JP4489238B2 - Electric motor control device - Google Patents

Electric motor control device Download PDF

Info

Publication number
JP4489238B2
JP4489238B2 JP2000091256A JP2000091256A JP4489238B2 JP 4489238 B2 JP4489238 B2 JP 4489238B2 JP 2000091256 A JP2000091256 A JP 2000091256A JP 2000091256 A JP2000091256 A JP 2000091256A JP 4489238 B2 JP4489238 B2 JP 4489238B2
Authority
JP
Japan
Prior art keywords
voltage
battery
comparator
input terminal
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000091256A
Other languages
Japanese (ja)
Other versions
JP2001275367A (en
Inventor
正行 渡部
正行 服部
能民 博田
清 古橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP2000091256A priority Critical patent/JP4489238B2/en
Publication of JP2001275367A publication Critical patent/JP2001275367A/en
Application granted granted Critical
Publication of JP4489238B2 publication Critical patent/JP4489238B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、交流電動機(同期電動機、誘導電動機)を駆動制御する電動機制御装置に関する。
【0002】
【従来の技術】
図8は従来のバッテリ駆動サーボアンプと呼ばれる電動機制御装置の一例を示す回路図である。これは12V又は24Vの低圧バッテリ(E)1と、バッテリ1の直流電圧から交流100V又は200Vの電源を作るDC/ACコンバータ24と、コンバータ24の交流電圧を整流するダイオードD21〜D26をブリッジ接続してなるコンバータ部25と、コンバータ部25の直流電圧を交流電圧に変換し、交流電動機(M)6に印加するものであって、スイッチ素子例えばIGBT(絶縁ゲートバイポーラトランジスタ)T3〜T8をブリッジ接続し、かつ各IGBTに夫々逆並列に接続されたダイオードD3〜D8からなるインバータ部4と、コンバータ部25の出力直流電圧を平滑する平滑コンデンサ例えば電解コンデンサ3と、インバータ部4の入力側とコンバータ部25の出力側の間接続され、交流電動機6の回生エネルギを消費する抵抗器27とスイッチ素子例えばIGBT28の直列回路と、インバータ部4のIGBTT3〜T8並びにIGBT28をオンオフ制御したり、外部からのトルク指令、速度指令、または位置指令を受けて、インバータ部4のスイッチ素子を制御して交流電動機6にかける電圧を可変させて交流電動機6を制御するための制御部26とからなっている。
【0003】
このように、図8の例ではバッテリ1とバッテリ駆動サーボアンプのインバータ部4を接続するのに、交流電圧を整流するダイオードD21〜D26をブリッジ接続してなるコンバータ部25を介在させているので、交流電動機6の減速時や交流電動機6に駆動される負荷からの回転力で回されている時のインバータ部4の回生エネルギは、バッテリ1には回生できない。
【0004】
図9は従来のバッテリ駆動サーボアンプと呼ばれる電動機制御装置の他例を示す回路図であり、この例は図8のDC/ACコンバータ24と、コンバータ部25と、抵抗器27とIGBT28の直列回路を取り除いたものである。このように構成することにより、交流電動機6の減速時や交流電動機6に駆動される負荷からの回転力で回されている時のインバータ部4の回生エネルギは、バッテリ1には回生できる。この場合、バッテリ1としては、例えば図8のような低圧のバッテリを多数直列接続した高圧のバッテリを直接インバータ部に接続した同様の構成となっている。
【0005】
【発明が解決しようとする課題】
以上述べた図8の構成では、交流電動機6からのインバータ部4における回生エネルギは、バッテリ1に回生できないため、インバータ部4の回生エネルギは、コンバータ部25の電源母線PN間に接続されている電解コンデンサ3に蓄えられるが、回生エネルギの電圧が規定値以上になった場合には、抵抗器27とIGBT28を用いて抵抗器27の発熱で消費することになるためエネルギの無駄が生ずる。又、回生エネルギが大きい場合は、抵抗器27が大容量となるため寸法も大きくなり実装面積やコストが増大する欠点がある。
【0006】
図9では以下のような問題点がある。一般に、IGBTは、AC200Vを整流、平滑した直流電源に接続することを想定して600V耐圧仕様の素子がほとんどである。このため、バッテリ電源を使用するサーボアンプやインバータ部4は、IGBTを効率よく使うためバッテリ電圧を高くして使用している。よって、バッテリ充電作業や交換作業に危険が伴う。また、電圧を高くするため、多くの低圧バッテリ1を直列に接続したり、内部で直列接続した特殊なバッテリを用いなければならない。
【0007】
このようなことから、従来バッテリ電圧を下げるため、図9のインバータ部4を構成するスイッチ素子として、IGBTに代えて低耐圧のパワーMOSFETを使用する方法もあるが、これでも下記の理由により不利な点が多々あり現実的でない。
【0008】
1)交流電動機6の誘起電圧を小さくするため、アマチュア電流を大きくせざるを得なく、このためインバータ部4のスイッチ素子が大型化してしまい、且つインバータ部4と交流電動機6間の電線を太くしなければならない。
【0009】
2)バッテリ電圧に対して、インダクタンスωLIの低下の比率が大きくなるため、交流電動機6のインダクタンスωLIを極力小さくしなければならない。よって、スイッチング周波数を上げなければならず、スイッチング損失が増加する。
【0010】
3)バッテリ電圧に対して、インダクタンスωLIの電圧降下とスイッチ素子の電圧降下の比率が大きくなるため、交流電動機6に印加する電圧が小さくなる。これも、アマチュア電流が大きくなる原因となる。
【0011】
4)直流電源ラインのインダクタンスによって、電流変化率di/dtでの電圧降下が、直流電圧に対して比率が大きくなる。このことは、交流電動機6に印加する電圧が小さくなる原因となる。
【0012】
本発明は、以上のような問題点を除去するためなされたもので、電圧の高い電動機を制御するのに、高圧のバッテリが必要なく、バッテリ交換時の安全性が高くなりメンテナンス性が向上し、省エネならびに小型軽量化が可能となる電動機制御装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
前記目的を達成するために、請求項1に対応する発明は、12V又は24Vの低圧バッテリ(E)1と、前記バッテリ1の直流電圧を三相交流電圧に変換し、三相交流電動機(M)6に印加するものであって、6個のIGBT(絶縁ゲートバイポーラトランジスタ)T3〜T8をブリッジ接続し、かつ各IGBTに夫々逆並列に接続された6個のダイオードD3〜D8からなるインバータ部4と、
前記バッテリ1の出力直流電圧を平滑する電解コンデンサ3と、
第1のIGBTT1のコレクタと第2のIGBTT2のソースを接続し、前記第1のIGBTT1のソースとコレクタに逆並列に第1のダイオードD1を接続し、前記第2のIGBTT2のソースとコレクタに逆並列に第2のダイオードD2を接続し、前記第1及び第2のダイオードD1、D2の接続点並びに前記第1のIGBTT1と前記第2のIGBTT2の接続点にリアクトルLの一端を接続し、前記リアクトルLの他端を前記バッテリ1の陽極に接続し、前記バッテリ1の陰極を前記第2のIGBTT2のコレクタと前記第2のダイオードD2のアノードに接続し前記バッテリ1の直流電圧を昇圧する双方向型昇圧チョッパ部2と、
自動車のエンジン14とダイナモ15からなる発電装置からの交流を整流するダイオードD17又は商用電源からの交流を整流するダイオードD11〜D16をブリッジ接続してなるコンバータ部11と、
前記バッテリ1から前記チョッパ部2に流れる電流を電流検出器7により検出した電流を電流フィ−ドバック値とし、これを第1の比較器13の一方の入力端子に供給し、前記電解コンデンサ3に印加されている電圧を電圧フィ−ドバック値PNとして第2の比較器12の一方の入力端子に供給し、前記第2の比較器12の他方の入力端子にPN電圧指令を供給し、前記第2の比較器12で得られる電圧偏差を、PI制御器とリミッタを備えた制御器8に供給し、前記制御器8において求められる電流指令を、前記第1の比較器13の他方の入力端子に供給し、前記第1の比較器13で求められる電流偏差は、PI制御器9で増幅され、これがパワー増幅器10を介して前記チョッパ部2のIGBTに供給するものであり、前記第1の比較器13の入力端子であって前記制御器8からの出力である電流指令又は充電電流指令のいずれかを切換可能にするとともに、前記電流指令の与えられる側に設ける常閉接点18b及び前記電流指令の与えられる側とは異なる側に設ける常開接点18aからなる2連動スイッチ18と、
前記常開接点18aと前記第1の比較器13との間に設けるものであって、常時開路しているスイッチ19と、
前記電圧フィ−ドバック値PNを入力しこれを反転する反転入力端子及びPNクランプ電圧を入力する入力端子を有し、両者の電圧偏差を求める第1のコンパレータ16と、
前記第1のコンパレータ16の出力と交流電圧の監視信号を入力し、両者の論理積を求め、これを前記2連動スイッチ18に与えて前記常開接点18aを閉じ、かつ前記常閉接点18bを開く論理積回路17と、
前記バッテリ1の電圧を入力し、これを反転する反転入力端子及び過充電クランプ電圧を入力する入力端子を有し、両者の偏差が生じたとき前記スイッチ19を閉じる第2のコンパレータとを備えた制御部5と、
を具備し、前記交流電動機6が回転して3000(1/分)までの回転速度のときは、前記必要なPN電圧を低くし、前記交流電動機6の速度によって前記PN電圧指令を可変させるようにし、かつ前記交流電動機6の回転速度が3000(1/分)を超えたときは前記PN電圧を設定値以上にならないようにしたことを特徴とする電動機制御装置である。
【0022】
【発明の実施の形態】
以下、図面を参照して本発明の実施形態を説明する。
【0023】
図1は、本発明に係る電動機制御装置の第1の実施形態を示す回路図であり、概略図の従来の技術に、リアクトルLと、スイッチ素子例えばIGBTT1,T2及びダイオードD1,D2からなる双方向型昇圧チョッパ部2を、バッテリ1と電解コンデンサ3の間に追加配設したものである。
【0024】
図2は双方向型昇圧チョッパ部2並びにIGBTT1,T2の制御部5の関係を説明するための回路図である。双方向型昇圧チョッパ部2は、具体的には、図2に示すようにIGBTT1のコレクタとIGBTT2のソースを接続し、IGBTT1のソースとコレクタに逆並列にダイオードD1を接続し、IGBTT2のソースとコレクタに逆並列にダイオードD2を接続し、ダイオードD1とD2の接続点並びにIGBTT1とT2の接続点にリアクトルLの一端を接続し、リアクトルLの他端をバッテリ1の陽極に接続し、バッテリ1の陰極をIGBTT2のコレクタとダイオードD2のアノードに接続したものである。
【0025】
制御部5には、バッテリ1に流れる電流を電流検出器例えば変流器7により検出した電流(電流フィードバック値)を入力し、又電解コンデンサ3に印加される電圧(電圧フィードバック値)を入力し、制御部5はPWM制御によりIGBTT1,IGBTT2のゲートに対してゲート信号が与えられる。
【0026】
図3の制御部5の詳細を説明するためのブロック図であり、PN電圧を任意の電圧指令に制御するため、電圧フィードバック信号が比較器12に入力されている。これにより、電動機6の力行時のPN電圧の降下や電動機回生時のPN電圧上昇を抑え、電圧を安定させることができる。
【0027】
比較器12の出力であるPN電圧偏差は、PI制御器とリミッタを備えた制御器8に入力され、制御器8内で電流指令が求められ、この電流指令と電流フィードバック信号が比較器13に入力され、比較器13により得られる電流偏差は、PI制御器9を介してパワー増幅器10に入力される。このようにして電流指令にリミッタを設けることで、IGBTT1,IGBTT2とバッテリ1の過電流を防ぐことができる。
【0028】
ここで、PI制御器9の出力値でIGBTT1,IGBTT2のオン,オフのデュティが決定される。パワー増幅器10の部分がIGBTT1,IGBTT2に当たる。例えばインバータ部4が力行時、PN間の電解コンデンサ3から電流が流出し電圧は下がり、PN電圧指令との誤差が生じ、その誤差をPI制御器9で増幅し、バッテリ1からPN間の電解コンデンサ3への電流指令が発生し、電流フィードバックとの誤差を次のPI制御器9で増幅し、IGBTT2のオンのデュティが広がりより多くの電流が電解コンデンサ3に供給される。
【0029】
図4のW1に示す電動機回転速度が低い場合は、必要なPN電圧も低くてよい。PN電圧が低ければ、スイッチング損失は減少する。よって、電動機6の速度によってPN電圧指令を可変させる方法(低速時にPN電圧を下げる)を用いると、双方向型チョッパ部のみならずインバータ部4のスイッチング損失を低減でき、省エネルギ化が可能になる。図4のW2に示す電動機回転速度が高いときは、PN電圧を設定値以上にならないようにし、IGBTの耐圧保護を行う。
【0030】
力行時のスイッチ素子の動作を説明すると、IGBTT2がオンするとバッテリ1から電流がリアクトルLに流れる。こうして電流は増加し続けるがある値の時に、IGBTT2をオフするとリアクトルLには電流が流れ続けるように逆起電圧が生じ、ダイオードD1を通して電源母線PN間の電解コンデンサ3に流れ込む。PN間電圧が高くても、それに応じた逆起電圧が生じるため昇圧が可能となる。IGBTT2のオンの期間とオフの期間を可変すれば、PN間電圧を任意の値に制御することができる。
【0031】
回生時は、インバータ部4から電解コンデンサ3に電流が流れ、PN間電圧が上昇するが、IGBTT1がオンすると、電解コンデンサ3から電流がIGBTT1とリアクトルLを通して流れバッテリ1に流れこむ。電流が増加し続けるが、ある値の時にIGBTT1をオフするとダイオードD2を通してバッテリ1に電流が流れ込む。このときは、電流が減少を続ける。IGBTT1のオンの期間とオフの期間を可変すれば、平均電流を制御でき、且つPN電圧を回生時でも任意の値に制御することができる。
【0032】
以上述べた実施形態によれば、図1のように双方向型昇圧チョッパ部2を追加配設したので、次のような作用効果が得られる。
【0033】
(1)双方向型昇圧チョッパ部2を用いてバッテリ1の電圧を昇圧すれば、交流電動機6に印加する電圧を高くすることができる(汎用サーボアンプのインバータ回路部分と汎用ACサーボ電動機がそのまま使用できる。)
(2)電動機減速時や負荷からの力で回されている時には、インバータ部4が電源母線PN間の電解コンデンサ3に電力を蓄積するため、電解コンデンサ3の容量を大きくしないと、電源母線PN間の電圧がある限界以上に上昇する。これを図8の従来の技術のような抵抗器27とスイッチ素子例えばIGBT28を用いて抵抗器27に消費させ電圧の上昇を抑える必要があったが、双方向型昇圧チョッパ部2でバッテリ1に充電するため直流電圧の上昇はなく、上昇を抑える抵抗器27とIGBT28も必要ない。
【0034】
(3)バッテリ1に電力回生するため、平滑コンデンサ例えば電解コンデンサ3は大容量でないもので済む。
【0035】
(4)電圧の高い交流電動機6を制御するのに、高圧のバッテリ1が必要なく、バッテリ1の交換時の安全性が高くなりメンテナンス性が向上する。
【0036】
図5は、本発明の電動機制御装置の第2の実施形態を説明するための回路図であり、図1の電動機制御装置において、商用電源が利用できるように、ダイオードD11〜D16からなるコンバータ部11を追加し、制御部5の構成を以下のようにしたものである。このように構成することにより、バッテリ1と商用電源の2通りの利用方法が可能となり実用性が増す。
【0037】
図6は図5の制御部5の構成を示すブロック図であり、図3の制御部5にコンパレータ16,20と、論理積回路17と、常開接点18aと常閉接点18bからなる2連動スイッチ18と、スイッチ1aを追加したものである。
【0038】
具体的には、コンパレータ16には、電圧フィードバック値とPNクランプ電圧指令(=PN電圧指令+α)を入力し、両者の偏差は論理積回路17の一方の入力端子に入力され、論理積回路17の他方の入力端子に図示しない商用電源電圧監視手段からの商用電源電圧監視信号が入力され、両信号が共に存在したとき論理積条件が成立し、2連動スイッチ18の動作が切換る。論理積回路17から信号が出力されたとき閉じる常開接点18aには、充電電流指令が入力されるようになっており、また論理積回路17から信号が出力されたとき開く常閉接点18bは制御器8と比較器13の接続点に接続されている。
【0039】
コンパレータ20の2つの入力端子には過充電クランプ電圧指令とバッテリ1の電圧が入力されるようになっており、コンパレータ20からの出力により開くスイッチ1aはその一端は常開接点18aの他端(充電電流指令が入力される端子とは異なる端子)に接続され、スイッチ19の他端は常閉接点18bと比較器13の接続点に接続されている。
【0040】
このように制御部5が構成されているので、任意の電流指令でバッテリ1を充電できる。また、商用電源が接続されたことを検知した場合に、電圧制御ループを切り離し任意の電流指令でバッテリ1に充電することが可能である。さらに、電動機6の減速等でPN電圧が上昇しある電圧を超えた場合には、電圧制御を開始し、任意の電圧に制御することができる。また、バッテリ1の過充電を防ぐため、バッテリ1の電圧を監視して充電電流指令を切ることができる。以上述べたことから、電動機停止中はもとより電動機運転中も常に商用電源でバッテリ1に充電できる。
【0041】
図5の実施形態は、例えば商用電源として交流(AC)200Vを対象としたが、交流100Vの場合は、図5のコンバータ部11を倍電圧整流回路に代えることで可能となる。
【0042】
図5の実施形態の変形例として、例えば自動車のエンジン14とダイナモ15からなる発電装置を、ダイオードD17を介して電源母線P,Nに接続することで、図5の商用電源の代りに、該発電装置により発電した電力を使用することもできる。
【0043】
図7は、本発明の第3の実施形態を示す回路図であり、双方向型昇圧チョッパ部2を用いて、AC200Vインバータ部41,42及びAC400Vインバータ部43の直流電源を共有化し、インバータ部41,42,43にそれぞれ接続されるAC200V交流電動機61,62及びAC400V交流電動機63を運転することができる。
【0044】
この場合の直流電源21として、AC200Vの整流電源又はバッテリDC280Vを使用し、直流電源21の出力側と双方向型昇圧チョッパ部2並びにインバータ部41,42の入力側の間には、大容量のコンデンサ例えば電解コンデンサ(CE)22が接続される。
【0045】
このような構成のものにおいて、双方向型昇圧チョッパ部2は、直流電圧約280Vを、交流400Vを整流平滑した電圧程度(約560V)に昇圧する。この場合の制御部として図3の実施形態のものを使用すれば、交流400V電動機63が回生の場合に電解コンデンサ22にエネルギが充電され、交流200Vの電動機61,62が力行時のエネルギとして利用できる。
【0046】
また、逆に電動機63が力行時であって電動機61,62が回生時であっても回生エネルギとして利用できる。これに対して本実施形態のように、双方向型昇圧チョッパ部2をしない従来の技術では、交流400Vに昇圧するトランスを用いるため別のコンバータ部が必要になり、電動機回生時は抵抗で回生エネルギを消費することになる。
【0050】
【発明の効果】
以上詳記したように本発明によれば、電圧の高い電動機を制御するのに、高圧のバッテリが必要なく、バッテリ交換時の安全性が高くなりメンテナンス性が向上し、省エネならびに小型軽量化が可能となる電動機制御装置を提供できる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る電動機制御装置の主回路図。
【図2】図1の双方向型昇圧チョッパ部を説明するための回路図。
【図3】図1の制御部を説明するための回路図。
【図4】図1の実施形態の作用効果を説明するための電動機回転速度とPN電圧の特性図。
【図5】本発明の第2の実施形態に係る電動機制御装置の主回路図。
【図6】図5の制御部を説明するための回路図。
【図7】本発明の第3の実施形態に係る電動機制御装置の主回路図。
【図8】従来の第1の例の電動機制御装置の主回路図。
【図9】従来の第2の例の電動機制御装置の主回路図。
【符号の説明】
1…バッテリ
2…双方向型昇圧チョッパ部
3…平滑コンデンサ例えば分解コンデンサ
4,41,42,43…インバータ部
11…コンバータ部
5…制御部
6,61,62,63…交流電動機
7…電流検出器例えば変流器
8…PI制御器+リミッタ
9…PI制御器
10…パワー増幅器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a motor control device that controls driving of an AC motor (synchronous motor, induction motor).
[0002]
[Prior art]
FIG. 8 is a circuit diagram showing an example of a conventional motor control device called a battery-driven servo amplifier. This is a bridge connection of a 12V or 24V low voltage battery (E) 1, a DC / AC converter 24 that creates an AC 100V or 200V power source from the DC voltage of the battery 1, and diodes D21 to D26 that rectify the AC voltage of the converter 24. The converter unit 25 and the converter unit 25 convert the DC voltage of the converter unit 25 into an AC voltage and apply it to the AC motor (M) 6, and bridge the switch elements such as IGBTs (insulated gate bipolar transistors) T3 to T8. An inverter unit 4 composed of diodes D3 to D8 connected to each IGBT and connected in reverse parallel to each other, a smoothing capacitor for smoothing the output DC voltage of the converter unit 25, such as an electrolytic capacitor 3, and an input side of the inverter unit 4 The regenerative energy of the AC motor 6 is connected between the output sides of the converter unit 25. The series circuit of the resistor 27 to be consumed and the switch element, for example, the IGBT 28, and the IGBTs T3 to T8 and the IGBT 28 of the inverter unit 4 are turned on / off, or the torque command, speed command, or position command from the outside is received, It comprises a control unit 26 for controlling the AC motor 6 by controlling the switch element to vary the voltage applied to the AC motor 6.
[0003]
Thus, in the example of FIG. 8, the converter unit 25 formed by bridge-connecting the diodes D21 to D26 for rectifying the AC voltage is interposed to connect the battery 1 and the inverter unit 4 of the battery-driven servo amplifier. The regenerative energy of the inverter unit 4 cannot be regenerated in the battery 1 when the AC motor 6 is decelerated or is rotated by the rotational force from the load driven by the AC motor 6.
[0004]
FIG. 9 is a circuit diagram showing another example of a conventional motor control device called a battery-driven servo amplifier. This example is a series circuit of the DC / AC converter 24, the converter unit 25, the resistor 27 and the IGBT 28 of FIG. Is removed. With this configuration, the regenerative energy of the inverter unit 4 can be regenerated in the battery 1 when the AC motor 6 is decelerated or when being rotated by the rotational force from the load driven by the AC motor 6. In this case, the battery 1 has a similar configuration in which, for example, a high voltage battery in which a number of low voltage batteries as shown in FIG. 8 are connected in series is directly connected to the inverter unit.
[0005]
[Problems to be solved by the invention]
In the configuration of FIG. 8 described above, since the regenerative energy in the inverter unit 4 from the AC motor 6 cannot be regenerated in the battery 1, the regenerative energy of the inverter unit 4 is connected between the power supply buses PN of the converter unit 25. Although stored in the electrolytic capacitor 3, when the voltage of the regenerative energy exceeds a specified value, energy is wasted because the resistor 27 and the IGBT 28 are used to consume the heat generated by the resistor 27. In addition, when the regenerative energy is large, the resistor 27 has a large capacity, so that the size is increased and the mounting area and cost are increased.
[0006]
In FIG. 9, there are the following problems. In general, most IGBTs are devices with a 600V withstand voltage specification on the assumption that AC200V is connected to a rectified and smoothed DC power supply. For this reason, the servo amplifier and the inverter unit 4 that use the battery power supply use the battery with a high battery voltage in order to use the IGBT efficiently. Therefore, there is a danger in battery charging work and replacement work. In order to increase the voltage, many low-voltage batteries 1 must be connected in series or a special battery connected in series inside must be used.
[0007]
For this reason, in order to lower the battery voltage, there is a method of using a low-breakdown-voltage power MOSFET instead of the IGBT as the switch element constituting the inverter unit 4 in FIG. 9, but this is disadvantageous for the following reason. There are many points and it is not realistic.
[0008]
1) In order to reduce the induced voltage of the AC motor 6, it is necessary to increase the amateur current. For this reason, the switching element of the inverter unit 4 is enlarged, and the electric wire between the inverter unit 4 and the AC motor 6 is thickened. Must.
[0009]
2) Since the rate of decrease of the inductance ωLI with respect to the battery voltage increases, the inductance ωLI of the AC motor 6 must be made as small as possible. Therefore, the switching frequency must be increased, and the switching loss increases.
[0010]
3) Since the ratio of the voltage drop of the inductance ωLI and the voltage drop of the switch element is increased with respect to the battery voltage, the voltage applied to the AC motor 6 is reduced. This also causes an increase in amateur current.
[0011]
4) Due to the inductance of the DC power supply line, the ratio of the voltage drop at the current change rate di / dt to the DC voltage increases. This causes a decrease in the voltage applied to the AC motor 6.
[0012]
The present invention has been made to eliminate the above-described problems. A high-voltage battery is not required to control an electric motor with a high voltage, and the safety at the time of battery replacement is improved and the maintainability is improved. An object of the present invention is to provide an electric motor control device that enables energy saving and reduction in size and weight.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the invention corresponding to claim 1 is a low-voltage battery (E) 1 of 12V or 24V and a DC voltage of the battery 1 is converted into a three-phase AC voltage, and a three-phase AC motor (M ) Inverter section comprising six diodes D3 to D8, which are applied to 6 and bridge-connect six IGBTs (Insulated Gate Bipolar Transistors) T3 to T8 and are connected in antiparallel to each IGBT. 4 and
An electrolytic capacitor 3 for smoothing the output DC voltage of the battery 1;
The collector of the first IGBTTT1 and the source of the second IGBTTT2 are connected, the first diode D1 is connected in antiparallel to the source and collector of the first IGBTTT1, and the source and collector of the second IGBTTT2 are reversed. A second diode D2 is connected in parallel, and one end of a reactor L is connected to a connection point between the first and second diodes D1 and D2 and a connection point between the first IGBTTT1 and the second IGBTTT2, Both of the other ends of the reactor L are connected to the anode of the battery 1 and the cathode of the battery 1 is connected to the collector of the second IGBTTT 2 and the anode of the second diode D2 to boost the DC voltage of the battery 1. Directional boost chopper 2;
A converter unit 11 formed by bridge-connecting a diode D17 for rectifying alternating current from a power generation device including an automobile engine 14 and a dynamo 15 or diodes D11 to D16 for rectifying alternating current from a commercial power source;
The current detected by the current detector 7 from the battery 1 to the chopper unit 2 is used as a current feedback value, which is supplied to one input terminal of the first comparator 13 and supplied to the electrolytic capacitor 3. The applied voltage is supplied to one input terminal of the second comparator 12 as a voltage feedback value PN, a PN voltage command is supplied to the other input terminal of the second comparator 12, and the second comparator 12 2 is supplied to a controller 8 having a PI controller and a limiter, and a current command obtained by the controller 8 is supplied to the other input terminal of the first comparator 13. The current deviation obtained by the first comparator 13 is amplified by the PI controller 9, and this is supplied to the IGBT of the chopper unit 2 via the power amplifier 10 . Comparator 3 is an input terminal and can be switched between a current command and a charging current command which are output from the controller 8, and a normally closed contact 18b provided on the side to which the current command is provided and the current command A two-link switch 18 comprising a normally open contact 18a provided on a side different from the given side;
A switch 19 which is provided between the normally open contact 18a and the first comparator 13 and which is always open;
A first comparator 16 having an inverting input terminal for inputting and inverting the voltage feedback value PN and an input terminal for inputting a PN clamp voltage;
The output of the first comparator 16 and the monitor signal of the AC voltage are input, the logical product of both is obtained, this is given to the two interlocking switch 18, the normally open contact 18a is closed, and the normally closed contact 18b is An AND circuit 17 to be opened;
A second comparator for inputting the voltage of the battery 1 and having an inverting input terminal for inverting the voltage and an input terminal for inputting an overcharge clamp voltage, and closing the switch 19 when a deviation between them occurs. A control unit 5;
And when the AC motor 6 rotates to a rotational speed of up to 3000 (1 / min), the necessary PN voltage is lowered and the PN voltage command is varied according to the speed of the AC motor 6. In addition, when the rotational speed of the AC motor 6 exceeds 3000 (1 / min), the PN voltage does not exceed a set value.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0023]
FIG. 1 is a circuit diagram showing a first embodiment of an electric motor control device according to the present invention. The prior art of FIG. 9 is composed of a reactor L, switching elements such as IGBTTT1, T2 and diodes D1, D2. the bidirectional step-up chopper unit 2 is obtained by adding disposed between the battery 1 Doo electrolytic capacitors 3.
[0024]
FIG. 2 is a circuit diagram for explaining the relationship between the bidirectional boost chopper unit 2 and the control unit 5 of the IGBTTT1, T2. Specifically, as shown in FIG. 2, the bidirectional boost chopper unit 2 connects the collector of the IGBTTT1 and the source of the IGBTTT2, connects the diode D1 in antiparallel to the source and collector of the IGBTTT1, and connects the source of the IGBTTT2 The diode D2 is connected in reverse parallel to the collector, one end of the reactor L is connected to the connection point between the diodes D1 and D2 and the connection point between the IGBTTT1 and T2, and the other end of the reactor L is connected to the anode of the battery 1 Is connected to the collector of IGBTTT2 and the anode of diode D2.
[0025]
A current (current feedback value) obtained by detecting a current flowing through the battery 1 by a current detector, for example, a current transformer 7 is input to the control unit 5, and a voltage (voltage feedback value) applied to the electrolytic capacitor 3 is input. The control unit 5 gives a gate signal to the gates of IGBTTT1 and IGBTTT2 by PWM control.
[0026]
FIG. 4 is a block diagram for explaining details of the control unit 5 in FIG. 3, and a voltage feedback signal is input to the comparator 12 in order to control the PN voltage to an arbitrary voltage command. Thereby, the fall of the PN voltage at the time of the power running of the electric motor 6 and the PN voltage rise at the time of motor regeneration can be suppressed, and the voltage can be stabilized.
[0027]
The PN voltage deviation that is the output of the comparator 12 is input to a controller 8 having a PI controller and a limiter, and a current command is obtained in the controller 8, and the current command and the current feedback signal are sent to the comparator 13. The current deviation input and obtained by the comparator 13 is input to the power amplifier 10 via the PI controller 9. By providing a limiter for the current command in this way, overcurrent of the IGBTTT1, IGBTTT2 and the battery 1 can be prevented.
[0028]
Here, the ON / OFF duty of the IGBTTT1 and IGBTTT2 is determined by the output value of the PI controller 9. The portion of the power amplifier 10 corresponds to IGBTTT1 and IGBTTT2. For example, when the inverter unit 4 is powered, a current flows out from the electrolytic capacitor 3 between the PNs, the voltage decreases, and an error from the PN voltage command occurs. The error is amplified by the PI controller 9, and the electrolysis between the battery 1 and the PN is performed. A current command to the capacitor 3 is generated, an error from the current feedback is amplified by the next PI controller 9, the ON duty of the IGBTTT 2 is widened, and more current is supplied to the electrolytic capacitor 3.
[0029]
When the motor rotation speed indicated by W1 in FIG. 4 is low, the necessary PN voltage may be low. If the PN voltage is low, the switching loss is reduced. Therefore, if the method of changing the PN voltage command according to the speed of the electric motor 6 (lowering the PN voltage at low speed) is used, the switching loss of the inverter unit 4 as well as the bidirectional chopper unit can be reduced, and energy saving can be achieved. Become. When the motor rotation speed indicated by W2 in FIG. 4 is high, the PN voltage is prevented from exceeding a set value, and the IGBT withstand voltage is protected.
[0030]
The operation of the switch element during power running will be described. When the IGBTTT 2 is turned on, a current flows from the battery 1 to the reactor L. Thus, when the current continues to increase and reaches a certain value, when the IGBTTT2 is turned off, a counter electromotive voltage is generated in the reactor L so that the current continues to flow, and flows into the electrolytic capacitor 3 between the power supply bus PN through the diode D1. Even if the PN voltage is high, a back electromotive voltage corresponding to the PN voltage is generated, so that boosting is possible. If the on period and the off period of IGBTTT2 are varied, the voltage between PNs can be controlled to an arbitrary value.
[0031]
At the time of regeneration, a current flows from the inverter unit 4 to the electrolytic capacitor 3 and the voltage between the PNs rises. However, when the IGBTTT1 is turned on, a current flows from the electrolytic capacitor 3 through the IGBTTT1 and the reactor L and flows into the battery 1. Although the current continues to increase, when the IGBTTT1 is turned off at a certain value, the current flows into the battery 1 through the diode D2. At this time, the current continues to decrease. If the on period and off period of the IGBTTT 1 are varied, the average current can be controlled and the PN voltage can be controlled to an arbitrary value even during regeneration.
[0032]
According to the embodiment described above, since the bidirectional boost chopper 2 is additionally provided as shown in FIG. 1, the following operational effects can be obtained.
[0033]
(1) If the voltage of the battery 1 is boosted using the bidirectional boost chopper unit 2, the voltage applied to the AC motor 6 can be increased (the inverter circuit portion of the general-purpose servo amplifier and the general-purpose AC servo motor remain as they are. Can be used.)
(2) When the motor is decelerated or rotated by force from the load, the inverter unit 4 accumulates electric power in the electrolytic capacitor 3 between the power supply buses PN. Therefore, if the capacity of the electrolytic capacitor 3 is not increased, the power supply bus PN The voltage between rises above a certain limit. This is consumed by the resistor 27 using the resistor 27 and the switching element such as the IGBT 28 as in the prior art of FIG. 8 to suppress the voltage rise. There is no increase in the DC voltage for charging, and the resistor 27 and the IGBT 28 for suppressing the increase are not required.
[0034]
(3) Since power is regenerated in the battery 1, the smoothing capacitor, for example, the electrolytic capacitor 3, does not have to have a large capacity.
[0035]
(4) The high-voltage AC motor 6 is controlled without the need for the high-voltage battery 1, and the safety at the time of replacement of the battery 1 is increased and the maintainability is improved.
[0036]
FIG. 5 is a circuit diagram for explaining a second embodiment of the motor control device of the present invention. In the motor control device of FIG. 1, a converter unit comprising diodes D11 to D16 so that a commercial power source can be used. 11 is added, and the configuration of the control unit 5 is as follows. With this configuration, the battery 1 and the commercial power supply can be used in two ways, increasing the practicality.
[0037]
FIG. 6 is a block diagram showing the configuration of the control unit 5 in FIG. 5. The control unit 5 in FIG. 3 has two interlocks including comparators 16 and 20, an AND circuit 17, a normally open contact 18a and a normally closed contact 18b. A switch 18 and a switch 1a are added.
[0038]
Specifically, a voltage feedback value and a PN clamp voltage command (= PN voltage command + α) are input to the comparator 16, and a deviation between the two is input to one input terminal of the AND circuit 17. When the commercial power supply voltage monitoring signal from the commercial power supply voltage monitoring means (not shown) is input to the other input terminal of both, and both signals are present, the logical product condition is established, and the operation of the two interlock switch 18 is switched. A charging current command is input to the normally open contact 18a that is closed when a signal is output from the AND circuit 17, and a normally closed contact 18b that is opened when a signal is output from the AND circuit 17 is provided. A connection point between the controller 8 and the comparator 13 is connected.
[0039]
The overcharge clamp voltage command and the voltage of the battery 1 are inputted to the two input terminals of the comparator 20, and one end of the switch 1a opened by the output from the comparator 20 is the other end of the normally open contact 18a ( The other end of the switch 19 is connected to a connection point between the normally closed contact 18 b and the comparator 13.
[0040]
Since the control unit 5 is configured in this way, the battery 1 can be charged with an arbitrary current command. Further, when it is detected that a commercial power source is connected, the voltage control loop can be disconnected and the battery 1 can be charged with an arbitrary current command. Further, when the PN voltage rises and exceeds a certain voltage due to deceleration of the electric motor 6 or the like, voltage control can be started and controlled to an arbitrary voltage. Moreover, in order to prevent the overcharge of the battery 1, the voltage of the battery 1 can be monitored and the charge current command can be cut off. As described above, the battery 1 can always be charged with the commercial power source not only when the motor is stopped but also during operation of the motor.
[0041]
The embodiment in FIG. 5 is directed to an alternating current (AC) 200V as a commercial power source, for example. However, in the case of an alternating current 100V, it is possible to replace the converter unit 11 in FIG. 5 with a voltage doubler rectifier circuit.
[0042]
As a modification of the embodiment of FIG. 5, for example, by connecting a power generation device including an automobile engine 14 and a dynamo 15 to the power supply buses P and N via a diode D <b> 17, the commercial power supply of FIG. The power generated by the power generation device can also be used.
[0043]
FIG. 7 is a circuit diagram showing a third embodiment of the present invention, in which a DC power source of AC 200 V inverter units 41 and 42 and AC 400 V inverter unit 43 is shared by using a bidirectional step-up chopper unit 2 and an inverter unit AC200V AC motors 61 and 62 and AC400V AC motor 63 connected to 41, 42 and 43, respectively, can be operated.
[0044]
In this case, a rectified power supply of AC 200 V or a battery DC 280 V is used as the DC power supply 21, and a large capacity is provided between the output side of the DC power supply 21 and the input side of the bidirectional boost chopper unit 2 and the inverter units 41 and 42. A capacitor such as an electrolytic capacitor (CE) 22 is connected.
[0045]
In such a configuration, the bidirectional boost chopper 2 boosts the DC voltage of about 280V to a voltage obtained by rectifying and smoothing the AC 400V (about 560V). 3 is used as the control unit in this case, when the AC 400V motor 63 is regenerated, the electrolytic capacitor 22 is charged with energy, and the AC 200V motors 61 and 62 are used as energy during powering. it can.
[0046]
Conversely, even when the electric motor 63 is in powering and the electric motors 61 and 62 are in regeneration, it can be used as regenerative energy. On the other hand, in the conventional technique that does not use the bidirectional step-up chopper unit 2 as in this embodiment, a separate converter unit is required because a transformer that boosts the voltage to AC 400 V is required. Energy will be consumed.
[0050]
【The invention's effect】
As described above in detail, according to the present invention, a high-voltage battery is not required to control a high-voltage motor, safety at the time of battery replacement is improved, maintainability is improved, energy saving and reduction in size and weight are achieved. An electric motor control device that can be provided can be provided.
[Brief description of the drawings]
FIG. 1 is a main circuit diagram of an electric motor control device according to a first embodiment of the present invention.
FIG. 2 is a circuit diagram for explaining the bidirectional boost chopper section of FIG. 1;
FIG. 3 is a circuit diagram for explaining a control unit in FIG. 1;
FIG. 4 is a characteristic diagram of a motor rotation speed and a PN voltage for explaining the operation and effect of the embodiment of FIG. 1;
FIG. 5 is a main circuit diagram of an electric motor control device according to a second embodiment of the present invention.
6 is a circuit diagram for explaining a control unit in FIG. 5;
FIG. 7 is a main circuit diagram of an electric motor control device according to a third embodiment of the present invention.
FIG. 8 is a main circuit diagram of a conventional motor control device of a first example.
FIG. 9 is a main circuit diagram of a conventional motor control device of a second example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Battery 2 ... Bidirectional step-up chopper part 3 ... Smoothing capacitor, for example, decomposition | disassembly capacitor | condenser 4,41,42,43 ... Inverter part 11 ... Converter part 5 ... Control part 6,61,62,63 ... AC motor 7 ... Current detection For example, current transformer 8 ... PI controller + limiter 9 ... PI controller 10 ... power amplifier

Claims (1)

12V又は24Vの低圧バッテリ(E)1と、前記バッテリ1の直流電圧を三相交流電圧に変換し、三相交流電動機(M)6に印加するものであって、6個のIGBT(絶縁ゲートバイポーラトランジスタ)T3〜T8をブリッジ接続し、かつ各IGBTに夫々逆並列に接続された6個のダイオードD3〜D8からなるインバータ部4と、
前記バッテリ1の出力直流電圧を平滑する電解コンデンサ3と、
第1のIGBTT1のコレクタと第2のIGBTT2のソースを接続し、前記第1のIGBTT1のソースとコレクタに逆並列に第1のダイオードD1を接続し、前記第2のIGBTT2のソースとコレクタに逆並列に第2のダイオードD2を接続し、前記第1及び第2のダイオードD1、D2の接続点並びに前記第1のIGBTT1と前記第2のIGBTT2の接続点にリアクトルLの一端を接続し、前記リアクトルLの他端を前記バッテリ1の陽極に接続し、前記バッテリ1の陰極を前記第2のIGBTT2のコレクタと前記第2のダイオードD2のアノードに接続し前記バッテリ1の直流電圧を昇圧する双方向型昇圧チョッパ部2と、
自動車のエンジン14とダイナモ15からなる発電装置からの交流を整流するダイオードD17又は商用電源からの交流を整流するダイオードD11〜D16をブリッジ接続してなるコンバータ部11と、
前記バッテリ1から前記チョッパ部2に流れる電流を電流検出器7により検出した電流を電流フィ−ドバック値とし、これを第1の比較器13の一方の入力端子に供給し、前記電解コンデンサ3に印加されている電圧を電圧フィ−ドバック値PNとして第2の比較器12の一方の入力端子に供給し、前記第2の比較器12の他方の入力端子にPN電圧指令を供給し、前記第2の比較器12で得られる電圧偏差を、PI制御器とリミッタを備えた制御器8に供給し、前記制御器8において求められる電流指令を、前記第1の比較器13の他方の入力端子に供給し、前記第1の比較器13で求められる電流偏差は、PI制御器9で増幅され、これがパワー増幅器10を介して前記チョッパ部2のIGBTに供給するものであり、前記第1の比較器13の入力端子であって前記制御器8からの出力である電流指令又は充電電流指令のいずれかを切換可能にするとともに、前記電流指令の与えられる側に設ける常閉接点18b及び前記電流指令の与えられる側とは異なる側に設ける常開接点18aからなる2連動スイッチ18と、
前記常開接点18aと前記第1の比較器13との間に設けるものであって、常時開路しているスイッチ19と、
前記電圧フィ−ドバック値PNを入力しこれを反転する反転入力端子及びPNクランプ電圧を入力する入力端子を有し、両者の電圧偏差を求める第1のコンパレータ16と、
前記第1のコンパレータ16の出力と交流電圧の監視信号を入力し、両者の論理積を求め、これを前記2連動スイッチ18に与えて前記常開接点18aを閉じ、かつ前記常閉接点18bを開く論理積回路17と、
前記バッテリ1の電圧を入力し、これを反転する反転入力端子及び過充電クランプ電圧を入力する入力端子を有し、両者の偏差が生じたとき前記スイッチ19を閉じる第2のコンパレータとを備えた制御部5と、
を具備し、前記交流電動機6が回転して3000(1/分)までの回転速度のときは、前記必要なPN電圧を低くし、前記交流電動機6の速度によって前記PN電圧指令を可変させるようにし、かつ前記交流電動機6の回転速度が3000(1/分)を超えたときは前記PN電圧を設定値以上にならないようにしたことを特徴とする電動機制御装置。
A 12V or 24V low voltage battery (E) 1 and a DC voltage of the battery 1 are converted into a three-phase AC voltage and applied to a three-phase AC motor (M) 6, which includes six IGBTs (insulated gates) (Bipolar transistor) Inverter section 4 comprising six diodes D3 to D8 that bridge-connect T3-T8 and are connected in antiparallel to each IGBT,
An electrolytic capacitor 3 for smoothing the output DC voltage of the battery 1;
The collector of the first IGBTTT1 and the source of the second IGBTTT2 are connected, the first diode D1 is connected in antiparallel to the source and collector of the first IGBTTT1, and the source and collector of the second IGBTTT2 are reversed. A second diode D2 is connected in parallel, and one end of a reactor L is connected to a connection point between the first and second diodes D1 and D2 and a connection point between the first IGBTTT1 and the second IGBTTT2. The other end of the reactor L is connected to the anode of the battery 1, and the cathode of the battery 1 is connected to the collector of the second IGBTTT 2 and the anode of the second diode D2 to boost the DC voltage of the battery 1. Directional boost chopper 2;
A converter unit 11 formed by bridge-connecting a diode D17 that rectifies alternating current from a power generation device including an automobile engine 14 and a dynamo 15 or diodes D11 to D16 that rectify alternating current from a commercial power supply;
The current detected by the current detector 7 from the battery 1 to the chopper unit 2 is set as a current feedback value, which is supplied to one input terminal of the first comparator 13 and supplied to the electrolytic capacitor 3. The applied voltage is supplied as a voltage feedback value PN to one input terminal of the second comparator 12, a PN voltage command is supplied to the other input terminal of the second comparator 12, and the second comparator 12 2 is supplied to a controller 8 having a PI controller and a limiter, and a current command obtained by the controller 8 is supplied to the other input terminal of the first comparator 13. The current deviation obtained by the first comparator 13 is amplified by the PI controller 9, and this is supplied to the IGBT of the chopper unit 2 via the power amplifier 10 . Comparator 3 is an input terminal and can be switched between a current command and a charging current command which are output from the controller 8, and a normally closed contact 18b provided on the side to which the current command is provided and the current command A two-link switch 18 comprising a normally open contact 18a provided on a side different from the given side;
A switch 19 which is provided between the normally open contact 18a and the first comparator 13 and is always open;
A first comparator 16 having an inverting input terminal for inputting and inverting the voltage feedback value PN and an input terminal for inputting a PN clamp voltage;
The output of the first comparator 16 and the monitor signal of the AC voltage are input, the logical product of both is obtained, this is given to the two interlocking switch 18, the normally open contact 18a is closed, and the normally closed contact 18b is An AND circuit 17 to be opened;
A second comparator for inputting the voltage of the battery 1 and having an inverting input terminal for inverting the voltage and an input terminal for inputting an overcharge clamp voltage, and closing the switch 19 when a deviation between them occurs. A control unit 5;
And when the AC motor 6 rotates to a rotational speed of up to 3000 (1 / min), the necessary PN voltage is lowered and the PN voltage command is varied according to the speed of the AC motor 6. In addition, when the rotational speed of the AC motor 6 exceeds 3000 (1 / min), the PN voltage does not exceed a set value.
JP2000091256A 2000-03-29 2000-03-29 Electric motor control device Expired - Lifetime JP4489238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000091256A JP4489238B2 (en) 2000-03-29 2000-03-29 Electric motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000091256A JP4489238B2 (en) 2000-03-29 2000-03-29 Electric motor control device

Publications (2)

Publication Number Publication Date
JP2001275367A JP2001275367A (en) 2001-10-05
JP4489238B2 true JP4489238B2 (en) 2010-06-23

Family

ID=18606736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000091256A Expired - Lifetime JP4489238B2 (en) 2000-03-29 2000-03-29 Electric motor control device

Country Status (1)

Country Link
JP (1) JP4489238B2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1414145B1 (en) 2001-08-02 2019-12-25 Toyota Jidosha Kabushiki Kaisha Motor drive control apparatus
US6917179B2 (en) 2001-10-25 2005-07-12 Toyota Jidosha Kabushiki Kaisha Load driver and control method for safely driving DC load and computer-readable recording medium with program recorded thereon for allowing computer to execute the control
JP3632657B2 (en) 2001-12-20 2005-03-23 トヨタ自動車株式会社 Voltage converter
JP3906843B2 (en) 2002-01-16 2007-04-18 トヨタ自動車株式会社 Voltage conversion device control device, voltage conversion method, storage medium, program, drive system, and vehicle equipped with drive system
JP2003274670A (en) * 2002-03-13 2003-09-26 Chubu Electric Power Co Inc Ac power source device
JP3700059B2 (en) 2002-08-12 2005-09-28 トヨタ自動車株式会社 Voltage conversion device, voltage conversion method, and computer-readable recording medium storing a program for causing a computer to control voltage conversion
JP4325284B2 (en) * 2003-06-04 2009-09-02 トヨタ自動車株式会社 Voltage converter
JP4314896B2 (en) * 2003-06-16 2009-08-19 トヨタ自動車株式会社 LOAD DRIVE DEVICE, AUTOMOBILE MOUNTED WITH THE LOAD DRIVE DEVICE, AND COMPUTER-READABLE RECORDING MEDIUM RECORDING PROGRAM FOR CAUSING COMPUTER TO EXECUTE CONTROL IN EARTH
JP4052195B2 (en) 2003-07-31 2008-02-27 トヨタ自動車株式会社 Voltage conversion device and computer-readable recording medium recording program for causing computer to execute control of voltage conversion
JP4193704B2 (en) 2004-01-20 2008-12-10 トヨタ自動車株式会社 Power supply device and automobile equipped with the same
CN100555838C (en) 2004-02-19 2009-10-28 丰田自动车株式会社 Motor driver
JP4001120B2 (en) 2004-02-19 2007-10-31 トヨタ自動車株式会社 Voltage converter
KR100634611B1 (en) * 2004-12-23 2006-10-16 현대자동차주식회사 Control system and method for bidirectional three-phase dc/dc converter
JP4946106B2 (en) * 2006-03-15 2012-06-06 日産自動車株式会社 Power converter
JP4929771B2 (en) * 2006-03-20 2012-05-09 株式会社安川電機 Power conversion device and power storage device provided with electric double layer capacitor
JP4665809B2 (en) * 2006-03-24 2011-04-06 トヨタ自動車株式会社 Electric motor drive control system
JP4768498B2 (en) * 2006-04-14 2011-09-07 日立コンピュータ機器株式会社 Bidirectional DC-DC converter and power supply device using the same
JP4232789B2 (en) * 2006-04-24 2009-03-04 トヨタ自動車株式会社 Stop control device and stop control method for internal combustion engine
DE112008000422T5 (en) 2007-02-16 2009-12-03 Komatsu Ltd. Voltage control device and voltage control method
JP5112906B2 (en) * 2008-02-21 2013-01-09 住友重機械工業株式会社 Storage battery drive DC voltage converter and control method of storage battery drive DC voltage converter
JP5493532B2 (en) 2009-07-17 2014-05-14 富士電機株式会社 Load driving device and electric vehicle using the same
JP5531490B2 (en) * 2009-07-31 2014-06-25 ダイキン工業株式会社 Power converter
JP2012065396A (en) * 2010-09-14 2012-03-29 Yanmar Co Ltd Electrically-driven work machine
JP5947528B2 (en) * 2011-11-30 2016-07-06 国立大学法人埼玉大学 Vehicle drive device, vehicle, and non-contact charging system
CN103812508B (en) * 2012-11-12 2019-03-15 中兴通讯股份有限公司 Current equalizer, method and system
CN103944439B (en) * 2014-04-28 2016-09-14 武汉大学 The two motor cascaded multi-level inverse conversion systems without Active Front End

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620321B2 (en) * 1987-07-08 1994-03-16 日野自動車工業株式会社 AC power supply for automobile work
JPH01315265A (en) * 1988-03-14 1989-12-20 Mitsubishi Electric Corp Rectifier device
JP3105061B2 (en) * 1992-03-06 2000-10-30 日野自動車株式会社 Automotive braking and auxiliary power units
US5373195A (en) * 1992-12-23 1994-12-13 General Electric Company Technique for decoupling the energy storage system voltage from the DC link voltage in AC electric drive systems
JP3597591B2 (en) * 1994-12-05 2004-12-08 関西電力株式会社 Motor drive
JPH09215388A (en) * 1996-01-29 1997-08-15 Toyota Motor Corp Inverter apparatus
JPH1169839A (en) * 1997-08-20 1999-03-09 Toshiba Corp Power converter
JPH1198823A (en) * 1997-09-22 1999-04-09 Shinko Electric Co Ltd Direct-current power supply

Also Published As

Publication number Publication date
JP2001275367A (en) 2001-10-05

Similar Documents

Publication Publication Date Title
JP4489238B2 (en) Electric motor control device
CA2439355C (en) Mobile power generation system
CN101286726B (en) Driving device for electric machine and control method for driving motor
JP3597591B2 (en) Motor drive
US20040062059A1 (en) Apparatus and method employing bi-directional converter for charging and/or supplying power
US7906922B2 (en) Electric motor drive employing hybrid, hysteretic/pulse-width-modulated dynamic braking
JP4125855B2 (en) Charge / discharge device for storage battery
JP4056512B2 (en) Motor drive device
WO2012099169A1 (en) Contactless power transfer system
US6163472A (en) Elevator DC motor drive with unity power factor, including regeneration
Grbovic et al. A three-terminal ultracapacitor-based energy storage and PFC device for regenerative controlled electric drives
JPH0575669B2 (en)
CN111224564B (en) Buck-boost driving circuit, method, air conditioner and computer readable storage medium
JPH09233710A (en) Charger and discharger for transformation of storage battery
JPS5961402A (en) Charger for battery driven vehicle
JP4827679B2 (en) Battery charging / discharging device for railway vehicles
JPWO2002093730A1 (en) Charge / discharge control device
US8605472B2 (en) Buck-boost rectifier, refrigeration system including a buck-boost rectifier, and method of providing power to a refrigeration unit via a buck-boost rectifier
TWI439008B (en) Bidrecrional power inverter circuit and electrical vehicle driving system using the same
KR101449513B1 (en) Motor Driving Apparatus Having Power Return Function and Driving Method thereof
CN211209607U (en) Buck-boost driving circuit and air conditioner
JP2011112334A (en) Air conditioning system
JP2012044765A (en) Battery controller and vehicle
JPH0715966A (en) Electric motor drive device
Niakinezhad et al. An integrated SRM drive with constant current constant voltage charging capability for electric vehicle application

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050805

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4489238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term