WO2002093730A1 - Charge and discharge control device - Google Patents

Charge and discharge control device Download PDF

Info

Publication number
WO2002093730A1
WO2002093730A1 PCT/JP2001/003942 JP0103942W WO02093730A1 WO 2002093730 A1 WO2002093730 A1 WO 2002093730A1 JP 0103942 W JP0103942 W JP 0103942W WO 02093730 A1 WO02093730 A1 WO 02093730A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
smoothing capacitor
diode bridge
motor
inverter
Prior art date
Application number
PCT/JP2001/003942
Other languages
French (fr)
Japanese (ja)
Inventor
Hirokazu Nagura
Ikuo Yamato
Sadao Hokari
Hiromi Inaba
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP2002590492A priority Critical patent/JP4284075B2/en
Priority to PCT/JP2001/003942 priority patent/WO2002093730A1/en
Priority to CN01823207.8A priority patent/CN100533946C/en
Publication of WO2002093730A1 publication Critical patent/WO2002093730A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/07DC-DC step-up or step-down converter inserted between the power supply and the inverter supplying the motor, e.g. to control voltage source fluctuations, to vary the motor speed

Definitions

  • the present invention relates to a charge / discharge control device that accompanies a device that drives an electric motor by inversion and performs uninterruptible power control and reuse of regenerative power.
  • the voltage of the secondary battery is raised or lowered by determining whether the motor connected in the inverter is running or regenerating. At the time of power supply, the voltage of the secondary battery is boosted to supply power to the input section of the inverter, and at the time of regeneration, the secondary battery is charged with the regenerated power.
  • FIG. 2 shows a charge / discharge control device when the present invention is not used.
  • the charge / discharge control device shown in FIG. 2 is a step-up chopper that performs step-up control of the step-up switching element S 1 while the step-down switching element S 2 is turned off when the motor 6 is in operation. Operation raises the voltage of secondary battery 8 To supply power to the DC input section of the inverter 3. Further, when the motor 6 is in regenerative operation, the step-down chopper operation for controlling the step-down switching element S2 while the step-up switching element S2 is in the off-state while the step-up switching element S1 is kept off causes the DC of the inverter 3 The voltage of the input section is reduced to charge the secondary battery 8.
  • Such a charge / discharge control device determines whether the charge / discharge control device is to be operated by a step-up or a step-down discharge operation by constantly determining whether the motor load is in a running operation or a regenerative operation. A means for determining is required.
  • FIG. 3 shows the case where the motor 6 is in the power mode, and the waveform 40 shows the state of continuous current and the waveform 41 shows the state of discontinuous current.
  • Fig. 3 (b) shows the case where the motor 6 is in regenerative mode, 42 indicates continuous current and waveform 43 indicates discontinuous current.
  • the equation (3) If the relationship is discontinuous, there is the relationship of equation (4).
  • an object of the present invention is to provide a charge / discharge control device that does not require the determination means and does not require a switching operation with a single control system.
  • One feature of the present invention is that the charge / discharge control device uses S 1 used as a switching element for boosting and S 2 used as a switching element for step-down in a power operation of a motor load. Dead regardless of regenerative operation On / off operation is performed alternately with the time interposed. As a result, the DC reactor current can always be operated continuously, and it is not necessary to detect the discontinuous state of the DC reactor current.
  • the conduction ratio d of the switching element S1 the voltage Vdc between the terminals of the smoothing capacitor 5, and the voltage Vdc between the terminals of the secondary battery 8 can be expressed by a single equation (5). Since the relational expression with bat can be described, it is not necessary to judge the regeneration of power.
  • FIG. 1 is a configuration diagram of a charge / discharge control device showing a first embodiment of the present invention.
  • FIG. 2 is a configuration diagram of a charge / discharge control device when the present invention is not used.
  • FIG. 3 is a waveform diagram of a DC reactor current in the charge / discharge control device shown in FIG.
  • FIG. 4 is a comparison diagram of V dc voltage control characteristics in the charge / discharge control devices shown in FIGS. 1 and 2.
  • FIG. 5 is a diagram illustrating a circuit operation according to the present invention.
  • FIG. 6 is an operation flowchart of the control circuit 21 according to the first embodiment of the present invention.
  • FIG. 7 is a diagram showing a power failure detection means and a motor current detection means in the present invention.
  • FIG. 1 is a configuration diagram of a charge / discharge control device showing a first embodiment of the present invention.
  • FIG. 2 is a configuration diagram of a charge / discharge control device when the present invention is not used.
  • FIG. 3 is
  • FIG. 8 is a diagram showing a constant voltage control system of the V dc voltage in the present invention.
  • FIG. 9 is a diagram for explaining the PWM generation means in the present invention.
  • FIG. 10 is a diagram of a second embodiment in which the present invention is applied to a primary battery system.
  • FIG. 11 is a diagram of a third embodiment in which the present invention is applied to an elevator system.
  • FIG. 12 is a diagram of a third embodiment in which the present invention is applied to an elevator system.
  • Fig. 13 shows another embodiment of the operation of the step-up switching element and the step-down switching element in the charge / discharge control device. It is a figure showing a state.
  • FIG. 1 is a configuration diagram of a charge / discharge control device showing a first embodiment of the present invention.
  • 1 is an AC power supply
  • 2 is a diode bridge connected to the AC power supply 1 and converts alternating current into a DC voltage
  • 5 is a smoothing capacitor for smoothing the output voltage of the diode bridge 2
  • 4 is a smoothing capacitor.
  • Brake circuit that prevents overvoltage of capacitor 5 12 is a voltage detector that detects the voltage between terminals of smoothing capacitor 5, 3 is connected to the AC side of diode bridge 2 via smoothing capacitor 5, and converts DC to AC 6 is a motor connected to the AC side of the inverter 3 and driven by the inverter 3, 100 is a bidirectional buck-boost circuit, 8 is a secondary battery, 7 is a DC reactor, 3 1 and 3 2 are switching elements, D 1 and D 2 are diodes, 9 is a gate drive circuit for driving switching element S 1, 10 is a gate drive circuit for driving switching element S 2, 1 1 Is the AC power supply 1 is a voltage detector for detecting a power failure, 13 is a current detector for detecting the current of the motor 6, 20 is a current detector for detecting the current of the DC reactor 7, and 2 is a current detector. This is a control circuit that controls the entire charge and discharge control device.
  • a power failure detection circuit described later issues a power failure detection signal to the microcomputer on the control circuit 21 based on the signal of the voltage detector 11.
  • the above-described microcomputer starts the duty ratio control of the switching elements S 1 and S 2 in order to control the voltage Vdc between terminals of the smoothing capacitor 5 at a constant voltage. This allows Even if the AC power supply 1 fails, the motor 6 can continue normal operation.
  • the motor 6 If the AC power supply 1 is normal, the motor 6 is in an operating state.If a motor current detection circuit described later detects that the remaining amount of the secondary battery 8 is The voltage control between the terminals of the smoothing capacitor 5 is performed in the same manner as at the time. At this time, by setting the voltage command value of the smoothing capacitor terminal voltage Vdc to a value higher than the voltage value obtained by diode-rectifying the AC power supply 1 described above, the diode bridge 2 is brought into a reverse bias state, and the AC power supply 1 Cut off the current that flows into the DC input section of Room 3 through the diode bridge from. As a result, when the motor 6 operates in the power mode, all the power required for driving the motor is supplied from the secondary battery 8. Conversely, when the electric motor 6 performs the regenerative operation, all of the regenerative electric power is charged in the secondary battery 8. By performing the above operations, the power stored in the secondary battery during regeneration will be actively used during power generation, resulting in an energy saving effect.
  • FIG. 5 (a) is a diagram in which only the main circuit portion of the charge / discharge control device is taken out.
  • 60 represents the inverter and the motor in FIG. 1 as current source loads.
  • IL is the current flowing in DC reactor 7
  • Isi is the current flowing in switching element S1
  • Is2 is the current flowing in switching element S2
  • Id1 is the current flowing in diode D1.
  • I d2 represents the current flowing through the diode D 2.
  • Fig. 5 (b) shows the current waveform of each part in the circuit of Fig. 5 (a) together with the switching pattern when the load current Io is near zero.
  • Tsw indicates the switching period
  • Td indicates the on time of the switching element SI
  • Td indicates the on time of the switching element SI
  • Td indicates the on time of the switching element SI
  • FIG. 4 is an example showing the difference in control characteristics between the device shown in FIG. 1 and the device shown in FIG.
  • Fig. 6 shows a sequence in which control of the V dc voltage is started based on the presence or absence of the motor current.When the motor stops, the switching of S1 and S2 is stopped to suppress the circuit loss due to switching. are doing.
  • the sequence started in step 80 determines in step 81 whether there is a power failure. In the event of a power failure in step 81, the Vdc constant voltage control is started in step 82, and the sequence ends in step 85. On the other hand, if it is determined in step 81 that there is no power outage, Then, the presence or absence of the motor current is determined. If the motor current is present in step 83, the Vdc constant voltage control is started in step 82, and the sequence ends in step 85. On the other hand, if it is determined in step 83 that there is no motor current, the Vdc constant voltage control is stopped, and the sequence ends in step 85.
  • the above sequence shall be started at fixed time intervals (for example, 0.1 second).
  • Fig. 7 (a) 150 is a three-phase diode bridge, 151 is a single-pass filter, 152 is a comparator, 153 is a reference voltage source for setting the power failure detection level, and others.
  • the voltage value of the AC power supply 1 is isolated and stepped down by the voltage detector 11 to generate the three-phase voltage signal Vsdet.
  • Vsdet is subjected to full-wave or half-wave rectification and input to the low-pass filter 151.
  • the DC voltage Vs_act is output to the output of the low-pass filter 15 1 when the AC power supply 1 is normal.
  • the output value is zero.
  • the output of the comparator 15 2 has a high level when the AC power supply is normal and the AC power supply Sometimes low levels are obtained.
  • 160 is a three-phase diode bridge
  • 161 is The low pass filter
  • 162 is the comparator
  • 163 is the reference voltage source for setting the motor current detection level
  • the other numbers are the same as in Fig. 1.
  • the current value of the motor 6 is converted into an insulation and voltage signal by the current detector 13 and input to the low-pass filter 16 1.
  • a value of zero is output to the output of the mouth-to-pass filter 16 1 when the motor 6 is stopped, and a value of zero or more is output when the motor 6 is operating.
  • the output of the comparator 162 has a high level when the motor is stopped. At the time of motor operation, one level is obtained.
  • FIG. 7 (c) is a diagram showing another embodiment of the motor current detection circuit different from FIG. 7 (b).
  • 170 is a single-phase diode bridge
  • 171 is a low-pass filter
  • 172 is a comparator
  • 173 is a reference voltage source for setting the motor current detection level
  • Other numbers are the same as in Fig. 1.
  • the input current value of inverter 3 is converted into an insulation and voltage signal by current detector 175 and input to low-pass filter 171. As a result, zero is output to the output of the low-pass filter 17 1 when the motor 6 is stopped, and a value equal to or greater than zero is output when the motor 6 is operating.
  • the output of the comparator 17 2 has a high level when the motor is stopped. When the motor is running, one level is obtained.
  • Vdc_ref is the Vdc voltage command value
  • Gd is the ON signal of switching element S1
  • Gc is the ON signal of switching element S2
  • 120, 122, and 124 are the upper and lower limit signals.
  • Mitsuba, 121 and 123 are proportional-integral controllers
  • 125 is PWM generation means.
  • reference numeral 126 denotes a Vdc voltage control system
  • reference numeral 127 denotes a DC reactor current control system to which a current command value from the voltage control system 126 is input.
  • the difference between the voltage command value Vdc ref and the actual output voltage Vdc is input to the limiter 120.
  • the proportional integral controller 122 which receives the output of the limiter 120 as an input, calculates a DC reactor current command value that is optimal for bringing Vdc closer to Vdcref.
  • the limiter 1 2 2 which receives the output of the proportional integral controller 1 2 1 as an input has the function of giving the upper and lower limit to the current command value, and the upper limit is set to 8
  • the lower limit value means the charging current limit value of the secondary battery 8.
  • the output value of the limiter 122 is taken as the new current command value IL ref, which is the difference from the actual DC reactor current value IL.
  • the proportional-integral controller 123 using the obtained difference as an input calculates an optimal duty ratio command value for bringing IL close to IL ref.
  • the limiter 124 which receives the output of the proportional integral controller 123, sets the maximum value of the triangular wave signal Sig2 in the PWM generation means described later to the upper limit. You.
  • the minimum value of the triangular wave signal Sigl is set as the lower limit value.
  • 130 is a triangular wave generator
  • 131 and 132 are comparators.
  • the signal S igl obtained by adding the amplitude Vamp generated by the triangular wave generator 130
  • the triangular wave of the period T sw and V ofst is input, and to the positive input terminal of Inputs the signal comp described above.
  • a high level is output to the output terminal Gd of the comparator 13 only when comp> Sigl.
  • the above-mentioned signal comp is inputted to the minus input terminal of the other comparator 132, and the triangular wave signal Sig2 generated by the triangular wave generator 130 is inputted to the plus input terminal of the same comparator.
  • a high level is output to the output terminal G c of the comparator 132 only when comp and Sig2.
  • Vofst satisfying the relationship of equation (6) is input, and when G d and G c are at the high level, the switching elements SI and S 2 are turned on.
  • the logic of the gate drive circuit 9 By setting the logic of the gate drive circuit 9 to be turned on, it is possible to alternately turn on and off the switching elements S1 and S2 at the switching frequency Tsw with the dead time Td interposed therebetween.
  • FIG. 9 (a) shows the waveform of each part in the aforementioned PWM generation means and the state of the switching elements SI and S2.
  • the first embodiment described with reference to FIG. 1 is a case where the AC power supply 1 or the secondary battery 8 is used as a normal power supply, and the secondary battery 8 is used at the time of a power failure.
  • the second embodiment shown in FIG. 10 is a case where the AC power supply 1 and the diode bridge 2 in FIG. 1 are replaced with a primary battery 140.
  • the voltage command value Vdcreff of Vdc is set to a value higher than the output voltage of the primary battery 140.
  • the power of the secondary battery 8 is preferentially used.
  • the electric power of the primary battery is supplied to the motor load 6.
  • FIG. 11 shows a third embodiment in which the present invention is applied to an elevator system.
  • Fig. 11 1 15 1 is a motor shaft, 1 50 is a drive pulley, 1 5 2 is a pulley, 1 5 3 is a counterweight, 1 5 4 is a riding basket, 1 5 5 is a rope, 1 5 6 Is the car call button, 157 is the control circuit of the elevator system, 158 is the signal button of the car button, 159 is the signal circuit from the control circuit of the elevator system, and 1 6 Reference numeral 0 denotes a signal line from the control circuit 157 of the elevator system to inverter 3. In the elevator system shown in Fig. 11, when the car call button 1556 is pressed, the car is driven from the control circuit 1557 of the elevator system to Inver evening 3 and the car is moved.
  • the driving pattern of the electric motor 6 for moving to the calling floor is sent out by the signal line 160.
  • the car will travel from the control circuit 157 of the Elevate overnight system to Inver Evening 3 to move the car to the destination floor.
  • the driving pattern of the electric motor 6 is transmitted by the signal line 160. For this reason, the control device 1 5 7 of the elevator system
  • This state signal is held internally, and this state signal is input to the control circuit 21 via the signal line 159, and the control circuit 21 executes the flowchart shown in FIG. 12 described later.
  • the timing information of the start and stop of the electric motor 6 can be easily obtained as in the case of the elevator, it can be implemented with a simpler configuration than the first embodiment shown in FIG.
  • step 90 determines in step 91 whether or not there is a power failure. If a power failure occurs in step 91, the Vdc constant voltage control is started in step 94, and the sequence ends in step 96. On the other hand, if it is determined in step 91 that there is no power outage, it is determined in step 92 whether the car call button or the destination button has been pressed. If it is not determined in step 92 that the car call button or the destination button has been pressed, the Vdc constant voltage control is stopped in step 95, and the sequence ends in step 96. On the other hand, if it is determined in step 92 that the call button or the destination button has been pressed, it is determined in step 93 whether the vehicle has arrived at the destination floor.
  • step 93 If it is determined in step 93 that the vehicle has arrived at the destination floor, the process proceeds to step 95, in which the Vdc constant voltage control is stopped, and the sequence ends in step 96. On the other hand, if it is not determined in step 93 that the vehicle has arrived at the destination floor, After starting Vdc constant voltage control in step 94, the sequence ends in step 96. It is assumed that the sequence of FIG. 12 described above is started at regular time intervals (for example, 0.1 second).
  • FIG. 13 is a diagram showing another operation example of the boosting switching element S1 and the step-down switching element shown in FIG.
  • the step-up switching element S 1 and the step-down switching element were alternately turned on and off.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

A charge and discharge control device, wherein S1 used as a switching element for pressure rising and S2 used as a switching element for pressure lowering are turned on and off alternately with a dead time provided therebetween irrespective of whether an electric motor load a powering or regenerating operation is performed, whereby a DC reactor current can be operated continuously at all times, and the discontinuous state of the DC reactor current need not be detected.

Description

明 細 書  Specification
充放電制御装置 技術分野  Charge / discharge control device Technical field
本発明は、 インバー夕により電動機を駆動する装置に付随し、 無停電 制御及び回生電力の再利用を行う充放電制御装置に関する。 背景技術  The present invention relates to a charge / discharge control device that accompanies a device that drives an electric motor by inversion and performs uninterruptible power control and reuse of regenerative power. Background art
例えば従来技術として、 特開昭 6 1 — 2 6 7 6 7 5号公報, 特開平 1 1 - 2 9 9 2 7 5号公報がある。  For example, as prior art, there are Japanese Patent Application Laid-Open No. 61-267675 and Japanese Patent Application Laid-Open No. 11-299275.
これら従来技術は、 インバー夕に接続された電動機がカ行か回生かを 判断して、 二次電池の電圧の昇降を行っている。 カ行時には、 二次電池 の電圧を昇圧してインバー夕の入力部に電力を給電し、 回生時には、 回 生電力を二次電池に充電させている。  In these conventional techniques, the voltage of the secondary battery is raised or lowered by determining whether the motor connected in the inverter is running or regenerating. At the time of power supply, the voltage of the secondary battery is boosted to supply power to the input section of the inverter, and at the time of regeneration, the secondary battery is charged with the regenerated power.
特開昭 6 1 - 2 6 7 6 7 5号公報においては、 インバー夕の入力電圧 値を検出し、 予め定めた値との大小関係により電動機のカ行 · 回生を判 定している。 また、 特開平 1 1 一 2 9 9 2 7 5号公報では、 インバー夕 入力側の電圧と電流を検出し、 これらを乗算することにより、 電動機の カ行 · 回生を判定している。 発明の開示  In Japanese Patent Application Laid-Open No. 61-2676775, an input voltage value of an inverter is detected, and power running and regeneration of a motor are determined based on a magnitude relationship with a predetermined value. In Japanese Patent Application Laid-Open No. H11-1299275, the voltage and the current on the input side of the inverter are detected and multiplied by them to determine the power regeneration of the motor. Disclosure of the invention
本発明を利用しない場合の充放電制御装置を第 2図に示す。  FIG. 2 shows a charge / discharge control device when the present invention is not used.
第 2図に示した充放電制御装置は、 電動機 6がカ行時には、 降圧用ス ィ ツチング素子 S 2 をオフにしたまま、 昇圧用スィ ツチング素子 S 1 を チヨ ッ ビング制御する昇圧チヨ ッパ動作により、 二次電池 8の電圧を昇 圧してインバ一タ 3の直流入力部に給電する。 また、 電動機 6が回生時 には、 昇圧用スイッチング素子 S 1 をオフにしたまま、 降圧用スィ ッチ ング素子 S 2をチヨ ッビング制御する降圧チヨ ッパ動作により、 イ ンバ —夕 3の直流入力部の電圧を降圧して二次電池 8に充電する。 このよう な充放電制御装置は、 充放電制御装置を昇圧チヨ ツバ動作させるのか、 降圧チヨ ツバ動作させるのかを決定する為には電動機負荷がカ行動作中 なのか、 回生動作中なのかを常時判定する手段が必要である。 The charge / discharge control device shown in FIG. 2 is a step-up chopper that performs step-up control of the step-up switching element S 1 while the step-down switching element S 2 is turned off when the motor 6 is in operation. Operation raises the voltage of secondary battery 8 To supply power to the DC input section of the inverter 3. Further, when the motor 6 is in regenerative operation, the step-down chopper operation for controlling the step-down switching element S2 while the step-up switching element S2 is in the off-state while the step-up switching element S1 is kept off causes the DC of the inverter 3 The voltage of the input section is reduced to charge the secondary battery 8. Such a charge / discharge control device determines whether the charge / discharge control device is to be operated by a step-up or a step-down discharge operation by constantly determining whether the motor load is in a running operation or a regenerative operation. A means for determining is required.
また、 上記充放電制御装置は、 二次電池 8の充放電に応じて昇圧チヨ ツバ動作または、 降圧チヨ ツバ動作を行うことから、 特に電動機に流れ る電流が小さい場合には、 D Cリアク トル 7に流れる電流が不連続化し、 制御特性が悪化するという問題がある。 この様子を第 3図に示す。 第 3 図において、 I Lは二次電池 8から流れ出る電流を正方向にとった場合 の D Cリアク トル 7に流れる電流を表している。 第 3図 ( a ) は電動機 6がカ行時の場合であり、 波形 4 0は電流連続、 波形 4 1は電流不連続 の様子を表している。 このとき、 スイ ッチング素子 S 1の通流率 dと平 滑コンデンサ 5の端子間電圧 Vdcと二次電池 8の端子間電圧 V bat との 間には、 電流連続の場合には式 ( 1 ) の関係が、 電流不連続の場合には 式 ( 2 ) の関係がある。  In addition, since the above-mentioned charge / discharge control device performs a booster operation or a step-down operation according to the charging / discharging of the secondary battery 8, especially when the current flowing to the motor is small, the DC reactor There is a problem that the current flowing through the device becomes discontinuous and the control characteristics deteriorate. This is shown in FIG. In FIG. 3, IL represents the current flowing in the DC reactor 7 when the current flowing from the secondary battery 8 is taken in the positive direction. FIG. 3 (a) shows the case where the motor 6 is in the power mode, and the waveform 40 shows the state of continuous current and the waveform 41 shows the state of discontinuous current. At this time, between the conduction ratio d of the switching element S1, the voltage Vdc between the terminals of the smoothing capacitor 5 and the voltage Vbat between the terminals of the secondary battery 8, in the case of continuous current, the equation (1) If the relationship is discontinuous, there is the relationship of equation (2).
Vbat  Vbat
Vdc = ··· ( 1 )  Vdc = ... (1)
1 - d  1-d
Vbat2 d 2 Tsw Vbat 2 d 2 Tsw
Vdc= + Vbat … ( 2 )  Vdc = + Vbat… (2)
2 I oL  2 I oL
(但し、 L : D Cリアク トル値、 I o : ィ ンバ一夕電流値、 Tsw: ス イ ッチング周期)  (However, L: DC reactor value, Io: Inverter current value, Tsw: Switching cycle)
これに対して、 第 3図 ( b) は電動機 6が回生時の場合であり、 波形 4 2は電流連続、 波形 4 3は電流不連続の様子を表している。 このとき、 スイ ッチング素子 S 2の通流率 d ' と平滑コンデンサ 5の端子間電圧 Vdcと二次電池 8の端子間電圧 Vbat との間には、 電流連続の場合には 式 ( 3 ) の関係が、 電流不連続の場合には式 ( 4 ) の関係がある。 On the other hand, Fig. 3 (b) shows the case where the motor 6 is in regenerative mode, 42 indicates continuous current and waveform 43 indicates discontinuous current. At this time, between the conduction ratio d 'of the switching element S2 and the terminal voltage Vdc of the smoothing capacitor 5 and the terminal voltage Vbat of the secondary battery 8, in the case of continuous current, the equation (3) If the relationship is discontinuous, there is the relationship of equation (4).
Vbat  Vbat
Vdc = … ( 3 )  Vdc =… (3)
d '  d '
Figure imgf000005_0001
以上式 ( 1 ) 〜 (4) で示されるように、 チヨ ッパ動作においては D Cリアク 卜ル 7に流れる電流が連続の場合と不連続の場合とで、 通流 率 dまたは d ' に対する平滑コンデンサ 5の端子間電圧 Vdcの関係式が 異なる。 また、 D Cリアク トル 7に流れる電流が不連続の場合において も、 昇圧チヨ ッパ動作の場合と、 降圧チヨ ツバ動作の場合とでは、 通流 率 dまたは d ' に対する平滑コンデンサ 5の端子間電圧 Vdcの関係式が 全く異なる。 このため、 上記装置においては、 D Cリ アク トル 7に流れ る電流が連続なのか不連続なのかを判定し、 その結果に応じて制御系を 切り替える手段や、 電動機負荷 6がカ行動作中なのか回生動作中なのか を判定し、 その結果に応じて昇圧 降圧チヨ ツバを切り替える手段が不 可欠である。
Figure imgf000005_0001
As shown by the above equations (1) to (4), in the chopper operation, the smoothing of the conduction ratio d or d 'depends on whether the current flowing through the DC reactor 7 is continuous or discontinuous. The relational expression of voltage Vdc between terminals of capacitor 5 is different. Further, even when the current flowing through the DC reactor 7 is discontinuous, the voltage between the terminals of the smoothing capacitor 5 with respect to the conduction ratio d or d 'is different between the case of the step-up chopper operation and the case of the step-down chopper operation. The relational expression of Vdc is completely different. For this reason, in the above-described device, it is determined whether the current flowing in the DC reactor 7 is continuous or discontinuous, and a means for switching the control system according to the result is determined. It is indispensable to judge whether the motor is in operation or regenerative operation, and to switch the booster / down converter according to the result.
そこで、 本発明は、 上記判定手段を不要とし、 且つ、 単一の制御系で 切り替え動作の要らない充放電制御装置を提供することを目的とする。 本発明の 1つの特徴は、 上記充放電制御装置で昇圧用スィツチング素 子として使用されていた S 1 と、 降圧用スィ ツチング素子として使用さ れていた S 2を、 電動機負荷のカ行動作, 回生動作に関わらず、 デッ ド タイムを挟んで交互にオンノオフ動作させる。 これにより、 D Cリアク トル電流を常に連続動作させることが可能となり D Cリアク トル電流の 不連続状態の検出が不要となる。 更に、 D Cリアク トル電流の大小方向 に関係なく、 単一の式 ( 5 ) でスイッチング素子 S 1の通流率 dと平滑 コンデンサ 5の端子間電圧 V d cと二次電池 8の端子間電圧 V b a t との関 係式が記述できる為、 カ行 回生の判定が不要となる。 Therefore, an object of the present invention is to provide a charge / discharge control device that does not require the determination means and does not require a switching operation with a single control system. One feature of the present invention is that the charge / discharge control device uses S 1 used as a switching element for boosting and S 2 used as a switching element for step-down in a power operation of a motor load. Dead regardless of regenerative operation On / off operation is performed alternately with the time interposed. As a result, the DC reactor current can always be operated continuously, and it is not necessary to detect the discontinuous state of the DC reactor current. Further, regardless of the direction of the DC reactor current, the conduction ratio d of the switching element S1, the voltage Vdc between the terminals of the smoothing capacitor 5, and the voltage Vdc between the terminals of the secondary battery 8 can be expressed by a single equation (5). Since the relational expression with bat can be described, it is not necessary to judge the regeneration of power.
V ba t  V ba t
V d c = - ( 5 )  V d c =-(5)
- d 図面の簡単な説明  -brief description of the d drawing
第 1図は、 本発明の第一の実施形態を示す充放電制御装置の構成図で ある。 第 2図は、 本発明を利用しない場合の充放電制御装置の構成図で ある。 第 3図は、 第 2図に示した充放電制御装置における D Cリアク ト ル電流の波形図である。 第 4図は、 第 1図と第 2図に示した充放電制御 装置における V dc 電圧制御特性の比較図である。 第 5図は、 本発明に おける回路動作を説明する図である。 第 6図は、 本発明の第一の実施形 態における制御回路 2 1の動作フローチャート図である。 第 7図は、 本 発明における停電検出手段および電動機電流検出手段を表す図である。 第 8図は、 本発明における V dc 電圧の定電圧制御系を表す図である。 第 9図は、 本発明における P W M発生手段を説明する図である。 第 1 0 図は、 本発明を一次電池システムに適用した場合の第二の実施形態図で ある。 第 1 1図は、 本発明をエレべ一夕システムに適用した場合の第三 の実施形態図である。 第 1 2図は、 本発明をエレべ一夕システムに適用 した場合の第三の実施形態図である。 第 1 3図は、 充放電制御装置にお ける昇圧スイッチング素子と降圧スイッチング素子の動作の他の実施形 態を示す図である。 FIG. 1 is a configuration diagram of a charge / discharge control device showing a first embodiment of the present invention. FIG. 2 is a configuration diagram of a charge / discharge control device when the present invention is not used. FIG. 3 is a waveform diagram of a DC reactor current in the charge / discharge control device shown in FIG. FIG. 4 is a comparison diagram of V dc voltage control characteristics in the charge / discharge control devices shown in FIGS. 1 and 2. FIG. 5 is a diagram illustrating a circuit operation according to the present invention. FIG. 6 is an operation flowchart of the control circuit 21 according to the first embodiment of the present invention. FIG. 7 is a diagram showing a power failure detection means and a motor current detection means in the present invention. FIG. 8 is a diagram showing a constant voltage control system of the V dc voltage in the present invention. FIG. 9 is a diagram for explaining the PWM generation means in the present invention. FIG. 10 is a diagram of a second embodiment in which the present invention is applied to a primary battery system. FIG. 11 is a diagram of a third embodiment in which the present invention is applied to an elevator system. FIG. 12 is a diagram of a third embodiment in which the present invention is applied to an elevator system. Fig. 13 shows another embodiment of the operation of the step-up switching element and the step-down switching element in the charge / discharge control device. It is a figure showing a state.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の第 1の実施の形態を図面により説明する。  Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
第 1図は、 本発明の第 1の実施形態を示す充放電制御装置の構成図で ある。  FIG. 1 is a configuration diagram of a charge / discharge control device showing a first embodiment of the present invention.
第 1図において、 1 は交流電源、 2は交流電源 1 に接続され交流を直 流電圧に変換するダイォードブリ ッジ、 5はダイォードブリ ッジ 2の出 力電圧を平滑化する平滑コンデンサ、 4は平滑コンデンサ 5の過電圧を 防止するブレーキ回路、 1 2は平滑コンデンサ 5の端子間電圧を検出す る電圧検出器、 3は平滑コンデンサ 5を介してダイオードブリッジ 2の 交流側に接続され直流を交流に変換するインバー夕、 6はインバ一タ 3 の交流側に接続されインバ一夕 3により駆動される電動機、 1 0 0は双 方向性の昇降圧回路、 8は二次電池、 7は D Cリアク トル、 3 1 と 3 2 はスイッチング素子、 D 1 と D 2はダイオード、 9はスイッチング素子 S 1 を駆動するためのゲート駆動回路、 1 0はスイッチング素子 S 2 を 駆動するためのゲート駆動回路、 1 1は交流電源 1の停電を検出するた めの電圧検出器、 1 3は電動機 6の電流を検出するための電流検出器、 2 0は D Cリアク トル 7の電流を検出するための電流検出器、 2 1は充 放電制御装置全体の制御を司る制御回路である。  In FIG. 1, 1 is an AC power supply, 2 is a diode bridge connected to the AC power supply 1 and converts alternating current into a DC voltage, 5 is a smoothing capacitor for smoothing the output voltage of the diode bridge 2, and 4 is a smoothing capacitor. Brake circuit that prevents overvoltage of capacitor 5, 12 is a voltage detector that detects the voltage between terminals of smoothing capacitor 5, 3 is connected to the AC side of diode bridge 2 via smoothing capacitor 5, and converts DC to AC 6 is a motor connected to the AC side of the inverter 3 and driven by the inverter 3, 100 is a bidirectional buck-boost circuit, 8 is a secondary battery, 7 is a DC reactor, 3 1 and 3 2 are switching elements, D 1 and D 2 are diodes, 9 is a gate drive circuit for driving switching element S 1, 10 is a gate drive circuit for driving switching element S 2, 1 1 Is the AC power supply 1 is a voltage detector for detecting a power failure, 13 is a current detector for detecting the current of the motor 6, 20 is a current detector for detecting the current of the DC reactor 7, and 2 is a current detector. This is a control circuit that controls the entire charge and discharge control device.
以上の構成において、 交流電源 1が停電となった場合には、 後述する 停電検出回路が電圧検出器 1 1 の信号を基に停電検出信号を制御回路 2 1上のマイコンに対して発行する。 この停電検出信号を受けた前述の マイコンは、 平滑コンデンサ 5の端子間電圧 V d cを定電圧制御するため に、 スィツチング素子 S 1 と S 2の通流率制御を開始する。 これにより、 交流電源 1が停電した場合でも、 電動機 6は通常の運転を継続すること が可能となる。 In the above configuration, when the AC power supply 1 has a power failure, a power failure detection circuit described later issues a power failure detection signal to the microcomputer on the control circuit 21 based on the signal of the voltage detector 11. Upon receiving the power failure detection signal, the above-described microcomputer starts the duty ratio control of the switching elements S 1 and S 2 in order to control the voltage Vdc between terminals of the smoothing capacitor 5 at a constant voltage. This allows Even if the AC power supply 1 fails, the motor 6 can continue normal operation.
また、 交流電源 1が正常な場合には、 電動機 6が運転状態であること を、 後述する電動機電流検出回路が検出した場合には、 二次電池 8の残 量が過不足でなければ、 停電時と同様に平滑コンデンサ 5の端子間電圧 制御を行う。 このとき、 平滑コンデンサ端子間電圧 Vdcの電圧指令値を、 前述の交流電源 1 をダイオード整流した電圧値より も高い値に設定する ことで、 ダイオードブリ ッジ 2を逆バイアス状態とし、 交流電源 1から ダイォードブリ ッジを通してィンバ一夕 3の直流入力部に流入する電流 を遮断する。 これにより、 電動機 6がカ行動作時には二次電池 8から電 動機駆動に必要な全ての電力が供給される。 反対に電動機 6が回生動作 時には、 回生電力の全てが二次電池 8に充電される。 以上の動作を行う ことにより、 回生時に二次電池に蓄えられた電力が、 カ行時には積極的 に利用されることとなり、 省エネ効果をもたらす。  If the AC power supply 1 is normal, the motor 6 is in an operating state.If a motor current detection circuit described later detects that the remaining amount of the secondary battery 8 is The voltage control between the terminals of the smoothing capacitor 5 is performed in the same manner as at the time. At this time, by setting the voltage command value of the smoothing capacitor terminal voltage Vdc to a value higher than the voltage value obtained by diode-rectifying the AC power supply 1 described above, the diode bridge 2 is brought into a reverse bias state, and the AC power supply 1 Cut off the current that flows into the DC input section of Room 3 through the diode bridge from. As a result, when the motor 6 operates in the power mode, all the power required for driving the motor is supplied from the secondary battery 8. Conversely, when the electric motor 6 performs the regenerative operation, all of the regenerative electric power is charged in the secondary battery 8. By performing the above operations, the power stored in the secondary battery during regeneration will be actively used during power generation, resulting in an energy saving effect.
次に第 5図を用いて本発明の動作原理を説明する。  Next, the operation principle of the present invention will be described with reference to FIG.
第 5図 ( a) は充放電制御装置の主回路部だけを取り出した図である。 この図において、 6 0は第 1図におけるイ ンバー夕と電動機を電流源負 荷として表現したものである。 また、 I Lは D Cリアク トル 7に流れる 電流を、 I siはスイ ッチング素子 S 1 に流れる電流を、 I s2はスィ ッチ ング素子 S 2に流れる電流を、 I d 1はダイオー ド D 1に流れる電流を、 I d2はダイオー ド D 2に流れる電流を表している。 第 5図 ( b ) は負荷 電流 I o が零近傍の場合について、 第 5図 ( a ) の回路における各部の 電流波形をスイ ッチングパターンと共に表したものである。 この図にお いて、 Tswはスイ ッチング周期を、 Td はスイ ッチング素子 S I のオン 時間を示しており、 通流率 dに対して、 Td = d XTswの関係を持つ。 波形 6 3の I L電流波形に見られるように、 本方式では、 負荷電流が 零近傍であっても、 I Lが不連続にはならない。 これは、 スイ ッチング 素子 S 1 と S 2 を交互にオン/オフさせていることで、 リアク トル電流 の向きが従来方式のようにダイオー ドにより拘束されるモー ドが発生し ないことによる。 さらに、 I Lの向きに関係なく出力電圧 V d cが単一の 式 ( 5 ) で記述できることから、 カ行 回生を判定する手段が不要とな つた。 FIG. 5 (a) is a diagram in which only the main circuit portion of the charge / discharge control device is taken out. In this figure, 60 represents the inverter and the motor in FIG. 1 as current source loads. IL is the current flowing in DC reactor 7, Isi is the current flowing in switching element S1, Is2 is the current flowing in switching element S2, and Id1 is the current flowing in diode D1. I d2 represents the current flowing through the diode D 2. Fig. 5 (b) shows the current waveform of each part in the circuit of Fig. 5 (a) together with the switching pattern when the load current Io is near zero. In this figure, Tsw indicates the switching period, Td indicates the on time of the switching element SI, and has a relation of Td = dXTsw with respect to the conduction ratio d. As can be seen from the IL current waveform of waveform 63, in this method, the IL does not become discontinuous even when the load current is near zero. This is because the switching elements S1 and S2 are alternately turned on / off, and there is no mode in which the direction of the reactor current is restricted by the diode as in the conventional method. Furthermore, since the output voltage V dc can be described by a single equation (5) regardless of the direction of IL, there is no need for a means for determining power regeneration.
第 4図は第 1 に示した装置と第 2図に示した装置との制御特性の相違 を表す一例である。 第 4図において、 グラフ 5 0は従来方式で通流率 d = 0 . 5 の一定値で昇圧チヨ ッパ制御した時の負荷電流に対する出力電 圧 V dcの特性である。 また、グラフ 5 1 は従来方式で通流率 d = 0 . 5 の 一定値で降圧チヨ ッパ制御した時の負荷電流に対する出力電圧 V d cの特 性である。 これらのグラフから、 従来方式は負荷電流 I o が零の点で、 制御特性が不連続であることが分かる。 これに対して本発明では、 通流 率 d = 0 . 5 の時の特性はグラフ 5 2のように、 負荷電流 ϊ ο に関係な く連続、 且つ一定値となることが分かる。  FIG. 4 is an example showing the difference in control characteristics between the device shown in FIG. 1 and the device shown in FIG. In FIG. 4, a graph 50 shows a characteristic of the output voltage Vdc with respect to the load current when the step-up chopper control is performed at a constant value of the conduction ratio d = 0.5 in the conventional method. Graph 51 shows the characteristics of the output voltage Vdc with respect to the load current when the step-down chopper control is performed at a constant value of the conduction ratio d = 0.5 in the conventional method. From these graphs, it can be seen that in the conventional method, the control characteristics are discontinuous at the point where the load current I o is zero. On the other hand, according to the present invention, it can be seen that the characteristic at the time of the conduction ratio d = 0.5 is a continuous and constant value irrespective of the load current οο as shown in a graph 52.
次に、 第 6図のフローチャー トを用いて制御回路 2 1 の動作を説明す る。  Next, the operation of the control circuit 21 will be described using the flowchart of FIG.
第 6図は電動機電流の有無に基づいて V dc電圧の制御を開始するシ一 ケンスであり、 電動機停止時には S 1および S 2のスイ ッチングを停止 することにより、 スイ ッチングに伴う回路損失を抑制している。 第 6図 において、 ステップ 8 0で起動されたシーケンスはステップ 8 1 で停電 の有無を判定する。 ステップ 8 1で停電の場合には、 ステップ 8 2で V d c定電圧制御を開始した後、 ステップ 8 5でシーケンスを終了する。 一方、 ステップ 8 1で停電でないと判定した場合には、 ステップ 8 3 に おいて電動機電流の有無を判定する。 ステップ 8 3で電動機電流が有り の場合には、 ステップ 8 2で Vdc定電圧制御を開始した後、 ステップ 8 5でシーケンスを終了する。 一方、 ステップ 8 3で電動機電流無しと 判定した場合には、 Vdc定電圧制御を停止状態にした後、 ステップ 8 5 でシーケンスを終了する。 以上のシーケンスは一定時間間隔 (例えば 0.1 秒) 間隔で起動するものとする。 Fig. 6 shows a sequence in which control of the V dc voltage is started based on the presence or absence of the motor current.When the motor stops, the switching of S1 and S2 is stopped to suppress the circuit loss due to switching. are doing. In FIG. 6, the sequence started in step 80 determines in step 81 whether there is a power failure. In the event of a power failure in step 81, the Vdc constant voltage control is started in step 82, and the sequence ends in step 85. On the other hand, if it is determined in step 81 that there is no power outage, Then, the presence or absence of the motor current is determined. If the motor current is present in step 83, the Vdc constant voltage control is started in step 82, and the sequence ends in step 85. On the other hand, if it is determined in step 83 that there is no motor current, the Vdc constant voltage control is stopped, and the sequence ends in step 85. The above sequence shall be started at fixed time intervals (for example, 0.1 second).
次に制御回路 2 1内部の停電検出回路の構成と動作を第 7図 ( a ) に より説明する。  Next, the configuration and operation of the power failure detection circuit in the control circuit 21 will be described with reference to FIG. 7 (a).
第 7図 ( a ) において、 1 5 0は三相ダイオー ドブリ ッジ、 1 5 1 は 口一パスフィル夕、 1 5 2はコンパレータ、 1 5 3は停電検出レベル設 定用の基準電圧源、 その他の番号は第 1図と同一である。 交流電源 1 の 電圧値を、 電圧検出器 1 1で絶縁および降圧し、 三相電圧信号 Vsdetを 生成する。 ダイオー ドブリ ッジ 1 5 0では、 V sdetを全波整流もしく は 半波整流し、 ローパスフィル夕 1 5 1へ入力する。 この結果、 ローパス フィルタ 1 5 1の出力には、 交流電源 1が正常な時には直流電圧 Vs_act が出力される。 これに対して、 交流電源 1が停電の時には出力値は零と なる。 そこで、 ローパスフィルタ 1 5 1 の出力値と Vshut< Vs_act な る Vshutとをコンパレータ 1 5 2で比較することにより、 コンパレータ 1 5 2の出力には交流電源が正常時にはハイ レベルが、 交流電源が停電 時にはローレベルが得られる。 こう して生成されたコンパレータ 1 5 2 の出力信号をマイコンの入力端子に接続することにより、 停電の発生を マイコンに認識させることが可能となる。  In Fig. 7 (a), 150 is a three-phase diode bridge, 151 is a single-pass filter, 152 is a comparator, 153 is a reference voltage source for setting the power failure detection level, and others. Are the same as those in FIG. The voltage value of the AC power supply 1 is isolated and stepped down by the voltage detector 11 to generate the three-phase voltage signal Vsdet. In the diode bridge 150, Vsdet is subjected to full-wave or half-wave rectification and input to the low-pass filter 151. As a result, the DC voltage Vs_act is output to the output of the low-pass filter 15 1 when the AC power supply 1 is normal. On the other hand, when AC power supply 1 is out of power, the output value is zero. Therefore, by comparing the output value of the low-pass filter 15 1 with Vshut that satisfies Vshut <Vs_act, the output of the comparator 15 2 has a high level when the AC power supply is normal and the AC power supply Sometimes low levels are obtained. By connecting the output signal of the comparator 152 thus generated to the input terminal of the microcomputer, it becomes possible for the microcomputer to recognize the occurrence of a power failure.
次に同じく制御回路 2 1内部の電動機電流検出回路の構成と動作を第 7図 ( b ) により説明する。  Next, the configuration and operation of the motor current detection circuit in the control circuit 21 will be described with reference to FIG. 7 (b).
第 7図 ( b ) において、 1 6 0は三相ダイオードブリ ッジ、 1 6 1 は ローパスフィル夕、 1 6 2はコンパレー夕、 1 6 3は電動機電流検出レ ベル設定用の基準電圧源、 その他の番号は第 1図と同一である。 電動機 6の電流値を、 電流検出器 1 3で絶緣および電圧信号へ変換し、 ローバ スフィルタ 1 6 1へ入力する。 この結果、 口一パスフィル夕 1 6 1の出 力には、 電動機 6が停止時には零が、 電動機 6が運転時には零以上の値 が出力される。 そこで、 ローパスフィルタ 1 6 1の出力値と Vacし ac〉 0なる Vacし acとをコンパレー夕 1 6 2で比較することにより、 コンパ レー夕 1 6 2の出力には電動機停止時にはハイ レベルが、 電動機運転時 には口一レベルが得られる。 こう して生成されたコンパレータ 1 6 2の 出力信号をマイコンの入力端子に接続することにより、 電動機電流の有 無 (即ち電動機が運転中か否か) をマイコンに認識させることが可能と なる。 In FIG. 7 (b), 160 is a three-phase diode bridge, and 161 is The low pass filter, 162 is the comparator, 163 is the reference voltage source for setting the motor current detection level, and the other numbers are the same as in Fig. 1. The current value of the motor 6 is converted into an insulation and voltage signal by the current detector 13 and input to the low-pass filter 16 1. As a result, a value of zero is output to the output of the mouth-to-pass filter 16 1 when the motor 6 is stopped, and a value of zero or more is output when the motor 6 is operating. Thus, by comparing the output value of the low-pass filter 16 1 with the Vac and ac> 0 Vac and ac at the comparator 162, the output of the comparator 162 has a high level when the motor is stopped. At the time of motor operation, one level is obtained. By connecting the output signal of the comparator 162 thus generated to the input terminal of the microcomputer, the microcomputer can recognize whether or not the motor current is present (that is, whether or not the motor is operating).
第 7図 ( c ) は電動機電流検出回路の第 7図 ( b) とは別の実施の形 態を表す図である。 第 7図 ( c ) において、 1 7 0は単相ダイオー ドブ リ ッジ、 1 7 1 はローパスフィル夕、 1 7 2はコンパレー夕、 1 7 3は 電動機電流検出レベル設定用の基準電圧源、 その他の番号は第 1 図と同 一である。 イ ンバー夕 3の入力電流値を、 電流検出器 1 7 5で絶縁およ び電圧信号へ変換し、 ローパスフィル夕 1 7 1へ入力する。 この結果、 ローパスフィルタ 1 7 1の出力には、 電動機 6が停止時には零が、 電動 機 6が運転時には零以上の値が出力される。 そこで、 口一パスフィルタ 1 7 1の出力値と Vacし dc〉 0なる Vacし dcとをコンパレー夕 1 7 2で 比較することにより、 コンパレータ 1 7 2の出力には電動機停止時には ハイ レベルが、 電動機運転時には口一レベルが得られる。 こう して生成 されたコンパレータ 1 7 2の出力信号をマイコンの入力端子に接続する ことにより、 電動機電流の有無 (即ち電動機が運転中か否か) をマイコ ンに認識させることが可能となる。 FIG. 7 (c) is a diagram showing another embodiment of the motor current detection circuit different from FIG. 7 (b). In Fig. 7 (c), 170 is a single-phase diode bridge, 171 is a low-pass filter, 172 is a comparator, 173 is a reference voltage source for setting the motor current detection level, Other numbers are the same as in Fig. 1. The input current value of inverter 3 is converted into an insulation and voltage signal by current detector 175 and input to low-pass filter 171. As a result, zero is output to the output of the low-pass filter 17 1 when the motor 6 is stopped, and a value equal to or greater than zero is output when the motor 6 is operating. Therefore, by comparing the output value of the single-pass filter 17 1 with the output value of Vac and dc> 0, Vac and dc in the comparator 17 2, the output of the comparator 17 2 has a high level when the motor is stopped. When the motor is running, one level is obtained. By connecting the output signal of the comparator 172 generated in this way to the input terminal of the microcomputer, the presence or absence of the motor current (that is, whether or not the motor is operating) is determined by the microcomputer. Can be recognized.
次に第 8図を用いて、 Vdc定電圧制御系の動作を説明する。  Next, the operation of the Vdc constant voltage control system will be described with reference to FIG.
第 8図において、 Vdc_refは Vdc電圧指令値、 Gd はスイ ッチング素 子 S 1のオン信号、 Gc はスイ ッチング素子 S 2のオン信号、 1 2 0 と 1 2 2 と 1 2 4は上限下限リ ミ ツ夕、 1 2 1 と 1 2 3は比例積分型制御 器、 1 2 5は PWM発生手段である。 第 8図において、 1 2 6が Vdc電 圧制御系を、 1 2 7が電圧制御系 1 2 6からの電流指令値を入力とする D Cリアク トル電流制御系を形成している。  In FIG. 8, Vdc_ref is the Vdc voltage command value, Gd is the ON signal of switching element S1, Gc is the ON signal of switching element S2, and 120, 122, and 124 are the upper and lower limit signals. Mitsuba, 121 and 123 are proportional-integral controllers, and 125 is PWM generation means. In FIG. 8, reference numeral 126 denotes a Vdc voltage control system, and reference numeral 127 denotes a DC reactor current control system to which a current command value from the voltage control system 126 is input.
電圧指令値 Vdc ref と実際の出力電圧 Vdcとの差をリ ミ ッタ 1 2 0 に 入力する。 ここで上限下限リ ミ ッ トすることにより、 後段に控える比例 積分型制御器 1 2 1の積分値が増大し過ぎるのを防止している。 リ ミ ツ 夕 1 2 0の出力を入力とする比例積分制御器 1 2 1 は、 Vdcを Vdcref に近づけるのに最適な D Cリアク トル電流指令値を算出する。 比例積分 制御器 1 2 1の出力を入力とするリ ミ ッタ 1 2 2は電流指令値に上限下 限リ ミツ トを与える働きをしており、 上限リ ミ ツ ト値は二次電池 8の放 電電流制限値を、 下限リ ミ ッ ト値は二次電池 8の充電電流制限値を意味 している。 これら充放電電流の制限値は、 二次電池 8の残量に応じて一 定時間間隔(例えば 0. 1秒間隔) で更新される。 これにより、 二次電池 の残量が少ない場合には放電の抑制を、 二次電池の残量が過剰な場合に は充電の抑制を行う ことが可能となる。 リ ミ ッタ 1 2 2の出力値は新た な電流指令値 I L ref として実際の D C リ アク トル電流値 I Lとの差分 が取られる。 ここで得られた差分を入力とする比例積分型制御器 1 2 3 は、 I Lを I L refに近づけるのに最適な通流率指令値を算出する。 比 例積分制御器 1 2 3の出力を入力とするリ ミ ッタ 1 2 4は、 その上限値 に後述する PWM発生手段における三角波信号 S ig2の最大値を設定す る。 また、 その下限値には三角波信号 S iglの最小値を設定する。 この リ ミ ツ 卜処理を施すことにより、 リ ミッタ 1 2 4の出力信号 compを基に 生成されるスイ ッチング信号の通流率が零または 1 になることを防止し ている。 The difference between the voltage command value Vdc ref and the actual output voltage Vdc is input to the limiter 120. By limiting the upper and lower limits here, the integral value of the proportional integral type controller 1221, which is provided in the subsequent stage, is prevented from being excessively increased. The proportional integral controller 122, which receives the output of the limiter 120 as an input, calculates a DC reactor current command value that is optimal for bringing Vdc closer to Vdcref. The limiter 1 2 2 which receives the output of the proportional integral controller 1 2 1 as an input has the function of giving the upper and lower limit to the current command value, and the upper limit is set to 8 The lower limit value means the charging current limit value of the secondary battery 8. These charge / discharge current limit values are updated at fixed time intervals (for example, at 0.1 second intervals) according to the remaining amount of the secondary battery 8. This makes it possible to suppress the discharge when the remaining amount of the secondary battery is small, and to suppress the charging when the remaining amount of the secondary battery is excessive. The output value of the limiter 122 is taken as the new current command value IL ref, which is the difference from the actual DC reactor current value IL. The proportional-integral controller 123 using the obtained difference as an input calculates an optimal duty ratio command value for bringing IL close to IL ref. The limiter 124, which receives the output of the proportional integral controller 123, sets the maximum value of the triangular wave signal Sig2 in the PWM generation means described later to the upper limit. You. The minimum value of the triangular wave signal Sigl is set as the lower limit value. By performing this limit processing, the duty ratio of the switching signal generated based on the output signal comp of the limiter 124 is prevented from becoming zero or one.
次にリ ミ ッタ 1 2 4の出力信号 compを入力とする PWM発生手段 125 の構成および動作を第 9図を用いて説明する。 第 9図 ( b ) の PWM発 生手段の回路構成図において、 1 3 0は三角波発生器、 1 3 1 と 1 3 2 はコンパレータである。 コンパレータ 1 3 1のマイナス入力端子には三 角波発生器 1 3 0の発生する振幅 Vamp、 周期 T swの三角波と V o f s tと を加算した信号 S igl を入力、 また同コンパレータのプラス入力端子に は、 前述の信号 compを入力している。 これにより、 コンパレ一夕 1 3 1 の出力端子 G dには comp〉 S iglの時に限りハイ レベルが出力される。 他方のコンパレータ 1 3 2のマイナス入力端子には、 前述の信号 compを 入力、 また同コンパレータのプラス入力端子には三角波発生器 1 3 0の 発生する三角波信号 S ig2を入力している。 これにより、 コンパレー夕 1 3 2の出力端子 G cには compく S ig2の時に限りハイ レベルが出力さ れる。 以上説明した第 9図 ( b ) の回路に対して、 式 ( 6 ) の関係を満 たす Vofstを入力し、 さらに G d , G cがハイ レベルの時にスィ ッチン グ素子 S I , S 2がオンするようにゲー ト駆動回路 9の論理を設定する ことにより、 スイ ッチング周波数 Tswでスイ ッチング素子 S 1 と S 2を デッ ドタイム Td を挾んで交互にオンノオフすることが実現できる。  Next, the configuration and operation of the PWM generating means 125 to which the output signal comp of the limiter 124 is input will be described with reference to FIG. In the circuit diagram of the PWM generator shown in FIG. 9 (b), 130 is a triangular wave generator, and 131 and 132 are comparators. To the negative input terminal of the comparator 131, the signal S igl obtained by adding the amplitude Vamp generated by the triangular wave generator 130, the triangular wave of the period T sw and V ofst is input, and to the positive input terminal of Inputs the signal comp described above. As a result, a high level is output to the output terminal Gd of the comparator 13 only when comp> Sigl. The above-mentioned signal comp is inputted to the minus input terminal of the other comparator 132, and the triangular wave signal Sig2 generated by the triangular wave generator 130 is inputted to the plus input terminal of the same comparator. As a result, a high level is output to the output terminal G c of the comparator 132 only when comp and Sig2. In the circuit of FIG. 9 (b) described above, Vofst satisfying the relationship of equation (6) is input, and when G d and G c are at the high level, the switching elements SI and S 2 are turned on. By setting the logic of the gate drive circuit 9 to be turned on, it is possible to alternately turn on and off the switching elements S1 and S2 at the switching frequency Tsw with the dead time Td interposed therebetween.
T swV ofs t  T swV ofs t
T d= … ( 6 )  T d =… (6)
2 V amp  2 V amp
第 9図 ( a ) に前述の PWM発生手段における各部の波形とスィ ッチ ング素子 S I , S 2の状態を示す。 以上、 第 1 図に基づいて説明してきた第一の実施形態は、 通常時の電 源には交流電源 1か二次電池 8 を使用し、 停電時には二次電池 8 を使用 する場合であった。 これに対して、 第 1 0図に示す第 2の実施形態は第 1 図における交流電源 1 とダイオー ドブリ ッジ 2 を一次電池 1 4 0 に置 換した場合である。 FIG. 9 (a) shows the waveform of each part in the aforementioned PWM generation means and the state of the switching elements SI and S2. As described above, the first embodiment described with reference to FIG. 1 is a case where the AC power supply 1 or the secondary battery 8 is used as a normal power supply, and the secondary battery 8 is used at the time of a power failure. . On the other hand, the second embodiment shown in FIG. 10 is a case where the AC power supply 1 and the diode bridge 2 in FIG. 1 are replaced with a primary battery 140.
第 1 0図に示す実施形態においては、 V dcの電圧指令値 V d c r e f を一 次電池 1 4 0の出力電圧より も高い値に設定する。 この結果、 二次電池 8の残量が過放電レベル以上でも過充電レベル以下の条件では、 二次電 池 8の電力が優先的に利用される。 反対に、 二次電池 8 の残量が不足し ている場合には一次電池の電力が電動機負荷 6 に供給される。 これによ り、 充電機能を持たない一次電池を電源としながら、 回生電力を充電し、 再利用することが可能となり、 省エネ効果を生み出すことができる。 第 1 1 図は、 本発明をエレべ一夕システムに適用した第三の実施の形 態である。  In the embodiment shown in FIG. 10, the voltage command value Vdcreff of Vdc is set to a value higher than the output voltage of the primary battery 140. As a result, under the condition that the remaining amount of the secondary battery 8 is equal to or higher than the overdischarge level and equal to or lower than the overcharge level, the power of the secondary battery 8 is preferentially used. Conversely, when the remaining amount of the secondary battery 8 is insufficient, the electric power of the primary battery is supplied to the motor load 6. As a result, regenerative power can be charged and reused while using a primary battery that does not have a charging function as a power source, and an energy-saving effect can be produced. FIG. 11 shows a third embodiment in which the present invention is applied to an elevator system.
第 1 1 図において 1 5 1 はモ一夕軸、 1 5 0 は駆動滑車、 1 5 2は滑 車、 1 5 3は釣合いおもり、 1 5 4は乗りカゴ、 1 5 5 はロープ、 1 56 はカゴ呼びボタン、 1 5 7はエレべ一夕システムの制御回路、 1 5 8は カゴ呼びボタン信号線、 1 5 9はエレべ一夕システムの制御回路 1 5 7 からの信号線、 1 6 0はエレべ一夕システムの制御回路 1 5 7からイ ン バー夕 3への信号線である。 第 1 1 図に示したエレべ一夕システムにお いては、 カゴ呼びボタン 1 5 6が押されると、 エレべ一夕システムの制 御回路 1 5 7からインバー夕 3 に対して乗りカゴを呼び出し階まで移動 するための電動機 6の駆動パターンが信号線 1 6 0により送出される。 さらに、 呼び出し階で乗客を乗せた後は、 エレべ一夕システムの制御回 路 1 5 7からインバー夕 3に対して乗りカゴを目的階まで移動するため の電動機 6の駆動パターンが信号線 1 6 0により送出される。 このため、 エレべ一夕システムの制御装置 1 5 7 には、 In Fig. 11 1, 15 1 is a motor shaft, 1 50 is a drive pulley, 1 5 2 is a pulley, 1 5 3 is a counterweight, 1 5 4 is a riding basket, 1 5 5 is a rope, 1 5 6 Is the car call button, 157 is the control circuit of the elevator system, 158 is the signal button of the car button, 159 is the signal circuit from the control circuit of the elevator system, and 1 6 Reference numeral 0 denotes a signal line from the control circuit 157 of the elevator system to inverter 3. In the elevator system shown in Fig. 11, when the car call button 1556 is pressed, the car is driven from the control circuit 1557 of the elevator system to Inver evening 3 and the car is moved. The driving pattern of the electric motor 6 for moving to the calling floor is sent out by the signal line 160. In addition, after passengers have been loaded on the calling floor, the car will travel from the control circuit 157 of the Elevate overnight system to Inver Evening 3 to move the car to the destination floor. The driving pattern of the electric motor 6 is transmitted by the signal line 160. For this reason, the control device 1 5 7 of the elevator system
1 . カゴ呼びポタン又は、 行き先ボタンが押されたかどうか。  1. Whether the basket call button or the destination button has been pressed.
2 . 目的階に到着したかどうか。  2. Whether you arrived at the destination floor.
といったエレべ一夕の状態が内部に保持されており、 この状態信号を信 号線 1 5 9で制御回路 2 1 に入力し、 後述する第 1 2図のフローチヤ一 卜を制御回路 2 1 において実行すれば、 電動機 6の電流を検出すること なしに電動機停止時における S I , S 2のスイ ッチングを停止すること ができる。 このようにエレべ一夕のように電動機 6の起動 Z停止のタイ ミ ング情報が得やすい用途においては、 第 1 図に示した第一の実施形態 よりも簡単な構成で実施可能である。 This state signal is held internally, and this state signal is input to the control circuit 21 via the signal line 159, and the control circuit 21 executes the flowchart shown in FIG. 12 described later. This makes it possible to stop the switching of SI and S2 when the motor is stopped without detecting the current of the motor 6. Thus, in applications where the timing information of the start and stop of the electric motor 6 can be easily obtained as in the case of the elevator, it can be implemented with a simpler configuration than the first embodiment shown in FIG.
次に第 1 2図のフローチャー トを説明する。  Next, the flowchart of FIG. 12 will be described.
第 1 2図において、 ステップ 9 0で起動されたシーケンスはステップ 9 1で停電の有無を判定する。 ステップ 9 1で停電の場合には、 ステツ プ 9 4で V dc定電圧制御を開始した後、 ステップ 9 6でシーケンスを終 了する。 一方、 ステップ 9 1で停電でないと判定した場合には、 ステツ プ 9 2でカゴ呼びポタンまたは行き先ボタンが押されたかを判定する。 ステップ 9 2でカゴ呼びポタンまたは行き先ボタンが押されたと判定し なかった場合にはステップ 9 5で V dc定電圧制御を停止状態にした後、 ステップ 9 6でシーケンスを終了する。 これに対して、 ステップ 9 2で 力ゴ呼びボタンまたは行き先ボタンが押されたと判定した場合には、 ス テツプ 9 3で目的階に到着したかどうかを判定する。 ステップ 9 3で目 的階に到着したと判定した場合には、 ステップ 9 5に移行し、 V d c定電 圧制御を停止状態にした後、 ステップ 9 6でシーケンスを終了する。 一 方、 ステップ 9 3で目的階に到着したと判定しなかった場合には、 ステ ップ 9 4で V dc定電圧制御を開始した後、 ステップ 9 6でシーケンスを 終了する。 以上説明した第 1 2図のシーケンスは一定時間間隔 (例えば 0 . 1秒) 間隔で起動するものとする。 In FIG. 12, the sequence started in step 90 determines in step 91 whether or not there is a power failure. If a power failure occurs in step 91, the Vdc constant voltage control is started in step 94, and the sequence ends in step 96. On the other hand, if it is determined in step 91 that there is no power outage, it is determined in step 92 whether the car call button or the destination button has been pressed. If it is not determined in step 92 that the car call button or the destination button has been pressed, the Vdc constant voltage control is stopped in step 95, and the sequence ends in step 96. On the other hand, if it is determined in step 92 that the call button or the destination button has been pressed, it is determined in step 93 whether the vehicle has arrived at the destination floor. If it is determined in step 93 that the vehicle has arrived at the destination floor, the process proceeds to step 95, in which the Vdc constant voltage control is stopped, and the sequence ends in step 96. On the other hand, if it is not determined in step 93 that the vehicle has arrived at the destination floor, After starting Vdc constant voltage control in step 94, the sequence ends in step 96. It is assumed that the sequence of FIG. 12 described above is started at regular time intervals (for example, 0.1 second).
第 1 3図は、 第 1図に示した昇圧用スィツチング素子 S 1 と降圧用ス ィツチング素子の他の動作例を示す図である。  FIG. 13 is a diagram showing another operation example of the boosting switching element S1 and the step-down switching element shown in FIG.
先の実施例では、 第 9図に示すように、 昇圧用スィツチング素子 S 1 と降圧用スイッチング素子を交互にオン, オフさせていた。 しかしなが ら、 第 1 3図 ( a ) ( b ) に示すように、 必ずしも交互にオン, オフさ せなくても良い。 カ行動作中と回生動作中それぞれに昇圧用スィッチン グ素子 S 1 と降圧用スイッチング素子の両方のオン時間があれば良い。 このようなスイッチング動作をすることにより、 カ行動作中であるの か回生動作中であるのかの判断をすることなく、 充放電制御が可能とな る。  In the previous embodiment, as shown in FIG. 9, the step-up switching element S 1 and the step-down switching element were alternately turned on and off. However, as shown in Fig. 13 (a) and (b), it is not always necessary to turn on and off alternately. It is only necessary that the on-time of both the boost switching element S 1 and the step-down switching element be provided during the power row operation and the regenerative operation. By performing such a switching operation, charge / discharge control can be performed without determining whether the power operation is being performed or the regenerative operation is being performed.

Claims

請 求 の 範 囲 The scope of the claims
1 . 交流電源に接続され交流を直流に変換するダイオー ドブリ ッジと、 平滑コンデンサを介して前記ダイオードプリ ッジの直流側に接続され直 流を交流に変換するインバ一夕と、 このインバ一夕の交流側に接続され た電動機と、 第 1 のスイ ッチング素子と第 2のスイ ッチング素子を有す る双方向性の昇降圧回路を介して、 前記平滑コンデンサに並列に接続さ れた二次電池と、 前記電動機のカ行と回生それぞれの動作中に、 前記第 1 のスイ ッチング素子及び前記第 2のスイ ッチング素子を少なく とも 1 回オンさせる制御手段を備えたことを特徴とする充放電制御装置。  1. A diode bridge connected to an AC power supply to convert AC to DC, an inverter connected to the DC side of the diode bridge via a smoothing capacitor to convert DC to AC, and an inverter connected to the diode bridge. A motor connected in parallel to the smoothing capacitor via a motor connected to the AC side in the evening and a bidirectional buck-boost circuit having a first switching element and a second switching element. A secondary battery, and control means for turning on the first switching element and the second switching element at least once during each operation of the motor for power and regeneration. Discharge control device.
2 . 交流電源に接続され交流を直流に変換するダイォー ドプリ ッジと、 平滑コンデンサを介して前記ダイオー ドブリ ツジの直流側に接続され直 流を交流に変換するインバ一夕と、 このインバー夕の交流側に接続され た電動機と、 第 1 のスイ ッチング素子と第 2のスイ ッチング素子を有す る双方向性の昇降圧回路を介して、 前記平滑コンデンザに並列に接続さ れた二次電池と、 前記第 1 のスイ ッチング素子と前記第 2のスィ ッチン グ素子を交互にオン, オフさせる制御手段を備えたことを特徴とする充 放電制御装置。  2. A diode bridge that is connected to an AC power supply and converts AC to DC; an inverter connected to the DC side of the diode bridge via a smoothing capacitor to convert DC to AC; A secondary battery connected in parallel to the smoothing capacitor via a motor connected to the AC side and a bidirectional buck-boost circuit having a first switching element and a second switching element And a control unit for alternately turning on and off the first switching element and the second switching element.
3 . 交流電源に接続され交流を直流に変換するダイオー ドブリ ッジと、 平滑コンデンサを介して前記ダイオードブリ ッジの直流側に接続され直 流を交流に変換するィンバ一夕と、 このィ ンバ一夕の交流側に接続され た電動機と、 降圧用スイ ッチング素子を介して前記平滑コンデンサと並 列に接続された昇圧用スィ ツチング素子と、 リアク トルを介して前記昇 圧用スイッチング素子と並列に接続された二次電池と、 前記電動機の力 行と回生それぞれの動作中に、 前記降圧用スイ ッチング素子及び前記昇 圧用スイ ッチング素子を少なく とも 1回オンさせる制御手段を備えたこ とを特徴とする充放電制御装置。 3. A diode bridge that is connected to an AC power supply and converts AC to DC, an inverter that is connected to the DC side of the diode bridge via a smoothing capacitor and converts DC to AC, An electric motor connected to the AC side of the night, a boost switching element connected in parallel with the smoothing capacitor via a step-down switching element, and a parallel connection with the step-up switching element via a reactor A connected secondary battery, and control means for turning on the step-down switching element and the step-up switching element at least once during each of the operation of the electric motor during power operation and regeneration. And a charge / discharge control device.
4 . 交流電源に接続され交流を直流に変換するダイォ一 ドブリ ッジと、 平滑コンデンサを介して前記ダイオードブリ ッジの直流側に接続され直 流を交流に変換するイ ンバ一夕と、 このインバー夕の交流側に接続され た電動機と、 降圧用スイ ッチング素子を介して前記平滑コンデンサと並 列に接続された昇圧用スィ ツチング素子と、 リアク トルを介して前記昇 圧用スイ ッチング素子と並列に接続された二次電池と、 前記降圧用スィ ツチング素子と前記昇圧用スィ ツチング素子を交互にオン, オフさせる 制御手段を備えたことを特徴とする充放電制御装置。  4. A diode bridge connected to an AC power supply to convert AC to DC, and an inverter connected to the DC side of the diode bridge via a smoothing capacitor to convert DC to AC. A motor connected to the AC side of the inverter, a boosting switching element connected in parallel with the smoothing capacitor via a step-down switching element, and a parallel connection with the voltage-up switching element via a reactor A charging / discharging control device comprising: a secondary battery connected to the power supply; and control means for alternately turning on and off the step-down switching element and the step-up switching element.
5 . 交流電源を直流出力電圧に変換するダイオー ドブリ ッジと、 前記ダ ィオー ドブリ ッジの直流出力側に接続された平滑コンデンサと、 前記平 滑コンデンサの直流電圧を可変周波数, 可変電圧に変換するインバ一夕 と、 前記インバー夕により駆動される電動機と、 前記平滑コンデンサに 対して、 双方向性の昇降圧回路を介して接続された二次電池と、 前記昇 降圧回路の第 1 のスイ ッチング素子と第 2のスイ ッチング素子とをデッ ドタイムを挾んで交互にオン · オフさせる制御手段を備えたことを特徴 とする充放電制御装置。  5. A diode bridge for converting an AC power supply into a DC output voltage, a smoothing capacitor connected to the DC output side of the diode bridge, and converting the DC voltage of the smoothing capacitor into a variable frequency and a variable voltage. An inverter driven by the inverter, a motor driven by the inverter, a secondary battery connected to the smoothing capacitor via a bidirectional buck-boost circuit, and a first switch of the buck-boost circuit. A charge / discharge control device comprising control means for alternately turning on / off a switching element and a second switching element with a dead time therebetween.
6 . 請求項 5において、  6. In Claim 5,
前記平滑コンデンサの電圧を前記ダイオードブリ ッジで整流した電圧 値よりも高い一定値に制御する手段を備えたことを特徴とする充放電制 御装置。  A charge / discharge control device comprising means for controlling a voltage of the smoothing capacitor to a constant value higher than a voltage value rectified by the diode bridge.
7 . 請求項 6において、  7. In Claim 6,
前記交流電源の停電を検出する検出手段と、 この検出手段に応動して、 前記昇降圧回路のゲートスイッチングを開始する手段を備えたことを特 徴とする充放電制御装置。 A charge / discharge control device comprising: a detection unit that detects a power failure of the AC power supply; and a unit that starts gate switching of the step-up / down circuit in response to the detection unit.
8 . 請求項 6において、 8. In Claim 6,
前記電動機の駆動電流を検出する検出手段と、 この検出手段に応動し て、 前記昇降圧回路のゲー トスイッチングを開始する手段を備えたこと を特徴とする充放電制御装置。  A charge / discharge control device comprising: a detection unit for detecting a drive current of the electric motor; and a unit for starting gate switching of the step-up / step-down circuit in response to the detection unit.
9 . 交流電源に接続され交流を直流に変換するダイォー ドブリ ッジと、 平滑コンデンサと、 この平滑コンデンサを介して前記ダイオードブリ ツ ジの直流側に接続され直流を交流に変換するインバー夕と、 このイ ンバ 一夕の交流側に接続された電動機と、 第 1 のスイ ッチング素子と第 2の スイッチング素子を有する双方向性の昇降圧回路を介して、 前記平滑コ ンデンザに並列に接続された二次電池と、 前記電動機によって昇降する エレべ一夕のかごと、 エレべ一夕のかご呼び釦と、 前記電動機のカ行と 回生それぞれの動作中に、 前記第 1のスイッチング素子及び前記第 2の スイ ッチング素子を少なく とも 1回オンさせる制御手段を備え、 前記か ご呼び釦によってかご呼びが発生したときに、 前記制御手段による前記 第 1 のスィ ツチング素子及び前記第 2のスイ ッチング素子のオン, オフ を開始することを特徴とする充放電制御装置。  9. A diode bridge connected to an AC power supply for converting AC to DC, a smoothing capacitor, and an inverter connected to the DC side of the diode bridge via the smoothing capacitor for converting DC to AC. The inverter was connected in parallel to the smoothing capacitor via a motor connected to the AC side of the inverter and a bidirectional step-up / step-down circuit having a first switching element and a second switching element. A secondary battery, an elevator car that moves up and down by the electric motor, a car call button of the elevator motor, and the first switching element and the second Control means for turning on the switching element at least once, and when a car call is generated by the car call button, the first switch by the control means is provided. A charge / discharge control device characterized by starting to turn on and off a switching element and the second switching element.
1 0 .交流電源に接続され交流を直流に変換するダイオードブリ ッジと、 平滑コンデンサと、 この平滑コンデンサを介して前記ダイオードブリ ツ ジの直流側に接続され直流を交流に変換するインバ一夕と、 このインバ —夕の交流側に接続された電動機と、 第 1 のスイ ッチング素子と第 2の スイ ッチング素子を有する双方向性の昇降圧回路を介して、 前記平滑コ ンデンザに並列に接続された二次電池と、 前記電動機によって昇降する エレべ一夕のかごと、 前記電動機のカ行と回生それぞれの動作中に、 前 記第 1 のスイ ッチング素子及び前記第 2のスイ ッチング素子を少なく と も 1 回オンさせる制御手段を備え、前記かごが目的階に到着したときに、 前記制御手段による前記第 1 のスィツチング素子及び前記第 2のスイ ツ チング素子のオン, オフを終了することを特徴とする充放電制御装置。 10.A diode bridge connected to an AC power supply for converting AC to DC, a smoothing capacitor, and an inverter connected to the DC side of the diode bridge via this smoothing capacitor for converting DC to AC. The inverter is connected in parallel to the smoothing capacitor via a motor connected to the evening AC side and a bidirectional buck-boost circuit having a first switching element and a second switching element. The first switching element and the second switching element described above are reduced during the operation of each of the rechargeable battery, the elevator moving up and down by the motor, and the powering and regeneration of the motor. Control means to turn on once, and when the car arrives at the destination floor, A charge / discharge control device, wherein the on / off of the first switching element and the second switching element by the control means is terminated.
1 1 . 請求項 3 , 4において、 1 1. In Claims 3 and 4,
前記二次電池の残量を検出する手段と、 この検出値に応じて、 前記リ ァク トルに関する電流制御系の電流指令値の制限値を変化させる手段を 備えたことを特徴とする充放電制御装置。  Means for detecting a remaining amount of the secondary battery, and means for changing a limit value of a current command value of a current control system relating to the reactor according to the detected value. Control device.
1 2 . 請求項 1 〜 1 1 において、 1 2. In claims 1 to 11,
前記ダイオードブリ ツジを一次電池に置換した構成からなる充放電制 御装置。  A charge / discharge control device having a configuration in which the diode bridge is replaced with a primary battery.
PCT/JP2001/003942 2001-05-11 2001-05-11 Charge and discharge control device WO2002093730A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002590492A JP4284075B2 (en) 2001-05-11 2001-05-11 Charge / discharge control device
PCT/JP2001/003942 WO2002093730A1 (en) 2001-05-11 2001-05-11 Charge and discharge control device
CN01823207.8A CN100533946C (en) 2001-05-11 2001-05-11 Charge and discharge control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/003942 WO2002093730A1 (en) 2001-05-11 2001-05-11 Charge and discharge control device

Publications (1)

Publication Number Publication Date
WO2002093730A1 true WO2002093730A1 (en) 2002-11-21

Family

ID=11737305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/003942 WO2002093730A1 (en) 2001-05-11 2001-05-11 Charge and discharge control device

Country Status (3)

Country Link
JP (1) JP4284075B2 (en)
CN (1) CN100533946C (en)
WO (1) WO2002093730A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1923560A2 (en) * 2006-10-10 2008-05-21 Hitachi, Ltd. Internal combustion engine controller
EP2075900A1 (en) 2007-12-28 2009-07-01 Honda Motor Co., Ltd. DC/DC converter, DC/DC converter apparatus, vehicle, fuel cell system, and method of driving DC/DC converter
EP2080663A1 (en) 2008-01-16 2009-07-22 Honda Motor Co., Ltd. DC/DC converter apparatus
US7719236B2 (en) 2005-02-18 2010-05-18 O2Micro International Limited Parallel powering of portable electrical devices
WO2010068426A1 (en) * 2008-11-25 2010-06-17 Ge Aviation Systems Llc Electric energy storage integrated within or proximate to electrically driven flight control actuators
JP2012010578A (en) * 2010-05-18 2012-01-12 O2 Micro Inc Parallel power supply to portable electronic equipment
JP2012070478A (en) * 2010-09-21 2012-04-05 Toshiba Elevator Co Ltd Elevator control device
US8154152B2 (en) 2008-05-19 2012-04-10 Honda Motor Co., Ltd. Method of controlling DC/DC converter, fuel cell vehicle for carrying out such method
JP2012145119A (en) * 2006-10-10 2012-08-02 Hitachi Automotive Systems Ltd Internal combustion engine controller
JP2013158101A (en) * 2012-01-27 2013-08-15 Jfe Engineering Corp Elevator facility
WO2019201426A1 (en) * 2018-04-17 2019-10-24 Abb Schweiz Ag Drive unit, robot and method
US10690705B2 (en) 2016-06-15 2020-06-23 Watlow Electric Manufacturing Company Power converter for a thermal system
EP4220919A1 (en) * 2022-02-01 2023-08-02 OMRON Corporation Power supply circuit and motor device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101401287B (en) * 2006-03-22 2013-05-01 三菱电机株式会社 Bidirectional step-up/step-down DC-DC converter apparatus,railway coach drive control system, and railway feeder system
FI122048B (en) * 2009-06-01 2011-07-29 Kone Corp The transportation system
JP5398914B2 (en) * 2010-07-28 2014-01-29 三菱電機株式会社 Chopper equipment
CN103997251A (en) * 2014-03-18 2014-08-20 杭州明果教育咨询有限公司 Eight-bridge arm integrated package power module for motor controller used in electric automobile
CN103944439B (en) * 2014-04-28 2016-09-14 武汉大学 The two motor cascaded multi-level inverse conversion systems without Active Front End

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917880A (en) * 1982-07-22 1984-01-30 Fuji Electric Co Ltd Regenerative brake system for motor driven by inverter
JPS61267675A (en) * 1985-05-20 1986-11-27 株式会社東芝 Controller for elevator
JPH0340787A (en) * 1989-07-04 1991-02-21 Okuma Mach Works Ltd Controller for motor
JPH06345350A (en) * 1993-06-07 1994-12-20 Toshiba Corp Elevator control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917880A (en) * 1982-07-22 1984-01-30 Fuji Electric Co Ltd Regenerative brake system for motor driven by inverter
JPS61267675A (en) * 1985-05-20 1986-11-27 株式会社東芝 Controller for elevator
JPH0340787A (en) * 1989-07-04 1991-02-21 Okuma Mach Works Ltd Controller for motor
JPH06345350A (en) * 1993-06-07 1994-12-20 Toshiba Corp Elevator control device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7719236B2 (en) 2005-02-18 2010-05-18 O2Micro International Limited Parallel powering of portable electrical devices
JP2012145119A (en) * 2006-10-10 2012-08-02 Hitachi Automotive Systems Ltd Internal combustion engine controller
JP2008115848A (en) * 2006-10-10 2008-05-22 Hitachi Ltd Internal combustion engine control device
EP1923560A3 (en) * 2006-10-10 2015-04-22 Hitachi, Ltd. Internal combustion engine controller
EP1923560A2 (en) * 2006-10-10 2008-05-21 Hitachi, Ltd. Internal combustion engine controller
EP2075900A1 (en) 2007-12-28 2009-07-01 Honda Motor Co., Ltd. DC/DC converter, DC/DC converter apparatus, vehicle, fuel cell system, and method of driving DC/DC converter
US8143835B2 (en) 2007-12-28 2012-03-27 Honda Motor Co., Ltd. Method of driving DC/DC converter, method of controlling DC/DC converter apparatus, method of controlling driving operation of vehicle, and method of driving fuel cell system
US8222763B2 (en) 2008-01-16 2012-07-17 Honda Motor Co., Ltd. Method of controlling DC/DC converter apparatus
EP2080663A1 (en) 2008-01-16 2009-07-22 Honda Motor Co., Ltd. DC/DC converter apparatus
US8154152B2 (en) 2008-05-19 2012-04-10 Honda Motor Co., Ltd. Method of controlling DC/DC converter, fuel cell vehicle for carrying out such method
WO2010068426A1 (en) * 2008-11-25 2010-06-17 Ge Aviation Systems Llc Electric energy storage integrated within or proximate to electrically driven flight control actuators
US8203294B2 (en) 2008-11-25 2012-06-19 GE Aviations Systems LLC Electric energy storage integrated within or proximate to electrically driven flight control actuators
JP2012010578A (en) * 2010-05-18 2012-01-12 O2 Micro Inc Parallel power supply to portable electronic equipment
JP2012070478A (en) * 2010-09-21 2012-04-05 Toshiba Elevator Co Ltd Elevator control device
JP2013158101A (en) * 2012-01-27 2013-08-15 Jfe Engineering Corp Elevator facility
US10690705B2 (en) 2016-06-15 2020-06-23 Watlow Electric Manufacturing Company Power converter for a thermal system
WO2019201426A1 (en) * 2018-04-17 2019-10-24 Abb Schweiz Ag Drive unit, robot and method
EP4220919A1 (en) * 2022-02-01 2023-08-02 OMRON Corporation Power supply circuit and motor device

Also Published As

Publication number Publication date
CN100533946C (en) 2009-08-26
JP4284075B2 (en) 2009-06-24
JPWO2002093730A1 (en) 2004-09-02
CN1639958A (en) 2005-07-13

Similar Documents

Publication Publication Date Title
WO2002093730A1 (en) Charge and discharge control device
US9236760B2 (en) Charging device for electromotive vehicle
JP4056512B2 (en) Motor drive device
JP4339916B2 (en) Motor drive device
JP4125855B2 (en) Charge / discharge device for storage battery
JP4489238B2 (en) Electric motor control device
JP2009232537A (en) Motor controller
US7098558B2 (en) Starting circuit for power-converting apparatus
CN111792483B (en) Elevator with a motor
JPH09149685A (en) Motor drive
JP3302722B2 (en) Elevator control device
JP6015690B2 (en) Elevator control device
JP4402409B2 (en) Elevator control device
JPH10155298A (en) Electric motor controlling device and regenerative power processing circuit
JP3318252B2 (en) Elevator control device
JPH07242376A (en) Power failure landing device for elevator control device
JP2820564B2 (en) Electric car control device
JP2001253653A (en) Elevator system
JP2001247273A (en) Elevator operating device at service interruption
JPS63186505A (en) Controller for ac electric car
JPS6122556B2 (en)
JP2005102410A (en) Control unit of elevator
CN114113994B (en) Power switch fault detection method and detection circuit thereof
CN114113994A (en) Power switch fault detection method and detection circuit thereof
JPS61135392A (en) Elevator drive system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AU BA BB BG BR BZ CA CN CR CU CZ DM DZ EE GD GE HR HU ID IL IN IS JP KR LC LK LR LT LV MA MG MK MN MX NO NZ PL RO SG SI SK SL TR TT UA US UZ VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002590492

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 018232078

Country of ref document: CN

122 Ep: pct application non-entry in european phase