JP2002010502A - Charge and discharge device for storage battery - Google Patents

Charge and discharge device for storage battery

Info

Publication number
JP2002010502A
JP2002010502A JP2000181155A JP2000181155A JP2002010502A JP 2002010502 A JP2002010502 A JP 2002010502A JP 2000181155 A JP2000181155 A JP 2000181155A JP 2000181155 A JP2000181155 A JP 2000181155A JP 2002010502 A JP2002010502 A JP 2002010502A
Authority
JP
Japan
Prior art keywords
storage battery
voltage
output
voltage detector
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000181155A
Other languages
Japanese (ja)
Other versions
JP4125855B2 (en
Inventor
Goro Nakano
五郎 中野
Hajime Katsushima
肇 勝嶋
Satoshi Hamada
聡 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansha Electric Manufacturing Co Ltd
Original Assignee
Sansha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansha Electric Manufacturing Co Ltd filed Critical Sansha Electric Manufacturing Co Ltd
Priority to JP2000181155A priority Critical patent/JP4125855B2/en
Publication of JP2002010502A publication Critical patent/JP2002010502A/en
Application granted granted Critical
Publication of JP4125855B2 publication Critical patent/JP4125855B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To simultaneously charge and discharge a plurality of storage batteries. SOLUTION: A charging rectifying circuit 2 for rectifying alternating-current power supply is installed and a regenerating rectifying circuit 15 for regenerating the electrical quantities of storage batteries to the alternating-current power supply is installed in anti-parallel with the charging rectifying circuit. The output of the charging rectifying circuit 2 is provided with voltage step up/down converters 5 including switching elements for controlling the output. The outputs of the voltage step up/down converters 5 are provided with smoothing capacitors 12 for smoothing the outputs. First voltage detectors 22 for detecting the voltage across the smoothing capacitors and second voltage detectors 27 for detecting the storage battery voltage of the storage batteries are added, and the voltage step up/down converters are controlled so that the detection signals from the first voltage detectors 22 become the detection signals of the second voltage detectors 27.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,蓄電池の化成又は
化成後のテストに使用する蓄電池用充放電装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery charging / discharging apparatus used for forming or testing a battery after formation.

【0002】[0002]

【従来の技術】通常,製造された蓄電池の化成又は化成
後のテストには蓄電池の充放電を繰り返すことが行われ
ており,このような蓄電池の充放電に使用する充放電装
置は,特開平9−233710号で提案しているよう
に,例えば図3に示すように構成されている。
2. Description of the Related Art Normally, during the formation of a storage battery or a test after formation, charging and discharging of the storage battery are repeated. As proposed in Japanese Patent Application No. 9-233710, for example, it is configured as shown in FIG.

【0003】図3において,1a,1b,1cは3相交
流電源に接続された交流入力端子,2は,入力端子1a
〜1cにそれぞれ接続された3相全波整流用サイリスタ
ブリッジからなる充電用整流回路であり,各サイリスタ
が充電時に図示されていない駆動回路により駆動される
ようになっている。また,15は充電用整流回路2と逆
並列に接続された3相全波整流用ブリッジからなる回生
用整流回路で,各サイリスタが回生時に図示しない駆動
回路により駆動される。3,4は一端が充電用整流回路
2の正,負出力端子間に直列に設けられた平滑用リアク
トル及びコンデンサである。
In FIG. 3, reference numerals 1a, 1b and 1c denote AC input terminals connected to a three-phase AC power source, and 2 denotes an input terminal 1a.
1c is a charging rectifier circuit comprising three-phase full-wave rectifier thyristor bridges, each thyristor being driven by a drive circuit (not shown) during charging. Reference numeral 15 denotes a regenerative rectifier circuit including a three-phase full-wave rectifier bridge connected in anti-parallel with the charging rectifier circuit 2. Each thyristor is driven by a drive circuit (not shown) during regeneration. Reference numerals 3 and 4 denote a smoothing reactor and a capacitor, one end of which is provided in series between the positive and negative output terminals of the charging rectifier circuit 2.

【0004】5は昇降圧コンバータで,平滑用リアクト
ル3の出力端子に接続されている第1の開閉手段6と,
降圧コンバータ用スイッチング素子のトランジスタ7
と,昇圧コンバータ用スイッチング素子のトランジスタ
8と,トランジスタ7,8と逆並列に接続されたフリー
ホイリングダイオード17,18と,平滑用リアクトル
11と平滑コンデンサ12と,平滑リアクトル11の出
力端子に接続されている第2の開閉手段13aと,この
第2開閉手段13aと並列に接続された第3の開閉手段
13bと限流素子14との直列回路とを備えている。さ
らに,トランジスタ7,8を高周波PWM制御させる昇
降圧コンバータ制御装置23と,コンデンサ12の両端
電圧を検出する電圧検出器22と,昇降圧コンバータ制
御装置23に入力する出力を設定する出力設定器25も
備えている。なお,26は平滑用コンデンサである。
Reference numeral 5 denotes a step-up / step-down converter, which includes first switching means 6 connected to an output terminal of the smoothing reactor 3,
Transistor 7 for switching element for step-down converter
Connected to the transistor 8 of the switching element for the boost converter, the freewheeling diodes 17 and 18 connected in antiparallel to the transistors 7 and 8, the smoothing reactor 11, the smoothing capacitor 12, and the output terminal of the smoothing reactor 11. And a series circuit of the third switching means 13b and the current limiting element 14 connected in parallel with the second switching means 13a. Further, a buck-boost converter control device 23 for performing high-frequency PWM control of the transistors 7 and 8, a voltage detector 22 for detecting a voltage across the capacitor 12, and an output setting device 25 for setting an output to be input to the buck-boost converter control device 23 It also has. 26 is a smoothing capacitor.

【0005】105及び205は昇降圧コンバータ5と
同じ構成の昇降圧コンバータであり,図1では昇降圧コ
ンバータは3個であるが,蓄電池10,110,210
の充放電を行う場合,通常もっと多数の昇降圧コンバー
タで構成される。
[0005] Step-up / step-down converters 105 and 205 have the same configuration as the step-up / step-down converter 5. In FIG. 1, there are three step-up / step-down converters.
When charging / discharging a battery, it usually consists of a larger number of buck-boost converters.

【0006】今,充電用整流回路2に駆動信号を入力し
て駆動させ,充電用整流回路2により交流入力を整流す
る。整流した直流を平滑リアクトル3及び平滑コンデン
サ4により平滑する。また,第1開閉手段6及び第2開
閉手段13aに指令信号を入力してオンさせるととも
に,降圧コンバータ用スイッチング素子7に昇降圧コン
バータ制御装置23のドライブ信号を入力し,オンさせ
る。スイッチング素子7がオンすると,平滑された直流
は開閉手段6,降圧スイッチング素子7,リアクトル1
1,開閉手段13a,蓄電池10に電流が流れて,蓄電
池10は充電される。
[0006] Now, a drive signal is input to the charging rectifier circuit 2 to be driven, and the AC input is rectified by the charging rectifier circuit 2. The rectified DC is smoothed by the smoothing reactor 3 and the smoothing capacitor 4. In addition, a command signal is inputted to the first opening / closing means 6 and the second opening / closing means 13a to be turned on, and a drive signal of the buck-boost converter control device 23 is inputted to the buck converter switching element 7 to be turned on. When the switching element 7 is turned on, the smoothed DC is supplied to the switching means 6, the step-down switching element 7, the reactor 1
1, a current flows through the opening / closing means 13a and the storage battery 10, and the storage battery 10 is charged.

【0007】そして,降圧コンバータ用スイッチング素
子7のドライブ信号をオフさせると,スイッチング素子
7はオフし,リアクトル11の蓄積エネルギは開閉手段
13a,蓄電池10,フリーホイリングダイオード18
を介して還流する。
When the drive signal of the step-down converter switching element 7 is turned off, the switching element 7 is turned off, and the energy stored in the reactor 11 is stored in the switching means 13a, the storage battery 10, the freewheeling diode 18
Reflux.

【0008】ここで,電圧検出器22は平滑コンデンサ
12の出力電圧を検出し,その検出信号が昇降圧コンバ
ータ制御装置23に入力される。ここで検出信号が出力
設定器25の信号と比較され,検出信号が出力設定器2
5の信号に等しくなるように,すなわち,コンバータ制
御装置23は昇降圧コンバータ5の出力電圧が定電圧に
なるように制御する。
Here, the voltage detector 22 detects the output voltage of the smoothing capacitor 12, and the detection signal is input to the step-up / step-down converter control device 23. Here, the detection signal is compared with the signal of the output setting unit 25, and the detection signal is compared with the output setting unit 2
5, that is, the converter control device 23 controls the output voltage of the buck-boost converter 5 to be a constant voltage.

【0009】次に,蓄電池10の放電時は,開閉手段6
及び13aに指令信号を入力してオンさせ,さらに降圧
コンバータ用スイッチング素子7をオフし,昇圧コンバ
ータ用スイッチング素子8をオンさせると,蓄電池1
0,開閉手段13a,リアクトル11,昇圧コンバータ
用スイッチング素子8を介して放電する。
Next, when the storage battery 10 is discharged, the switching means 6
And 13a, inputting a command signal to turn on, further turning off the step-down converter switching element 7 and turning on the step-up converter switching element 8, the storage battery 1
0, discharge through the switching means 13a, the reactor 11, and the switching element 8 for the boost converter.

【0010】そして,昇圧コンバータ用スイッチング素
子8のドライブ信号をオフさせると,スイッチング素子
8はオフし,リアクトル11の蓄積エネルギーはフリー
ホイリングダイオード17,開閉手段6,リアクトル
3,回生用整流回路15,交流電源,回生用整流回路1
5,蓄電池10,開閉手段13aを介して放出し,蓄電
池10のエネルギが交流電源に回生される。
When the drive signal of the boost converter switching element 8 is turned off, the switching element 8 is turned off, and the energy stored in the reactor 11 is freewheeling diode 17, switching means 6, reactor 3, regenerative rectifier circuit 15. , AC power supply, rectifier circuit for regeneration 1
5, released through the storage battery 10 and the opening / closing means 13a, and the energy of the storage battery 10 is regenerated to the AC power supply.

【0011】この蓄電池10の放電時は,昇降圧コンバ
ータ5の入力を高くすることができる。従って,昇圧時
も降圧時も昇降圧コンバータ5の入力を同じ値にするこ
とが可能となり,各昇降圧コンバータ5,105,20
5…を個別に蓄電池の充電と放電を行うことができる。
When the storage battery 10 is discharged, the input of the buck-boost converter 5 can be increased. Therefore, the input of the buck-boost converter 5 can be set to the same value both at the time of boosting and at the time of bucking.
.. Can be charged and discharged individually.

【0012】[0012]

【発明が解決しようとする課題】ところで,平滑コンデ
ンサ12の両端電圧と蓄電池10の蓄電池電圧とに差が
生じているとき,例えば充電された蓄電池は電圧が発生
するが,平滑コンデンサには電圧が発生していない場合
がある。このような場合蓄電池10から平滑コンデンサ
12に過大電流が流れる。この過大電流を抑制するため
に,限流抵抗14と第3開閉手段13bが設けられてい
る。そして,充放電の初期は第2開閉手段13aを開放
し,第3開閉手段13bを短絡させる。この過大電流は
蓄電池10の電圧と平滑コンデンサ12の電圧が等しく
なるようと減少し,平滑コンデンサ12の電圧が一定に
なることで検出され,第2開閉手段13aが短絡され,
第3開閉手段13bが開放される。このため,容量の大
きな限流抵抗14と第3開閉手段13bを,それぞれ昇
降圧コンバータユニット5,105,205,に設ける
必要があった。
When there is a difference between the voltage across the smoothing capacitor 12 and the battery voltage of the storage battery 10, for example, a charged storage battery generates a voltage, but the smoothing capacitor has a voltage. May not have occurred. In such a case, an excessive current flows from the storage battery 10 to the smoothing capacitor 12. In order to suppress this excessive current, a current limiting resistor 14 and a third opening / closing means 13b are provided. Then, at the beginning of charging and discharging, the second opening / closing means 13a is opened and the third opening / closing means 13b is short-circuited. This excessive current decreases so that the voltage of the storage battery 10 and the voltage of the smoothing capacitor 12 become equal, and is detected when the voltage of the smoothing capacitor 12 becomes constant, and the second switching means 13a is short-circuited.
The third opening / closing means 13b is opened. For this reason, it is necessary to provide the current limiting resistor 14 having a large capacity and the third opening / closing means 13b in the step-up / step-down converter units 5, 105, 205, respectively.

【0013】[0013]

【課題を解決するための手段】請求項1記載の発明の蓄
電池用充放電装置は,直流電圧を入力とし出力を制御す
るスイッチング素子と,上記出力を平滑し平滑した直流
電圧を蓄電池に印加する平滑コンデンサと,上記平滑コ
ンデンサの両端電圧を検出する第1電圧検出器と,上記
蓄電池の蓄電池電圧を検出する第2電圧検出器と,上記
第1電圧検出器の検出信号を上記第2電圧検出器の検出
信号になるように上記スイッチング素子を制御させる制
御装置を備えたものである。
According to a first aspect of the present invention, there is provided a charge / discharge device for a storage battery, wherein a switching element that receives a DC voltage as input and controls an output, and applies the smoothed DC voltage to the storage battery. A smoothing capacitor, a first voltage detector for detecting a voltage between both ends of the smoothing capacitor, a second voltage detector for detecting a storage battery voltage of the storage battery, and a second voltage detection for detecting a detection signal of the first voltage detector. And a control device for controlling the switching element so as to be a detection signal of the detector.

【0014】平滑コンデンサの両端電圧と,蓄電池の蓄
電池電圧に差がある場合,第1電圧検出器によりコンデ
ンサの両端電圧を検出し,第2電圧検出器により蓄電池
の蓄電池電圧を検出する。そして,第1電圧検出器の検
出信号を,第2電圧検出器の検出電圧になるように制御
装置により,スイッチング素子の制御を行う。これによ
り,平滑コンデンサの両端電圧と,蓄電池の蓄電池電圧
に差がなくなり,蓄電池からコンデンサへの充電は徐々
に行われ,過大電流は流れることがない。
If there is a difference between the voltage across the smoothing capacitor and the battery voltage of the storage battery, the voltage across the capacitor is detected by the first voltage detector, and the battery voltage of the storage battery is detected by the second voltage detector. The control device controls the switching element so that the detection signal of the first voltage detector becomes the detection voltage of the second voltage detector. As a result, there is no difference between the voltage between both ends of the smoothing capacitor and the storage battery voltage of the storage battery, and the charging of the storage battery from the storage capacitor is performed gradually, and no excessive current flows.

【0015】また,請求項2記載の発明の蓄電池用充放
電装置は,交流電源を整流する充電用整流回路と,この
充電用整流回路と逆並列に接続され,蓄電池の電気量を
上記交流電源に回生する回生用整流回路と,上記充電用
整流回路の出力に設けられ出力を制御するスイッチング
素子を有する昇降圧コンバータと,上記昇降圧コンバー
タの出力を平滑し平滑した直流電圧を上記蓄電池に印加
する平滑コンデンサと,上記平滑コンデンサの両端電圧
を検出する第1電圧検出器と,上記蓄電池の蓄電池電圧
を検出する第2電圧検出器と,上記第1電圧検出器の検
出信号を上記第2電圧検出器の検出信号になるように上
記昇降圧コンバータを制御させる昇降圧コンバータ制御
装置を備えたものである。
According to a second aspect of the present invention, there is provided a charge / discharge device for a storage battery, comprising: a charging rectifier circuit for rectifying an AC power supply; and an anti-parallel connection to the charging rectifier circuit. A rectifying circuit for regenerating power, a step-up / step-down converter having a switching element provided at the output of the charging rectifier circuit and controlling the output, and applying a smoothed DC voltage to the storage battery by smoothing the output of the step-up / step-down converter A smoothing capacitor, a first voltage detector for detecting a voltage between both ends of the smoothing capacitor, a second voltage detector for detecting a storage battery voltage of the storage battery, and a second voltage detector for detecting a detection signal of the first voltage detector. A step-up / step-down converter control device for controlling the step-up / step-down converter so as to generate a detection signal of a detector is provided.

【0016】充電時には昇降圧コンバータを降圧コンバ
ータとして使用し,放電時には昇圧コンバータとして使
用する。例えば,蓄電池を充電する場合,降圧コンバー
タ用スイッチング素子をオンさせる。蓄電池を放電する
場合,昇圧コンバータ用スイッチング素子をオンさせて
昇圧コンバータ用スイッチング素子を介して放電する。
この後,回生用整流回路を介して放電し,交流電源に回
生させる。
The buck-boost converter is used as a buck converter during charging, and is used as a boost converter during discharging. For example, when charging the storage battery, the switching element for the step-down converter is turned on. When discharging the storage battery, the switching element for the boost converter is turned on to discharge through the switching element for the boost converter.
After that, the battery is discharged through a regenerative rectifier circuit and regenerated to an AC power supply.

【0017】平滑コンデンサの両端電圧と,蓄電池の蓄
電池電圧に差がある場合,第1電圧検出器によりコンデ
ンサの両端電圧を検出し,第2電圧検出器により蓄電池
の蓄電池電圧を検出する。そして,第1電圧検出器の検
出信号を,第2電圧検出器の検出電圧になるように制御
装置により,昇降圧コンバータの制御を行う。これによ
り,平滑コンデンサの両端電圧と,蓄電池の蓄電池電圧
に差がなくなり,蓄電池からコンデンサへの充電は徐々
に行われ,過大電流は流れることがない。
If there is a difference between the voltage across the smoothing capacitor and the storage battery voltage of the storage battery, the voltage across the capacitor is detected by the first voltage detector, and the storage battery voltage of the storage battery is detected by the second voltage detector. Then, the control device controls the buck-boost converter so that the detection signal of the first voltage detector becomes the detection voltage of the second voltage detector. As a result, there is no difference between the voltage between both ends of the smoothing capacitor and the storage battery voltage of the storage battery, and the charging of the storage battery from the storage capacitor is performed gradually, and no excessive current flows.

【0018】また,請求項3記載の発明の蓄電池用充放
電装置は,交流電源に直列に接続された入力リアクトル
と,この入力リアクトルの出力に設けられた整流器と,
この整流器と逆並列に接続され高周波スイッチングする
スイッチング素子とを有し,上記交流電源を整流すると
ともに,交流入力電流を正弦波状に制御し,かつ蓄電池
の電気量を上記交流電源に回生させる双方向コンバータ
と,上記双方向コンバータの出力に設けられ,出力を制
御するスイッチング素子を有する昇降圧コンバータと,
上記昇降圧コンバータの出力を平滑し,平滑した直流電
圧を上記蓄電池に印加する平滑コンデンサと,上記平滑
コンデンサの両端電圧を検出する第1電圧検出器と,上
記蓄電池の蓄電池電圧を検出する第2電圧検出器と,上
記第1電圧検出器の検出信号を上記第2電圧検出器の検
出信号になるように上記昇降圧コンバータを制御させる
昇降圧コンバータ制御装置を備えたものである。
According to a third aspect of the present invention, there is provided a charge / discharge device for a storage battery, comprising: an input reactor connected in series to an AC power supply; a rectifier provided at an output of the input reactor;
A switching element connected in anti-parallel to the rectifier and performing high-frequency switching, rectifies the AC power supply, controls an AC input current in a sine wave shape, and regenerates the amount of electricity in a storage battery to the AC power supply. A buck-boost converter provided at the output of the bidirectional converter and having a switching element for controlling the output;
A smoothing capacitor for smoothing the output of the buck-boost converter and applying a smoothed DC voltage to the storage battery, a first voltage detector for detecting a voltage across the smoothing capacitor, and a second voltage detector for detecting a storage battery voltage of the storage battery. A voltage detector; and a buck-boost converter control device for controlling the buck-boost converter so that the detection signal of the first voltage detector becomes the detection signal of the second voltage detector.

【0019】そして,蓄電池を充電する場合,双方向コ
ンバータのスイッチング素子が高周波スイッチングのオ
ン時に入力リアクトルにエネルギが蓄積し,オフ時に出
力させると,交流入力電流を正弦波状に制御され,双方
向コンバータの出力には所望の直流出力電圧が得られ
る。双方向コンバータの出力をそれぞれの昇降圧コンバ
ータを介して蓄電池を充電する。また,蓄電池を放電す
る場合,双方向コンバータのスイッチング素子が高周波
スイッチングのオンすると,このオン時に双方向コンバ
ータのスイッチング素子及び入力リアクトルを介して交
流電源に回生される。
When charging the storage battery, when the switching element of the bidirectional converter accumulates energy in the input reactor when the high-frequency switching is on and outputs the energy when the switching element is off, the AC input current is controlled in a sine wave shape, and the bidirectional converter is controlled. A desired DC output voltage is obtained at the output of. The output of the bidirectional converter charges the storage battery via the respective buck-boost converter. Further, when the storage battery is discharged, when the switching element of the bidirectional converter turns on the high frequency switching, the battery is regenerated to the AC power supply via the switching element of the bidirectional converter and the input reactor when the high frequency switching is turned on.

【0020】平滑コンデンサの両端電圧と,蓄電池の蓄
電池電圧に差がある場合,第1電圧検出器によりコンデ
ンサの両端電圧を検出し,第2電圧検出器により蓄電池
の蓄電池電圧を検出する。そして,第1電圧検出器の検
出信号を,第2電圧検出器の検出電圧になるように制御
装置により,昇降圧コンバータの制御を行う。これによ
り,平滑コンデンサの両端電圧と,蓄電池の蓄電池電圧
に差がなくなり,蓄電池からコンデンサへの充電は徐々
に行われ,過大電流は流れることがない。
If there is a difference between the voltage across the smoothing capacitor and the battery voltage of the storage battery, the voltage across the capacitor is detected by the first voltage detector, and the battery voltage of the storage battery is detected by the second voltage detector. Then, the control device controls the buck-boost converter so that the detection signal of the first voltage detector becomes the detection voltage of the second voltage detector. As a result, there is no difference between the voltage between both ends of the smoothing capacitor and the storage battery voltage of the storage battery, and the charging of the storage battery from the storage capacitor is performed gradually, and no excessive current flows.

【0021】また,請求項4記載の発明の蓄電池用充放
電装置は,上記昇降圧コンバータが入力端と並列に接続
された降圧コンバータ用スイッチング素子と昇圧コンバ
ータ用スイッチング素子との直列回路と,上記両スイッ
チング素子とそれぞれ逆並列に接続されたフリーホイリ
ングダイオードと,上記両スイッチング素子の接続点と
出力端との間に設けられたリアクトルとを備えたもので
ある。
According to a fourth aspect of the present invention, there is provided a charging / discharging device for a storage battery, wherein the step-up / step-down converter is connected in parallel with an input terminal and includes a series circuit of a step-down converter switching element and a step-up converter switching element. It comprises a freewheeling diode connected in anti-parallel with both switching elements, and a reactor provided between a connection point of the two switching elements and an output terminal.

【0022】そして,充電時には昇降圧コンバータを降
圧コンバータとして使用し,放電時には昇圧コンバータ
として使用する。例えば,蓄電池を充電する場合,降圧
コンバータ用スイッチング素子をオンさせると,この降
圧コンバータ用スイッチング素子,リアクトルを介して
蓄電池を充電し,上記降圧コンバータ用スイッチング素
子をオフさせると,リアクトルの蓄積エネルギーが蓄電
池に環流して蓄電池を充電させる。
Then, the buck-boost converter is used as a buck converter during charging, and is used as a boost converter during discharging. For example, when charging the storage battery, when the switching element for the step-down converter is turned on, the storage battery is charged via the switching element for the step-down converter and the reactor, and when the switching element for the step-down converter is turned off, the energy stored in the reactor is reduced. Reflux the storage battery to charge the storage battery.

【0023】また,蓄電池を放電する場合,昇圧コンバ
ータ用スイッチング素子をオンさせると,蓄電池はリア
クトル,昇圧コンバータ用スイッチング素子を介して放
電する。この後,昇圧コンバータ用スイッチング素子を
オフさせると,蓄電池はリアクトル,降圧コンバータ用
スイッチング素子と逆並列接続されたフリーホイリング
ダイオード,回生用整流回路を介して放電し,交流電源
に回生させる。
When the storage battery is discharged, when the switching element for the boost converter is turned on, the storage battery is discharged via the reactor and the switching element for the boost converter. Thereafter, when the switching element for the boost converter is turned off, the storage battery is discharged through the reactor, the freewheeling diode connected in anti-parallel with the switching element for the step-down converter, and the rectifier circuit for regeneration to regenerate the AC power.

【0024】[0024]

【発明の実施の形態】図1はこの発明の蓄電池用充放電
装置の一実施例を示すブロック結線図である。図1にお
いて,1a,1b,1cは3相交流電源に接続された交
流入力端子,2は入力端子1a〜1cに接続された3相
全波整流用サイリスタブリッジからなる充電用整流回路
であり,各サイリスタが充電時に図示されていない駆動
回路により駆動されるようになっている。また,15は
充電用整流回路2と逆並列に接続された3相全波整流用
サイリスタブリッジからなる回生用整流回路で,各サイ
リスタが回生時に図示しない駆動回路により駆動され
る。3,4は一端が充電用整流回路2の正,負出力端子
間に直列に設けられた平滑用リアクトル及びコンデンサ
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing an embodiment of a charge / discharge device for a storage battery according to the present invention. In FIG. 1, reference numerals 1a, 1b, and 1c denote AC input terminals connected to a three-phase AC power supply, and reference numeral 2 denotes a charging rectifier circuit including a thyristor bridge for three-phase full-wave rectification connected to input terminals 1a to 1c. Each thyristor is driven by a drive circuit (not shown) during charging. Reference numeral 15 denotes a regenerative rectifier circuit including a three-phase full-wave rectifier thyristor bridge connected in anti-parallel with the charging rectifier circuit 2. Each thyristor is driven by a drive circuit (not shown) during regeneration. Reference numerals 3 and 4 denote a smoothing reactor and a capacitor, one end of which is provided in series between the positive and negative output terminals of the charging rectifier circuit 2.

【0025】5は昇降圧コンバータで,平滑用リアクト
ル3の出力端子と充電用整流回路2の負出力端子間に接
続されている。この昇降圧コンバータ5は平滑用リアク
トル3の出力端子と接続された開閉手段6と,この開閉
手段6と充電用整流回路2の負出力端子間には直列接続
された降圧コンバータ用スイッチング素子のトランジス
タ7と,昇圧コンバータ用スイッチング素子のトランジ
スタ8と,さらに,トランジスタ7,8と逆並列に接続
されたフリーホイリングダイオード17,18とを有し
ている。トランジスタ8の両端には直列に接続され平滑
リアクトル11と平滑コンデンサ12とが設けられ,平
滑リアクトル11の出力を出力端子し,負荷の蓄電池が
接続されている。さらに,昇降圧コンバータ5は開閉手
段13と,トランジスタ7,8を高周波PWM制御させ
る昇降圧コンバータ制御装置23と,平滑コンデンサ1
2の両端電圧を検出する第1の電圧検出器22と,蓄電
池10の蓄電池電圧を検出する第2の電圧検出器27と
により構成されている。なお,25はコンバータ制御装
置23に入力する出力を設定する出力設定器,26は平
滑用コンデンサである。
A step-up / step-down converter 5 is connected between the output terminal of the smoothing reactor 3 and the negative output terminal of the charging rectifier circuit 2. The step-up / step-down converter 5 includes switching means 6 connected to the output terminal of the smoothing reactor 3, and a transistor of a switching element for the step-down converter connected in series between the switching means 6 and the negative output terminal of the charging rectifier circuit 2. 7, a transistor 8 as a switching element for a boost converter, and free-wheeling diodes 17 and 18 connected in anti-parallel with the transistors 7 and 8. A smoothing reactor 11 and a smoothing capacitor 12 are provided at both ends of the transistor 8 and are connected in series. The output of the smoothing reactor 11 is an output terminal, and a storage battery of a load is connected. Further, the step-up / step-down converter 5 includes an opening / closing means 13, a step-up / step-down converter control device 23 for performing high-frequency PWM control on the transistors 7 and 8,
The first voltage detector 22 detects the voltage between both terminals of the storage battery 2, and the second voltage detector 27 detects the storage battery voltage of the storage battery 10. Here, reference numeral 25 denotes an output setting device for setting an output to be input to the converter control device 23, and reference numeral 26 denotes a smoothing capacitor.

【0026】105及び205は昇降圧コンバータ5と
同じ構成の昇降圧コンバータであり,図1では昇降圧コ
ンバータは3個であるが,蓄電池の充放電を行う場合,
通常多数の昇降圧コンバータで構成される。
Reference numerals 105 and 205 denote buck-boost converters having the same configuration as the buck-boost converter 5. In FIG. 1, there are three buck-boost converters.
It usually consists of a number of buck-boost converters.

【0027】次に通常時の動作を説明する。このとき開
閉手段6及び13にオンされている。そして,充電用整
流回路2に駆動信号を入力して駆動させ,充電用整流回
路2により交流入力を整流する。整流した直流を平滑リ
アクトル3及び平滑コンデンサ4により平滑する。ま
た,降圧コンバータ用スイッチング素子のトランジスタ
7に昇降圧コンバータ制御装置23の高周波スイッチン
グするドライブ信号を入力し,オンさせる。トランジス
タ7がオンすると,平滑された直流は開閉手段6,トラ
ンジスタ7,リアクトル11,開閉手段13,蓄電池1
0,に電流が流れて,蓄電池は充電される。
Next, the normal operation will be described. At this time, the opening / closing means 6 and 13 are turned on. Then, a drive signal is input to the charging rectifier circuit 2 to drive it, and the charging rectifier circuit 2 rectifies the AC input. The rectified DC is smoothed by the smoothing reactor 3 and the smoothing capacitor 4. Further, a drive signal for high-frequency switching of the step-up / step-down converter control device 23 is input to the transistor 7 of the step-down converter switching element and turned on. When the transistor 7 is turned on, the smoothed direct current is supplied to the switching means 6, the transistor 7, the reactor 11, the switching means 13, and the storage battery 1.
0, current flows, and the storage battery is charged.

【0028】そして,降圧コンバータ用トランジスタ7
のドライブ信号をオフさせると,トランジスタ7はオフ
し,リアクトル11の蓄積エネルギは開閉手段13,蓄
電池10,フリーホイリングダイオード18を介して還
流する。
The step-down converter transistor 7
When the drive signal is turned off, the transistor 7 is turned off, and the energy stored in the reactor 11 is returned via the opening / closing means 13, the storage battery 10, and the freewheeling diode 18.

【0029】また,蓄電池10の放電時は,降圧コンバ
ータ用トランジスタ7をオフし,昇圧コンバータ用スイ
ッチング素子のトランジスタ8をオンさせると,蓄電池
10,開閉手段13,リアクトル11,昇圧コンバータ
用トランジスタ8,蓄電池10を介して放電する。
When the storage battery 10 is discharged, the step-down converter transistor 7 is turned off and the step-up converter switching element transistor 8 is turned on, so that the storage battery 10, the opening / closing means 13, the reactor 11, the step-up converter transistor 8, Discharge is performed via the storage battery 10.

【0030】そして,昇圧コンバータ用トランジスタ8
のドライブ信号をオフさせると,トランジスタ8はオフ
し,リアクトル11の蓄積エネルギーはフリーホイリン
グダイオード17,開閉手段6,リアクトル3,回生用
整流回路15,交流電源,回生用整流回路15,蓄電池
10,開閉手段13を介して放出し,蓄電池10のエネ
ルギが交流電源に回生される。
Then, the step-up converter transistor 8
When the drive signal is turned off, the transistor 8 is turned off, and the energy stored in the reactor 11 is freewheeling diode 17, switching means 6, reactor 3, regenerative rectifier circuit 15, AC power supply, regenerative rectifier circuit 15, storage battery 10 Is released through the opening / closing means 13, and the energy of the storage battery 10 is regenerated to the AC power supply.

【0031】この蓄電池10の放電時は,昇降圧コンバ
ータ5の入力を高くすることができる。従って,昇圧時
も降圧時も昇降圧コンバータ5の入力を同じ値にするこ
とが可能となり,各昇降圧コンバータ5,105,20
5…を個別に蓄電池の充電と放電を行うことができる。
When the storage battery 10 is discharged, the input of the step-up / step-down converter 5 can be increased. Therefore, the input of the buck-boost converter 5 can be set to the same value both at the time of boosting and at the time of bucking.
.. Can be charged and discharged individually.

【0032】次に,コンデンサ12の両端電圧と蓄電池
10の蓄電池電圧とに差があり,充放電開始の開閉手段
13を短絡したときについて説明する。第1電圧検出器
22によりコンデンサ12の両端電圧を検出し,第2電
圧検出器2により蓄電池10の蓄電池電圧を検出する。
そして,第1電圧検出器22の検出信号を,第2電圧検
出器27の検出電圧になるように昇降圧コンバータ制御
装置23を,降圧コンバータ用トランジスタ7又は昇圧
コンバータ用トランジスタ8の制御を行う。
Next, a case where there is a difference between the voltage between both ends of the capacitor 12 and the storage battery voltage of the storage battery 10 and the switching means 13 for starting charging and discharging is short-circuited will be described. The voltage across the capacitor 12 is detected by the first voltage detector 22, and the storage battery voltage of the storage battery 10 is detected by the second voltage detector 2.
Then, the step-up / step-down converter control device 23 controls the step-down converter transistor 7 or the step-up converter transistor 8 so that the detection signal of the first voltage detector 22 becomes the detection voltage of the second voltage detector 27.

【0033】これにより,コンデンサ12の両端電圧と
蓄電池10の蓄電池電圧とに差がなくなり,蓄電池10
からコンデンサ12への充電は徐々に行われ,従来のよ
うに過大電流は流れることがなく,限流抵抗及び開閉手
段を設ける必要がない。
As a result, there is no difference between the voltage across the capacitor 12 and the storage battery voltage of the storage battery 10, and the storage battery 10
The charging of the capacitor 12 is performed gradually, and no excessive current flows as in the prior art, and there is no need to provide a current limiting resistor and switching means.

【0034】上記実施の形態では,昇圧及び降圧コンバ
ータ用スイッチング素子にトランジスタを用いていた
が,IGBT,FET,バイボーラトランジスタ等であ
ってもよい。
In the above embodiment, a transistor is used as the switching element for the step-up and step-down converter. However, an IGBT, FET, bi-boral transistor, or the like may be used.

【0035】上記図1に示す実施形態は充電用整流器及
び回生用整流器が例えばサイリスタで構成されるため,
充電時(力行)と放電時(回生)のサイリスタの制御角
が異なるため,回生力率が悪く,回生した有効電力の利
用率がよくないことがあった。これを改善するための実
施態様を図2に示す。図2において図1と同じ符号のも
のは同じ機能のものを示している。異なる点は,充電用
整流回路と回生用整流回路とを双方向コンバータ52に
代えたものである。すなわち,双方向コンバータ52
は,交流電源に直列に接続された入力リアクトル51
と,入力リアクトル51の出力に設けられた整流器53
〜58と,この整流器53〜58と逆並列に接続され高
周波スイッチングするスイッチング素子63〜68と,
入力電圧を検出する入力電圧検出器71と,入力電流を
検出する電流検出器72と,電流検出信号を電圧変換す
る電流電圧変換器73と,双方向コンバータの出力電圧
を検出する直流電圧検出器74と,入力電圧検出器71
と電流電圧変換器73と直流電圧検出器74の出力信号
を入力とし,交流入力電流を正弦波にするとともに力率
を1にするようスイッチング素子63〜68を制御する
双方向コンバータ制御装置75とを設けたものである。
In the embodiment shown in FIG. 1, the charging rectifier and the regenerative rectifier are constituted by, for example, thyristors.
Since the control angles of the thyristors at the time of charging (power running) and at the time of discharging (regeneration) are different, the regenerative power factor is poor, and the utilization rate of the regenerated active power is sometimes poor. An embodiment for improving this is shown in FIG. In FIG. 2, those having the same reference numerals as those in FIG. 1 have the same functions. The difference is that the charging rectifier circuit and the regenerative rectifier circuit are replaced with a bidirectional converter 52. That is, the bidirectional converter 52
Is an input reactor 51 connected in series to an AC power supply.
And a rectifier 53 provided at the output of the input reactor 51.
Switching elements 63 to 68 connected in anti-parallel to the rectifiers 53 to 58 and performing high-frequency switching;
An input voltage detector 71 for detecting an input voltage, a current detector 72 for detecting an input current, a current-voltage converter 73 for converting a current detection signal into a voltage, and a DC voltage detector for detecting an output voltage of a bidirectional converter 74 and an input voltage detector 71
A bidirectional converter control device 75 which receives the output signals of the current-voltage converter 73 and the DC voltage detector 74, controls the switching elements 63 to 68 so that the AC input current has a sine wave and the power factor is 1, and Is provided.

【0036】そして,蓄電池を充電する場合,双方向コ
ンバータ52のスイッチング素子63〜68が高周波ス
イッチングさせスイッチング素子63〜68のオン時に
入力リアクトル51にエネルギが蓄積し,オフ時に出力
させると,交流入力電流を正弦波状に制御でき,入力電
流は入力電圧に追従して制御され,力率は1にすること
ができる。さらに直流電圧検出器74を検出し,出力設
定値と比較させ,誤差が0になるように制御させること
により双方向コンバータの出力には所望の値の出力を得
ることになる。双方向コンバータ52の出力はそれぞれ
の昇降圧コンバータ5,105,205を介して蓄電池
を充電する。
When the storage battery is charged, the switching elements 63 to 68 of the bidirectional converter 52 perform high-frequency switching to store energy in the input reactor 51 when the switching elements 63 to 68 are on and output when the switching elements 63 to 68 are off. The current can be controlled sinusoidally, the input current is controlled to follow the input voltage, and the power factor can be made unity. Further, the DC voltage detector 74 is detected, compared with the output set value, and controlled so that the error becomes 0, thereby obtaining an output of a desired value as the output of the bidirectional converter. The output of the bidirectional converter 52 charges the storage battery via the respective buck-boost converters 5, 105, 205.

【0037】また,蓄電池を放電する場合,双方向コン
バータ52のスイッチング素子63〜68が高周波スイ
ッチングのオン時にスイッチング素子及び入力リアクト
ルを介して交流電源に回生される。
When the storage battery is discharged, the switching elements 63 to 68 of the bidirectional converter 52 are regenerated to the AC power through the switching element and the input reactor when the high-frequency switching is turned on.

【0038】[0038]

【発明の効果】請求項1乃至4記載の発明の蓄電池用充
放電装置によれば,平滑コンデンサの両端電圧と,蓄電
池の蓄電池電圧に差がある場合,第1電圧検出器により
コンデンサと両端電圧を検出し,第2電圧検出器により
蓄電池の蓄電池電圧を検出する。そして,第1電圧検出
器の検出信号を,第2電圧検出器の検出電圧になるよう
に制御装置を,昇降圧コンバータのスイッチング素子の
制御を行う。これにより,蓄電池からコンデンサへの充
電は徐々に行われ,過大電流は流れることがない。そし
て,従来のように大容量の限流抵抗を設けることも,ま
た限流抵抗と開閉手段を設ける必要もない。
According to the charging / discharging device for a storage battery according to the present invention, when there is a difference between the voltage across the smoothing capacitor and the voltage across the storage battery of the storage battery, the first voltage detector detects the voltage between the capacitor and the both ends. Is detected, and the storage battery voltage of the storage battery is detected by the second voltage detector. The control device controls the switching element of the buck-boost converter so that the detection signal of the first voltage detector becomes the detection voltage of the second voltage detector. As a result, charging of the capacitor from the storage battery is performed gradually, and no excessive current flows. Further, it is not necessary to provide a large-capacity current-limiting resistor as in the prior art, nor to provide a current-limiting resistor and a switching means.

【0039】なお,請求項3記載の発明の蓄電池用充放
電装置では,交流入力電流を正弦波状に制御でき,入力
電流を入力電圧に追従して制御され,力率を1にするこ
とができる。そして,回生電力を有効利用することがで
きる。
In the charging / discharging device for a storage battery according to the third aspect of the invention, the AC input current can be controlled in a sine wave shape, the input current is controlled to follow the input voltage, and the power factor can be set to 1. . And the regenerative power can be used effectively.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の蓄電池用充放電装置の一実施の形態を
示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of a storage battery charge / discharge device of the present invention.

【図2】本発明の蓄電池用充放電装置の他の実施形態を
示すブロック図である。
FIG. 2 is a block diagram showing another embodiment of the storage battery charge / discharge device of the present invention.

【図3】従来の蓄電池用充放電装置のブロック図であ
る。
FIG. 3 is a block diagram of a conventional charge / discharge device for a storage battery.

【符号の説明】[Explanation of symbols]

2 充電用整流回路 3 平滑リアクトル 4 コンデンサ 5,105,205 昇降圧コンバータ 6,13 開閉手段 7 降圧コンバータ用スイッチング素子 8 昇圧コンバータ用スイッチング素子 10,110,210 蓄電池 17,18 フリーホイリングダイオード 22 第1電圧検出器 23 コンバータ制御装置 25 出力設定器 26 平滑コンデンサ 27 第2電圧検出器 2 Charging rectifier circuit 3 Smoothing reactor 4 Capacitor 5, 105, 205 Step-up / step-down converter 6, 13 Opening / closing means 7 Step-down converter switching element 8 Step-up converter switching element 10, 110, 210 Storage battery 17, 18 Free-wheeling diode 22 1 voltage detector 23 converter control device 25 output setting device 26 smoothing capacitor 27 second voltage detector

フロントページの続き Fターム(参考) 5G003 CC02 5H030 AA06 AS20 BB01 BB09 BB21 BB27 DD04 DD12 FF43 Continuation of the front page F term (reference) 5G003 CC02 5H030 AA06 AS20 BB01 BB09 BB21 BB27 DD04 DD12 FF43

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 直流電圧を入力とし出力を制御するスイ
ッチング素子と,上記出力を平滑し,平滑した直流電圧
を蓄電池に印加する平滑コンデンサと,上記平滑コンデ
ンサの両端電圧を検出する第1電圧検出器と,上記蓄電
池の蓄電池電圧を検出する第2電圧検出器と,上記第1
電圧検出器の検出信号を上記第2電圧検出器の検出信号
になるように上記スイッチング素子を制御させる制御装
置を備えた蓄電池用充放電装置。
1. A switching element for controlling an output using a DC voltage as an input, a smoothing capacitor for smoothing the output and applying the smoothed DC voltage to a storage battery, and a first voltage detector for detecting a voltage across the smoothing capacitor. A second voltage detector for detecting a storage battery voltage of the storage battery;
A charge / discharge device for a storage battery, comprising: a control device that controls the switching element so that a detection signal of a voltage detector becomes a detection signal of the second voltage detector.
【請求項2】 交流電源を整流する充電用整流回路と,
この充電用整流回路と逆並列に接続され,蓄電池の電気
量を上記交流電源に回生する回生用整流回路と,上記充
電用整流回路の出力に設けられ出力を制御するスイッチ
ング素子を有する昇降圧コンバータと,上記昇降圧コン
バータの出力を平滑し平滑した直流電圧を上記蓄電池に
印加する平滑コンデンサと,上記平滑コンデンサの両端
電圧を検出する第1電圧検出器と,上記蓄電池の蓄電池
電圧を検出する第2電圧検出器と,上記第1電圧検出器
の検出信号を上記第2電圧検出器の検出信号になるよう
に上記昇降圧コンバータを制御させる昇降圧コンバータ
制御装置を備えた蓄電池用充放電装置。
2. A charging rectifier circuit for rectifying an AC power supply,
A rectifying circuit connected in anti-parallel to the rectifying circuit for charging and regenerating the amount of electricity of the storage battery to the AC power supply, and a step-up / down converter having a switching element provided at the output of the rectifying circuit for charging and controlling the output A smoothing capacitor that smoothes the output of the buck-boost converter and applies a smoothed DC voltage to the storage battery; a first voltage detector that detects a voltage across the smoothing capacitor; and a second voltage detector that detects the storage battery voltage of the storage battery. A charge / discharge device for a storage battery, comprising: a two-voltage detector; and a buck-boost converter control device for controlling the buck-boost converter so that a detection signal of the first voltage detector becomes a detection signal of the second voltage detector.
【請求項3】 交流電源に直列に接続された入力リアク
トルと,この入力リアクトルの出力に設けられた整流器
と,この整流器と逆並列に接続され高周波スイッチング
するスイッチング素子とを有し,上記交流電源を整流す
るとともに,交流入力電流を正弦波状に制御し,かつ蓄
電池の電気量を上記交流電源に回生させる双方向コンバ
ータと,上記双方向コンバータの出力に設けられ,出力
を制御するスイッチング素子を有する昇降圧コンバータ
と,上記昇降圧コンバータの出力を平滑し,平滑した直
流電圧を上記蓄電池に印加する平滑コンデンサと,上記
平滑コンデンサの両端電圧を検出する第1電圧検出器
と,上記蓄電池の蓄電池電圧を検出する第2電圧検出器
と,上記第1電圧検出器の検出信号を上記第2電圧検出
器の検出信号になるように上記昇降圧コンバータを制御
させる昇降圧コンバータ制御装置を備えた蓄電池用充放
電装置。
3. An AC power supply comprising: an input reactor connected in series to an AC power supply; a rectifier provided at an output of the input reactor; and a switching element connected in antiparallel to the rectifier and performing high-frequency switching. A bi-directional converter that rectifies the current and controls the AC input current in a sine wave form and regenerates the amount of electricity in the storage battery to the AC power supply; and a switching element that is provided at the output of the bi-directional converter and controls the output. A buck-boost converter, a smoothing capacitor for smoothing the output of the buck-boost converter and applying a smoothed DC voltage to the storage battery, a first voltage detector for detecting a voltage across the smoothing capacitor, and a storage battery voltage of the storage battery And the detection signal of the first voltage detector becomes the detection signal of the second voltage detector. A charge / discharge device for a storage battery including a buck-boost converter control device for controlling the buck-boost converter.
【請求項4】 上記昇降圧コンバータが入力端と並列に
接続された降圧コンバータ用スイッチング素子と昇圧コ
ンバータ用スイッチング素子との直列回路と,上記両ス
イッチング素子とそれぞれ逆並列に接続されたフリーホ
イリングダイオードと,上記両スイッチング素子の接続
点と出力端との間に設けられたリアクトルとを備えた請
求項2又は3記載の蓄電池用充放電装置。
4. A series circuit of a step-up / down converter switching element and a step-up converter switching element, wherein the step-up / step-down converter is connected in parallel with an input terminal, and a free wheeling connected in anti-parallel with both of the switching elements. 4. The charge / discharge device for a storage battery according to claim 2, further comprising a diode, and a reactor provided between a connection point of the two switching elements and an output terminal.
JP2000181155A 2000-06-16 2000-06-16 Charge / discharge device for storage battery Expired - Fee Related JP4125855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000181155A JP4125855B2 (en) 2000-06-16 2000-06-16 Charge / discharge device for storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000181155A JP4125855B2 (en) 2000-06-16 2000-06-16 Charge / discharge device for storage battery

Publications (2)

Publication Number Publication Date
JP2002010502A true JP2002010502A (en) 2002-01-11
JP4125855B2 JP4125855B2 (en) 2008-07-30

Family

ID=18682131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000181155A Expired - Fee Related JP4125855B2 (en) 2000-06-16 2000-06-16 Charge / discharge device for storage battery

Country Status (1)

Country Link
JP (1) JP4125855B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148531A1 (en) 2006-06-23 2007-12-27 Toyota Jidosha Kabushiki Kaisha Vehicle power supply apparatus and vehicle incorporating the same
WO2008149964A1 (en) 2007-06-06 2008-12-11 Toyota Jidosha Kabushiki Kaisha Power supply unit of vehicle
WO2008153170A1 (en) 2007-06-15 2008-12-18 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle having same, and charge/discharge control method
WO2009054364A1 (en) * 2007-10-23 2009-04-30 Toyota Jidosha Kabushiki Kaisha Electric vehicle
WO2009078328A1 (en) 2007-12-18 2009-06-25 Toyota Jidosha Kabushiki Kaisha Power supply unit for vehicle
US7750505B2 (en) 2006-04-24 2010-07-06 Toyota Jidosha Kabushiki Kaisha Power supply system and vehicle
US7847432B2 (en) 2006-04-24 2010-12-07 Toyota Jidosha Kabushiki Kaisha Power supply system and vehicle
US7923866B2 (en) 2007-01-04 2011-04-12 Toyota Jidosha Kabushiki Kaisha Power supply system and vehicle including the same, and method of controlling the same
US7952224B2 (en) 2006-09-08 2011-05-31 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle including the power supply system, control method for power supply system, and computer-readable recording medium having program recorded thereon for computer to execute the control method
US7956489B2 (en) 2006-03-31 2011-06-07 Toyota Jidosha Kabushiki Kaisha Power supply system and vehicle including the same
US8004109B2 (en) 2007-01-04 2011-08-23 Toyota Jidosha Kabushiki Kaisha Vehicle power supply apparatus, and vehicle
US8039987B2 (en) 2006-09-29 2011-10-18 Toyota Jidosha Kabushiki Kaisha Power source device and vehicle with power source device
US8053921B2 (en) 2007-02-13 2011-11-08 Toyota Jidosha Kabushiki Kaisha Driving force generation system, vehicle using the system, and method for controlling the system
US8072188B2 (en) 2008-03-19 2011-12-06 Sansha Electric Manufacturing Co., Ltd. Power supply device for charge/discharge device, and charge/discharge device
US8183837B2 (en) 2007-06-11 2012-05-22 Toyota Jidosha Kabushiki Kaisha Control device and control method for electric system
US8200384B2 (en) 2007-04-25 2012-06-12 Toyota Jidosha Kabushiki Kaisha Electric apparatus and method of controlling the same
JP2012154793A (en) * 2011-01-26 2012-08-16 Fujitsu Telecom Networks Ltd Charge and discharge test system
US8297391B2 (en) 2006-07-07 2012-10-30 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle provided with the same, power supply system control method and computer-readable recording medium bearing program for causing computer to control the power supply system
US8340932B2 (en) 2007-06-20 2012-12-25 Toyota Jidosha Kabushiki Kaisha Vehicle power supply device and method of estimating state of charge of power storage device in vehicle power supply device
US8344555B2 (en) 2006-11-20 2013-01-01 Toyota Jidosha Kabushiki Kaisha Control device of power supply circuit
US8467924B2 (en) 2008-06-27 2013-06-18 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for hybrid vehicle
JP2013240271A (en) * 2012-05-16 2013-11-28 Lg Electronics Inc Energy storage device and method for operating the same
JP2014102890A (en) * 2012-11-16 2014-06-05 Sansha Electric Mfg Co Ltd Charge and discharge device
US8798826B2 (en) 2007-06-06 2014-08-05 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle including the same, control method for power supply system, and computer-readable recording medium recording program for causing computer to execute the control method
JP2022044228A (en) * 2020-09-07 2022-03-17 トヨタ自動車株式会社 Charging device and method for controlling charging device

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7956489B2 (en) 2006-03-31 2011-06-07 Toyota Jidosha Kabushiki Kaisha Power supply system and vehicle including the same
US7750505B2 (en) 2006-04-24 2010-07-06 Toyota Jidosha Kabushiki Kaisha Power supply system and vehicle
US7847432B2 (en) 2006-04-24 2010-12-07 Toyota Jidosha Kabushiki Kaisha Power supply system and vehicle
US7898103B2 (en) 2006-06-23 2011-03-01 Toyota Jidosha Kabushiki Kaisha Power supply apparatus for vehicle and vehicle incorporating the same
WO2007148531A1 (en) 2006-06-23 2007-12-27 Toyota Jidosha Kabushiki Kaisha Vehicle power supply apparatus and vehicle incorporating the same
US8297391B2 (en) 2006-07-07 2012-10-30 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle provided with the same, power supply system control method and computer-readable recording medium bearing program for causing computer to control the power supply system
US7952224B2 (en) 2006-09-08 2011-05-31 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle including the power supply system, control method for power supply system, and computer-readable recording medium having program recorded thereon for computer to execute the control method
US8039987B2 (en) 2006-09-29 2011-10-18 Toyota Jidosha Kabushiki Kaisha Power source device and vehicle with power source device
US8581448B2 (en) 2006-11-20 2013-11-12 Toyota Jidosha Kabushiki Kaisha Control device of power supply circuit
US8476790B2 (en) 2006-11-20 2013-07-02 Toyota Jidosha Kabushiki Kaisha Control device of power supply circuit
US8471413B2 (en) 2006-11-20 2013-06-25 Toyota Jidosha Kabushiki Kaisha Control device of power supply circuit
US8344555B2 (en) 2006-11-20 2013-01-01 Toyota Jidosha Kabushiki Kaisha Control device of power supply circuit
US7923866B2 (en) 2007-01-04 2011-04-12 Toyota Jidosha Kabushiki Kaisha Power supply system and vehicle including the same, and method of controlling the same
US8004109B2 (en) 2007-01-04 2011-08-23 Toyota Jidosha Kabushiki Kaisha Vehicle power supply apparatus, and vehicle
KR101036267B1 (en) * 2007-01-04 2011-05-23 도요타 지도샤(주) Power supply system, vehicle using the same, and its control method
US8053921B2 (en) 2007-02-13 2011-11-08 Toyota Jidosha Kabushiki Kaisha Driving force generation system, vehicle using the system, and method for controlling the system
US8200384B2 (en) 2007-04-25 2012-06-12 Toyota Jidosha Kabushiki Kaisha Electric apparatus and method of controlling the same
US8798826B2 (en) 2007-06-06 2014-08-05 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle including the same, control method for power supply system, and computer-readable recording medium recording program for causing computer to execute the control method
WO2008149964A1 (en) 2007-06-06 2008-12-11 Toyota Jidosha Kabushiki Kaisha Power supply unit of vehicle
US8143859B2 (en) 2007-06-06 2012-03-27 Toyota Jidosha Kabushiki Kaisha Power supply apparatus for vehicle
US8183837B2 (en) 2007-06-11 2012-05-22 Toyota Jidosha Kabushiki Kaisha Control device and control method for electric system
WO2008153170A1 (en) 2007-06-15 2008-12-18 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle having same, and charge/discharge control method
US8682517B2 (en) 2007-06-15 2014-03-25 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle with the same and charge/discharge control method
US8340932B2 (en) 2007-06-20 2012-12-25 Toyota Jidosha Kabushiki Kaisha Vehicle power supply device and method of estimating state of charge of power storage device in vehicle power supply device
US8222866B2 (en) 2007-10-23 2012-07-17 Toyota Jidosha Kabushiki Kaisha Electrically-powered vehicle
WO2009054364A1 (en) * 2007-10-23 2009-04-30 Toyota Jidosha Kabushiki Kaisha Electric vehicle
WO2009078328A1 (en) 2007-12-18 2009-06-25 Toyota Jidosha Kabushiki Kaisha Power supply unit for vehicle
EP2226215A1 (en) * 2007-12-18 2010-09-08 Toyota Jidosha Kabushiki Kaisha Power supply unit for vehicle
EP2226215A4 (en) * 2007-12-18 2011-11-30 Toyota Motor Co Ltd Power supply unit for vehicle
US8072188B2 (en) 2008-03-19 2011-12-06 Sansha Electric Manufacturing Co., Ltd. Power supply device for charge/discharge device, and charge/discharge device
US8467924B2 (en) 2008-06-27 2013-06-18 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for hybrid vehicle
JP2012154793A (en) * 2011-01-26 2012-08-16 Fujitsu Telecom Networks Ltd Charge and discharge test system
JP2013240271A (en) * 2012-05-16 2013-11-28 Lg Electronics Inc Energy storage device and method for operating the same
JP2014102890A (en) * 2012-11-16 2014-06-05 Sansha Electric Mfg Co Ltd Charge and discharge device
JP2022044228A (en) * 2020-09-07 2022-03-17 トヨタ自動車株式会社 Charging device and method for controlling charging device
JP7302558B2 (en) 2020-09-07 2023-07-04 トヨタ自動車株式会社 Charging device and method for controlling charging device

Also Published As

Publication number Publication date
JP4125855B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
JP2002010502A (en) Charge and discharge device for storage battery
JPH09233710A (en) Charger and discharger for transformation of storage battery
TWI221695B (en) Uninterruptible power system
JP4886487B2 (en) Multi-input / output power converter and fuel cell vehicle
US7148660B2 (en) System and method for power conversion using semiconductor switches having reverse voltage withstand capability
US20210126471A1 (en) System and method for managing charge control of a battery array
JPH0523040B2 (en)
US7098558B2 (en) Starting circuit for power-converting apparatus
TWI467913B (en) Ac motor driving device
JPH06266458A (en) Photovoltaic power generating equipment capable of jointly using battery
JPH09322314A (en) Electric motorcar power supply controller
JP2000262072A (en) Electric power regenerative charging and discharging device
WO2002093730A1 (en) Charge and discharge control device
CN112803476A (en) Method and system for controlling voltage of variable direct current bus of modular multi-level energy storage converter
US20050180180A1 (en) Power supply unit
JPH10155298A (en) Electric motor controlling device and regenerative power processing circuit
JP4000719B2 (en) Charge / discharge device for battery or electric double layer capacitor
JPH11215695A (en) Series-parallel switching type power supply unit
JPH06266455A (en) Photovoltaic power generating equipment capable of jointly using battery
JP3526262B2 (en) Power converter for power storage device
JP3740926B2 (en) Power supply
CN115549267A (en) Charge-discharge multiplexing circuit, control method thereof and portable air conditioner
JP3656779B2 (en) DC-DC converter
JP2002320390A (en) Power storage apparatus
KR101402209B1 (en) Single phase AC load apparatus for regenerating power

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070511

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4125855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees