TWI467913B - Ac motor driving device - Google Patents

Ac motor driving device Download PDF

Info

Publication number
TWI467913B
TWI467913B TW100119936A TW100119936A TWI467913B TW I467913 B TWI467913 B TW I467913B TW 100119936 A TW100119936 A TW 100119936A TW 100119936 A TW100119936 A TW 100119936A TW I467913 B TWI467913 B TW I467913B
Authority
TW
Taiwan
Prior art keywords
circuit
voltage
power storage
bus
storage element
Prior art date
Application number
TW100119936A
Other languages
Chinese (zh)
Other versions
TW201240323A (en
Inventor
Manabu Ohashi
Kazuya Nakamura
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of TW201240323A publication Critical patent/TW201240323A/en
Application granted granted Critical
Publication of TWI467913B publication Critical patent/TWI467913B/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/03AC-DC converter stage controlled to provide a defined DC link voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/07DC-DC step-up or step-down converter inserted between the power supply and the inverter supplying the motor, e.g. to control voltage source fluctuations, to vary the motor speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Control Of Ac Motors In General (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

交流馬達驅動裝置 AC motor drive

本發明係有關於一種交流馬達驅動裝置,係藉由反流器將來自直流電源的直流電力轉換成交流電力而供應於交流馬達之交流馬達驅動裝置,具體而言係關於配備有用以控制前述直流電力之電力儲存裝置的交流馬達驅動裝置者。 The present invention relates to an AC motor driving device, which is an AC motor driving device that supplies DC power from a DC power source into AC power by a inverter, and is particularly useful for controlling the DC. An AC motor drive device for an electric power storage device.

在交流馬達驅動裝置中,於交流馬達運行時為了加速係流通大電流,另一方面,在減速時會產生再生電流。將該種再生電流單以電阻器消耗而作為熱進行釋放,對能源(energy)利用率而言為不良且不適宜。 In the AC motor drive device, a large current flows in order to accelerate the AC motor, and a regenerative current is generated during deceleration. This kind of regenerative current is released as heat by the resistor alone, and is unfavorable for energy utilization.

因此,自以往有在直流化用的轉換器(converter)與交流化用的反流器(Inverter)之間,介設有與反流器並聯的電力儲存裝置。該電力儲存裝置係具備有:大容量的電解電容(capacitor)或電性雙層電容等電力儲存元件、設置於該電力儲存元件與直流化用轉換器的直流母線之間的DC/DC轉換器、以及控制該DC/DC轉換器,而使在直流母線與電力儲存元件之間進行充放電的控制電路。 Therefore, a power storage device connected in parallel with the inverter has been interposed between a converter for direct current conversion and an inverter for alternating current. The power storage device includes a power storage element such as a large-capacity electrolytic capacitor or an electric double-layer capacitor, and a DC/DC converter provided between the power storage element and a DC bus of the DC converter. And a control circuit for controlling the DC/DC converter to charge and discharge between the DC bus and the power storage element.

例如專利文獻1、2、3等所述,在配備有電力儲存裝置的交流馬達驅動裝置中,在馬達運行時,蓄電於電力儲存元件之電力係藉由DC/DC轉換器放電至直流母線,並藉由反流器將該電力轉換成交流電力而供應至交流馬達。另一方面,在馬達再生時,由於該再生電力會經由反流器使 直流母線的電壓上昇,故該母線電壓會藉由DC/DC轉換器而充電蓄電於電力儲存元件。之後,蓄電於電力儲存元件之電力藉由DC/DC轉換器放電至直流母線,而實施電源再生。藉此,在配備有電力儲存裝置的交流馬達驅動裝置,可謀求馬達驅動電流的平均化,並能謀求有效利用再生電力。 For example, in the AC motor drive device equipped with the power storage device, the power stored in the power storage element is discharged to the DC bus by the DC/DC converter during operation of the motor, as described in Patent Documents 1, 2, and 3, for example. And supplying the electric power to the alternating current motor by converting the electric power into alternating current power by a reflux. On the other hand, when the motor is regenerated, since the regenerative power is passed through the inverter The voltage of the DC bus rises, so the bus voltage is charged and stored in the power storage element by the DC/DC converter. Thereafter, the electric power stored in the power storage element is discharged to the DC bus by the DC/DC converter, and power regeneration is performed. Thereby, in the AC motor drive device equipped with the power storage device, the motor drive current can be averaged, and the regenerative electric power can be utilized effectively.

(先前技術文獻) (previous technical literature) (專利文獻) (Patent Literature)

專利文獻1:日本特開2001-103769號公報。 Patent Document 1: Japanese Laid-Open Patent Publication No. 2001-103769.

專利文獻2:日本特開2001-320893號公報。 Patent Document 2: Japanese Laid-Open Patent Publication No. 2001-320893.

專利文獻3:日本特開2008-99503號公報。 Patent Document 3: Japanese Laid-Open Patent Publication No. 2008-99503.

專利文獻4:日本專利第3121378號。 Patent Document 4: Japanese Patent No. 3121378.

專利文獻5:日本特開2001-268900號公報。 Patent Document 5: Japanese Laid-Open Patent Publication No. 2001-268900.

然而,在使用以屬於為可自直流母線向電力儲存元件進行充電控制與自電力儲存裝置向直流母線進行放電控制之雙向型的升降壓截波器電路(chopper)之簡單的構成,來作為使用於電力儲存裝置的DC/DC轉換器之情形時,會因升降壓截波器電路的切換電路側連接於直流母線、且抗流線圈(choke coil)連接於電力儲存元件,或是處於相反的連接關係,而在自直流母線向電力儲存元件進行充電時,即使在電力儲存元件有餘力也會有產生無法將該充電電壓充電至母線電壓以上的電壓之情形,或在自電力儲存元件 向直流母線進行放電時,即使可自電力儲存元件進行放電之情形也會有產生只可放電至與母線電壓相等之電壓的情形。 However, it is used as a simple configuration of a bidirectional type buck-boost chopper that is capable of charging control from the DC bus to the power storage element and discharging control from the power storage device to the DC bus. In the case of a DC/DC converter of the power storage device, the switching circuit side of the buck-boost chopper circuit is connected to the DC bus, and the choke coil is connected to the power storage element, or is opposite. In the connection relationship, when charging from the DC bus to the power storage element, even if there is sufficient power in the power storage element, there is a case where the charging voltage cannot be charged to a voltage higher than the bus voltage, or in the self-power storage element. When discharging to the DC bus, even if it is possible to discharge from the power storage element, there is a case where only a voltage equal to the bus voltage can be discharged.

為了解決該問題,可採用例如於專利文獻4、5所示之2電路串聯連接以控制切換(switching)電路之構成。如依據該構成,則與母線電壓無關係地可自直流母線向電力儲存元件進行充電、以及自電力儲存元件向直流母線進行放電。但是,電路構成變得複雜,且控制亦變得複雜。除此之外,由於在2電路的切換電路各自中會產生電力損耗,致使降低能源的轉換效率。 In order to solve this problem, for example, two circuits shown in Patent Documents 4 and 5 may be connected in series to control the configuration of a switching circuit. According to this configuration, the power storage element can be charged from the DC bus and discharged from the power storage element to the DC bus line irrespective of the bus voltage. However, the circuit configuration becomes complicated and the control becomes complicated. In addition to this, since power loss occurs in each of the switching circuits of the two circuits, the conversion efficiency of the energy is lowered.

本發明為有鑑於前述之問題而完成者,其目的係為獲得一種配備有無需對電力儲存裝置所採用之雙向型的升降壓截波器電路進行設置2電路之截波器電路等,而可與母線電壓無關係地進行電力儲存元件之充放電,而可提高能源利用效率之電力儲存裝置之交流馬達驅動裝置。 The present invention has been made in view of the foregoing problems, and an object thereof is to obtain a chopper circuit equipped with a circuit that does not require a bidirectional type buck-boost circuit for a power storage device. An AC motor drive device for a power storage device that can improve the energy utilization efficiency by charging and discharging the power storage element irrespective of the bus voltage.

此外,本發明之目的是在前述發明的目的之外,獲得一種配備有防止發生異常時,使電力儲存元件的蓄電電力對電力儲存裝置所使用的包含雙向型升降壓截波器電路之其他的設備產生損傷或破損之破損影響的發生,且更高安全性之電力儲存裝置的交流馬達驅動裝置。 Further, an object of the present invention is to provide, in addition to the object of the foregoing invention, another configuration including a bidirectional type buck-boost circuit for use in a power storage device for preventing an abnormality in occurrence of an electric storage element. The device generates an AC motor drive for the power storage device with a higher impact on the occurrence of damage or breakage.

供以解決前述之課題而達成目的,本發明在交流馬達驅動裝置中係具備有與將從直流電源所連接之直流母線所供應之直流電力轉換成對驅動交流馬達所必需的交流電力 之反流器並聯連接於前述直流母線,且控制該直流母線之直流電力的電力儲存裝置,前述電力儲存裝置係具備有:電力儲存元件,可儲存直流電力;升降壓雙向截波器電路,以兩個切換元件的串聯電路及一端與前述兩個切換元件之串聯連接端相連接之抗流線圈作為主要構成元件,而配置於前述直流母線與前述電力儲存元件之間,用以進行自前述直流母線向前述電力儲存元件的充電動作與自前述電力儲存元件向前述直流母線的放電動作;電路切換元件,用以將前述升降壓雙向截波器電路之構成切換成:第1截波器電路及第2截波器電路;該第1截波器電路係將前述串聯電路的正極端連接於前述直流母線的正極側而將前述抗流線圈的另一端連接於前述電力儲存元件的正極端子;該第2截波器電路,係將前述抗流線圈的另一端連接於前述直流母線的正極側而將前述串聯電路的正極端連接於前述電力儲存元件的正極端子;以及控制電路,用以在比較前述直流母線的電壓與前述電力儲存元件的電壓,且調換大小關係交替之時序的前後,使前述電路切換元件切換成對應前述第1截波器電路與前述第2截波器電路的電路而構成、並以預定之順序使前述第1載波器電路與前述第2截波器電路動作而分別實現前述充電動作與前述放電動作。 In order to achieve the object of solving the above problems, the present invention provides an AC motor drive device that converts DC power supplied from a DC bus connected from a DC power source into AC power necessary for driving an AC motor. The power converter is connected in parallel to the DC bus and controls the DC power of the DC bus. The power storage device is provided with: a power storage component, which can store DC power; and a buck-boost bidirectional interceptor circuit. a series circuit of two switching elements and a choke coil having one end connected to the series connection ends of the two switching elements as main constituent elements, and disposed between the DC bus and the power storage element for performing DC from the DC a charging operation of the bus bar to the power storage element and a discharge operation from the power storage element to the DC bus; and a circuit switching element for switching the configuration of the step-up and step-down bidirectional circuit to: a first chopper circuit and a second chopper circuit that connects a positive end of the series circuit to a positive side of the DC bus and a other end of the choke coil to a positive terminal of the power storage element; The second chopper circuit connects the other end of the choke coil to the positive side of the DC bus. The positive terminal of the series circuit is connected to the positive terminal of the power storage element; and the control circuit is configured to compare the voltage of the DC bus to the voltage of the power storage component and before and after the timing of changing the magnitude relationship The switching element is configured to be switched to a circuit corresponding to the first chopper circuit and the second chopper circuit, and the first carrier circuit and the second chopper circuit are operated in a predetermined order to realize the foregoing The charging operation and the aforementioned discharging operation.

依據本發明,第1及第2截波器電路,雖在單獨使用 中,充電動作與放電動作之一方會受母線電壓的影響,但著眼於互相具有彌補對方缺點之互補性的升降壓特性之點,而在充電時及放電時,併用第1及第2截波器電路。藉此,以與母線電壓無關係地可進行電力儲存元件的充放電,而達到可實現配備有可提高能源利用效率之電力儲存裝置之交流馬達驅動裝置的效果。 According to the present invention, the first and second chopper circuits are used separately Among them, one of the charging operation and the discharging operation is affected by the bus voltage, but focusing on the point of the buck-boost characteristic that complements each other's shortcomings, and the first and second intercepts are used during charging and discharging. Circuit. Thereby, the charge and discharge of the power storage element can be performed irrespective of the bus voltage, and an AC motor drive device equipped with a power storage device capable of improving energy use efficiency can be realized.

以下根據圖式詳細說明本發明之交流馬達驅動裝置的實施例。又,本發明並不受該實施例之限定。 Hereinafter, an embodiment of the AC motor driving device of the present invention will be described in detail based on the drawings. Further, the present invention is not limited by the embodiment.

(第一實施例) (First Embodiment)

第1圖係為顯示依據本發明之第一實施例之交流馬達驅動裝置的構成方塊圖。在第1圖中,依據本第一實施例之交流馬達驅動裝置係於自直流電源1供應有直流電力的正負直流母線2a、2b並聯連接有複數個反流器3、3…,並且於直流電源1與反流器3之間的直流母線2a、2b電力儲存裝置4與反流器3並聯連接。在複數個反流器3、3…,各自連接有交流馬達5、5…。 Fig. 1 is a block diagram showing the configuration of an AC motor driving device according to a first embodiment of the present invention. In the first embodiment, the AC motor driving device according to the first embodiment is connected to a plurality of inverters 3, 3, ..., which are supplied with DC power from the DC power source 1 in parallel, and is connected to a DC. The DC bus 2a, 2b between the power source 1 and the inverter 3 is connected in parallel with the inverter 3 in the power storage device 4. AC motors 5, 5, ... are connected to each of the plurality of inverters 3, 3, ....

複數個反流器3、3…係各自從直流母線2a、2b的直流電力來產生所期望之交流電力,並驅動各個交流馬達5、5…。另外,在第1圖中,反流器3與交流馬達5的組數,雖顯示為複數組之情形,但亦有僅一組之情形。總之,配備之電力儲存裝置4係為一組,故反流器3與交流馬達5的組數多寡,在利用本實施例時並不成問題。關於反流器3之構成已相當為人所熟悉,故在此針對直流電源1與 電力儲存裝置4之構成進行說明。 The plurality of inverters 3, 3, ... generate respective desired AC power from the DC power of the DC bus bars 2a, 2b, and drive the respective AC motors 5, 5, .... Further, in the first drawing, the number of sets of the inverter 3 and the AC motor 5 is shown as a complex array, but there are only one set. In short, since the power storage devices 4 are provided in a group, the number of the inverters 3 and the AC motor 5 is small, and this is not a problem in the present embodiment. The composition of the inverter 3 is quite familiar, so here for the DC power supply 1 and The configuration of the power storage device 4 will be described.

第2圖係為顯示關於第1圖所示之直流電源的部分之詳細電路圖。在第2圖中,第1圖所示之直流電源1係具備有電抗器(reactor)13、全波整流電路14、及平流電容器15。 Fig. 2 is a detailed circuit diagram showing a portion of the DC power supply shown in Fig. 1. In the second drawing, the DC power supply 1 shown in Fig. 1 includes a reactor 13, a full-wave rectifying circuit 14, and a smoothing capacitor 15.

全波整流電路14係將串聯連接之3組上下臂切換元件(SW1,SW2)(SW3,SW4)(SW5,SW6)並聯連接之構成。切換元件SW1至SW6係例如為絕緣閘雙極電晶體(Insulated gate bipolar transistor,簡稱IGBT),但各自逆向並聯地連接有飛輪二極體D1至D6。 The full-wave rectifier circuit 14 is configured by connecting three sets of upper and lower arm switching elements (SW1, SW2) (SW3, SW4) (SW5, SW6) connected in series in parallel. The switching elements SW1 to SW6 are, for example, insulated gate bipolar transistors (IGBTs), but flywheel diodes D1 to D6 are connected in reverse in parallel.

串聯連接之3組上下臂切換元件(SW1,SW2)(SW3,SW4)(SW5,SW6)之各自的串聯連接端係為3相交流輸入端。該3相交流輸入端係經由電抗器13及變壓器(transformer)12而與三相的交流電源11連接。此外,該上下臂切換元件(SW1,SW2)(SW3,SW4)(SW5,SW6)的兩端(並聯連接端)係為直流輸出端(正極輸出端、負極輸出端),而連接有正負的直流母線2a、2b。 The series connection ends of the three sets of upper and lower arm switching elements (SW1, SW2) (SW3, SW4) (SW5, SW6) connected in series are three-phase AC input terminals. The three-phase AC input terminal is connected to a three-phase AC power supply 11 via a reactor 13 and a transformer 12. In addition, both ends (parallel connection ends) of the upper and lower arm switching elements (SW1, SW2) (SW3, SW4) (SW5, SW6) are DC output terminals (positive output terminal, negative output terminal), and the connection is positive or negative. DC busbars 2a, 2b.

該全波整流電路14之切換元件SW1至SW6係以彼此不重複之時序(timing),藉由進行切換三相交流電壓而進行整流化。平流電容15係設置於正負的直流母線2a、2b間,用以將全波整流電路14輸出至正負的直流母線2a、2b的整流化電壓予以平流,而在正負的直流母線2a、2b間形成預定之直流電壓(直流電源)。 The switching elements SW1 to SW6 of the full-wave rectifying circuit 14 are rectified by switching a three-phase AC voltage with a timing that does not overlap each other. The equalizing capacitor 15 is disposed between the positive and negative DC bus bars 2a, 2b for flattening the rectified voltage of the full-wave rectifier circuit 14 output to the positive and negative DC bus bars 2a, 2b, and forming between the positive and negative DC bus bars 2a, 2b. The predetermined DC voltage (DC power supply).

此外,該全波整流電路14係在從電力儲存裝置4將 所蓄電之再生電力進行放電至直流母線2a、2b的電源再生模式(mode)中,是以將該再生電力再生至交流電源11之方式來控制切換元件SW1至SW6。 In addition, the full-wave rectifier circuit 14 is connected from the power storage device 4 The regenerative electric power stored is discharged to the power regeneration mode of the DC bus bars 2a and 2b, and the switching elements SW1 to SW6 are controlled such that the regenerative electric power is regenerated to the AC power supply 11.

接著,第3圖係為顯示第1圖所示之電力儲存裝置之構成的方塊圖。如第3圖所示,電力儲存裝置4係具備有:電力儲存元件21、升降壓雙向截波器電路22、以及控制電路23。 Next, Fig. 3 is a block diagram showing the configuration of the power storage device shown in Fig. 1. As shown in FIG. 3, the power storage device 4 includes a power storage element 21, a step-up/down bidirectional interceptor circuit 22, and a control circuit 23.

電力儲存元件21係以大容量電解電容或電性雙層電容器(electric double layer capacitor,簡稱EDLC)等所構成(參照第4圖)。升降壓雙向截波器電路22為可進行從直流母線2a、2b向電力儲存元件21的充電、與從電力儲存元件21向直流母線2a、2b的放電之雙向動作。在本第一實施例中,設置有「電路切換元件51」於該升降壓雙向截波器電路22(參照第5圖)。控制電路23係藉由微電腦(microcomputer)所執行的程式(program)控制而進行控制升降壓雙向截波器電路22之前述雙向的升降壓動作。執行該動作時,在本第一實施例中,控制電路23係形成用以進行設置於升降壓雙向截波器電路22之「電路切換元件51」的控制。 The power storage element 21 is constituted by a large-capacity electrolytic capacitor or an electric double layer capacitor (EDLC) (see FIG. 4). The buck-boost bidirectional interceptor circuit 22 is a two-way operation capable of charging the power storage element 21 from the DC bus bars 2a, 2b and discharging from the power storage element 21 to the DC bus bars 2a, 2b. In the first embodiment, the "circuit switching element 51" is provided in the step-up/down bidirectional interceptor circuit 22 (see Fig. 5). The control circuit 23 controls the bidirectional buck-boosting operation of the step-up and step-down chopper circuit 22 by a program control executed by a microcomputer. When this operation is performed, in the first embodiment, the control circuit 23 forms control for performing the "circuit switching element 51" provided in the step-up and step-down bidirectional circuit breaker circuit 22.

第4圖係為顯示第3圖所示之電力儲存元件之構成例的方塊圖。在第4圖係顯示以電性雙層電容器(EDLC)構成電力儲存元件21之情形。在第4圖中,電力儲存元件21係採用串、並聯連接有m×n個(m、n係為1以上之整數)的EDLC模組(module)31、31…來作為EDLC單元(unit)。EDLC 模組31係以串聯連接之複數個EDLC胞(cell)32、32…、以及為了減少各EDLC胞32、32…間電壓分布不均,對各EDLC胞32、32…分別並聯連接之電壓平衡(balance)電阻器33、33…所構成。 Fig. 4 is a block diagram showing a configuration example of the power storage element shown in Fig. 3. Fig. 4 shows a case where the power storage element 21 is constituted by an electric double layer capacitor (EDLC). In Fig. 4, the power storage element 21 is an EDLC unit (unit) which is connected in series and in parallel with m × n (m, n is an integer of 1 or more) EDLC modules 31, 31... . EDLC The module 31 is a voltage balance in which a plurality of EDLC cells 32, 32, ... are connected in series, and in order to reduce uneven voltage distribution between the EDLC cells 32, 32, ... Balance resistors 33, 33... are formed.

如此所構成之電力儲存元件21其靜電容量係例如為1法拉(F)左右之大容量者。一個EDLC胞32的靜電容量通常係為超過100F且最大電壓大約為3伏特(V)以下者。此外,直流母線2a、2b間之電壓由於通常為300V或600V,實用上電力儲存元件21的電壓係成為150V以上。另外,在電力儲存元件21雖亦含有保險絲(fuse)或斷路器(breaker)等,但在第4圖省略示之。此外,電壓平衡電阻器33係為可省略者,或者亦可設為別種平衡方式。 The power storage element 21 configured as described above has a capacitance of, for example, a large capacity of about one Farad (F). The electrostatic capacity of an EDLC cell 32 is typically greater than 100 F and the maximum voltage is approximately 3 volts (V) or less. Further, since the voltage between the DC bus bars 2a and 2b is usually 300 V or 600 V, the voltage of the power storage element 21 is practically 150 V or more. Further, the power storage element 21 also includes a fuse or a breaker, but is omitted from Fig. 4. Further, the voltage balance resistor 33 may be omitted or may be provided in another balanced manner.

第5圖係為顯示第3圖所示之升降壓雙向截波器電路之具體性的構成例的電路圖。於升降壓雙向截波器電路22中雖已有種種的電路形態為人所知,但在本實施例中,例如第5圖所示,採用了最簡單(simple)的電路形態。 Fig. 5 is a circuit diagram showing a configuration example of a specific configuration of the step-up and step-down chopper circuit shown in Fig. 3. Although various circuit configurations have been known in the buck-boost bidirectional chopper circuit 22, in the present embodiment, for example, as shown in Fig. 5, the simplest circuit configuration is employed.

在第5圖中,升降壓雙向截波器電路22係以串聯連接之兩個切換元件(例如IGBT)41a、41b、一端連接於兩個切換元件41a、41b的串聯連接端(在圖示例中係切換元件41a的射極(emitter)端子與切換元件41b的集極(collector)端子的共同連接端)之抗流線圈43、以及依據本第一實施例之電路切換元件51作為主要元件所構成。另外,在切換元件41a、41b,各自反並聯地連接有飛輪二極體42a、42b。 In Fig. 5, the buck-boost bidirectional chopper circuit 22 is connected in series with two switching elements (e.g., IGBTs) 41a, 41b, and one end connected to the two switching elements 41a, 41b (in the example of the figure) The choke coil 43 of the emitter terminal of the intermediate switching element 41a and the collector terminal of the switching element 41b, and the circuit switching element 51 according to the first embodiment are main components. Composition. Further, flywheel diodes 42a and 42b are connected to the switching elements 41a and 41b in antiparallel.

屬於切換元件41a、41b的串聯電路之一端的負極端(在圖示例中係切換元件41b的射極端子)、以及電力儲存元件21的負極端子係共同地連接於負極的直流母線2b。平流電容器44a係連接於直流母線2a、2b間。此外,平流電容器44b係連接於電力儲存元件21的正極端子與負極端子之間。另外,亦有省略平流電容器44a、44b之情形。 The negative terminal of one end of the series circuit belonging to the switching elements 41a, 41b (the emitter terminal of the switching element 41b in the illustrated example) and the negative terminal of the power storage element 21 are commonly connected to the DC bus 2b of the negative electrode. The smoothing capacitor 44a is connected between the DC bus bars 2a and 2b. Further, the smoothing capacitor 44b is connected between the positive terminal and the negative terminal of the power storage element 21. In addition, there are cases where the smoothing capacitors 44a and 44b are omitted.

在此,依據本第一實施例的電路切換元件51係構成為以框框圍起所示之驅動部使2組切換電路(a,a1,a2)、(b,b1,b2)連動作動。在一方的切換電路(a,a1,a2)中,切換基端a係連接於電力儲存元件21的正極端子、切換端a1係連接於抗流線圈43的另一端、而切換端a2係連接於屬於切換元件41a、41b之串聯電路另一端的正極端(在圖示例中係切換元件41a的集極端子)。此外,在另一方的切換電路(b,b1,b2)中,切換基端b係連接於正極的直流母線2a、切換端b1係連接於切換元件41a的集極端子、而切換端b2係連接於抗流線圈43的另一端。 Here, the circuit switching element 51 according to the first embodiment is configured such that the two sets of switching circuits (a, a1, a2) and (b, b1, b2) are operated in conjunction with the driving unit shown in the frame. In one of the switching circuits (a, a1, a2), the switching base a is connected to the positive terminal of the power storage element 21, the switching end a1 is connected to the other end of the choke coil 43, and the switching end a2 is connected to The positive terminal (the collector terminal of the switching element 41a in the illustrated example) belonging to the other end of the series circuit of the switching elements 41a, 41b. Further, in the other switching circuit (b, b1, b2), the switching base b is connected to the DC bus 2a of the positive electrode, the switching terminal b1 is connected to the collector terminal of the switching element 41a, and the switching terminal b2 is connected. At the other end of the choke coil 43.

對控制電路23係輸入有:電壓感測器45a所偵測之直流母線2a、2b的電壓、電壓感測器45b所偵測之電力儲存元件21的電壓、電流感測器46a所偵測之母線電流、以及電流感測器46b所偵測之流通於抗流線圈43之電流,來作為控制升降壓雙向截波器電路22的兩個切換元件41a、41b及電路切換元件51之際的參考訊號。另外,輸入控制電路23之偵測值,並非只限前述4者,前述係為一例,而亦有輸入其他偵測值之情形。此外,亦有自未圖示之上位 的控制器(controller)而輸入之情形。 The control circuit 23 inputs: the voltage of the DC bus 2a, 2b detected by the voltage sensor 45a, the voltage of the power storage element 21 detected by the voltage sensor 45b, and the current sensor 46a. The bus current and the current flowing through the choke coil 43 detected by the current sensor 46b serve as a reference for controlling the two switching elements 41a, 41b and the circuit switching element 51 of the buck-boost bidirectional chopper circuit 22. Signal. In addition, the detection value of the input control circuit 23 is not limited to the above four, and the foregoing is an example, and there are cases where other detection values are input. In addition, there is also a top position from the unillustrated The controller is entered and the situation is entered.

控制電路23係根據此等之偵測值產生使切換元件41a、41b個別地進行切換的閘極(gate)訊號,而使升降壓雙向截波器電路22進行藉由自馬達5的再生電力而將電力儲存元件21充電的動作、以及將蓄電於電力儲存元件21之再生電力放電(電源再生)的動作。此時,控制電路23係根據此等之偵測值,控制依據本第一實施例之電路切換元件51而將升降壓雙向截波器電路22的電路構成,進行變更成第1截波器電路(第6圖)與第2截波器電路(第7圖)。 The control circuit 23 generates a gate signal for individually switching the switching elements 41a, 41b based on the detected values, and causes the buck-boost bidirectional chopper circuit 22 to perform regenerative power from the motor 5. The operation of charging the power storage element 21 and the operation of discharging the regenerative electric power stored in the power storage element 21 (power supply regeneration). At this time, the control circuit 23 controls the circuit configuration of the step-up and step-down bidirectional chopper circuit 22 according to the circuit switching element 51 of the first embodiment based on the detected values, and changes the circuit configuration to the first chopper circuit. (Fig. 6) and the second chopper circuit (Fig. 7).

具體而言,第1截波器電路(第6圖)係為在電路切換元件51中,使切換基端a與切換端a1連接於一方的切換電路(a,a1,a2)而將抗流線圈43的另一端,連接於電力儲存元件21的正極端子;且使切換基端b與切換端b1連接於另一方的切換電路(b,b1,b2)而將切換元件41a的集極端子,連接於正極之直流母線2a的構成。 Specifically, in the first switching circuit (Fig. 6), in the circuit switching element 51, the switching base terminal a and the switching terminal a1 are connected to one switching circuit (a, a1, a2) to resist current. The other end of the coil 43 is connected to the positive terminal of the power storage element 21; and the switching base b and the switching end b1 are connected to the other switching circuit (b, b1, b2) to switch the terminal of the element 41a, The configuration of the DC bus 2a connected to the positive electrode.

此外,第2截波器電路(第7圖)係為在電路切換元件51中,使切換基端a與切換端a2連接於一方的切換電路(a,a1,a2)而將切換元件41a的集極端子,連接於電力儲存元件21的正極端子;且使切換基端b與切換端b2連接於另一方的切換電路(b,b1,b2)而將抗流線圈43的另一端,連接於正極之直流母線2a的構成。 Further, in the second switching circuit (Fig. 7), in the circuit switching element 51, the switching base terminal a and the switching terminal a2 are connected to one switching circuit (a, a1, a2) to switch the element 41a. The collector terminal is connected to the positive terminal of the power storage element 21; and the switching base b and the switching terminal b2 are connected to the other switching circuit (b, b1, b2), and the other end of the choke coil 43 is connected to The configuration of the DC bus 2a of the positive electrode.

第6圖所示之第1截波器電路,係可進行自直流母線2a、2b向電力儲存元件21的降壓充電、且可進行自電力儲存元件21向直流母線2a、2b的升壓放電。相反地,第 7圖所示之第2截波器電路,係可進行自直流母線2a、2b向電力儲存元件21的升壓充電、且可進行從電力儲存元件21向直流母線2a、2b的降壓放電。 The first chopper circuit shown in Fig. 6 can perform step-down charging from the DC bus bars 2a, 2b to the power storage element 21, and can perform boost discharge from the power storage element 21 to the DC bus bars 2a, 2b. . Conversely, the first The second chopper circuit shown in FIG. 7 can perform step-up charging from the DC bus bars 2a and 2b to the power storage element 21, and can perform step-down discharge from the power storage element 21 to the DC bus bars 2a and 2b.

第1截波器電路、第2截波器電路雖一般均可用來作為在電力儲存裝置4的雙向截波器電路,但由於其充放電動作為會受母線電壓的影響之構成,故在以往無法充分地活用電力儲存元件21的蓄電能力(蓄電能量)。針對此點,參照第8圖與第9圖進行簡單說明。另外,第8圖係為說明第6圖所示的藉由第1截波器電路之充放電特性的特性圖。第9圖係為說明第7圖所示的藉由第2截波器電路之充放電特性的特性圖。 The first chopper circuit and the second chopper circuit can be generally used as the bidirectional chopper circuit in the power storage device 4. However, since the charging and discharging operation is affected by the bus voltage, the conventional The power storage capacity (storage energy) of the power storage element 21 cannot be fully utilized. In this regard, a brief description will be given with reference to FIGS. 8 and 9. In addition, Fig. 8 is a characteristic diagram for explaining the charge and discharge characteristics of the first chopper circuit shown in Fig. 6. Fig. 9 is a characteristic diagram for explaining the charge and discharge characteristics of the second chopper circuit shown in Fig. 7.

在第8圖係顯示:(1)直流母線2a、2b的電壓變化、(2)相對於第(1)點之電力儲存元件21的充放電動作、及(3)顯示直流母線2a、2b的電壓V1與電力儲存元件21的電壓V2之關係的電壓差(V3=V2-V1)。此外,對直流母線2a、2b的電壓V1,設定為屬於電源再生動作臨限值的放電開始電壓60。 Fig. 8 shows: (1) voltage changes of the DC bus bars 2a, 2b, (2) charging and discharging operations with respect to the power storage element 21 at the (1) point, and (3) display of the DC bus bars 2a, 2b. The voltage difference between the voltage V1 and the voltage V2 of the power storage element 21 (V3 = V2 - V1). Further, the voltage V1 of the DC bus bars 2a and 2b is set to the discharge start voltage 60 belonging to the power regeneration operation threshold.

在第8圖(1)中,直流母線電壓V1係在,上升期間61對應減速期間;之後為恆定電壓期間62係對應定速期間;之後下降期間63係對應加速期間。 In Fig. 8 (1), the DC bus voltage V1 is associated with the rising period 61 corresponding to the deceleration period; thereafter, the constant voltage period 62 corresponds to the constant speed period; and thereafter, the falling period 63 corresponds to the acceleration period.

在第8圖(2)中,在電力儲存元件21,於直流母線電壓上升期間61之初期的時序64開始充電。充電動作係進行到電力儲存元件21的電壓V2與直流母線電壓V1相等為止。在第8圖中係顯示,直流母線電壓V1在屬於恆定電壓 期間62的終端附近的時序65,電力儲存元件21的電壓V2與直流母線電壓V1相等之情形。 In Fig. 8 (2), charging is started in the power storage element 21 at the initial timing 64 of the DC bus voltage rising period 61. The charging operation is performed until the voltage V2 to the power storage element 21 is equal to the DC bus voltage V1. In Figure 8, it is shown that the DC bus voltage V1 is at a constant voltage. At the timing 65 near the terminal of the period 62, the voltage V2 of the power storage element 21 is equal to the DC bus voltage V1.

此情形下,由於直流母線電壓V1在充電結束時序65之後的時序66中,從恆定電壓開始下降,故形成V2>V1之狀況。如此一來,由於產生自電力儲存元件21經由飛輪二極體42a而向直流母線2a的自然放電,故電力儲存元件21的電壓V2亦自最大充電電壓變成下降。此時,控制電路23雖然可將流通於抗流線圈43之電流辨識為來自電流感測器46b的通知,但無法切斷該電流。結果,經由飛輪二極體42a而自然放電至直流母線2a的電流,係持續流至電力儲存元件21與直流母線2a、2b達至相同電壓時序67為止。 In this case, since the DC bus voltage V1 falls from the constant voltage in the timing 66 after the charging end timing 65, a condition of V2 > V1 is formed. As a result, since the natural discharge from the power storage element 21 to the DC bus 2a via the flywheel diode 42a occurs, the voltage V2 of the power storage element 21 also decreases from the maximum charging voltage. At this time, the control circuit 23 can recognize the current flowing through the choke coil 43 as a notification from the current sensor 46b, but cannot cut the current. As a result, the current naturally discharged to the DC bus 2a via the flywheel diode 42a continues to flow until the power storage element 21 and the DC bus bars 2a, 2b reach the same voltage timing 67.

再者,直流母線電壓V1在低於放電開始電壓60之時序67中,開始了電源再生。在電源再生時的時序67的電力儲存元件21的電壓,係為低於從在時序66的最大充電電壓達電壓68之電壓,在圖示例中係約為最大充電電壓的60%。電壓68係相當於能源損耗。換言之,使用第1截波器電路時,由於電力儲存元件21的放電開始時的電壓係較最大充電電壓為低,因其較低,而增大了流通於抗流線圈43的放電電流,此之增大係成為能源之損耗,且成為降低了蓄電能源利用效率之主因。 Furthermore, the DC bus voltage V1 is at a timing 67 lower than the discharge start voltage 60, and power regeneration is started. The voltage of the power storage element 21 at the timing 67 of the power regeneration is lower than the voltage from the maximum charging voltage at the timing 66 up to the voltage 68, which is about 60% of the maximum charging voltage in the illustrated example. Voltage 68 is equivalent to energy loss. In other words, when the first chopper circuit is used, since the voltage at the start of discharge of the power storage element 21 is lower than the maximum charging voltage, the discharge current flowing through the choke coil 43 is increased because of the lower voltage. The increase is the loss of energy, and it is the main reason for reducing the efficiency of energy storage.

接著,在第9圖,升降壓的關係雖變相反,但與第8圖同樣地顯示了:(1)直流母線2a、2b的電壓變化、(2)相對於第(1)點之電力儲存元件21的充放電動作、(3)以及 顯示直流母線2a、2b的電壓V1與電力儲存元件21的電壓V2之關係的電壓差(V3=V1-V2)。此外,對直流母線2a、2b的電壓V1,設定充電開始電壓70、與屬於電源再生動作臨限值的放電開始電壓71。充電開始電壓70係為>放電開始電壓71。 Next, in Fig. 9, the relationship between the buck-boost is reversed, but similarly to Fig. 8, (1) voltage changes of the DC bus bars 2a and 2b, and (2) power storage with respect to the (1) point. Charge and discharge operation of element 21, (3) and A voltage difference (V3 = V1 - V2) showing the relationship between the voltage V1 of the DC bus bars 2a, 2b and the voltage V2 of the power storage element 21 is shown. Further, the voltage V1 of the DC bus bars 2a and 2b is set to a charge start voltage 70 and a discharge start voltage 71 belonging to the power regeneration operation threshold. The charge start voltage 70 is the > discharge start voltage 71.

在第9圖(1)中,直流母線電壓係在,下降期間71對應加速期間;之後為恆定電壓期間73係對應定速期間;之後上升期間74係對應減速期間。 In Fig. 9 (1), the DC bus voltage is such that the falling period 71 corresponds to the acceleration period; thereafter, the constant voltage period 73 corresponds to the constant speed period; and thereafter the rising period 74 corresponds to the deceleration period.

從第7圖之構成可理解到:直流母線2a、2b的電壓V1較電力儲存元件21的電壓V2還高時係經由飛輪二極體42a進行向電力儲存元件21的充電(自然充電)。在第9圖中之時序75係進行如前述方式的自然充電。結果,當母線電壓V1下降且在時序76時低於放電開始電壓71時,而開始放電。放電動作係進行至電力儲存元件21的電壓V2與直流母線電壓V1成為相等為止。在第9圖係表示,直流母線電壓V1在屬於恆定電壓期間73的終端附近的時序77,表示電力儲存元件21的電壓V2與直流母線電壓V1相等之情形。 As can be understood from the configuration of Fig. 7, when the voltage V1 of the DC bus bars 2a, 2b is higher than the voltage V2 of the power storage element 21, the power storage element 21 is charged (naturally charged) via the flywheel diode 42a. The timing 75 in Fig. 9 performs natural charging as in the foregoing manner. As a result, when the bus voltage V1 falls and is lower than the discharge start voltage 71 at the timing 76, the discharge starts. The discharge operation is performed until the voltage V2 to the power storage element 21 and the DC bus voltage V1 become equal. In the ninth diagram, the DC bus voltage V1 at the timing 77 near the terminal belonging to the constant voltage period 73 indicates that the voltage V2 of the power storage element 21 is equal to the DC bus voltage V1.

此情形下,由於直流母線電壓V1係在放電結束時序77之後的時序78中,從恆定電壓開始上升,故形成V1>V2之狀況。如此一來,則由於產生自直流母線2a經由飛輪二極體42a而向電力儲存元件21的自然放電,故電力儲存元件21的電壓V2亦上升。於是,直流母線電壓V1在超過充電開始電壓70之時序79中開始進行原先的充電。從 時序77至時序79為止之期間係為電壓差V3為零之期間。換言之,使用第2截波器電路時,由於自電力儲存元件21的放電係只可進行至與母線電壓相等之電壓為止,故藉由電源再生而可利用的蓄電能源的利用效率不佳。 In this case, since the DC bus voltage V1 rises from the constant voltage in the timing 78 after the discharge completion timing 77, a state of V1 > V2 is formed. As a result, since the natural discharge from the DC bus 2a to the power storage element 21 via the flywheel diode 42a occurs, the voltage V2 of the power storage element 21 also rises. Thus, the DC bus voltage V1 begins its original charging at a timing 79 that exceeds the charge start voltage 70. From The period from the timing 77 to the timing 79 is a period in which the voltage difference V3 is zero. In other words, when the second chopper circuit is used, since the discharge from the power storage element 21 can only be performed to a voltage equal to the bus voltage, the utilization efficiency of the stored energy source that can be utilized by the power source regeneration is not good.

在此,從提高電源再生時的能源利用效率之觀點進行檢討。在此,令Va為電力儲存元件21的放電前電壓,令Vb為放電後電壓時,則該可利用電力P係成為P=(Va2-Vb2)/2。對提高蓄電於電力儲存元件21之能源利用效率,係必需控制成盡可能地將放電前電壓Va設定為較高,並且,盡可能地將放電後電壓Vb設定為較低。 Here, the review is made from the viewpoint of improving the energy use efficiency at the time of power regeneration. Here, when Va is the pre-discharge voltage of the power storage element 21, and Vb is the post-discharge voltage, the usable power P is P=(Va 2 - Vb 2 )/2. In order to improve the energy utilization efficiency of the electric storage in the power storage element 21, it is necessary to control so as to set the pre-discharge voltage Va as high as possible, and to set the post-discharge voltage Vb as low as possible.

如第8圖及第9圖所示,第1及第2截波器電路,在單獨使用上,由於充電動作與放電動作之一方會受到母線電壓的影響,故無法將電力儲存電壓以滿足前述要件之方式來進行控制,但具有彼此彌補對方缺點之互補性的升降壓特性。因此,在本第一實施例係於升降壓雙向截波器電路22設置電路切換元件51,且於控制電路23設置第10圖所示之充放電控制電路,而將第1截波器電路與第2截波器電路以如下述之方式,於充電時及放電時作成併合使用。 As shown in FIGS. 8 and 9, the first and second chopper circuits are used alone, and one of the charging operation and the discharging operation is affected by the bus voltage, so that the power storage voltage cannot be satisfied. The way to control is to have the buck-boost characteristics that complement each other's shortcomings. Therefore, in the first embodiment, the circuit switching element 51 is provided in the buck-boost bidirectional interceptor circuit 22, and the charge and discharge control circuit shown in FIG. 10 is provided in the control circuit 23, and the first chopper circuit is The second chopper circuit is used in combination at the time of charging and discharging as described below.

在第10圖中,充放電控制電路係能以比較器(comparator)81、邏輯「否」電路82、83、84、邏輯「及」電路85至90、邏輯「或」電路91、92之構成。比較器81係於非反相輸入端子(+)輸入電力儲存元件21的電壓V2;於反相輸入端子(-)輸入直流母線電壓V1,且輸出為比較 運算結果之電路切換要求訊號S11。 In Fig. 10, the charge and discharge control circuit can be constituted by a comparator 81, logic "No" circuits 82, 83, 84, logic "AND" circuits 85 to 90, and logic OR circuits 91, 92. . The comparator 81 is connected to the non-inverting input terminal (+) to input the voltage V2 of the power storage element 21; the inverting input terminal (-) is input to the DC bus voltage V1, and the output is compared. The circuit switching request signal of the operation result is S11.

在該構成中,比較器81的輸出(電路切換要求訊號S11)係在V1>V2時形成低位準(level)(以下記述為「“L”位準」);V1<V2時形成高位準(以下記述為「“H”位準」)。電路切換要求訊號S11係輸入電路切換元件51,並且成為邏輯「及」電路87、88之一方的輸入,且通過邏輯「否」電路82而成為邏輯「及」電路89、90之一方的輸入。 In this configuration, the output of the comparator 81 (circuit switching request signal S11) forms a low level (hereinafter referred to as "L" level) when V1 > V2; and a high level when V1 < V2 ( The following is described as ""H" level"). The circuit switching request signal S11 is input to the circuit switching element 51 and is input to one of the logical AND circuits 87 and 88, and is input to one of the logical AND circuits 89 and 90 by the logic NO circuit 82.

另外,在比較器81的比較運算中,在自V1>V2向V1<V2轉換時與向反方向轉換時中,雖亦可設成在V1=V2之時序立即切換輸出位準,但亦可設成設置固定之不靈敏區,在僅在短時間發生V1=V2之狀況時不進行電路的切換,而在固定之延遲時間時進行切換。而且在固定之延遲時間進行切換時,亦可在自V1>V2向V1<V2轉換時與向反方向轉換時,使時間寬度t1、t2相異(參照第11圖、第12圖)。 Further, in the comparison operation of the comparator 81, when switching from V1 > V2 to V1 < V2 and when switching in the reverse direction, the output level may be switched immediately at the timing of V1 = V2, but it is also possible It is assumed that a fixed dead zone is set, and switching of the circuit is not performed when the state of V1 = V2 occurs only for a short time, and switching is performed at a fixed delay time. Further, when switching between fixed delay times, the time widths t1 and t2 may be different when switching from V1>V2 to V1<V2 and when switching in the reverse direction (see FIG. 11 and FIG. 12).

電路切換元件51,在本第一實施例中係令電路切換要求訊號S11=“L”位準時形成第1截波器電路(第6圖);而電路切換要求訊號S11=“H”位準時形成第2截波器電路(第7圖)。 The circuit switching element 51 forms a first chopper circuit (FIG. 6) when the circuit switching request signal S11=“L” level is in the first embodiment; and the circuit switching request signal S11=“H” level A second chopper circuit is formed (Fig. 7).

充電指令訊號S1係產生於直流母線電壓V1超過預定之充電開始電壓時。此外,放電指令訊號S2係產生於直流母線電壓V1低於預定之放電開始電壓時。 The charging command signal S1 is generated when the DC bus voltage V1 exceeds a predetermined charging start voltage. Further, the discharge command signal S2 is generated when the DC bus voltage V1 is lower than a predetermined discharge start voltage.

邏輯「及」電路85其一方的輸入係為充電指令訊號S1,另一方的輸入係為通過邏輯「否」電路84之放電指令訊號S2。邏輯「及」電路85之輸出係成為邏輯「及」電 路87、89之另一方的輸入。 The input of one of the logical AND circuits 85 is the charge command signal S1, and the other input is the discharge command signal S2 that passes through the logic "NO" circuit 84. The output of the logical AND circuit 85 becomes a logical "and" The input to the other of the roads 87, 89.

邏輯「及」電路86其一方的輸入係為放電指令訊號S2,另一方的輸入係為通過邏輯「否」電路83之充電指令訊號S1。邏輯「及」電路86之輸出係成為邏輯「及」電路88、90之另一方的輸入。 The input of one of the logical AND circuits 86 is the discharge command signal S2, and the other input is the charge command signal S1 that passes through the logic "NO" circuit 83. The output of the logical AND circuit 86 is the input to the other of the logical AND circuits 88,90.

邏輯「或」電路91係輸入邏輯「及」電路87、88之輸出,而輸出升壓截波器電路動作訊號S21。在此所述之「升壓截波器電路」係為於放電時之第1截波器電路及於充電時之第2截波器電路。此外,邏輯「或」電路92係輸入邏輯「及」電路89、90之輸出,而輸出降壓截波器電路動作訊號S22。在此所述之「降壓截波器電路」係為於放電時之第2截波器電路及於充電時之第1截波器電路。根據邏輯「或」電路91、92之輸出,以使兩個切換元件41a、41b能夠互相地互補性地進行切換動作之方式來產生驅動訊號,並施加於切換元件41a、41b的對應閘極端子。 The logical OR circuit 91 inputs the outputs of the logical AND circuits 87, 88 and outputs the boosted chopper circuit operation signal S21. The "boost chopper circuit" described here is the first chopper circuit at the time of discharge and the second chopper circuit at the time of charging. In addition, a logical OR circuit 92 inputs the outputs of the logical AND circuits 89, 90 and outputs a buck chopper circuit operation signal S22. The "buck chopper circuit" described here is the second chopper circuit at the time of discharge and the first chopper circuit at the time of charging. The driving signals are generated in such a manner that the switching elements 41a and 41b can complement each other in accordance with the outputs of the logical OR circuits 91 and 92, and are applied to the corresponding gate terminals of the switching elements 41a and 41b. .

在此,在本第一實施例中,控制電路23係形成:(1)當啟動裝置電源時,則進行對電力儲存元件21充電至預定的初期充電電壓為止之控制、(2)於之後的交流馬達5之驅動運轉時,控制電力儲存元件21與直流母線2a、2b之間的充放電、(3)當關斷(off)裝置電源結束裝置動作時,進行從電力儲存元件21向直流母線2a、2b放電至預定放電極限電壓為止之控制。(1)之措施係為完全活用電力儲存元件21之能力的措施。(3)之措施係為關斷裝置電源,更換電力儲存元件21等之情形時的安全對策。 Here, in the first embodiment, the control circuit 23 is configured to: (1) control the charging of the power storage element 21 to a predetermined initial charging voltage when the power of the device is activated, and (2) thereafter. When the AC motor 5 is driven, the charge/discharge between the power storage element 21 and the DC bus bars 2a and 2b is controlled, and (3) when the power supply end device is turned off, the power storage element 21 is turned to the DC bus. Control of discharge of 2a, 2b to a predetermined discharge limit voltage. The measure of (1) is a measure of the ability to fully utilize the power storage element 21. (3) The measures are safety measures when the power of the device is turned off and the power storage element 21 is replaced.

參照第10圖,針對(1)(2)(3)之充放電控制動作進行說明,(1)與(3)係將(2)分開而加以說明者,且可使(1)、(3)與(2)具有關連性或不具關連性。在此,設為(2)與(1)、(3)不具有動作關連性而說明。 Referring to Fig. 10, the charge/discharge control operation of (1), (2), and (3) will be described, and (1) and (3) will be described separately from (2), and (1) and (3) may be used. ) is related or not related to (2). Here, it is assumed that (2) and (1) and (3) have no operational correlation.

(1)電源啟動時的充電控制 (1) Charging control at power-on

電源啟動時,充電指令訊號S1為“H”位準;放電指令訊號S2為“L”位準。因此,邏輯「及」電路85之輸出為“H”位準,而邏輯「及」電路86之輸出為“L”位準。由於直流母線電壓V1較高於電力儲存元件21的電壓V2,故比較器81所輸出之電路切換要求訊號S11為“L”位準。升降壓雙向截波器電路22則形成第一截波器電路(第6圖)。邏輯「及」電路89之輸出變為“H”位準,而自邏輯「或」電路92輸出降壓截波器電路動作訊號S22。藉由第1截波器電路(第6圖),一邊將直流母線電壓V1降壓而一邊進行向電力儲存元件21的充電。 When the power is turned on, the charging command signal S1 is at the "H" level; the discharging command signal S2 is at the "L" level. Therefore, the output of the logical AND circuit 85 is at the "H" level, and the output of the logical AND circuit 86 is at the "L" level. Since the DC bus voltage V1 is higher than the voltage V2 of the power storage element 21, the circuit switching request signal S11 output by the comparator 81 is at the "L" level. The buck-boost bi-directional chopper circuit 22 forms a first chopper circuit (Fig. 6). The output of the logical AND circuit 89 changes to the "H" level, and the logic OR circuit 92 outputs the buck chopper circuit operation signal S22. The first bus detector circuit (Fig. 6) charges the power storage element 21 while stepping down the DC bus voltage V1.

當進行向電力儲存元件21的充電,且電力儲存元件21的電壓V2與直流母線電壓V1相等時,比較器81將電路切換要求訊號S11自“L”位準切換至“H”位準。如此一來,升降壓雙向截波器電路22則切換至第2截波器電路(第7圖)。邏輯「及」電路87之輸出變為“H”位準,而自邏輯「或」電路91輸出升壓截波器電路動作訊號S21。藉由第2截波器電路(第7圖),一邊將直流母線電壓V1升壓,一邊持續向電力儲存元件21的充電,直至電力儲存元件21的電壓V2成為與初期充電電壓相等為止。在第2 截波器電路(第7圖)中,在電力儲存元件21的電壓V2高於直流母線電壓V1之狀態,雖然切換元件41a、41b停止動作,但由於未形成自電力儲存元件21向直流母線2a、2b的放電路徑,故電力儲存元件21的電壓V2係保持於高於直流母線電壓V1之初期充電電壓。 When charging to the power storage element 21 is performed and the voltage V2 of the power storage element 21 is equal to the DC bus voltage V1, the comparator 81 switches the circuit switching request signal S11 from the "L" level to the "H" level. As a result, the step-up and step-down chopper circuit 22 is switched to the second chopper circuit (Fig. 7). The output of the logical AND circuit 87 becomes "H" level, and the logic OR circuit 91 outputs the boosted chopper circuit operation signal S21. By the second chopper circuit (Fig. 7), the DC bus voltage V1 is boosted, and charging of the power storage element 21 is continued until the voltage V2 of the power storage element 21 becomes equal to the initial charging voltage. At the 2nd In the chopper circuit (Fig. 7), when the voltage V2 of the power storage element 21 is higher than the DC bus voltage V1, the switching elements 41a and 41b stop operating, but since the power storage element 21 is not formed, the DC bus 2a is not formed. Since the discharge path of 2b is such that the voltage V2 of the power storage element 21 is maintained at an initial charging voltage higher than the DC bus voltage V1.

(2之1)交流馬達之驅動運轉時的充電控制 (2 of 1) Charging control during AC motor drive operation

由於對應交流馬達的運轉狀態而變化之直流母線電壓V1超過充電開始電壓,故當充電指令訊號S1變成“H”位準,且放電指令訊號S2為“L”位準之情形,比較器81將電路切換要求訊號S11設為“L”位準時,升降壓雙向截波器電路22則形成第1截波器電路(第6圖)。邏輯「及」電路89之輸出變為“H”位準,而自邏輯「或」電路92輸出降壓截波器電路動作訊號S22。藉由第1截波器電路(第6圖),一邊將直流母線電壓V1降壓一邊進行向電力儲存元件21的充電。 Since the DC bus voltage V1 that changes according to the operating state of the AC motor exceeds the charging start voltage, when the charging command signal S1 becomes the "H" level and the discharging command signal S2 is at the "L" level, the comparator 81 will When the circuit switching request signal S11 is set to the "L" level, the step-up and step-down bidirectional interceptor circuit 22 forms a first chopper circuit (Fig. 6). The output of the logical AND circuit 89 changes to the "H" level, and the logic OR circuit 92 outputs the buck chopper circuit operation signal S22. The first bus detector circuit (Fig. 6) charges the power storage element 21 while stepping down the DC bus voltage V1.

當進行向電力儲存元件21的充電,且電力儲存元件21的電壓V2變成與直流母線電壓V1相等時,比較器81將電路切換要求訊號S11自“L”位準切換至“H”位準。如此一來,升降壓雙向截波器電路22則切換成第2截波器電路(第7圖)。邏輯「及」電路87之輸出變為“H”位準,而自邏輯「或」電路91輸出升壓截波器電路動作訊號S21。藉由第2截波器電路(第7圖),一邊將直流母線電壓V1升壓一邊持續向電力儲存元件21的充電。在第2截波器電路(第7圖)中,在電力儲存元件21的電壓V2高於直流母 線電壓V1之狀態,切換元件41a、41b雖停止動作,但由於未形成自電力儲存元件21向直流母線2a、2b的放電路徑,故電力儲存元件21的電壓V2係保持於高於直流母線電壓V1之電壓。換言之,可將放電開始電壓維持於高於直流母線電壓V1之最大充電電壓。因此,由於降低了於放電時流通於抗流線圈43之放電電流,故可減低電力損耗。 When charging to the power storage element 21 is performed and the voltage V2 of the power storage element 21 becomes equal to the DC bus voltage V1, the comparator 81 switches the circuit switching request signal S11 from the "L" level to the "H" level. In this way, the step-up and step-down chopper circuit 22 is switched to the second chopper circuit (Fig. 7). The output of the logical AND circuit 87 becomes "H" level, and the logic OR circuit 91 outputs the boosted chopper circuit operation signal S21. The second chopper circuit (Fig. 7) continuously charges the power storage element 21 while boosting the DC bus voltage V1. In the second chopper circuit (Fig. 7), the voltage V2 at the power storage element 21 is higher than the DC mother In the state of the line voltage V1, the switching elements 41a and 41b are stopped. However, since the discharge path from the power storage element 21 to the DC bus bars 2a and 2b is not formed, the voltage V2 of the power storage element 21 is maintained higher than the DC bus voltage. The voltage of V1. In other words, the discharge start voltage can be maintained at a maximum charging voltage higher than the DC bus voltage V1. Therefore, since the discharge current flowing through the choke coil 43 at the time of discharge is reduced, power loss can be reduced.

(2之2)交流馬達之驅動運轉時的放電控制 (2 of 2) Discharge control during AC motor drive operation

在比較器81將電路切換要求訊號S11設為“H”位準,且升降壓雙向截波器電路22形成第2截波器電路(第7圖)之狀態中,由於對應交流馬達的運轉狀態而變化之直流母線電壓V1低於放電開始電壓,故於放電指令訊號S2變成“H”位準,且充電指令訊號S1為“L”位準之情形,邏輯「及」電路88之輸出變為“H”位準,而自邏輯「或」電路91輸出升壓截波器電路動作訊號S21。藉由第2截波器電路(第7圖),一邊將電力儲存元件21的電壓V2降壓一邊進行向直流母線2a、2b的放電。 In the state where the comparator 81 sets the circuit switching request signal S11 to the "H" level and the step-up and step-down bidirectional wave cutter circuit 22 forms the second chopper circuit (Fig. 7), the operating state of the corresponding AC motor The changed DC bus voltage V1 is lower than the discharge start voltage. Therefore, when the discharge command signal S2 becomes the "H" level and the charge command signal S1 is at the "L" level, the output of the logical AND circuit 88 becomes The "H" level is output, and the logic OR circuit 91 outputs a boost chopper circuit operation signal S21. The second chopper circuit (Fig. 7) discharges the DC busbars 2a and 2b while stepping down the voltage V2 of the power storage element 21.

當進行向直流母線2a、2b的放電,且電力儲存元件21的電壓V2與直流母線電壓V1形成相等時,比較器81將電路切換要求訊號S11自“H”位準切換至“L”位準。如此一來,升降壓雙向截波器電路22則切換成第1截波器電路(第6圖)。邏輯「及」電路90之輸出變為“H”位準,而自邏輯「或」電路92輸出降壓截波器電路動作訊號S22。藉由第1截波器電路(第6圖),一邊將電力儲存元件21的電壓V2降壓一邊持續向直流母線2a、2b的放電。換言 之,由於電力儲存元件21的電壓V2係以成為直流母線2a、2b的電壓V1以下之方式進行放電,故可提升電力儲存元件21之蓄電能源的利用效率。 When the discharge to the DC bus bars 2a, 2b is performed, and the voltage V2 of the power storage element 21 is equal to the DC bus voltage V1, the comparator 81 switches the circuit switching request signal S11 from the "H" level to the "L" level. . As a result, the step-up and step-down chopper circuit 22 is switched to the first chopper circuit (Fig. 6). The output of the logical AND circuit 90 changes to the "H" level, and the logic OR circuit 92 outputs the buck chopper circuit operation signal S22. The first chopper circuit (Fig. 6) continuously discharges the voltage V2 of the power storage element 21 to the DC bus bars 2a and 2b. In other words Since the voltage V2 of the power storage element 21 is discharged so as to be equal to or lower than the voltage V1 of the DC bus bars 2a and 2b, the utilization efficiency of the power storage energy of the power storage element 21 can be improved.

(3)裝置動作結束時之放電控制 (3) Discharge control at the end of the device operation

當關斷裝置電源而結束裝置動作時,放電指令訊號S2變成“H”位準,而充電指令訊號S1形成“L”位準。比較器81將電路切換要求訊號S11設成“H”位準,且當升降壓雙向截波器電路22形成為第2截波器電路(第7圖)之狀況時,邏輯「及」電路88之輸出變成“H”位準,而自邏輯「或」電路91輸出升壓截波器電路動作訊號S21。藉由第2截波器電路(第7圖),一邊進行將電力儲存元件21的電壓V2降壓一邊向直流母線2a、2b的放電。 When the device is powered off and the device is terminated, the discharge command signal S2 becomes "H" level, and the charge command signal S1 forms an "L" level. The comparator 81 sets the circuit switching request signal S11 to the "H" level, and when the step-up/down bidirectional chopper circuit 22 is formed as the second chopper circuit (Fig. 7), the logical AND circuit 88 The output becomes the "H" level, and the logic "OR" circuit 91 outputs the boosted chopper circuit operation signal S21. The second chopper circuit (Fig. 7) discharges the voltage V2 of the power storage element 21 to the DC bus bars 2a and 2b.

當進行向直流母線2a、2b的充電,且電力儲存元件21的電壓V2與直流母線電壓V1相等時,比較器81將電路切換要求訊號S11自“H”位準切換至“L”位準。如此一來,升降壓雙向截波器電路22則切換成第1截波器電路(第6圖)。邏輯「及」電路90之輸出變為“H”位準,而自邏輯「或」電路92輸出降壓截波器電路動作訊號S22。藉由第1截波器電路(第6圖),將電力儲存元件21的電壓V2,一邊降壓至直流母線電壓V1以下的放電極限電壓為止,一邊持續向直流母線2a、2b的放電。 When charging to the DC bus bars 2a, 2b is performed and the voltage V2 of the power storage element 21 is equal to the DC bus voltage V1, the comparator 81 switches the circuit switching request signal S11 from the "H" level to the "L" level. As a result, the step-up and step-down chopper circuit 22 is switched to the first chopper circuit (Fig. 6). The output of the logical AND circuit 90 changes to the "H" level, and the logic OR circuit 92 outputs the buck chopper circuit operation signal S22. By the first chopper circuit (Fig. 6), the voltage V2 of the power storage element 21 is discharged to the DC bus bars 2a and 2b while being stepped down to the discharge limit voltage equal to or lower than the DC bus voltage V1.

第11圖係為說明依據本第一實施例之充電動作的主要部分波形圖。第12圖係為說明依據本第1實施例的放電動作之主要部分波形圖。第11圖與第12圖係為顯示彙整 前述說明之充電動作、放電動作之圖。 Fig. 11 is a waveform diagram showing the main part of the charging operation according to the first embodiment. Fig. 12 is a waveform diagram showing the main part of the discharge operation according to the first embodiment. Figure 11 and Figure 12 show the integration The diagram of the charging operation and the discharging operation described above.

如第11圖所示,不依賴直流母線2a、2b的電壓V1,可使電力儲存元件21的電壓V2超過直流母線2a、2b的電壓V1而上升,且可充電至電力儲存元件21的可充電之最大電壓(初期充電電壓)為止。 As shown in Fig. 11, the voltage V2 of the power storage element 21 can be increased beyond the voltage V1 of the DC bus bars 2a, 2b without depending on the voltage V1 of the DC bus bars 2a, 2b, and can be charged to the power storage element 21 for charging. The maximum voltage (initial charging voltage) is up.

此外,如第12圖所示,由於放電開始時的電力儲存元件21的電壓V2係為高於直流母線2a、2b的電壓V1之電壓,故可增加自電力儲存元件21之可再利用之能源量。此外,流通於抗流線圈43的放電電流降低,而能減少電力損耗。而且,不依賴直流母線2a、2b的電壓V1,可使放電至低於直流母線2a、2b的電壓V1之電力儲存元件21的可放電之最低電壓(放電極限電壓)為止。 Further, as shown in Fig. 12, since the voltage V2 of the power storage element 21 at the start of discharge is higher than the voltage V1 of the DC bus 2a, 2b, the reusable energy from the power storage element 21 can be increased. the amount. Further, the discharge current flowing through the choke coil 43 is lowered, and power loss can be reduced. Further, regardless of the voltage V1 of the DC bus bars 2a and 2b, it is possible to discharge to the lowest dischargeable voltage (discharge limit voltage) of the power storage element 21 which is lower than the voltage V1 of the DC bus bars 2a and 2b.

如前述,依據本第一實施例,設有可構成為將兩個切換元件的串聯電路及一端與兩個切換元件之串聯連接端相連接之抗流線圈作為主要構成元件之升降壓雙向截波器電路,切換成:兩個切換元件的串聯電路之正極端連接於直流母線且抗流線圈的另一端於電力儲存元件連接於正極端子的第1截波器電路、以及兩個切換元件的串聯電路之正極端於電力儲存元件連接於正極端子且抗流線圈的另一端連接於直流母線的第2截波器電路之電路切換元件;在充電時及放電時,由於設成在鄰近直流母線電壓與電力儲存元件的電壓的大小關係交替之時序切換使用第1截波器電路與第2截波器電路,故不受直流母線電壓的影響,在充電時可對電力儲存元件充電至超過直流母線電壓之高電壓 (可充電之最大電壓)為止;在放電時可使自電力儲存元件放電至低於直流母線電壓之低電壓(放電可能之最低電壓)為止。 As described above, according to the first embodiment, a buck-boost coil that can be configured to connect a series circuit of two switching elements and one end of the two switching elements to the series connection end of the two switching elements is provided as a main component The circuit is switched such that the positive terminal of the series circuit of the two switching elements is connected to the DC bus and the other end of the choke coil is connected to the first chopper circuit of the power storage element to the positive terminal, and the series connection of the two switching elements The positive terminal of the circuit is connected to the positive terminal of the power storage element, and the other end of the choke coil is connected to the circuit switching component of the second chopper circuit of the DC bus; during charging and discharging, it is set to be adjacent to the DC bus voltage Since the first chopper circuit and the second chopper circuit are switched in sequence with the magnitude of the voltage of the power storage element, the power storage element can be charged to exceed the DC bus during charging without being affected by the DC bus voltage. High voltage Until the maximum voltage that can be charged, it can be discharged from the power storage element to a low voltage (the lowest voltage possible for discharge) from the DC bus voltage.

因此,在充電時,可於電力儲存元件蓄電可蓄電之最大能量;在放電時,可最大限度地有效利用蓄電於電力儲存元件之能量,故可實現配備有能謀求提升能源利用效率的電力儲存裝置的交流馬達驅動裝置。 Therefore, at the time of charging, the maximum energy that can be stored in the power storage element can be stored, and the energy stored in the power storage element can be utilized to the maximum extent during the discharge, so that power storage capable of improving energy utilization efficiency can be realized. AC motor drive for the unit.

(第二實施例) (Second embodiment)

第13圖係為顯示作為本發明之第二實施例之可對應異常發生時之電力儲存裝置的一構成例的電路圖。另外,在第13圖,對於屬於與第5圖(第一實施例)所示之構成元件相同或相等之構成元件,予以標示相同之符號。在此,說明有關本第二實施例之重點部分。 Fig. 13 is a circuit diagram showing a configuration example of a power storage device which can cope with an abnormality occurring as a second embodiment of the present invention. Further, in Fig. 13, the same or equivalent constituent elements as those shown in Fig. 5 (first embodiment) are denoted by the same reference numerals. Here, the key points related to the second embodiment will be described.

在第13圖中,依據本第二實施例之電力儲存裝置4係在第5圖(第一實施例)所示之構成中,設置兩個電路切換元件52a、52b來取代電路切換元件51。此外,對控制電路23從裝置內部或裝置外部輸入有異常訊號。 In Fig. 13, in the configuration of the power storage device 4 according to the second embodiment shown in Fig. 5 (first embodiment), two circuit switching elements 52a and 52b are provided instead of the circuit switching element 51. Further, an abnormal signal is input to the control circuit 23 from inside the device or outside the device.

自裝置內部所輸入之異常訊號係顯示於直流電源1或反流器3產生使直流母線2a、2b的電壓降低之故障、使直流母線2a、2b間短路之故障等。自裝置外部輸入之異常訊號係於當產生必需使裝置停止時所輸入。 The abnormality signal input from the inside of the apparatus is displayed on the DC power supply 1 or the inverter 3 to generate a failure to lower the voltage of the DC bus bars 2a, 2b, and to short-circuit the DC bus bars 2a, 2b. The abnormal signal input from the outside of the device is input when it is necessary to stop the device.

電路切換元件52a、52b其驅動部雖為個別獨立,但具備有共用與電力儲存元件21之正極端子相連接之切換基端a之切換電路(a,a11,a12)(a,a21,a22)、共用與正極 之直流母線2a相連接之切換基端b之切換電路(b,b11,b12)(b,b21,b22)。 The circuit switching elements 52a and 52b are individually independent, but are provided with switching circuits (a, a11, a12) that share the switching base end a connected to the positive terminal of the power storage element 21. (a, a21, a22) , sharing and positive The switching circuit (b, b11, b12) (b, b21, b22) of the switching base b is connected to the DC bus 2a.

在電路切換元件52a之切換電路(a,a11,a12)(b,b11,b12)中,切換端a21係與抗流線圈43之另一端相連接,切換端b12係與切換元件41a之集極端子相連接,但切換端a11、b11不連接於任何處。因此,電路切換元件52a係可進行:切換基端a與切換端a12連接且切換基端b與切換端b12連接而形成第1截波器電路之動作、以及切換基端a與切換端a11連接且切換基端b與切換端b11連接而進行將直流母線2a、2b與升降壓雙向截波器電路22之間及升降壓雙向截波器電路22與電力儲存元件21之間予以開放切斷的動作。 In the switching circuit (a, a11, a12) (b, b11, b12) of the circuit switching element 52a, the switching end a21 is connected to the other end of the choke coil 43, and the switching terminal b12 is connected to the collector terminal 41a. The subphases are connected, but the switching terminals a11, b11 are not connected anywhere. Therefore, the circuit switching element 52a can perform an operation of connecting the switching base end a to the switching terminal a12 and switching the base end b to the switching terminal b12 to form the first chopper circuit, and the switching base end a is connected to the switching end a11. And the switching base end b is connected to the switching terminal b11 to open and cut between the DC bus bars 2a and 2b and the buck-boost bidirectional interceptor circuit 22 and between the buck-boost bidirectional chopper circuit 22 and the power storage element 21. action.

在電路切換元件52b之切換電路(a,a21,a22)(b,b21,b22)中,切換端a22係與切換元件41a之集極端子相連接,切換端b22係與抗流線圈43之另一端相連接,但切換端a21、b22不連接於任何處。因此,電路切換元件5ba係可進行:切換基端a與切換端a22連接且切換基端b與切換端b22連接而形成第2截波器電路之動作、切換基端a與切換端a21連接且切換基端b與切換端b21連接而進行將直流母線2a、2b與升降壓雙向截波器電路22之間及升降壓雙向截波器電路22與電力儲存元件21之間予以開放切斷的動作。 In the switching circuit (a, a21, a22) (b, b21, b22) of the circuit switching element 52b, the switching end a22 is connected to the collector terminal of the switching element 41a, and the switching terminal b22 is connected to the anti-current coil 43. One end is connected, but the switching ends a21, b22 are not connected anywhere. Therefore, the circuit switching element 5ba can be configured such that the switching base end a is connected to the switching end a22 and the switching base end b is connected to the switching end b22 to form a second chopper circuit, and the switching base end a is connected to the switching end a21. The switching base end b is connected to the switching terminal b21 to open and close the DC bus bars 2a and 2b and the buck-boost bidirectional interceptor circuit 22 and between the buck-boost bidirectional chopper circuit 22 and the power storage element 21. .

控制電路23係在裝置健全且正常的運轉狀態中,對於電路切換元件52a、52b,以對應屬於充電時或屬於放電 時之預定之順序輸出於第一實施例所說明之電路切換要求訊號S11。而且,控制電路23係在前述之正常的運轉狀態中,當異常訊號輸入時,對於電路切換元件52a、52b之中進行了電路切換之電路切換元件,輸出電路切斷要求訊號S12,並使直流母線2a、2b與升降壓雙向截波器電路22之間及升降壓雙向截波器電路22與電力儲存元件21之間進行開放切斷。 The control circuit 23 is in a sound and normal operating state of the device, and the circuit switching elements 52a, 52b are correspondingly charged or discharged. The predetermined sequence is outputted to the circuit switching request signal S11 described in the first embodiment. Further, the control circuit 23 is in the normal operation state described above, and when the abnormal signal is input, the circuit switching element that performs circuit switching among the circuit switching elements 52a and 52b, the output circuit cutoff request signal S12, and the direct current The bus bars 2a, 2b and the buck-boost bidirectional interceptor circuit 22 and the buck-boost bidirectional interceptor circuit 22 are opened and disconnected from the power storage element 21.

藉此,直到解除異常為止,由於可保持不降低蓄電於電力儲存元件21之能量,故可最大限度地有效利用蓄電於電力儲存元件21的能量。 Thereby, since the energy stored in the power storage element 21 can be maintained without being reduced, the energy stored in the power storage element 21 can be utilized to the maximum extent.

此外,例如升降壓雙向截波器電路22當形成第1截波器電路而動作時,於電源裝置1或反流器3發生某種的異常而使直流電源母線2a、2b的電壓降低時,會發生經由飛輪二極體42a而向直流母線2a側的放電。該放電係為控制電路23無法控制之自然放電。由於此時的放電電流為大電流,若置之不理時,將會對電流路徑所存在之設備帶來損傷,或使電源裝置1或反流器3的故障處擴大等的不良影響波及至周邊電路,但此情形是可防止。 Further, for example, when the step-up/down bidirectional interceptor circuit 22 operates to form the first chopper circuit, when a certain abnormality occurs in the power supply device 1 or the inverter 3, and the voltages of the DC power supply bus bars 2a and 2b are lowered, The discharge to the DC bus 2a side via the flywheel diode 42a occurs. This discharge is a natural discharge that the control circuit 23 cannot control. Since the discharge current at this time is a large current, if it is ignored, the device existing in the current path may be damaged, or the adverse effect such as the expansion of the power supply device 1 or the inverter 3 may be affected to the peripheral circuit. But this situation can be prevented.

因此,在第13圖雖有顯示進行直流母線2a、2b與升降壓雙向截波器電路22之間、升降壓雙向截波器電路22與電力儲存元件21之間之開放切斷之情形,來作為於異常發生時進行開放切斷之構成,但至少形成可開放切斷升降壓雙向截波器電路22與電力儲存元件21之間即可。 Therefore, in Fig. 13, there is shown a situation in which the DC bus bars 2a, 2b and the step-up and step-down bidirectional wave cutter circuit 22 are opened and cut between the step-up and step-down bidirectional interceptor circuit 22 and the power storage element 21. The configuration may be such that the disconnection is performed when the abnormality occurs, but at least the openable cut-off bidirectional interceptor circuit 22 and the power storage element 21 may be formed.

依據本第二實施例,由於將電力儲存元件21從包含 升降壓雙向截波器電路22之其他設備切離,故可防止使電力儲存元件21對其他設備產生破損或損傷之破損影響的產生,而可實現配備有更高安全性之電力儲存裝置的交流馬達驅動裝置。除此之外,可實現配備有可最大限度地有效利用蓄電於電力儲存元件21之能量之電力儲存裝置的交流馬達驅動裝置。 According to the second embodiment, since the power storage element 21 is included The other devices of the buck-boost bi-directional chopper circuit 22 are disconnected, so that the damage of the power storage element 21 to other devices may be prevented from being damaged or damaged, and the communication of the power storage device equipped with higher security may be realized. Motor drive unit. In addition to this, an AC motor drive device equipped with a power storage device that can utilize the energy stored in the power storage element 21 to the maximum extent can be realized.

(第三實施形例) (Third embodiment example)

第14圖係為顯示可對應於異常發生時之電力儲存裝置之另一構成例的電路圖,來作為本發明的第三實施形例。另外,在第14圖,對於屬於與第13圖(第二實施例)所示之構成元件相同或相等之構成元件,予以標示相同之符號。在此,說明有關本第三實施形態之重點部分。 Fig. 14 is a circuit diagram showing another configuration example of the power storage device which can correspond to the occurrence of an abnormality, and is a third embodiment of the present invention. Further, in Fig. 14, the same or equivalent constituent elements as those shown in Fig. 13 (second embodiment) are denoted by the same reference numerals. Here, the key points of the third embodiment will be described.

在第14圖中,依據本第三實施形例之電力儲存裝置4係在第13圖(第二實施例)所示之構成中,對控制電路23自裝置內部或裝置外部輸入有於第二實施例所說明之異常訊號;惟設置有電路切換元件53來取代電路切換元件52a、52b。 In Fig. 14, the power storage device 4 according to the third embodiment is in the configuration shown in Fig. 13 (second embodiment), and the control circuit 23 is input from the inside of the device or the outside of the device. The abnormal signal described in the embodiment; however, a circuit switching element 53 is provided instead of the circuit switching elements 52a, 52b.

電路切換元件53係為使以框框圍起所示之驅動部之2組切換電路(a,a1,a2,a3)、(b,b1,b2,b3)連動作動之構成。在一方的切換電路(a,a1,a2,a3)中,切換基端a係與電力儲存元件21的正極端子相連接,切換端a1係與抗流線圈43的另一端相連接,切換端a2未與任何處相連接,切換端a3係與切換元件41a的集極端子相連接。此外,在另一方的切換電路(b,b1,b2,b3)中,切換基端b係與正極 的直流母線2a相連接,切換端b1係與切換元件41a的集極端子相連接,切換端b2未與任何處相連接,切換端b3係與抗流線圈43的另一端相連接。 The circuit switching element 53 is configured to operate two sets of switching circuits (a, a1, a2, a3) and (b, b1, b2, b3) that surround the driving unit shown in the frame. In one of the switching circuits (a, a1, a2, a3), the switching base a is connected to the positive terminal of the power storage element 21, and the switching end a1 is connected to the other end of the choke coil 43, the switching end a2 Not connected to any place, the switching end a3 is connected to the collector terminal of the switching element 41a. In addition, in the other switching circuit (b, b1, b2, b3), switching the base b and the positive electrode The DC bus 2a is connected, the switching terminal b1 is connected to the collector terminal of the switching element 41a, the switching terminal b2 is not connected to any of the switching terminals b2, and the switching terminal b3 is connected to the other end of the choke coil 43.

因此,電路切換元件53係可進行:切換基端a與切換端a1連接且切換基端b與切換端b1連接而形成第1截波器電路之動作、切換基端a與切換端a3連接且切換基端b與切換端b3連接而形成第2截波器電路之動作、切換基端a與切換端a2連接且切換基端b與切換端b2連接而進行直流母線2a、2b與電力儲存元件21之間的開放切斷動作。 Therefore, the circuit switching element 53 can be configured such that the switching base end a is connected to the switching end a1 and the switching base end b is connected to the switching end b1 to form a first chopper circuit, and the switching base end a is connected to the switching end a3. The switching base terminal b is connected to the switching terminal b3 to form a second chopper circuit, the switching base end a is connected to the switching terminal a2, and the switching base end b is connected to the switching terminal b2 to perform the DC bus bars 2a, 2b and the power storage element. The opening cut action between 21s.

控制電路23係在裝置健全且正常的運轉狀態中,對於電路切換元件53,輸出於第一實施例所說明之電路切換要求訊號S11。而且,控制電路23係在前述之正常的運轉狀態中,當異常訊號輸入時,對於電路切換元件53,輸出電路切斷要求訊號S12,並使直流母線2a、2b與電力儲存元件21之間進行開放切斷。 The control circuit 23 outputs the circuit switching request signal S11 described in the first embodiment to the circuit switching element 53 in a sound and normal operating state of the device. Further, the control circuit 23 is in the normal operation state described above, and when the abnormal signal is input, the circuit switching element 53 outputs the circuit cut request signal S12, and the DC bus 2a, 2b is connected to the power storage element 21. Open cut.

與第二實施例同樣地,在第14圖中,雖有顯示進行直流母線2a、2b與升降壓雙向截波器電路22之間、升降壓雙向截波器電路22與電力儲存元件21之間之開放切斷之情形,來作為於異常發生時進行開放切斷之構成,但至少可開放切斷升降壓雙向截波器電路22與電力儲存元件21之間即可。 Similarly to the second embodiment, in Fig. 14, there is shown that between the DC bus bars 2a, 2b and the step-up and step-down bidirectional cutter circuit 22, between the buck-boost bidirectional chopper circuit 22 and the power storage element 21 In the case of the opening and closing, the opening and closing are performed when the abnormality occurs, but at least the switching between the step-up and step-down bidirectional interceptor circuit 22 and the power storage element 21 may be opened.

因此,在本第三實施形例中亦與第二實施例相同,由於可將電力儲存元件21從包含升降壓雙向截波器電路22 之其他設備切離,故可防止連接有電力儲存元件21時發生對其他設備產生破損之破損影響的發生,而實現配備有更高安全性之電力儲存裝置的交流馬達驅動裝置。除此之外,與第二實施例同樣地可實現配備有可最大限度地有效利用蓄電於電力儲存元件21之能量之電力儲存裝置的交流馬達驅動裝置。 Therefore, in the third embodiment, the same as the second embodiment, since the power storage element 21 can be from the buck-boost bidirectional interceptor circuit 22 Since the other devices are separated, it is possible to prevent the occurrence of breakage of damage to other devices when the power storage element 21 is connected, and to realize an AC motor drive device equipped with a higher-safety power storage device. In addition to this, an AC motor drive device equipped with a power storage device that can utilize the energy stored in the power storage element 21 to the maximum extent can be realized in the same manner as the second embodiment.

(產業上之可利用性) (industrial availability)

如以上所述,本發明之交流馬達驅動裝置,無需對電力儲存裝置所採用之雙向型的升降壓截波器電路進行設置2電路之切換電路等,且可與母線電壓無關係地進行電力儲存元件之充放電,為有益於作為配備有可提高能源利用效率之電力儲存裝置的交流馬達驅動裝置。 As described above, the AC motor driving device of the present invention does not require a switching circuit for setting a two-circuit type of the bidirectional type buck-boost chopper circuit used in the power storage device, and can perform power storage irrespective of the bus voltage. The charging and discharging of components is advantageous as an AC motor driving device equipped with a power storage device capable of improving energy utilization efficiency.

1‧‧‧直流電源 1‧‧‧DC power supply

2a、2b‧‧‧直流母線 2a, 2b‧‧‧ DC bus

3‧‧‧反流器 3‧‧‧Reflux

4‧‧‧電力儲存裝置 4‧‧‧Power storage device

5‧‧‧交流馬達 5‧‧‧AC motor

11‧‧‧三相交流電源 11‧‧‧Three-phase AC power supply

12‧‧‧變壓器 12‧‧‧Transformers

13‧‧‧電抗器 13‧‧‧Reactor

15、44a、44b‧‧‧平流電容器 15, 44a, 44b‧‧‧ Straddle capacitor

21‧‧‧電力儲存元件 21‧‧‧Power storage components

22‧‧‧升降壓雙方向截波器電路 22‧‧‧Boosting and lowering bidirectional chopper circuit

23‧‧‧控制電路 23‧‧‧Control circuit

31‧‧‧EDLC(電性雙層電容器)模組 31‧‧‧EDLC (Electrical Double Layer Capacitor) Module

32‧‧‧EDLC胞 32‧‧‧EDLC

33‧‧‧電壓平衡電阻器 33‧‧‧Voltage balance resistor

41a、41b、SW1至SW6‧‧‧切換元件 41a, 41b, SW1 to SW6‧‧‧ switching components

42a、42b、D1至D6‧‧‧飛輪二極體 42a, 42b, D1 to D6‧‧‧ flywheel diodes

43‧‧‧抗流線圈 43‧‧‧Current coil

45a、45b‧‧‧電壓感測器 45a, 45b‧‧‧ voltage sensor

46a、46b‧‧‧電流感測器 46a, 46b‧‧‧ current sensor

51、52a、52b、53‧‧‧電路切換元件 51, 52a, 52b, 53‧‧‧ circuit switching components

81‧‧‧比較器 81‧‧‧ comparator

82至84‧‧‧邏輯「否」電路 82 to 84‧‧‧Logical "No" circuit

85至90‧‧‧邏輯「及」電路 85 to 90 ‧ ‧ logical "and" circuit

91、92‧‧‧邏輯「或」電路 91, 92‧‧‧Logical OR circuit

a1、a2、b1、b2‧‧‧切換端 A1, a2, b1, b2‧‧‧ switch end

S11‧‧‧電路切換要求訊號 S11‧‧‧ circuit switching request signal

第1圖係為顯示依據本發明之第一實施例之交流馬達驅動裝置的構成方塊圖。 Fig. 1 is a block diagram showing the configuration of an AC motor driving device according to a first embodiment of the present invention.

第2圖係為顯示關於第1圖所示之直流電源的部分之詳細電路圖。 Fig. 2 is a detailed circuit diagram showing a portion of the DC power supply shown in Fig. 1.

第3圖係為顯示第1圖所示之電力儲存裝置之構成的方塊圖。 Fig. 3 is a block diagram showing the configuration of the power storage device shown in Fig. 1.

第4圖係為顯示第3圖所示之電力儲存元件之構成例的方塊圖。 Fig. 4 is a block diagram showing a configuration example of the power storage element shown in Fig. 3.

第5圖係為顯示第3圖所示之升降壓雙向截波器電路之具體性的構成例的電路圖。 Fig. 5 is a circuit diagram showing a configuration example of a specific configuration of the step-up and step-down chopper circuit shown in Fig. 3.

第6圖係為顯示實現第5圖所示之電路切換元件之第 1截波器電路的電路圖。 Figure 6 is a diagram showing the realization of the circuit switching element shown in Figure 5 1 circuit diagram of the chopper circuit.

第7圖係為顯示實現第5圖所示之電路切換元件之第2截波器電路的電路圖。 Fig. 7 is a circuit diagram showing a second chopper circuit which realizes the circuit switching element shown in Fig. 5.

第8圖係為說明依據第6圖所示之第1截波器電路之充放電特性的特性圖。 Fig. 8 is a characteristic diagram for explaining the charge and discharge characteristics of the first chopper circuit shown in Fig. 6.

第9圖係為說明依據第7圖所示之第2截波器電路之充放電特性的特性圖。 Fig. 9 is a characteristic diagram for explaining the charge and discharge characteristics of the second chopper circuit shown in Fig. 7.

第10圖係為顯示第3圖所示之控制電路具備的充放電控制電路之一例的電路圖。 Fig. 10 is a circuit diagram showing an example of a charge and discharge control circuit provided in the control circuit shown in Fig. 3.

第11圖係為說明依據本第一實施例的充電動作之主要部分波形圖。 Fig. 11 is a waveform diagram showing the main part of the charging operation according to the first embodiment.

第12圖係為說明依據本第一實施例的放電動作之主要部分波形圖。 Fig. 12 is a waveform diagram showing the main part of the discharge operation according to the first embodiment.

第13圖係為顯示作為本發明之第二實施例的可對應異常發生時之電力儲存裝置之一構成例的電路圖。 Fig. 13 is a circuit diagram showing an example of a configuration of a power storage device which can correspond to the occurrence of an abnormality as a second embodiment of the present invention.

第14圖係為顯示作為本發明之第三實施形例可對應異常發生時之電力儲存裝置之另一構成例的電路圖。 Fig. 14 is a circuit diagram showing another configuration example of the power storage device which can correspond to the occurrence of an abnormality as a third embodiment of the present invention.

2a、2b‧‧‧直流母線 2a, 2b‧‧‧ DC bus

4‧‧‧電力儲存裝置 4‧‧‧Power storage device

21‧‧‧電力儲存元件 21‧‧‧Power storage components

22‧‧‧升降壓雙方向截波器電路 22‧‧‧Boosting and lowering bidirectional chopper circuit

23‧‧‧控制電路 23‧‧‧Control circuit

41a、41b‧‧‧切換元件 41a, 41b‧‧‧ Switching components

42a、42b‧‧‧飛輪二極體 42a, 42b‧‧‧ flywheel diode

43‧‧‧抗流線圈 43‧‧‧Current coil

44a、44b‧‧‧平流電容器 44a, 44b‧‧‧ Straddle capacitor

45a、45b‧‧‧電壓感測器 45a, 45b‧‧‧ voltage sensor

46a、46b‧‧‧電流感測器 46a, 46b‧‧‧ current sensor

51‧‧‧電路切換元件 51‧‧‧Circuit switching components

a1、a2、b1、b2‧‧‧切換端 A1, a2, b1, b2‧‧‧ switch end

S11‧‧‧電路切換要求訊號 S11‧‧‧ circuit switching request signal

Claims (8)

一種交流馬達驅動裝置,係具備有與將從與直流電源連接之直流母線所供應之直流電力轉換成對驅動交流馬達所必需的交流電力之反流器並聯連接於前述直流母線,且控制該直流母線之直流電力的電力儲存裝置,前述電力儲存裝置係具備有:電力儲存元件,可儲存直流電力;升降壓雙向截波器電路,以兩個切換元件的串聯電路及一端與前述兩個切換元件之串聯連接端相連接之抗流線圈作為主要構成元件,而配置於前述直流母線與前述電力儲存元件之間,用以進行自前述直流母線向前述電力儲存元件的充電動作與自前述電力儲存元件向前述直流母線的放電動作;電路切換元件,用以將前述升降壓雙向截波器電路之構成切換成:第1截波器電路及第2截波器電路;該第1截波器電路係將前述串聯電路的正極端連接於前述直流母線的正極側而將前述抗流線圈的另一端連接於前述電力儲存元件的正極端子;該第2截波器電路係將前述抗流線圈的另一端連接於前述直流母線的正極側而將前述串聯電路的正極端連接於前述電力儲存元件的正極端子;以及控制電路,用以在比較前述直流母線的電壓與前述電力儲存元件的電壓,且調換大小關係之時序的前後,使前述電路切換元件切換成對應前述第1截波器電路 與前述第2截波器電路的電路而構成、並以預定之順序使前述第1截波器電路與前述第2截波器電路動作而分別實現前述充電動作與前述放電動作。 An AC motor driving device is provided with a inverter that converts DC power supplied from a DC bus connected to a DC power source into AC power necessary for driving an AC motor, and is connected in parallel to the DC bus, and controls the DC A power storage device for a DC power of a bus bar, the power storage device comprising: a power storage element capable of storing DC power; a buck-boost bidirectional chopper circuit, a series circuit of two switching elements, and one end and the two switching elements a choke coil connected to the series connection end as a main component, and disposed between the DC bus and the power storage element for performing a charging operation from the DC bus to the power storage element and from the power storage element a discharge operation to the DC bus; the circuit switching element is configured to switch the configuration of the buck-boost bidirectional chopper circuit into: a first chopper circuit and a second chopper circuit; the first chopper circuit Connecting the positive terminal of the series circuit to the positive electrode side of the DC bus and the anti-current coil The other end is connected to the positive terminal of the power storage element; the second chopper circuit connects the other end of the choke coil to the positive side of the DC bus and connects the positive end of the series circuit to the power storage element. a positive terminal; and a control circuit for switching the circuit switching element to correspond to the first chopper circuit before and after comparing the voltage of the DC bus to the voltage of the power storage element and switching the magnitude relationship The first chopper circuit and the second chopper circuit are operated in a predetermined order in accordance with a circuit of the second chopper circuit to realize the charging operation and the discharging operation, respectively. 如申請專利範圍第1項所述之交流馬達驅動裝置,其中,前述控制電路係在前述交流馬達之驅動運轉時,比較前述直流母線的電壓與前述電力儲存元件的電壓,而於前述直流母線的電壓變得高於前述電力儲存元件的電壓而產生充電指令時,使前述電路切換元件構成前述第1截波器電路,而進行一邊降低前述直流母線的電壓一邊對前述電力儲存元件充電之動作;在前述電力儲存元件的電壓上升且與前述直流母線的電壓調換大小關係之時序的附近時,使前述電路切換元件構成前述第2截波器電路,且進行一邊升高前述直流母線的電壓,一邊對前述電力儲存元件充電之動作。 The AC motor drive device according to claim 1, wherein the control circuit compares a voltage between the DC bus and a voltage of the power storage element during a driving operation of the AC motor, and is in the DC bus. When the voltage is higher than the voltage of the power storage element to generate a charging command, the circuit switching element is configured to constitute the first chopper circuit, and the operation of charging the power storage element while reducing the voltage of the DC bus is performed; When the voltage of the power storage element rises and is in the vicinity of the timing of the magnitude of the voltage change of the DC bus, the circuit switching element is configured to constitute the second chopper circuit, and while raising the voltage of the DC bus. The action of charging the aforementioned power storage element. 如申請專利範圍第2項所述之交流馬達驅動裝置,其中,前述控制電路係於使前述電路切換元件構成前述第2截波器電路時,若產生放電指令,則使前述構成之第2截波器電路進行一邊降低前述電力儲存元件的電壓,一邊對前述直流母線放電之動作;在前述電力儲存元件的電壓下降且與前述直流母線的電壓調換大小關係之時序附近時,使前述電路切換元件構成前述第1截波器電路,而進行一邊升高前述電力儲存元件的電 壓,一邊對前述直流母線放電之動作。 The AC motor drive device according to claim 2, wherein the control circuit is configured to cause the second switching circuit to form the second chopper circuit, and if a discharge command is generated, the second block of the configuration is The wave circuit performs an operation of discharging the DC bus while reducing a voltage of the power storage element, and causes the circuit switching element when a voltage of the power storage element decreases and a timing relationship with a voltage of the DC bus is changed Forming the first chopper circuit to increase the power of the power storage element Pressing, the action of discharging the DC bus on the side. 如申請專利範圍第1項至第3項中任一項所述之交流馬達驅動裝置,其中,前述控制電路係在裝置電源啟動時,若產生充電指令,則比較前述直流母線的電壓與前述電力儲存元件的電壓,於前述直流母線的電壓高於前述電力儲存元件的電壓之情形時,使前述電路切換元件構成前述第1截波器電路,而進行一邊降低前述直流母線的電壓,一邊對前述電力儲存元件充電之動作;在前述電力儲存元件的電壓上升且與前述直流母線的電壓調換大小關係之時序附近時,使前述電路切換元件構成前述第1截波器電路,而進行一邊升高前述直流母線的電壓,一邊對前述電力儲存元件充電之動作,至前述電力儲存元件的電壓超過前述直流母線的電壓而到達至屬於預定之初期充電電壓為止。 The AC motor driving device according to any one of claims 1 to 3, wherein the control circuit compares a voltage of the DC bus and the power when a charging command is generated when the device power is turned on. The voltage of the storage element is such that when the voltage of the DC bus is higher than the voltage of the power storage element, the circuit switching element forms the first chopper circuit, and while reducing the voltage of the DC bus, The operation of charging the power storage element; when the voltage of the power storage element rises and is in the vicinity of the timing of the voltage change relationship of the DC bus, the circuit switching element is configured to constitute the first chopper circuit, and the foregoing The voltage of the DC bus is charged to the power storage element until the voltage of the power storage element exceeds the voltage of the DC bus and reaches a predetermined initial charging voltage. 如申請專利範圍第1項至第3項中任一項所述之交流馬達驅動裝置,其中,前述控制電路係在關斷裝置電源的動作結束時,當產生放電指令時,使前述電路切換元件構成前述第2截波器電路,而進行一邊降低前述電力儲存元件的電壓,一邊對前述直流母線的放電之動作;在前述電力儲存元件的電壓下降且與前述直流母線的電壓調換大小關係之時序附近時,使前述電路切換元件構成前述第1截波器電路,而進行一邊升高前述電力儲存元件的電 壓,一邊對前述直流母線放電之動作,至前述電力儲存元件的電壓低於前述直流母線的電壓至屬於放電極限電壓為止。 The AC motor driving device according to any one of the preceding claims, wherein the control circuit causes the circuit switching element to be generated when a discharge command is generated when the operation of the power of the power off device is completed. The second chopper circuit is configured to perform an operation of discharging the DC bus while reducing the voltage of the power storage element, and a timing at which the voltage of the power storage element decreases and the voltage of the DC bus is reversed. In the vicinity, the circuit switching element is configured to constitute the first chopper circuit, and the electric power of the power storage element is raised The operation of discharging the DC bus is performed until the voltage of the power storage element is lower than the voltage of the DC bus to the discharge limit voltage. 如申請專利範圍第1項所述之交流馬達驅動裝置,其中,前述電路切換元件,至少複具備有開放前述電力儲存元件之正極端子與前述升降壓雙向截波器電路之間之連接的構成。 The AC motor drive device according to claim 1, wherein the circuit switching element has at least a configuration in which a connection between a positive terminal of the power storage element and the step-up/down bidirectional chopper circuit is opened. 如申請專利範圍第6項所述之交流馬達驅動裝置,其中,前述控制電路係於使前述電路切換元件構成前述第1截波器電路之情形時,若自裝置的內部或外部輸入有異常訊號,則使前述電路切換元件開放前述電力儲存元件的正極端子與前述抗流線圈的另一端之連接。 The AC motor drive device according to claim 6, wherein the control circuit is configured to input an abnormal signal from the inside or the outside of the device when the circuit switching element constitutes the first chopper circuit. And causing the circuit switching element to open the connection between the positive terminal of the power storage element and the other end of the choke coil. 如申請專利範圍第6項所述之交流馬達驅動裝置,其中,前述控制電路係於使前述電路切換元件構成前述第2截波器電路之情形時,若自裝置的內部或外部輸入有異常訊號,則使前述電路切換元件開放前述電力儲存元件的正極端子與前述串聯電路之正極端之連接。 The AC motor driving device according to claim 6, wherein the control circuit is configured to input an abnormal signal from the inside or the outside of the device when the circuit switching element constitutes the second chopper circuit. And causing the circuit switching element to open the connection between the positive terminal of the power storage element and the positive terminal of the series circuit.
TW100119936A 2011-03-31 2011-06-08 Ac motor driving device TWI467913B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/058267 WO2012131995A1 (en) 2011-03-31 2011-03-31 Alternating current motor drive device

Publications (2)

Publication Number Publication Date
TW201240323A TW201240323A (en) 2012-10-01
TWI467913B true TWI467913B (en) 2015-01-01

Family

ID=46793959

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100119936A TWI467913B (en) 2011-03-31 2011-06-08 Ac motor driving device

Country Status (6)

Country Link
US (1) US8653783B2 (en)
JP (1) JP5000029B1 (en)
KR (1) KR101356277B1 (en)
DE (1) DE112011104777T5 (en)
TW (1) TWI467913B (en)
WO (1) WO2012131995A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5680600B2 (en) * 2012-09-07 2015-03-04 株式会社日本製鋼所 DC voltage supply circuit for electric injection molding machine
CN105075103B (en) * 2013-04-09 2017-04-12 三菱电机株式会社 Multiaxial driving apparatus
JP6101809B2 (en) * 2013-09-25 2017-03-22 株式会社日立製作所 Energy conversion system
JP6502088B2 (en) * 2014-12-25 2019-04-17 国立大学法人横浜国立大学 POWER SUPPLY SYSTEM, VEHICLE, AND VOLTAGE CONTROL METHOD
CN104506091B (en) * 2015-01-15 2018-06-26 广州市奇虎实业有限公司 A kind of delay control circuit of direct current generator
EP3148032B1 (en) * 2015-09-28 2018-03-28 GE Energy Power Conversion Technology Ltd Power supply system of a set of loads connected in parallel to a dc power bus
US10250058B2 (en) 2016-09-15 2019-04-02 Raytheon Company Charge management system
WO2018180753A1 (en) * 2017-03-31 2018-10-04 株式会社村田製作所 Power supply device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5138249A (en) * 1990-06-08 1992-08-11 Alcatel Espace Circuit for regulating a parameter by means of a bidirectional current structure
US5563479A (en) * 1993-10-29 1996-10-08 Aisin Seiki Kabushiki Kaisha Power supply apparatus for electric vehicle
JP3121378B2 (en) * 1991-07-05 2000-12-25 松下電工株式会社 Power converter
JP2001320893A (en) * 2000-05-09 2001-11-16 Mitsubishi Electric Corp Motor drive device
JP2008099503A (en) * 2006-10-16 2008-04-24 Yaskawa Electric Corp Power converter with electric double-layer capacitor applied, and charging method of the electric double-layer capacitor
US20090237016A1 (en) * 2008-03-21 2009-09-24 Fanuc Ltd Motor controller

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4095154A (en) * 1976-10-21 1978-06-13 General Electric Company Regenerative braking system for a chopper controlled electric traction motor
JPH03121378A (en) 1989-09-30 1991-05-23 Matsushita Electric Ind Co Ltd Flow control device
JP2000262072A (en) 1999-03-11 2000-09-22 Chiyoda:Kk Electric power regenerative charging and discharging device
JP2001103769A (en) 1999-10-01 2001-04-13 Meidensha Corp Voltage inverter
JP2001268900A (en) 2000-03-22 2001-09-28 Masayuki Hattori Bi-directional step-up and step-down chopper circuit
JP2003111493A (en) 2001-09-26 2003-04-11 Mitsubishi Electric Corp Motor driving system
JP4098182B2 (en) * 2003-08-07 2008-06-11 株式会社日立製作所 Motor drive system and elevator drive system
JP4619038B2 (en) 2004-05-12 2011-01-26 東芝エレベータ株式会社 Elevator control device
JP2009247193A (en) 2008-04-01 2009-10-22 Meidensha Corp Instantaneous voltage-drop compensator in inverter apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5138249A (en) * 1990-06-08 1992-08-11 Alcatel Espace Circuit for regulating a parameter by means of a bidirectional current structure
JP3121378B2 (en) * 1991-07-05 2000-12-25 松下電工株式会社 Power converter
US5563479A (en) * 1993-10-29 1996-10-08 Aisin Seiki Kabushiki Kaisha Power supply apparatus for electric vehicle
JP2001320893A (en) * 2000-05-09 2001-11-16 Mitsubishi Electric Corp Motor drive device
JP2008099503A (en) * 2006-10-16 2008-04-24 Yaskawa Electric Corp Power converter with electric double-layer capacitor applied, and charging method of the electric double-layer capacitor
US20090237016A1 (en) * 2008-03-21 2009-09-24 Fanuc Ltd Motor controller

Also Published As

Publication number Publication date
US20130285582A1 (en) 2013-10-31
TW201240323A (en) 2012-10-01
JPWO2012131995A1 (en) 2014-07-24
KR101356277B1 (en) 2014-01-28
US8653783B2 (en) 2014-02-18
DE112011104777T5 (en) 2013-10-31
KR20130132615A (en) 2013-12-04
JP5000029B1 (en) 2012-08-15
WO2012131995A1 (en) 2012-10-04

Similar Documents

Publication Publication Date Title
TWI467913B (en) Ac motor driving device
JP6417043B2 (en) Power converter
US9553441B2 (en) Method and apparatus for protecting an intermediate circuit capacitor in a power converter
US8400100B2 (en) Electric power converter
JP6736370B2 (en) Power conversion system
JP6736369B2 (en) Power conversion system
CN107636949B (en) Inverter control device
JP6426775B2 (en) Motor drive
JP2015073423A (en) Power conversion system for motor car
JP2019092284A (en) Step-down chopper circuit
EP1511152A1 (en) Uninterruptible power supply
JP5569249B2 (en) Uninterruptible power system
JP4675983B2 (en) DC / DC power converter
JP4774961B2 (en) Uninterruptible power system
JP5931366B2 (en) Power converter
KR101471321B1 (en) Alternating current motor drive device
JP6935592B2 (en) Uninterruptible power system
JP2012147571A (en) Inverter apparatus and motor drive system
JP5199730B2 (en) Power converter
JP5445036B2 (en) Power converter
JP2002320390A (en) Power storage apparatus
JPH0898537A (en) Uninterruptible power supply device
JP7140531B2 (en) electric car control system
JP2008289266A (en) Dc/dc power conversion device
JPH1080067A (en) Charge and discharge device for storage battery