でもよいように構成することもでき
る。この場合には、制御を簡素にできるだけでなく、ス
イッチ装置SW1、SW2のいずれか一方を同期整流と
同方向のダイオードに置き換えて回路を簡略にすること
もできる。
Note that, as shown in FIG.
When the rectifiers CR3 and CR4 using, for example, diodes are connected in parallel to the switches 1 and SW2, the control of the synchronous rectification can be simplified or omitted to simplify the control. In addition, by giving a difference in the capacity of each battery connected in series in advance, or by intentionally designing the load of each battery to be unbalanced, the voltage distribution of each battery has a certain regularity. Alternatively, it is also possible to control the order of full charge so that current transfer in only one direction may be performed. In this case, not only the control can be simplified, but also the circuit can be simplified by replacing one of the switch devices SW1 and SW2 with a diode in the same direction as the synchronous rectification.

【0018】図3は各電池にアンバランスに蓄積された
電荷を均等にする場合のPWMスイッチング制御方法の
1実施例を説明するための図であり、誤差増幅器MC
3、MC4により各電池C1、C2の端子電圧と全電圧
を抵抗R1、R2により分圧した電圧とを比較し、その
誤差をパルス幅変調(PWM)した出力によりスイッチ
装置SW1、SW2を制御するものである。ここで、電
池C1=C2の場合、抵抗R1=R2となる。したがっ
て、電池C1の端子電圧が高く、電池C2の端子電圧が
低い場合には、高い電位から低い電位へ電荷を移動する
制御を行うように構成される。すなわち、このとき、誤
差増幅器MC3は、パルス幅変調出力によりスイッチ装
置SW1をドライブして電池C1から電池C2へ電荷を
移動して電圧を平衡させる。逆に電池C2の端子電圧が
高く、電池C1の端子電圧が低い場合には、誤差増幅器
MC4がパルス幅変調出力によりスイッチ装置SW2を
ドライブして電池C2から電池C1へ電荷を移動して各
電池の電圧を平衡させる。
FIG. 3 is a diagram for explaining one embodiment of a PWM switching control method in the case where the electric charges accumulated unbalanced in each battery are equalized.
3. The MC4 compares the terminal voltages of the batteries C1 and C2 with the voltages obtained by dividing the total voltage by the resistors R1 and R2, and controls the switch devices SW1 and SW2 based on an output obtained by subjecting the error to pulse width modulation (PWM). Things. Here, when the battery C1 = C2, the resistance R1 = R2. Therefore, when the terminal voltage of the battery C1 is high and the terminal voltage of the battery C2 is low, control is performed to transfer the charge from a high potential to a low potential. That is, at this time, the error amplifier MC3 drives the switch device SW1 by the pulse width modulation output to move the charge from the battery C1 to the battery C2 and balance the voltages. Conversely, when the terminal voltage of the battery C2 is high and the terminal voltage of the battery C1 is low, the error amplifier MC4 drives the switch device SW2 by the pulse width modulation output to move the charge from the battery C2 to the battery C1 and to charge each battery. Equilibrate voltage.

【0019】図4は各電池への過充電を防止して余剰の
充電電流を未充電の電池へ振り向ける機能を持つ本発明
の他の実施応用例を示す図であり、E1,E2は各電池
C1、C2に許容される電池電圧を設定する基準電圧で
ある。誤差増幅器MC3、MC4は、抵抗R1〜R4で
検出される各電池C1、C2の端子電圧と基準電圧E
1,E2とを比較し、その誤差をパルス幅変調(PW
M)した出力によりスイッチ装置SW1、SW2を制御
するものである。したがって、充電電流I〔A〕で充電
され、電池C1の端子電圧が設定された電圧値である基
準電圧E1を越えると、誤差増幅器MC3は、パルス幅
変調出力によりスイッチ装置SW1をスイッチング制御
して電池C1に充電される電流を整流素子CR1を通し
て電池C2へ移送する。そのため、電池C2は、図示し
ない充電電源からの電流と電池C1からの電流の和であ
る、ほぼ2I〔A〕の電流で充電され、急速に電池C2
の充電を完了させることが可能になる。なお、充電の完
了は、直列接続された電池C1、C2の合計電圧で検出
する従来の方法でもよいし、各電池C1,C2からの各
満充電信号でもよい。
FIG. 4 is a view showing another embodiment of the present invention having a function of preventing overcharging of each battery and diverting excess charging current to an uncharged battery. This is a reference voltage for setting a battery voltage allowed for the batteries C1 and C2. The error amplifiers MC3 and MC4 are connected to the terminal voltages of the batteries C1 and C2 detected by the resistors R1 to R4 and the reference voltage E, respectively.
1, E2, and the error is compared with the pulse width modulation (PW
M) controls the switch devices SW1 and SW2 according to the output. Therefore, when the battery is charged with the charging current I [A] and the terminal voltage of the battery C1 exceeds the reference voltage E1, which is a set voltage value, the error amplifier MC3 controls the switching of the switch device SW1 by the pulse width modulation output. The current charged in the battery C1 is transferred to the battery C2 through the rectifier CR1. Therefore, the battery C2 is charged with a current of approximately 2I [A], which is the sum of the current from the charging power supply (not shown) and the current from the battery C1, and the battery C2 is rapidly charged.
Charging can be completed. The completion of the charging may be detected by a conventional method of detecting the total voltage of the batteries C1 and C2 connected in series, or may be a full charge signal from each of the batteries C1 and C2.

【0020】図5及び図6は4個の同一容量の電池C
1、C2、C3、C4を直列接続した場合の本発明の他
の実施例を示す図である。4個の電池C1、C2、C
3、C4の直列回路に対して、順次2個ずつ電池C1と
C2、C2とC3、C3とC4により構成される直列回
路に着目し、それららに図1の構成を適用する例を示し
たのが図5である。また、電池C1、C2のブロックと
電池C3、C4のブロックとするブロックによる直列回
路、さらにその中の直列回路の構成に着目し、それらの
直列回路に対して図1の構成を適用する例を示したのが
図6である。すなわち、複数の電池(C1、C2、C
3、C4)の直列回路に対して並列に接続する2つのス
イッチ手段の直列回路として、電池C1とC2との直列
回路に対応するスイッチ手段SW11とSW12との直
列回路や、電池C3とC4との直列回路に対応するスイ
ッチ手段SW21とSW22との直列回路、さらに、複
数個の電池を組み合わせた電池C1とC2による組電池
と電池C3とC4による組電池との直列回路に対応する
スイッチ手段SW1とSW2との直列回路があり、各々
の直列接続中点間にインダクティブ素子L1、L11、
L21を接続している。このようにすることにより本発
明は、2個以上の電池の直列回路に対して、その中から
任意の単位で直列回路を抽出してスイッチ手段の直列回
路とインダクティブ素子により、昇圧、昇降圧コンバー
タを構成せしめ、各電池の電圧が均等になり、また、設
定電圧値以下で急速充電できるように制御することがで
きる。
FIGS. 5 and 6 show four batteries C of the same capacity.
FIG. 6 is a diagram showing another embodiment of the present invention when 1, C2, C3, and C4 are connected in series. Four batteries C1, C2, C
With respect to the series circuit of C3 and C4, attention was paid to the series circuit composed of two batteries C1 and C2, C2 and C3, and C3 and C4, and an example in which the configuration of FIG. FIG. In addition, an example in which the configuration of FIG. 1 is applied to a series circuit composed of blocks serving as the blocks of the batteries C1 and C2 and the blocks of the batteries C3 and C4, and further to the configuration of the series circuit therein. FIG. 6 shows this. That is, a plurality of batteries (C1, C2, C
3, C4) as a series circuit of two switch means connected in parallel to the series circuit, a series circuit of switch means SW11 and SW12 corresponding to a series circuit of batteries C1 and C2, and a series circuit of batteries C3 and C4. And a switch circuit SW1 corresponding to a series circuit of a battery pack composed of batteries C1 and C2 and a battery pack composed of batteries C3 and C4. And a series circuit of SW2, and inductive elements L1, L11,
L21 is connected. By doing so, the present invention provides a step-up / step-down / step-up converter for a series circuit of two or more batteries by extracting a series circuit in an arbitrary unit from the series circuit and using an inductive element. Can be controlled so that the voltage of each battery becomes equal and the battery can be rapidly charged at a set voltage value or less.

【0021】なお、本発明は、上記の実施例に限定され
るものではなく、種々の変形が可能である。例えば上記
の実施例では、複数の電池を直列に接続した構成で説明
したが、直並列に接続した複数の電池に対しても同様に
適用してもよい。また、電池C1、C2、C3、C4
は、単位電池として説明したが、それらを組み合わせた
組電池でもよく、また複数個の電池の組み合わせについ
ても、直並列に組み合わせた種々の構成を含むものであ
ってもよいことはいうまでもない。
It should be noted that the present invention is not limited to the above embodiment, and various modifications are possible. For example, in the above embodiment, a configuration in which a plurality of batteries are connected in series has been described, but the present invention may be similarly applied to a plurality of batteries connected in series and parallel. Also, batteries C1, C2, C3, C4
Has been described as a unit battery, but it is needless to say that an assembled battery combining them may be used, and a combination of a plurality of batteries may include various configurations combined in series and parallel. .

【0022】[0022]

【発明の効果】以上の説明から明らかなように、本発明
によれば、2つのスイッチ手段の直列回路を複数の電池
の直列回路に並列に接続すると共に、スイッチ手段の直
列接続中点と電池の直列接続中点との間にインダクティ
ブ素子を接続するので、直列接続された各電池の端子電
圧を高い効率で、しかも僅かな損失で均等にすることが
でき、大電流の急速充電の充電効率を上げることが可能
になる。さらに、通常の充電時には、満充電になった電
池への充電電流を他の未充電電池へスイッチング制御に
よって低損失で移送することができるので、発熱の少な
い効率の良い充電が可能になる。特に、電気二重層コン
デンサによる二次電池は、単位セルを直列に接続した組
セルから構成されるが、充電する際に、ある単位セルは
すでに満充電状態にもかかわらず、他の単位セルはまだ
十分に充電されていないなど、不均等な充電現象が発生
する。本発明は、このような電気二重層コンデンサによ
る電池の充電時における各々の単位セル電池の充電状態
に差異の発生がなく、部分的な過充電現象のない制御装
置及び方法を提供することができる。
As is apparent from the above description, according to the present invention, a series circuit of two switch means is connected in parallel to a series circuit of a plurality of batteries, and a series connection middle point of the switch means and the battery are connected. Because the inductive element is connected between the series connection midpoint and the series connection, the terminal voltage of each battery connected in series can be equalized with high efficiency and with small loss, and the charging efficiency of high current rapid charging Can be raised. Furthermore, during normal charging, the charging current for a fully charged battery can be transferred to another uncharged battery with low loss by switching control, so that efficient charging with less heat generation is possible. In particular, a secondary battery using an electric double-layer capacitor is composed of assembled cells in which unit cells are connected in series, but when charging, some unit cells are already fully charged, while other unit cells are not. Non-uniform charging phenomena, such as insufficient charging. The present invention can provide a control device and a method in which there is no difference in the state of charge of each unit cell battery when a battery is charged by such an electric double layer capacitor and there is no partial overcharge phenomenon. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る電池の充電制御装置及び方法の
1実施例を説明するための図である。
FIG. 1 is a diagram for explaining an embodiment of a battery charging control device and method according to the present invention.

【図2】 本発明に係る電池の充電制御装置及び方法の
他の実施例を説明するための図である。
FIG. 2 is a diagram for explaining another embodiment of the battery charging control device and method according to the present invention.

【図3】 各電池にアンバランスに蓄積された電荷を均
等にする場合のPWMスイッチング制御方法の1実施例
を説明するための図である。
FIG. 3 is a diagram for explaining an embodiment of a PWM switching control method in a case where electric charges accumulated unbalanced in each battery are equalized.

【図4】 各電池への過充電を防止して余剰の充電電流
を未充電の電池へ振り向ける機能を持つ本発明の他の実
施応用例を示す図である。
FIG. 4 is a diagram showing another application example of the present invention having a function of preventing overcharging of each battery and diverting surplus charging current to an uncharged battery.

【図5】 4個の同一容量の電池C1、C2、C3、C
4を直列接続した場合の本発明の他の実施例を示す図で
ある。
FIG. 5 shows four batteries C1, C2, C3, C of the same capacity.
FIG. 9 is a diagram showing another embodiment of the present invention when the four are connected in series.

【図6】 4個の同一容量の電池C1、C2、C3、C
4を直列接続した場合の本発明の他の実施例を示す図で
ある。
FIG. 6 shows four batteries C1, C2, C3, C of the same capacity.
FIG. 9 is a diagram showing another embodiment of the present invention when the four are connected in series.

【図7】 直列接続されたコンデンサの端子電圧のバラ
ツキをなくす回路の従来例を示す図である。
FIG. 7 is a diagram illustrating a conventional example of a circuit that eliminates variations in terminal voltages of capacitors connected in series.

【符号の説明】[Explanation of symbols]

C1、C2…電池、L1…インダクティブ素子、SW
1、SW2…スイッチ装置、CR1、CR2…整流素
子、T1、T2…充電用電源端子
C1, C2: battery, L1: inductive element, SW
1, SW2: switch device, CR1, CR2: rectifying element, T1, T2: charging power supply terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 清水 雅彦 神奈川県横浜市神奈川区台町2−5株式 会社パワーシステム内 (72)発明者 岡村 廸夫 神奈川県横浜市南区南太田町3丁目303 番の24 審査官 嶋野 邦彦 (56)参考文献 特開 平7−123703(JP,A) 特開 平2−15580(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02J 7/02 - 7/12 H02J 7/34 - 7/36 H01M 10/44 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masahiko Shimizu 2-5 Daimachi, Kanagawa-ku, Yokohama, Kanagawa Prefecture Inside Power System Co., Ltd. (72) Inventor Okamura Dio 3-303 Minamiota-cho, Minami-ku, Yokohama-shi, Kanagawa 24 Examiner Kunihiko Shimano (56) References JP-A-7-123703 (JP, A) JP-A-2-15580 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H02J 7/02-7/12 H02J 7/34-7/36 H01M 10/44

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 直列に接続した複数の電池に均等に充電
を行うための電池の充電制御装置であって、前記複数の
電池の直列回路に並列に接続される2つのスイッチ手段
の直列回路と、前記スイッチ手段の直列接続中点と電池
の直列接続中点との間に接続されるインダクティブ素子
と、充電を行う際に前記複数の電池の端子電圧に応じて
一方の前記スイッチ手段をスイッチング制御して他方の
前記スイッチ手段を前記一方の前記スイッチ手段がオフ
の期間に前記インダクティブ素子からの整流電流が流れ
るように同期整流器としてスイッチング動作させる制御
手段とを備え、前記複数の電池の直列回路に充電用電源
が接続され充電されるようにしたことを特徴とする電池
の充電制御装置。
1. A battery charge control device for evenly charging a plurality of batteries connected in series, comprising: a series circuit of two switch means connected in parallel to the series circuit of the plurality of batteries. An inductive element connected between a series connection midpoint of the switch means and a series connection midpoint of the battery, and switching control of one of the switch means according to terminal voltages of the plurality of batteries when performing charging. Control means for performing a switching operation of the other switch means as a synchronous rectifier so that a rectified current from the inductive element flows during a period in which the one switch means is off, and a series circuit of the plurality of batteries. A charging control device for a battery, wherein a charging power supply is connected and charged.
【請求項2】 直列に接続した複数の電池に均等に充電
を行うための電池の充電制御装置であって、前記複数の
電池の直列回路に並列に接続される2つのスイッチ手段
の直列回路と、前記スイッチ手段のそれぞれに並列に接
続される2つの整流手段と、前記スイッチ手段の直列接
続中点と電池の直列接続中点との間に接続されるインダ
クティブ素子と、前記直列接続された各電池の電圧を検
出する電圧検出手段と、前記電圧検出手段により検出さ
れた電圧と予め設定されている比較電圧との差に応じパ
ルス幅変調して前記スイッチ手段をスイッチング制御す
る制御手段とを備え、前記複数の電池の直列回路に充電
用電源が接続され充電されるようにしたことを特徴とす
る電池の充電制御装置。
2. A battery charge control device for evenly charging a plurality of batteries connected in series, comprising a series circuit of two switch means connected in parallel to the series circuit of the plurality of batteries. Two rectifying means connected in parallel to each of the switch means, an inductive element connected between a series connection midpoint of the switch means and a series connection midpoint of the battery, and each of the series connected Voltage detecting means for detecting the voltage of the battery, and control means for controlling the switching of the switch means by performing pulse width modulation in accordance with a difference between the voltage detected by the voltage detecting means and a preset comparison voltage. And a charging power supply connected to the series circuit of the plurality of batteries for charging.
【請求項3】 前記比較電圧は、設定された定電圧であ
ることを特徴とする請求項2記載の電池の充電制御装
置。
3. The battery charge control device according to claim 2, wherein the comparison voltage is a set constant voltage.
【請求項4】 前記比較電圧は、前記直列接続された複
数の電池全体の平均電圧であることを特徴とする請求項
2記載の電池の充電制御装置。
4. The battery charge control device according to claim 2, wherein the comparison voltage is an average voltage of the plurality of batteries connected in series.
【請求項5】 直列に接続した複数の電池に均等に充電
を行うための電池の充電制御方法であって、前記複数の
電池の直列回路に充電用電源を接続して、2つのスイッ
チ手段の直列回路を前記複数の電池の直列回路に並列に
接続すると共に、前記スイッチ手段の直列接続中点と電
池の直列接続中点との間にインダクティブ素子を接続し
て充電し、各電池の端子電圧を検出して前記直列回路の
全電圧の平均電圧と比較し該平均電圧より高い一方の電
池側のスイッチ手段をスイッチング制御し、他方の電池
側のスイッチ手段を前記一方のスイッチ手段がオフの期
間に前記インダクティブ素子からの整流電流が流れるよ
うに同期整流器としてスイッチング動作させることを特
徴とする電池の充電制御方法。
5. A battery charge control method for evenly charging a plurality of batteries connected in series, comprising: connecting a charging power supply to a series circuit of the plurality of batteries; A series circuit is connected in parallel to the series circuit of the plurality of batteries, and an inductive element is connected and charged between the series connection midpoint of the switch means and the series connection midpoint of the batteries, and the terminal voltage of each battery is charged. Is detected and compared with the average voltage of all voltages of the series circuit, the switching control of one battery-side switch means higher than the average voltage is performed, and the other battery-side switch means is switched off while the one switch means is off. A switching operation as a synchronous rectifier such that a rectified current flows from the inductive element.
【請求項6】 直列に接続した複数の電池に均等に充電
を行うための電池の充電制御方法であって、前記複数の
電池の直列回路に充電用電源を接続して、2つのスイッ
チ手段の直列回路を前記複数の電池の直列回路に並列に
接続すると共に、前記スイッチ手段にそれぞれ並列に整
流手段を接続して、前記スイッチ手段の直列接続中点と
電池の直列接続中点との間にインダクティブ素子を接続
して充電し、各電池の端子電圧を検出して設定電圧と比
較し該設定電圧より高い電池側のスイッチ手段を電圧の
差に応じパルス幅変調してスイッチング制御することを
特徴とする電池の充電制御方法。
6. A battery charge control method for evenly charging a plurality of batteries connected in series, comprising connecting a charging power supply to a series circuit of the plurality of batteries, A series circuit is connected in parallel to the series circuit of the plurality of batteries, and a rectifier is connected to the switch in parallel with each other, between the midpoint of the series connection of the switch and the midpoint of the series connection of the batteries. The inductive element is connected and charged, the terminal voltage of each battery is detected and compared with a set voltage, and the switching means on the battery side higher than the set voltage is pulse width modulated according to the voltage difference to perform switching control. Battery charging control method.
JP11070894A 1994-05-25 1994-05-25 Battery charge control device and method Expired - Fee Related JP3328656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11070894A JP3328656B2 (en) 1994-05-25 1994-05-25 Battery charge control device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11070894A JP3328656B2 (en) 1994-05-25 1994-05-25 Battery charge control device and method

Publications (2)

Publication Number Publication Date
JPH07322516A JPH07322516A (en) 1995-12-08
JP3328656B2 true JP3328656B2 (en) 2002-09-30

Family

ID=14542454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11070894A Expired - Fee Related JP3328656B2 (en) 1994-05-25 1994-05-25 Battery charge control device and method

Country Status (1)

Country Link
JP (1) JP3328656B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3280641B2 (en) * 1999-09-08 2002-05-13 長野日本無線株式会社 Energy transfer device
JP3280635B2 (en) * 1999-04-21 2002-05-13 長野日本無線株式会社 Energy transfer device and power storage system
JP3280642B2 (en) * 1999-09-08 2002-05-13 長野日本無線株式会社 Power storage module
US7615966B2 (en) 2001-05-25 2009-11-10 Texas Instruments Northern Virginia Incorporated Method and apparatus for managing energy in plural energy storage units
JP4140585B2 (en) * 2004-08-27 2008-08-27 Fdk株式会社 Balance correction device for secondary batteries connected in series and correction method thereof
JP4999353B2 (en) * 2006-04-26 2012-08-15 パナソニック株式会社 Power storage device, portable device and electric vehicle
JP4621635B2 (en) * 2006-07-05 2011-01-26 Fdk株式会社 Series cell voltage balance correction circuit
KR100950588B1 (en) * 2007-11-13 2010-04-01 코칩 주식회사 Apparatus for recharging a module of electric double layer capacitors
JP5397885B2 (en) * 2008-10-30 2014-01-22 独立行政法人 宇宙航空研究開発機構 Power system
JP2010220373A (en) * 2009-03-17 2010-09-30 Fuji Electric Systems Co Ltd Balancing circuit of energy storage element
US8493028B2 (en) * 2009-04-03 2013-07-23 Marvell World Trade Ltd. Power management circuit for rechargeable battery stack
EP2502323A1 (en) * 2009-11-19 2012-09-26 Robert Bosch GmbH Method and device for balancing electrical voltages in electrical accumulator units
US8525478B2 (en) 2010-01-06 2013-09-03 Marvell World Trade Ltd. Power management circuit of rechargeable battery stack
JP5070319B2 (en) * 2010-07-16 2012-11-14 ビステオン グローバル テクノロジーズ インコーポレイテッド Remaining capacity equalizing apparatus and method, and remaining capacity equalizing apparatus set
US20130249565A1 (en) * 2011-05-24 2013-09-26 Panasonic Corporation Power storage apparatus, mobile device, and electric-powered vehicle
JP2013013292A (en) * 2011-06-30 2013-01-17 Hitachi Ltd Cell balancing circuit based on energy transfer via inductor
JP5126403B1 (en) * 2011-10-31 2013-01-23 株式会社豊田自動織機 Charge / discharge control device
JP5387703B2 (en) * 2012-01-25 2014-01-15 株式会社豊田自動織機 Battery cell voltage equalization circuit
JP5482809B2 (en) * 2012-01-31 2014-05-07 株式会社豊田自動織機 Equalization equipment
JP2013162540A (en) * 2012-02-01 2013-08-19 Toyota Industries Corp Battery equalization device and method
JP2013247690A (en) * 2012-05-23 2013-12-09 Toyota Industries Corp Voltage equalization device
CN112567587A (en) 2018-09-06 2021-03-26 松下知识产权经营株式会社 Equalizing circuit and power storage system
US11894702B2 (en) 2018-09-06 2024-02-06 Panasonic Intellectual Property Management Co., Ltd. Energy transfer circuit and power storage system
EP3979391A4 (en) 2019-05-24 2022-08-03 Panasonic Intellectual Property Management Co., Ltd. Energy transfer circuit and power storage system
CN114258621A (en) 2019-09-25 2022-03-29 松下知识产权经营株式会社 Energy transfer circuit and power storage system

Also Published As

Publication number Publication date
JPH07322516A (en) 1995-12-08

Similar Documents

Publication Publication Date Title
JP3328656B2 (en) Battery charge control device and method
Kutkut et al. Dynamic equalization techniques for series battery stacks
CA2390551C (en) Modular battery charge equalizers and method of control
US8853888B2 (en) Multiple-input DC-DC converter
JP3776880B2 (en) Uninterruptible power system
CN102792548B (en) Charge equalization system for batteries
Teofilo et al. Advanced lithium ion battery charger
CA2430357A1 (en) Hybrid power supply system
US20210126471A1 (en) System and method for managing charge control of a battery array
KR20130001234A (en) Charge equalization system for batteries
JP2002010502A (en) Charge and discharge device for storage battery
EP3399634A1 (en) Isolated bidirectional dc-dc converter
JP2016528868A (en) Charge balancing device for power battery elements
CN110620413B (en) Energy equalization circuit of battery system
JPH08237861A (en) Paralll charge controller, electric energy storage unit and charge controlling method
Middlebrook et al. A new battery charger/discharger converter
JP3238841B2 (en) Capacitor battery charging method and charging device
JPH08308103A (en) Hybrid power source
JP3244592B2 (en) Battery charge control method
JPH06284601A (en) Dc power supply
JP2001268815A (en) Charge circuit
JP3482980B2 (en) Power supply
JP3311670B2 (en) Series / parallel switching power supply
Manjunath et al. A two-stage module based cell-to-cell active balancing circuit for series connected lithium-ion battery packs
JP3526262B2 (en) Power converter for power storage device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020619

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120712

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130712

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

LAPS Cancellation because of no payment of annual fees
R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350