JP2006066742A - Heater and wafer heating device using the same - Google Patents

Heater and wafer heating device using the same Download PDF

Info

Publication number
JP2006066742A
JP2006066742A JP2004249295A JP2004249295A JP2006066742A JP 2006066742 A JP2006066742 A JP 2006066742A JP 2004249295 A JP2004249295 A JP 2004249295A JP 2004249295 A JP2004249295 A JP 2004249295A JP 2006066742 A JP2006066742 A JP 2006066742A
Authority
JP
Japan
Prior art keywords
resistance heating
heating element
groove
heater
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004249295A
Other languages
Japanese (ja)
Other versions
JP4562460B2 (en
Inventor
Seiichiro Maki
誠一郎 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004249295A priority Critical patent/JP4562460B2/en
Priority to US11/138,943 priority patent/US7361865B2/en
Priority to CN 200510074602 priority patent/CN1708190B/en
Priority to KR1020050044514A priority patent/KR101098798B1/en
Publication of JP2006066742A publication Critical patent/JP2006066742A/en
Priority to US11/852,162 priority patent/US20080017632A1/en
Application granted granted Critical
Publication of JP4562460B2 publication Critical patent/JP4562460B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an excellent heater in which a temperature difference in a wafer face is set so as to be 0.4°C or lower, the change quantity of the resistance value of a resistance heating body is made small, and the temperature variation of a wafer is made small even when heating and cooling are repeated, and a wafer heating device using the heater. <P>SOLUTION: This heater is provided with a band-shaped resistance heating body on the surface of a plate-shaped body, and a groove which is almost parallel with the longitudinal direction of the band of the resistance heating body. The resistance heating body is constituted of the composite material of an insulating composition and a conductive composition, and the density of the conductive composition on the surface of the groove is set so as to be smaller than the density of the internal conductive composition of the resistance heating body. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、主にウェハを加熱する際に用いるウェハ加熱装置に関するものであり、例えば半導体ウェハや液晶装置あるいは回路基板等のウェハ上に薄膜を形成したり、前記ウェハ上に塗布されたレジスト液を乾燥焼き付けしてレジスト膜を形成する際に好適なヒータに関するものである。   The present invention relates to a wafer heating apparatus mainly used for heating a wafer. For example, a thin film is formed on a wafer such as a semiconductor wafer, a liquid crystal device or a circuit board, or a resist solution applied on the wafer. The present invention relates to a heater suitable for forming a resist film by dry baking.

半導体製造装置の製造工程における、半導体薄膜の成膜処理、エッチング処理、レジスト膜の焼き付け処理等においては、半導体ウェハ(以下、ウェハと略す)を加熱するためのヒータが用いられている。   2. Description of the Related Art A heater for heating a semiconductor wafer (hereinafter abbreviated as a wafer) is used in a semiconductor thin film forming process, an etching process, a resist film baking process, and the like in a manufacturing process of a semiconductor manufacturing apparatus.

従来の半導体製造装置は、複数のウェハを一括して加熱するバッチ式と、1枚ずつ加熱する枚様式とがあり、枚葉式は、温度制御性に優れているので、半導体素子の配線の微細化とウェハ熱処理温度の精度向上が要求されるに伴い、セラミック製のヒータが広く使用されている。   The conventional semiconductor manufacturing apparatus has a batch type that heats a plurality of wafers at once and a sheet type that heats one wafer at a time, and the single wafer type has excellent temperature controllability. As miniaturization and improvement in accuracy of wafer heat treatment temperature are required, ceramic heaters are widely used.

このようなセラミック製のヒータとして、例えば特許文献1や特許文献2には、図16に示すようなセラミック製のヒータ71が提案されている。   As such a ceramic heater, for example, Patent Document 1 and Patent Document 2 propose a ceramic heater 71 as shown in FIG.

このセラミック製のヒータ71は、板状体72、金属ケース79、を主要な構成要素としたもので、アルミニウム等の金属からなる有底状の金属ケース79の開口部に、窒化物セラミックスや炭化物セラミックスからなる板状体72を樹脂製の断熱性の接続部材74を介してボルト80で固定され、その上面をウェハWを載せる載置面73とするとともに、板状体72の下面に、例えば図17に示すような同心円状の抵抗発熱体75を備えるようになっていた。   This ceramic heater 71 has a plate-like body 72 and a metal case 79 as main components, and nitride ceramics or carbide is formed in an opening of a bottomed metal case 79 made of metal such as aluminum. A plate-like body 72 made of ceramics is fixed with a bolt 80 via a heat insulating connecting member 74 made of a resin, and the upper surface thereof is used as a mounting surface 73 on which the wafer W is placed. A concentric resistance heating element 75 as shown in FIG. 17 was provided.

さらに、抵抗発熱体75の端子部には、給電端子77がロウ付けされており、この給電端子77が金属ケース79の底部79aに形成されたリード線引出用の孔76に挿通されたリード線78と電気的に接続されるようになっていた。   Furthermore, a power supply terminal 77 is brazed to the terminal portion of the resistance heating element 75, and the power supply terminal 77 is inserted into a lead wire drawing hole 76 formed in the bottom 79 a of the metal case 79. 78 to be electrically connected.

ところで、このようなヒータ71において、ウェハWの表面全体に均質な膜を形成したり、レジスト膜の加熱反応状態を均質にするためには、ウェハの温度分布を均一にすることが重要である。その為、これまでウェハの面内の温度差を小さくするため、抵抗発熱体75の抵抗分布を調整したり、抵抗発熱体75の温度を分割制御することが行われている。しかし、印刷法で作製した抵抗発熱体は膜厚がばらつき設計通りの抵抗値が得られないとの問題があり、そこで、前記抵抗分布を調整する方法として特許文献3、特許文献4や特許文献5に記載のようなレーザビームで溝を形成して抵抗調整する方法が開示されている。   By the way, in such a heater 71, it is important to make the temperature distribution of the wafer uniform in order to form a homogeneous film on the entire surface of the wafer W and to make the heating reaction state of the resist film uniform. . Therefore, until now, in order to reduce the temperature difference in the surface of the wafer, the resistance distribution of the resistance heating element 75 is adjusted, or the temperature of the resistance heating element 75 is divided and controlled. However, the resistance heating element produced by the printing method has a problem that the film thickness varies and a resistance value as designed cannot be obtained. Therefore, as a method for adjusting the resistance distribution, Patent Document 3, Patent Document 4 and Patent Document 5, a method of adjusting the resistance by forming a groove with a laser beam is disclosed.

また、特許文献6のように抵抗発熱体を波状にし、波状部をレーザにてトリミングする方法や、抵抗発熱体の帯の端にレーザで複数の溝mを形成し、抵抗調整をしたヒータによりウェハWの温度分布を良くする方法が特許文献7に開示されている。   Further, as in Patent Document 6, the resistance heating element is corrugated and the corrugated portion is trimmed with a laser, or a plurality of grooves m are formed with a laser at the end of the band of the resistance heating element, and the resistance is adjusted. A method for improving the temperature distribution of the wafer W is disclosed in Patent Document 7.

しかし、ウェハ面内の温度差は小さくなるが、ウェハWの表面全体に均質な膜を形成するには未だ不十分であり、温度分布を更に均一に加熱できるようなヒータが求められていた。
特開2001−203156号公報 特開2001−313249号公報 特開2001−244059号公報 特開2002−141159号公報 特開2002−151235号公報 特開2002−43031号公報 特開2002−203666号公報
However, although the temperature difference in the wafer surface is small, it is still insufficient to form a homogeneous film on the entire surface of the wafer W, and a heater capable of heating the temperature distribution more uniformly has been demanded.
JP 2001-203156 A JP 2001-313249 A JP 2001-244059 A JP 2002-141159 A JP 2002-151235 A JP 2002-43031 A JP 2002-203666 A

しかしながら特許文献6や特許文献7のような方法では、ある程度温度分布を良くすることは可能であるが、前記方法で形成したヒータは加熱・冷却を繰り返すうちに抵抗値が変化し、そのことによりウェハ表面の均熱バランスが崩れ、ウェハ表面の温度差が0.4℃を越えて大きくなるとの問題があった。   However, in the methods such as Patent Document 6 and Patent Document 7, it is possible to improve the temperature distribution to some extent. However, the resistance value of the heater formed by the above method changes as heating and cooling are repeated. There is a problem that the soaking balance on the wafer surface is lost and the temperature difference on the wafer surface exceeds 0.4 ° C.

そこで、本発明者等は、上記の課題について鋭意検討した結果、板状体の表面に帯状の抵抗発熱体を備え、前記抵抗発熱体の帯の長手方向に略並行な溝を備えたヒータにおいて、前記抵抗発熱体は絶縁性組成物と導電性組成物の複合材からなり、上記溝の表面の導電性組成物の密度が上記抵抗発熱体の内部の導電性組成物の密度より小さいことを特徴とする。   Thus, as a result of intensive studies on the above problems, the present inventors have provided a belt-like resistance heating element on the surface of the plate-like body, and a heater provided with a groove substantially parallel to the longitudinal direction of the band of the resistance heating element. The resistance heating element is made of a composite material of an insulating composition and a conductive composition, and the density of the conductive composition on the surface of the groove is smaller than the density of the conductive composition inside the resistance heating element. Features.

また、板状体の表面に帯状の抵抗発熱体を備え、前記抵抗発熱体の帯の長手方向に略並行な溝を備えたヒータにおいて、前記抵抗発熱体は絶縁性組成物と導電性組成物の複合材からなり、上記溝の表面の導電性組成物が円形であることを特徴とする。   Further, in the heater provided with a strip-like resistance heating element on the surface of the plate-like body, and provided with a groove substantially parallel to the longitudinal direction of the strip of the resistance heating element, the resistance heating element includes an insulating composition and a conductive composition. And the conductive composition on the surface of the groove is circular.

また、板状体の表面に帯状の抵抗発熱体を備え、前記抵抗発熱体の帯の長手方向に略並行な溝を備えたヒータにおいて、前記抵抗発熱体は絶縁性組成物と導電性組成物の複合材からなり、上記溝の表面の明度が上記抵抗発熱体の表面の明度より小さいことを特徴とする。   Further, in the heater provided with a strip-like resistance heating element on the surface of the plate-like body, and provided with a groove substantially parallel to the longitudinal direction of the strip of the resistance heating element, the resistance heating element includes an insulating composition and a conductive composition. The lightness of the surface of the groove is smaller than the lightness of the surface of the resistance heating element.

また、上記溝の表面の導電性組成物の平均径が1〜20μmであることを特徴とする。   Moreover, the average diameter of the conductive composition on the surface of the groove is 1 to 20 μm.

また、上記抵抗発熱体は、その断面において多数の前記導電性粒子に囲まれた前記絶縁性組成物の塊を有することを特徴とする。   Further, the resistance heating element has a lump of the insulating composition surrounded by a large number of the conductive particles in its cross section.

また、板状セラミックス体の表面に帯状の抵抗発熱体を備え、前記抵抗発熱体の帯の長手方向に略並行で、長さが同等な複数の溝の群を有し、前記群は前記抵抗発熱体の帯の幅の中央部にあることを特徴とする。   The plate-like ceramic body has a strip-like resistance heating element, and has a group of a plurality of grooves that are substantially parallel to the longitudinal direction of the strip of the resistance heating element and have the same length. It is characterized by being in the center of the width of the belt of the heating element.

また、前記群の幅は、抵抗発熱体の帯の幅の90%以内にあることを特徴とする。   Further, the width of the group is within 90% of the width of the band of the resistance heating element.

また、前記溝の深さは、前記溝の幅の20%〜75%であることを特徴とする。   The depth of the groove is 20% to 75% of the width of the groove.

また、前記溝がレーザビームにより形成されたことを特徴とする。   Further, the groove is formed by a laser beam.

また本発明は、前記ヒータを用いて、板状セラミックス体の抵抗発熱体を形成した面と反対側に、ウェハを載せる載置面を備え、前記抵抗発熱体に独立して電力を供給する給電部と、該給電部を囲む金属ケースとを備えてウェハ加熱装置を構成したことを特徴とする。   According to the present invention, the heater is provided with a mounting surface on which a wafer is placed on the side opposite to the surface on which the resistance heating element of the plate-like ceramic body is formed, and power is supplied independently to the resistance heating element. And a metal case that surrounds the power supply unit to form a wafer heating apparatus.

ウェハ面内の温度差が0.4℃以下と小さく優れており、加熱・冷却を繰り返しても抵抗発熱体の抵抗値の変化量が小さくウェハの温度ばらつきが小さいヒータを提供できる。   The temperature difference within the wafer surface is as small as 0.4 ° C. or less, and it is possible to provide a heater in which the variation in resistance value of the resistance heating element is small and the temperature variation of the wafer is small even when heating and cooling are repeated.

以下本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

図1は本発明に係わるヒータ1をウェハ加熱装置として用いた場合の例を示す断面図であり、炭化珪素または窒化アルミニウムを主成分とするセラミックスからなる板状体2の一方の主面を、ウェハWを載せる載置面3とするとともに、他方の主面に抵抗発熱体5を形成し、該抵抗発熱体5に電気的に接続する給電部6を具備した均熱板100を備え、給電部6に給電端子11が接続している。これらの給電部6を囲む金属ケース19が板状体2の他方の主面の周辺部に固定されている。   FIG. 1 is a cross-sectional view showing an example of a case where a heater 1 according to the present invention is used as a wafer heating device. One main surface of a plate-like body 2 made of ceramics mainly composed of silicon carbide or aluminum nitride is shown in FIG. A mounting surface 3 on which the wafer W is placed is provided, a resistance heating element 5 is formed on the other main surface, and a heat equalizing plate 100 having a power feeding portion 6 electrically connected to the resistance heating element 5 is provided. The power supply terminal 11 is connected to the part 6. A metal case 19 surrounding these power feeding portions 6 is fixed to the peripheral portion of the other main surface of the plate-like body 2.

また、ウェハリフトピン14は板状セラミック体2を貫通する孔を通してウェハWを上下に移動させて、ウェハWを載置面3に載せたり取り外したりすることができる。そして、給電部6に給電端子11が接続し外部から電力が供給され、測温素子10で板状体2の温度を測定しながらウェハWを加熱することができる。   Further, the wafer lift pins 14 can move the wafer W up and down through a hole penetrating the plate-like ceramic body 2 so that the wafer W can be placed on or removed from the placement surface 3. Then, the power supply terminal 11 is connected to the power supply unit 6 and power is supplied from the outside, and the wafer W can be heated while the temperature measuring element 10 measures the temperature of the plate-like body 2.

尚、ウェハWは、ウェハ支持ピン8により載置面3から浮かした状態で保持され、ウェハWの片当たり等による温度バラツキを防ぐこともできる。また、抵抗発熱体5を複数のブロックに分割する場合、それぞれのブロックの温度を独立に制御することにより、載置面3上のウェハWを均一に加熱することが好ましい。   The wafer W is held in a state of being lifted from the mounting surface 3 by the wafer support pins 8, and temperature variations due to, for example, contact of the wafer W can be prevented. Further, when the resistance heating element 5 is divided into a plurality of blocks, it is preferable to uniformly heat the wafer W on the mounting surface 3 by independently controlling the temperature of each block.

抵抗発熱体5中に含まれる導通性組成物として、耐熱性および耐酸化性が良好なPt族金属、Au、もしくはこれらの合金を主成分とするものを使用することが好ましい。また、抵抗発熱体5は、板状体2との密着性および抵抗発熱体5自体の焼結性を向上させるために、30〜75重量%のガラス成分からなる絶縁性組成物を含むことが好ましい。   As the conductive composition contained in the resistance heating element 5, it is preferable to use a Pt group metal, Au, or an alloy thereof having good heat resistance and oxidation resistance as a main component. Further, the resistance heating element 5 may include an insulating composition composed of 30 to 75% by weight of a glass component in order to improve the adhesion to the plate-like body 2 and the sinterability of the resistance heating element 5 itself. preferable.

図2は渦巻き状の抵抗発熱体5の1例を示す。図3は、他の抵抗発熱体5の例を示す。この抵抗発熱体5は、板状体2の外周部に位置する同心円状の円弧状の抵抗発熱体5と中心部の同心円状の複数の抵抗発熱体5とからなる。また、均熱性を改善するため、周辺部に4個と中心部に2個のパターンからなる合計6個のパターンに抵抗発熱体5を分割している。何れも載置面3を均一に加熱できる抵抗発熱体5であれば良い。   FIG. 2 shows an example of a spiral resistance heating element 5. FIG. 3 shows an example of another resistance heating element 5. The resistance heating element 5 includes a concentric arc-shaped resistance heating element 5 positioned on the outer peripheral portion of the plate-like body 2 and a plurality of concentric resistance heating elements 5 in the center. Further, in order to improve the thermal uniformity, the resistance heating element 5 is divided into a total of six patterns including four patterns in the peripheral portion and two patterns in the central portion. Any of them may be a resistance heating element 5 that can uniformly heat the mounting surface 3.

図4は抵抗発熱体5の他の例を示す。抵抗発熱体5は周辺部に4個と中心部に1個の合計5個の抵抗発熱体5に分割されている。   FIG. 4 shows another example of the resistance heating element 5. The resistance heating element 5 is divided into a total of five resistance heating elements 5, four at the periphery and one at the center.

何れも抵抗発熱体5の幅は1〜20mmで厚みが5〜50μmであり、スクリーン印刷法で形成することができる。そして、帯状の抵抗発熱体5の帯の中心線を基準にウェハW面内の温度差が小さくなるようにパターン形状が設計されている。   In any case, the resistance heating element 5 has a width of 1 to 20 mm and a thickness of 5 to 50 μm, and can be formed by a screen printing method. Then, the pattern shape is designed so that the temperature difference in the wafer W surface becomes small with reference to the center line of the belt-like resistance heating element 5.

本発明のヒータ1は、板状体2の表面に帯状の抵抗発熱体5を備え、前記抵抗発熱体5の帯の長手方向に略並行な溝mを備えたヒータ1において、前記抵抗発熱体5は絶縁性組成物52と導電性組成物51の複合材からなり、上記溝の表面の導電性組成物51の密度が上記抵抗発熱体5の内部の導電性組成物51の密度より小さいことを特徴とする。   The heater 1 according to the present invention includes a strip-like resistance heating element 5 on the surface of a plate-like body 2, and the heater 1 having a groove m substantially parallel to the longitudinal direction of the strip of the resistance heating element 5. 5 is composed of a composite material of the insulating composition 52 and the conductive composition 51, and the density of the conductive composition 51 on the surface of the groove is smaller than the density of the conductive composition 51 inside the resistance heating element 5. It is characterized by.

図5に示すように抵抗発熱体5に形成する溝mの表面の導電性組成物51aの密度を前記抵抗発熱体5の内部の導電性組成物51の密度よりも小さくすることにより溝mの表面の比抵抗の値が溝の表面より内部の比抵抗の値と比較して大きくなる。そのため溝mの表面に流れる電流が小さくなり表面の微小クラックの成長を抑制する事ができるからである。   As shown in FIG. 5, the density of the conductive composition 51a on the surface of the groove m formed in the resistance heating element 5 is made smaller than the density of the conductive composition 51 inside the resistance heating element 5, thereby forming the groove m. The value of the specific resistance on the surface is larger than the value of the internal specific resistance from the surface of the groove. This is because the current flowing on the surface of the groove m is reduced, and the growth of micro cracks on the surface can be suppressed.

レーザビームにより溝mを形成する際に溝mの表面に微小クラックが発生し、抵抗発熱体5に通電を繰り返すと、微小クラックが成長し、抵抗値の変化が生じ、ウェハWの面内温度差が大きくなり均熱性を保つ事が困難になる虞があるが、溝mの表面の導電性組成物51aの密度を小さくすることで微小クラックの成長を防止できるからである。   When the groove m is formed by the laser beam, a micro crack is generated on the surface of the groove m, and when the resistance heating element 5 is repeatedly energized, the micro crack grows and changes in resistance value. This is because the difference may become large and it may be difficult to maintain the thermal uniformity, but the growth of microcracks can be prevented by reducing the density of the conductive composition 51a on the surface of the groove m.

溝mの表面の導電性組成物51aの密度を小さくするには、図6に示すように抵抗発熱体5の絶縁性組成物52の粒径を導電性組成物51の粒径よりも大きくすることで前記導電性組成物51の分散に偏りを持たせたり、平均粒径が0.5〜1.5μmの導電性組成物51を凝集させたペーストを使用して達成することができる。このように凝集させたペーストを使い抵抗発熱体5を形成しそれにレーザ光で溝を形成すると凝集した導電性組成物51が適度に集合し大きな粒径の導電成組成物を作製できると考えられる。   In order to reduce the density of the conductive composition 51a on the surface of the groove m, the particle size of the insulating composition 52 of the resistance heating element 5 is made larger than the particle size of the conductive composition 51 as shown in FIG. Thus, the dispersion of the conductive composition 51 can be biased, or can be achieved by using a paste in which the conductive composition 51 having an average particle size of 0.5 to 1.5 μm is aggregated. When the resistance heating element 5 is formed by using the paste thus agglomerated and grooves are formed by laser light, it is considered that the agglomerated conductive composition 51 is appropriately aggregated to produce a conductive composition having a large particle size. .

上記の導電性組成物51と絶縁性組成物52を使いレーザ光で溝mを形成すると絶縁性組成物52、及び導電性組成物51が溶融し再凝固させて、溝mの表面の導電性組成物51aは表面張力により図5のように大きな円形とすることが好ましい。円形とすることにより導電性組成物51aと絶縁性組成物52の界面に生じる熱応力を緩和することができるからである。   When the groove m is formed by laser light using the conductive composition 51 and the insulating composition 52 described above, the insulating composition 52 and the conductive composition 51 are melted and re-solidified, so that the conductivity of the surface of the groove m is increased. The composition 51a is preferably formed into a large circle as shown in FIG. 5 due to surface tension. This is because the thermal stress generated at the interface between the conductive composition 51a and the insulating composition 52 can be relaxed by making the shape circular.

尚、上記の円形とは溝の表面の導電性組成物51を走査顕微鏡で観察し、抵抗発熱体の表面に直角な方向に換算した導電性組成物51の形状において、導電性組成物51の外形に対し外接円と内接円の直径D1、D2の差((D1−D2)/D2)×100が30%以内であるものを円形とした。   The circular shape means that the conductive composition 51 on the surface of the groove is observed with a scanning microscope, and the shape of the conductive composition 51 converted to the direction perpendicular to the surface of the resistance heating element is the same as that of the conductive composition 51. A circle having a difference ((D1−D2) / D2) × 100 of the diameters D1 and D2 between the circumscribed circle and the inscribed circle within 30% of the outer shape was defined as a circle.

また、本発明のヒータ1は、溝mの表面の明度が抵抗発熱体5の表面の明度より小さいことを特徴とする。   Further, the heater 1 of the present invention is characterized in that the lightness of the surface of the groove m is smaller than the lightness of the surface of the resistance heating element 5.

溝mを形成した抵抗発熱体5の金属顕微鏡写真を撮影し、その溝mの明度が抵抗発熱体5の溝mの無い部分の抵抗発熱体5の明度より小さいことが特徴である。   A metal micrograph of the resistance heating element 5 in which the groove m is formed is photographed, and the brightness of the groove m is smaller than the brightness of the resistance heating element 5 in the portion without the groove m of the resistance heating element 5.

抵抗発熱体5の溝mの表面は導電性組成物51の密度が小さいことから、導電性組成物51による光の反射量が減少し溝mのない部分と比べ明度が低下していると考えられる。溝mの明度が小さいと溝mの表面電流が溝mのない抵抗発熱体5の表面より小さくなり抵抗発熱体5を急速に加熱したり冷却する温度サイクルを繰り返しても溝mの表面からクラックが発生したりして抵抗発熱体5の抵抗が変化したり断線する虞がなく優れた特性を得ることができる。   Since the density of the conductive composition 51 is small on the surface of the groove m of the resistance heating element 5, it is considered that the amount of light reflected by the conductive composition 51 is reduced and the brightness is lower than that of the portion without the groove m. It is done. If the lightness of the groove m is small, the surface current of the groove m is smaller than the surface of the resistance heating element 5 without the groove m, and cracks are generated from the surface of the groove m even if the temperature heating cycle of rapidly heating or cooling the resistance heating element 5 is repeated. And the resistance of the resistance heating element 5 is not changed or disconnected, and excellent characteristics can be obtained.

また、溝mの表面の導電性組成物51の平均粒径が1〜20μmであることが好ましい。このように溝mの表面の導電性組成物51の粒径を大きくすることで導電性組成物51の数を減少させ表面の密度を小さくする事ができて好ましい。上記導電性組成物51の平均粒径が1μmを下回ると応力緩和の効果が小さく、溝mの表面から抵抗発熱体5の内部にクラックが伸展する虞があった。   Moreover, it is preferable that the average particle diameter of the electroconductive composition 51 of the surface of the groove | channel m is 1-20 micrometers. Thus, it is preferable to increase the particle size of the conductive composition 51 on the surface of the groove m, thereby reducing the number of the conductive compositions 51 and reducing the surface density. When the average particle size of the conductive composition 51 is less than 1 μm, the effect of stress relaxation is small, and there is a possibility that a crack extends from the surface of the groove m to the inside of the resistance heating element 5.

また、上記導電性組成物51の平均粒径が20μmを上回ると導電性組成物51の粒径が大きすぎて、導電性組成物51と絶縁性組成物52の界面でクラックが発生する虞があった。更に好ましくは5〜10μmである。   Further, if the average particle size of the conductive composition 51 exceeds 20 μm, the particle size of the conductive composition 51 is too large, and cracks may occur at the interface between the conductive composition 51 and the insulating composition 52. there were. More preferably, it is 5-10 micrometers.

尚、導電性組成物51の密度は、溝mと内部の反射電子顕微鏡写真から導電性組成物51が占める面積比率を画像解析等で求め算出することができる。また、上記導電性組成物51の平均粒径は画像解析して求める事ができる。   The density of the conductive composition 51 can be calculated by determining the area ratio occupied by the conductive composition 51 from the groove m and the internal reflection electron micrograph by image analysis or the like. The average particle size of the conductive composition 51 can be obtained by image analysis.

また、上記溝mの導電性組成物51の密度を小さくするには、先にも述べたように多数の導電性組成物51からなる導電性粒子に囲まれた絶縁性組成物52の塊があることが好ましい。このように絶縁性組成物の塊があると、レーザ光で溝mを形成すると溝m表面の導電性組成物51aの径が大きくなり密度を低下させることができるからである。   Further, in order to reduce the density of the conductive composition 51 in the groove m, as described above, a lump of the insulating composition 52 surrounded by conductive particles made of a large number of conductive compositions 51 is formed. Preferably there is. This is because, when there is a lump of the insulating composition in this way, when the groove m is formed by laser light, the diameter of the conductive composition 51a on the surface of the groove m is increased, and the density can be reduced.

また、本発明のヒータ1の溝mは、抵抗発熱体5の帯の長手方向に略並行な複数の溝mの群gを有し、前記群gは前記抵抗発熱体5の帯の幅の中央部にあることが好ましい。   Further, the groove m of the heater 1 of the present invention has a group g of a plurality of grooves m substantially parallel to the longitudinal direction of the band of the resistance heating element 5, and the group g has a width of the band of the resistance heating element 5. It is preferable that it exists in a center part.

図9のような抵抗発熱体5の長手方向に垂直な断面図では群gで分けた抵抗発熱体5の両側の抵抗発熱体5a、5bの断面積がほぼ等しくなる。すなわち抵抗発熱体5a、5bの抵抗値が略等しくなる。そのため抵抗発熱体5a、5bの幅方向で左右略均等の発熱量となり、群gを形成して抵抗発熱体5の部分的な抵抗値のバラツキを調整しても抵抗発熱体5の帯の幅方向の中心線が設計位置から大きく変わることがなく、設計した抵抗発熱体5に溝mを形成して抵抗調整することで均熱板100を均一に加熱することができることからウェハW面内の温度差を小さくすることができる。   In the sectional view perpendicular to the longitudinal direction of the resistance heating element 5 as shown in FIG. 9, the sectional areas of the resistance heating elements 5a and 5b on both sides of the resistance heating element 5 divided by the group g are substantially equal. That is, the resistance values of the resistance heating elements 5a and 5b are substantially equal. Therefore, the heat generation amount becomes substantially equal in the left and right directions in the width direction of the resistance heating elements 5a and 5b, and the width of the band of the resistance heating element 5 is adjusted even if the variation of the partial resistance value of the resistance heating element 5 is adjusted by forming the group g. The center line of the direction does not change greatly from the design position, and the soaking plate 100 can be heated uniformly by forming the groove m in the designed resistance heating element 5 and adjusting the resistance. The temperature difference can be reduced.

一方、図13や図14のように群gの幅方向の中心が抵抗発熱体5の幅方向の中央からずれた場合、抵抗発熱体5の帯の断面積の大きな面に大きな電流が流れ、その部分が発熱し易くなる。そのため抵抗発熱体5の帯の幅方向で左右の発熱バランスが崩れ幅方向で温度差が生じることから、ウェハWの面内温度差が大きくなる虞がある。   On the other hand, when the center in the width direction of the group g is shifted from the center in the width direction of the resistance heating element 5 as shown in FIG. 13 and FIG. That part is likely to generate heat. For this reason, the right and left heat generation balance is lost in the width direction of the band of the resistance heating element 5 and a temperature difference is generated in the width direction, so that the in-plane temperature difference of the wafer W may be increased.

また群gの幅Wgは抵抗発熱体5の帯の幅Whの90%以内にあることが好ましい。なぜなら通常微細で複雑な抵抗発熱体5はスクリーン印刷法で形成されることから、スクリーン印刷法で形成された抵抗発熱体5の断面積は図10のように抵抗発熱体5の帯の幅の左右5%の領域の厚みが小さくなっているからである。また、レーザビーム等で溝mを形成するが、溝mの大きさはレーザビームの出力と照射時間で決まり、通常溝mを加工中は出力や照射時間は変更されないことから、溝mの深さは略同等となる。そこで、周辺部の厚みの小さな領域を除く抵抗発熱体5の帯の幅の90%以内の箇所に溝mを形成した場合、溝mが抵抗発熱体5を貫通する虞がなく、溝mの底部にクラックを発生する虞が小さく好ましい。更に好ましくは60%以内である。しかしながら抵抗発熱体5の帯の幅の90%を越えて溝mを形成した場合、抵抗発熱体5の両端の膜厚が薄い箇所に溝mが形成されることから、溝mが抵抗発熱体5を貫通したりレーザ光が板状体2に照射されて、微小クラックが生じる虞があるからである。更に、前記微小クラックが発生するとヒータ1に加熱・冷却を繰り返すとウェハW表面の温度差が大きくなり均熱性が悪くなる虞がある。最悪、板状体が破壊する虞があるからである。   The width Wg of the group g is preferably within 90% of the width Wh of the band of the resistance heating element 5. This is because the resistance heating element 5 which is usually fine and complicated is formed by the screen printing method, and the cross-sectional area of the resistance heating element 5 formed by the screen printing method is the width of the band of the resistance heating element 5 as shown in FIG. This is because the thickness of the left and right regions of 5% is reduced. The groove m is formed by a laser beam or the like. The size of the groove m is determined by the output of the laser beam and the irradiation time, and the output and irradiation time are not changed during processing of the normal groove m. This is almost the same. Therefore, when the groove m is formed in a location within 90% of the width of the band of the resistance heating element 5 excluding the region having a small thickness at the peripheral portion, there is no possibility that the groove m penetrates the resistance heating element 5, and the groove m The possibility of generating cracks at the bottom is small and preferable. More preferably, it is within 60%. However, when the groove m is formed so as to exceed 90% of the width of the band of the resistance heating element 5, the groove m is formed in a portion where the film thickness at both ends of the resistance heating element 5 is thin. This is because there is a possibility that microcracks may be generated by penetrating 5 or irradiating the plate-like body 2 with laser light. Furthermore, if the micro cracks are generated, if the heater 1 is repeatedly heated and cooled, the temperature difference on the surface of the wafer W becomes large and the thermal uniformity may be deteriorated. In the worst case, the plate-like body may be destroyed.

また、上記溝mの群gをなす各溝m1、m2・・の深さは、その溝mの幅Wmの20%〜75%の範囲であることが好ましい(溝深さ/溝幅=20〜75%)。なぜなら20%未満であると、一本の溝mの形成による抵抗値の変化が小さく抵抗値の調整範囲も小さくなることからウェハWの面内温度差を充分に小さくすることが困難になるからである。   Further, the depth of each of the grooves m1, m2,... Forming the group g of the grooves m is preferably in the range of 20% to 75% of the width Wm of the grooves m (groove depth / groove width = 20). ~ 75%). This is because if it is less than 20%, the change in resistance value due to the formation of one groove m is small and the adjustment range of the resistance value is also small, so it becomes difficult to sufficiently reduce the in-plane temperature difference of the wafer W. It is.

また、溝mの深さが幅Wmの75%を超えると、レーザのファーストパルスのエネルギーが大きく抵抗発熱体5の底部に微小クラックが発生し、加熱・冷却を繰り返すと微小クラックが成長し、抵抗発熱体5の抵抗値の変化が生じ、抵抗値が変化するとウェハWの面内温度差が大きくなり均熱性を保てなくなる虞があるからである。更に好ましくは30〜50%である。   Further, when the depth of the groove m exceeds 75% of the width Wm, the energy of the first pulse of the laser is large and a micro crack is generated at the bottom of the resistance heating element 5, and when heating and cooling are repeated, the micro crack grows. This is because a change in the resistance value of the resistance heating element 5 occurs, and if the resistance value changes, the in-plane temperature difference of the wafer W becomes large and it may not be possible to maintain the thermal uniformity. More preferably, it is 30 to 50%.

また、抵抗発熱体5の帯の長手方向に略並行で、長さが同等な複数の溝m1、m2・・からなる群gをなし、前記帯に前記群gを複数備え、前記群g1と群g2との間隔Ggが前記帯の幅Whよりも小さいことが好ましい。   Further, a group g composed of a plurality of grooves m1, m2,... Approximately parallel to the longitudinal direction of the band of the resistance heating element 5 is formed, and the group includes a plurality of the groups g, and the group g1 It is preferable that the gap Gg with the group g2 is smaller than the width Wh of the band.

抵抗発熱体5はスクリーン印刷で形成されることから、抵抗発熱体5が形成される際に設計位置に対し微妙な位置ずれが発生する。そのため板状体2の設定位置と抵抗発熱体5の位置のずれが発生する。そこで、群g1と群g2との間隔Ggを設けることなく抵抗発熱体5に長い溝m1、m2、・・からなる群gを形成すると、図15のようにその微妙な位置ずれが拡大して始点P1で中心に合わせても終点P2では帯の幅の中心からずれた箇所に群gが形成される。そのため群gの終点P2に隣接する抵抗発熱体5の断面の左右で電流通路となる断面積が大きく異なり、抵抗発熱体5の帯の断面において、帯の左右で発熱量が異なりウェハWの面内温度差が大きくなる虞が生じる。   Since the resistance heating element 5 is formed by screen printing, when the resistance heating element 5 is formed, a slight positional deviation from the design position occurs. For this reason, a deviation between the set position of the plate-like body 2 and the position of the resistance heating element 5 occurs. Therefore, when the group g composed of the long grooves m1, m2,... Is formed in the resistance heating element 5 without providing the gap Gg between the group g1 and the group g2, the subtle positional deviation increases as shown in FIG. Even if it is aligned with the center at the start point P1, the group g is formed at the position deviated from the center of the band width at the end point P2. Therefore, the cross-sectional areas serving as current paths are greatly different on the right and left of the cross section of the resistance heating element 5 adjacent to the end point P2 of the group g. There is a risk that the internal temperature difference will increase.

上記不具合の発生を防止するには図8に示すように上記群gを複数の群に分割して、複数の群g1と群g2との間隔Ggが抵抗発熱体5の帯の幅Whよりも小さいことが好ましい。このようにすることで、抵抗発熱体5の帯の左右の発熱量の変化が小さく、更に間隔Ggの部分が溝mで分けられた左右の帯のバイパスとなり電流の流れに偏りがなくなり発熱が均一となるためである。   In order to prevent the occurrence of the problem, the group g is divided into a plurality of groups as shown in FIG. 8, and the gap Gg between the plurality of groups g1 and g2 is larger than the width Wh of the band of the resistance heating element 5. Small is preferable. By doing so, the change in the amount of heat generation on the left and right of the band of the resistance heating element 5 is small, and the portion of the gap Gg becomes a bypass of the left and right bands divided by the groove m, so that the current flow is not biased and heat is generated. This is because it becomes uniform.

一方前記間隔Ggが前記帯の幅Whよりも大きい場合その箇所Ggの発熱量が小さくなり加熱した際にその箇所がクールスポットとなり、ウェハWの温度がその箇所のみ低くなり全体の均熱性が悪くなる。そのため群gと群gの間隔Ggは帯の幅Whよりも小さいことが好ましい。   On the other hand, when the gap Gg is larger than the width Wh of the band, the amount of heat generated at the point Gg becomes small, and when heated, the point becomes a cool spot, and the temperature of the wafer W is lowered only at that point, resulting in poor overall heat uniformity. Become. Therefore, the gap Gg between the groups g is preferably smaller than the band width Wh.

また上記溝の群gと群gの間隔は1mm以下が好ましい。1mm以下であれば前記電流の偏りを防止できるとともにクールスポットを発生させる虞が少ないからである。   Further, the interval between the groups g of the grooves is preferably 1 mm or less. This is because if it is 1 mm or less, the bias of the current can be prevented and the possibility of generating a cool spot is small.

また、レーザトリミングは通常大気中で実施するので、抵抗発熱体5中に含まれる導通成分として、耐熱性および耐酸化性に良好な貴金属であるPtやAuもしくはこれらの合金を主成分とするものを使用することが好ましい。抵抗発熱体5としては絶縁層との密着性および抵抗発熱体自体の焼結性を向上させるために、30〜70重量%のガラス成分を混合することが好ましい。   In addition, since laser trimming is normally performed in the atmosphere, the main component is Pt, Au, or an alloy thereof, which is a noble metal having good heat resistance and oxidation resistance, as a conduction component contained in the resistance heating element 5. Is preferably used. As the resistance heating element 5, it is preferable to mix 30 to 70% by weight of a glass component in order to improve adhesion to the insulating layer and sinterability of the resistance heating element itself.

さらに本発明のセラミックヒータは、図1に示すように、均熱板100に抵抗発熱体5を備えてなるセラミックヒータを金属ケース19に接合し、給電部6に給電端子11を接続したものである。このとき、給電部6と給電端子11の接続手段を弾性体18による押圧としているため、均熱板100と金属ケース19の温度差による両者の膨張の差を接触部分の滑りで緩和できるので、使用中の熱サイクルに対し良好なウェハ加熱装置とすることができる。この押圧手段である弾性体18としては、図1に示すようなコイル状のバネや、他に板バネ等を用いて押圧するようにしても構わない。   Further, as shown in FIG. 1, the ceramic heater of the present invention is obtained by joining a ceramic heater comprising a resistance heating element 5 to a soaking plate 100 to a metal case 19 and connecting a power supply terminal 11 to the power supply section 6. is there. At this time, since the connecting means between the power supply unit 6 and the power supply terminal 11 is pressed by the elastic body 18, the difference in expansion due to the temperature difference between the heat equalizing plate 100 and the metal case 19 can be mitigated by sliding of the contact portion. It can be set as a favorable wafer heating apparatus with respect to the heat cycle in use. As the elastic body 18 as the pressing means, a coiled spring as shown in FIG. 1 or a plate spring or the like may be used for pressing.

これらの弾性体18の押圧力としては、0.3N以上の加重を給電端子11にかけるようにすればよい。弾性体18の押圧力を0.3N以上とする理由は、均熱板100および金属ケース19の膨張収縮による寸法変化に対し、それに応じて給電端子11が移動しなければならないが、装置の構成上給電端子11を均熱板100の下面から給電部6に押し当てるようにしているため、給電端子11の摺動部との摩擦により給電端子11が給電部6から離れることを防止するためである。   As a pressing force of these elastic bodies 18, a load of 0.3 N or more may be applied to the power feeding terminal 11. The reason why the pressing force of the elastic body 18 is 0.3 N or more is that the power supply terminal 11 must move in response to the dimensional change due to the expansion and contraction of the heat equalizing plate 100 and the metal case 19. Since the upper power supply terminal 11 is pressed against the power supply unit 6 from the lower surface of the heat equalizing plate 100, the power supply terminal 11 is prevented from being separated from the power supply unit 6 due to friction with the sliding portion of the power supply terminal 11. is there.

また、給電端子11の給電部6との当接面側の形は、0.5〜4mmとすることが好ましい。さらに、給電端子11を保持する絶縁材は、その使用温度に応じて、200℃以下の温度では、ガラス繊維を分散させたPEEK(ポリエトキシエトキシケトン樹脂)材のものを用いることが可能であり、また、それ以上の温度で使用する場合は、アルミナ、ムライト等からなるセラミック製の絶縁材を用いることが可能である。   Moreover, it is preferable that the shape of the contact surface side with the electric power feeding part 6 of the electric power feeding terminal 11 shall be 0.5-4 mm. Furthermore, as the insulating material for holding the power supply terminal 11, a PEEK (polyethoxyethoxyketone resin) material in which glass fibers are dispersed can be used at a temperature of 200 ° C. or lower depending on the use temperature. In addition, when used at a temperature higher than that, it is possible to use a ceramic insulating material made of alumina, mullite or the like.

このとき、給電端子11の少なくとも給電部6との当接部を、Ni,Cr,Ag,Au、ステンレスおよび白金族の金属のうち少なくとも1種以上からなる金属により形成することが好ましい。具体的には、給電端子11自体を上記金属で形成するか、または給電端子11と給電部6の間に上記金属からなる金属箔を挿入することにより、給電端子表面の酸化による接触不良を防止し、均熱板100の耐久性を向上させることが可能である。具体的には、前記給電部6と給電端子11の間にNi,Cr、Ag、Au、ステンレスおよび白金の金属のうち少なくとも1種以上からなる金属箔を挿入すると、電気的な接触の信頼性が増すと同時に、均熱板100と金属ケース19の温度差に起因する寸法差を金属箔の面の滑りで緩和できる。   At this time, it is preferable that at least the contact portion of the power supply terminal 11 with the power supply portion 6 is formed of a metal composed of at least one of Ni, Cr, Ag, Au, stainless steel, and a platinum group metal. Specifically, contact failure due to oxidation of the surface of the power supply terminal is prevented by forming the power supply terminal 11 itself with the metal or by inserting a metal foil made of the metal between the power supply terminal 11 and the power supply unit 6. In addition, the durability of the soaking plate 100 can be improved. Specifically, when a metal foil made of at least one of Ni, Cr, Ag, Au, stainless steel, and platinum metal is inserted between the power supply unit 6 and the power supply terminal 11, the reliability of electrical contact is achieved. At the same time, the dimensional difference caused by the temperature difference between the soaking plate 100 and the metal case 19 can be alleviated by the slip of the surface of the metal foil.

また、給電端子11の表面にブレーチング加工やサンドブラスト加工を施したりして、表面を荒らすことにより接点が点接触となることを防止すると、さらに接触の信頼性を向上することができる。   Further, if the surface of the power supply terminal 11 is subjected to brazing or sandblasting to prevent the contact from becoming a point contact by roughening the surface, the contact reliability can be further improved.

なお、均熱板100は金属ケース19に、その開口部を覆うように設置してある。金属ケース19は、側壁部と一層もしくは、多層の板状構造部を有している。また該板状構造部には、均熱板100の抵抗発熱体5に給電するための給電部6と導通するための給電端子11が絶縁材を介して設置され、弾性体18により均熱板100の表面の給電部6に押圧されている。また、測温素子10は、均熱板100の中央部のウェハ載置面3の直近に設置され、測温素子10の温度を基に均熱板100の温度を調整する。抵抗発熱体5が複数のブロックに別れており、個別に温度制御する場合は、それぞれの抵抗発熱体5のブロックに測温素子10を設置する。   The soaking plate 100 is installed on the metal case 19 so as to cover the opening. The metal case 19 has a side wall portion and a single-layer or multilayer plate-like structure portion. The plate-like structure is provided with a power supply terminal 11 for electrical connection with a power supply unit 6 for supplying power to the resistance heating element 5 of the heat equalizing plate 100 via an insulating material. It is pressed by the power feeding part 6 on the surface of 100. The temperature measuring element 10 is installed in the vicinity of the wafer placement surface 3 in the center of the heat equalizing plate 100 and adjusts the temperature of the heat equalizing plate 100 based on the temperature of the temperature measuring element 10. When the resistance heating element 5 is divided into a plurality of blocks and individually controlled in temperature, the temperature measuring element 10 is installed in each block of the resistance heating element 5.

また、均熱板100には、該均熱板100を冷却するためにガス噴射口12、およびガスを排気するための開口部を形成しても構わない。このように均熱板100の冷却機構を設けることにより、ウェハWの表面に半導体薄膜やレジスト膜を形成したり、表面をエッチングしたりすることによりタクトタイムを短縮することができる。   Further, the soaking plate 100 may be formed with a gas injection port 12 for cooling the soaking plate 100 and an opening for exhausting gas. By providing a cooling mechanism for the soaking plate 100 in this way, the tact time can be shortened by forming a semiconductor thin film or a resist film on the surface of the wafer W or etching the surface.

また、板状構造部は、2層以上とすることが好ましい。これを1層とすると、ウェハWの面内温度差が小さくなるのに時間がかかり好ましくない。なお、板状構造部の最上層のものは、均熱板100から5〜15mmの距離に設置することが望ましい。これにより、均熱板100と板状構造部の相互の輻射熱により均熱化が容易になり、また、他層との断熱効果があるので、ウェハWの面内温度差が小さくなるまでの時間が短くなる。また、冷却時は、ガス噴射口12から均熱板100の表面の熱を受け取ったガスが、順次層外に排出され、新しい冷却ガスが均熱板100の表面を冷却できるので、冷却時間が短縮できる。   Moreover, it is preferable that a plate-shaped structure part is made into two or more layers. If this is a single layer, it takes time to reduce the in-plane temperature difference of the wafer W, which is not preferable. The uppermost layer of the plate-like structure part is desirably installed at a distance of 5 to 15 mm from the heat equalizing plate 100. This facilitates soaking by the mutual radiant heat of the soaking plate 100 and the plate-like structure, and since there is a heat insulating effect with other layers, the time until the in-plane temperature difference of the wafer W becomes small. Becomes shorter. Further, at the time of cooling, the gas that has received the heat of the surface of the soaking plate 100 from the gas injection port 12 is sequentially discharged out of the layer, and new cooling gas can cool the surface of the soaking plate 100, so that the cooling time Can be shortened.

また、金属ケース19内に昇降自在に設置されたリフトピン14により、ウェハWを載置面3上に載せたり載置面3より持ち上げたりといった作業がなされる。そして、ウェハWは、ウェハ支持ピン8により載置面3から浮かした状態で保持され、片当たり等による温度バラツキを防止するようにしている。   Further, the lift pins 14 installed in the metal case 19 so as to be movable up and down perform operations such as placing the wafer W on the placement surface 3 and lifting it from the placement surface 3. The wafer W is held in a state of being lifted from the mounting surface 3 by the wafer support pins 8 so as to prevent temperature variation due to contact with each other.

そして、このヒータ1によりウェハWを加熱するには、不図示の搬送アームにて載置面3の上方まで運ばれたウェハWをリフトピン14にて支持したあと、リフトピン14を降下させてウェハWを載置面3に載せる。   In order to heat the wafer W by the heater 1, the wafer W carried to the upper side of the mounting surface 3 by the unillustrated transfer arm is supported by the lift pins 14, and then the lift pins 14 are lowered to move the wafer W. Is placed on the mounting surface 3.

均熱板100を例えば炭化珪素質焼結体、炭化硼素質焼結体、窒化硼素質焼結体、窒化アルミニウム質焼結体または窒化珪素質焼結体により形成すると、熱を加えても変形が小さく、板圧を薄くできるため、所定の処理温度に加熱するまでの昇温時間および所定の処理温度から室温付近に冷却するまでの冷却時間を短くすることができ、生産性を高めることができる。   If the soaking plate 100 is formed of, for example, a silicon carbide sintered body, a boron carbide sintered body, a boron nitride sintered body, an aluminum nitride sintered body, or a silicon nitride sintered body, it deforms even when heat is applied. Since the plate pressure can be reduced, the heating time until heating to a predetermined processing temperature and the cooling time until cooling from the predetermined processing temperature to near room temperature can be shortened, thereby improving productivity. it can.

板状体2を形成する炭化珪素質焼結体は、主成分の炭化珪素に対し、焼結助剤として硼素(B)と炭素(C)を添加したり、もしくはアルミナ(Al)、イットリア(Y)のような金属酸化物を添加して十分混合し、平板状に加工した後、1900〜2100℃で焼成することにより得られる。炭化珪素はα型を主体とするものあるいはβ型を主体とするもののいずれであっても構わない。 In the silicon carbide sintered body forming the plate-like body 2, boron (B) and carbon (C) are added as sintering aids to the main component silicon carbide, or alumina (Al 2 O 3 ) is added. It can be obtained by adding a metal oxide such as yttria (Y 2 O 3 ), mixing well, processing into a flat plate, and firing at 1900-2100 ° C. Silicon carbide may be either mainly α-type or β-type.

また、窒化硼素質焼結体としては、主成分の窒化硼素に対し、焼結助剤として30〜45重量%の窒化アルミニウムと5〜10重量%の希土類元素酸化物を混合し、1900〜2100℃でホットプレス焼成することにより焼結体を得ることができる。窒化硼素の焼結体を得る方法としては、他に硼珪酸ガラスを混合して焼結させる方法があるが、この場合熱伝導率が著しく低下するので好ましくない。   As the boron nitride sintered body, boron nitride as a main component is mixed with 30 to 45% by weight of aluminum nitride and 5 to 10% by weight of rare earth element oxide as a sintering aid. A sintered body can be obtained by hot-press firing at ° C. Another method for obtaining a sintered body of boron nitride is to mix and sinter borosilicate glass, but this is not preferable because the thermal conductivity is significantly reduced.

また、板状体2を形成する窒化アルミニウム質焼結体は、主成分の窒化アルミニウムに対し、焼結助剤としてのYやYb等の希土類元素酸化物と必要に応じてCaO等のアルカリ土類金属酸化物を添加して十分混合し、平板状に加工した後、窒素ガス中1900〜2100℃で焼成することにより得られる。 In addition, the aluminum nitride sintered body forming the plate-like body 2 has a rare earth element oxide such as Y 2 O 3 or Yb 2 O 3 as a sintering aid for the main component aluminum nitride, if necessary. Then, an alkaline earth metal oxide such as CaO is added and mixed sufficiently, and after processing into a flat plate, it is obtained by firing at 1900 to 2100 ° C. in nitrogen gas.

また、炭化硼素質焼結体としては、主成分の炭化硼素に対し、焼結助剤として炭素を3〜10重量%混合し、2100〜2200℃でホットプレス焼成することにより焼結体を得ることができる。   The boron carbide sintered body is obtained by mixing 3 to 10% by weight of carbon as a sintering aid with boron carbide as a main component, and performing hot press firing at 2100 to 2200 ° C. be able to.

また、板状体2を形成する窒化珪素質焼結体としては、主成分の窒化珪素に対し、焼結助剤として3〜12重量%の希土類元素酸化物と0.5〜3重量%のAl、さらに焼結体に含まれるSiO量として1.5〜5重量%となるようにSiOを混合し、1650〜1750℃でホットプレス焼成することにより焼結体を得ることができる。ここで示すSiO量とは、窒化珪素原料中に含まれる不純物酸素から生成するSiOと、他の添加物に含まれる不純物としてのSiO量と、雰囲気からの影響を含め意図的に添加したSiOの総和である。 The silicon nitride-based sintered body forming the plate-like body 2 has 3 to 12% by weight of rare earth element oxide and 0.5 to 3% by weight as a sintering aid with respect to silicon nitride as a main component. al 2 O 3, further mixing SiO 2 so that 1.5 to 5 wt% as SiO 2 content in the sintered body, to obtain a sintered body by hot press firing at 1,650 to 1,750 ° C. Can do. The amount of SiO 2 shown here is intentionally added including SiO 2 generated from impurity oxygen contained in the silicon nitride raw material, the amount of SiO 2 as an impurity contained in other additives, and the influence from the atmosphere. it is the SiO 2 of the sum.

また、均熱板100の温度は、均熱板100にその先端が埋め込まれた測温素子10により測定する。測温素子10としては、その応答性と保持の作業性の観点から、外径1.0mm以下のシース型の熱電対を使用することが好ましい。また、均熱板100に埋め込まれた先端部に力が掛からないように測温素子10の途中が金属ケース19の板状構造部に保持されている。この測温素子10の先端部は、均熱板100に孔が形成され、この中に設置された円筒状の金属体の内壁面にバネ材により押圧固定することが測温の信頼性を向上させるために好ましい。   In addition, the temperature of the soaking plate 100 is measured by the temperature measuring element 10 whose tip is embedded in the soaking plate 100. As the temperature measuring element 10, it is preferable to use a sheath type thermocouple having an outer diameter of 1.0 mm or less from the viewpoint of responsiveness and workability of holding. Further, the middle of the temperature measuring element 10 is held by the plate-like structure portion of the metal case 19 so that no force is applied to the tip portion embedded in the soaking plate 100. The tip of the temperature measuring element 10 is formed with a hole in the heat equalizing plate 100, and is fixed to the inner wall surface of a cylindrical metal body installed therein by a spring material to improve temperature measurement reliability. This is preferable.

さらに、これらのヒータ1をレジスト膜形成用として使用する場合は、板状体2としての窒化物を主成分とする材料を使用すると、大気中の水分等と反応してアンモニアガスを発生させレジスト膜を劣化させるため、この場合板状体2として、炭化珪素や炭化硼素の炭化物からなるものを使用することが好ましい。   Further, when these heaters 1 are used for forming a resist film, if a material mainly composed of nitride as the plate-like body 2 is used, it reacts with moisture in the atmosphere to generate ammonia gas and generate resist. In order to deteriorate the film, in this case, it is preferable to use a plate-like body 2 made of a carbide of silicon carbide or boron carbide.

また、この際、焼結助剤に水と反応してアンモニアやアミンを形成する可能性のある窒化物を含まないようにすることが必要である。これにより、ウェハW上に微細な配線を高密度に形成することが可能となる。   At this time, it is necessary that the sintering aid does not contain nitrides that may react with water to form ammonia or amines. Thereby, it is possible to form fine wirings on the wafer W with high density.

さらに、均熱板100の載置面3と反対側の主面は、平面度20μm以下、面荒さを中心線平均荒さ(Ra)で0.1〜0.5μmに研磨しておくことが好ましい。   Furthermore, it is preferable that the main surface opposite to the mounting surface 3 of the heat equalizing plate 100 is polished to a flatness of 20 μm or less and a surface roughness of 0.1 to 0.5 μm with a center line average roughness (Ra). .

一方、炭化珪素質焼結体を板状体2として使用する場合、半導電性を有する板状体2と抵抗発熱体5との間の絶縁を保つ絶縁層としては、ガラスまたは樹脂を用いることが可能である。ここで、ガラスを用いる場合、その厚みが100μm未満では、耐電圧が1.5KVを下回り絶縁性が保てず、逆に厚みが600μmを越えると、均熱板100を形成する炭化珪素質焼結体との熱膨張率差が大きくなりすぎるために、クラックが発生して絶縁層として機能しなくなる。そのため、絶縁層としてガラスを用いる場合、絶縁層の厚みは100〜600μmの範囲内で形成することが好ましく、望ましくは200〜350μmの範囲で形成することが良い。   On the other hand, when a silicon carbide sintered body is used as the plate-like body 2, glass or resin is used as an insulating layer for maintaining insulation between the semi-conductive plate-like body 2 and the resistance heating element 5. Is possible. Here, when glass is used, if the thickness is less than 100 μm, the withstand voltage is less than 1.5 KV and the insulation cannot be maintained. Conversely, if the thickness exceeds 600 μm, the silicon carbide-based firing forming the soaking plate 100 is performed. Since the difference in thermal expansion coefficient from the bonded body becomes too large, cracks are generated and the insulating layer does not function. Therefore, when glass is used as the insulating layer, the thickness of the insulating layer is preferably formed in the range of 100 to 600 μm, and more preferably in the range of 200 to 350 μm.

また、板状体2を窒化アルミニウムを主成分とするセラミック焼結体で形成する場合は、板状体2に対する抵抗発熱体5の中に十分なガラスを添加し、これにより十分な密着強度が得られる場合は、絶縁層を省略することが可能である。   When the plate-like body 2 is formed of a ceramic sintered body mainly composed of aluminum nitride, sufficient glass is added to the resistance heating element 5 with respect to the plate-like body 2, thereby providing sufficient adhesion strength. If obtained, the insulating layer can be omitted.

この絶縁層を形成するガラスの特性としては、結晶質または非晶質のいずれでも良く、耐熱温度が200℃以上でかつ0〜200℃の温度域における熱膨張係数が均熱板100を構成するセラミックの熱膨張係数に対し、−5〜+5×10−7/℃の範囲にあるものを適宜選択して用いることが好ましい。即ち、熱膨張係数が前記範囲を外れたガラスを用いると、均熱板100を形成するセラミックとの熱膨張差が大きくなりすぎるため、ガラスの焼き付け後の冷却時においてクラックや剥離等の欠陥が生じ易いからである。 The glass forming this insulating layer may be either crystalline or amorphous, and the heat expansion temperature is 200 ° C. or higher and the thermal expansion coefficient in the temperature range of 0 to 200 ° C. constitutes the soaking plate 100. It is preferable to appropriately select and use a ceramic having a thermal expansion coefficient in the range of −5 to + 5 × 10 −7 / ° C. That is, if a glass having a thermal expansion coefficient outside the above range is used, the difference in thermal expansion from the ceramic forming the soaking plate 100 becomes too large, so that there are defects such as cracks and peeling during cooling after baking the glass. It is because it is easy to occur.

次に、絶縁層に樹脂を用いる場合、その厚みが30μm未満では、耐電圧が1.5kVを下回り、絶縁性が保てなくなるとともに、抵抗発熱体5に例えればレーザ加工等によってトリミングを施した際に絶縁層を傷つけ、絶縁層として機能しなくなる。逆に150μmを越えると、樹脂の焼き付け時に発生する溶剤や水分の蒸発量が多くなり、均熱板100との間にフクレと呼ばれる泡上の剥離部ができ、この剥離部の存在により熱伝達が悪くなるため、載置面3の均熱化が阻害される。そのため、絶縁層として樹脂を用いる場合、絶縁層の厚みは30〜150μmの範囲で形成することが好ましく、望ましくは60〜150μmの範囲で形成することが好ましい。   Next, when a resin is used for the insulating layer, if the thickness is less than 30 μm, the withstand voltage is less than 1.5 kV and the insulation cannot be maintained, and the resistance heating element 5 is trimmed by laser processing or the like. At that time, the insulating layer is damaged, and it does not function as the insulating layer. On the other hand, if the thickness exceeds 150 μm, the amount of evaporation of the solvent and moisture generated during the baking of the resin increases, and a peeling portion on the foam called a bulge is formed between the soaking plate 100 and heat transfer is caused by the presence of this peeling portion. Is deteriorated, so that the soaking of the mounting surface 3 is hindered. Therefore, when using resin as an insulating layer, it is preferable to form the thickness of an insulating layer in the range of 30-150 micrometers, and it is preferable to form in the range of 60-150 micrometers desirably.

また、絶縁層を樹脂により形成する場合、200℃以上の耐熱性と抵抗発熱体5との密着性を考慮すると、ポリイミド樹脂、ポリイミドアミド樹脂、ポリアミド樹脂等を用いることが好ましい。   Further, when the insulating layer is formed of a resin, it is preferable to use a polyimide resin, a polyimide amide resin, a polyamide resin, or the like in consideration of heat resistance of 200 ° C. or more and adhesiveness with the resistance heating element 5.

なお、ガラス層や樹脂からなる絶縁層を板状体2上に被着する手段としては、前記ガラスペーストまたは樹脂ペーストを均熱板の中心に適量落とし、スピンコーティング法にて伸ばして均一に塗布するか、あるいはスクリーン印刷法、ディッピング法、スプレーコーティング法等にて均一に塗布したあと、ガラスペーストの場合は600℃の温度で、樹脂の場合は300℃以上の温度で焼き付ければ良い。また、絶縁層としてガラスを用いる場合、予め炭化珪素質焼結体または窒化アルミニウム質焼結体からなる板状体2を1200℃程度の温度に加熱し、絶縁層を被着する面を酸化処理しておくことで、ガラスからなる絶縁層との密着性を高めることができる。   In addition, as a means for depositing an insulating layer made of glass or resin on the plate-like body 2, an appropriate amount of the glass paste or resin paste is dropped on the center of the soaking plate, and spread and applied uniformly by spin coating. Or after being uniformly applied by a screen printing method, dipping method, spray coating method or the like, the glass paste may be baked at a temperature of 600 ° C., and the resin may be baked at a temperature of 300 ° C. or more. When glass is used as the insulating layer, the plate-like body 2 made of a silicon carbide sintered body or an aluminum nitride sintered body is heated to a temperature of about 1200 ° C. in advance, and the surface on which the insulating layer is deposited is oxidized. By doing so, the adhesiveness with the insulating layer made of glass can be enhanced.

なお、以上の実施形態では半導体ウェハを加熱する装置について説明したが、本発明のヒータは半導体ウェハに限らずさまざまな板状体やその他の物体の加熱に用いることができる。   In addition, although the above embodiment demonstrated the apparatus which heats a semiconductor wafer, the heater of this invention can be used for the heating of not only a semiconductor wafer but various plate-shaped bodies and other objects.

熱伝導率が80W/(m・K)の炭化珪素質焼結体に研削加工を施し、板厚4mm、外径230mmの円板状をした均熱板を複数制作し、各均熱板の一方の主面に絶縁層を被着するため、ガラス粉末に対してバインダーとしてのエチルセルロースと有機溶剤としてのテルピネオールを混練して作製したガラスペーストをスクリーン印刷法にて敷設し、150℃に加熱して有機溶剤を乾燥させた後、550℃で30分間脱脂処理を施し、さらに700〜900℃の温度で焼付けを行うことにより、ガラスからなる厚み200μmの絶縁層を形成した。次いで絶縁層上に抵抗発熱体を被着させるため、導電材として20重量%のAu粉末と10重量%のPt粉末と70重量%のガラスを所定量のパターン形状に印刷した。その後150℃に加熱して有機溶剤を乾燥させ、さらに450℃で30分間脱脂処理を施した後、500〜700℃の温度で焼付けを行うことにより、厚みが50μmの抵抗発熱体を形成した。   A silicon carbide sintered body having a thermal conductivity of 80 W / (m · K) is ground to produce a plurality of soaking plates having a plate thickness of 4 mm and an outer diameter of 230 mm. In order to deposit an insulating layer on one main surface, a glass paste prepared by kneading ethyl cellulose as a binder and terpineol as an organic solvent into glass powder was laid by screen printing and heated to 150 ° C. After drying the organic solvent, degreasing treatment was performed at 550 ° C. for 30 minutes, and baking was performed at a temperature of 700 to 900 ° C. to form an insulating layer made of glass having a thickness of 200 μm. Next, in order to deposit a resistance heating element on the insulating layer, 20 wt% Au powder, 10 wt% Pt powder and 70 wt% glass were printed as a conductive material in a predetermined pattern shape. Thereafter, the organic solvent was dried by heating to 150 ° C., degreased at 450 ° C. for 30 minutes, and then baked at a temperature of 500 to 700 ° C. to form a resistance heating element having a thickness of 50 μm.

尚、上記抵抗発熱体に使用した導電性組成物であるAu及びPtの平均粒径は、0.5μmであった。また、絶縁性組成物としてガラス粉末を添加しその平均粒径は1.5μmと20μmとした。また、その混合物を用いてそれぞれ試料No.1〜3を作製した。   The average particle size of Au and Pt, which are conductive compositions used for the resistance heating element, was 0.5 μm. Moreover, glass powder was added as an insulating composition, and the average particle diameter was 1.5 μm and 20 μm. In addition, each sample No. 1-3 were produced.

抵抗発熱体を形成後の内部の導電性組成物の分散状態を確認すると、試料No.1,No.2はガラスの塊が大きく図7のように分散状態となった。   When the dispersion state of the internal conductive composition after forming the resistance heating element was confirmed, Sample No. 1, No. 1 No. 2 had a large glass lump and was in a dispersed state as shown in FIG.

また、試料No.3は図12のような分散状態となった。   Sample No. 3 was in a dispersed state as shown in FIG.

また、抵抗発熱体は、中心部と外周部を周方向に4分割した5パターン構成とした。   The resistance heating element has a five-pattern configuration in which the central portion and the outer peripheral portion are divided into four in the circumferential direction.

こうして作製した抵抗発熱体の各パターンをそれぞれ50箇所前後に分割し、各箇所で設計した抵抗値と実測抵抗値との違いをレーザビームを照射して溝を形成して抵抗調整した。前記溝の形成方法としては日本電気製のYAGレーザを使用した。レーザビームは、波長が1.06μm、パルス周波数1kHz、レーザ出力0.4W、加工速度5mm/secとして照射した。   Each pattern of the resistance heating element thus produced was divided into about 50 locations, and the difference between the resistance value designed at each location and the measured resistance value was irradiated with a laser beam to form a groove to adjust the resistance. As a method for forming the groove, a YAG laser manufactured by NEC was used. The laser beam was irradiated with a wavelength of 1.06 μm, a pulse frequency of 1 kHz, a laser output of 0.4 W, and a processing speed of 5 mm / sec.

尚、上記条件で作製された溝の幅は約50〜60μmで深さは約20〜25μmであった。そして、各群に形成された溝と溝との間隔であるピッチは約65μmで最大の溝の数は13個であった。   In addition, the width | variety of the groove | channel produced on the said conditions was about 50-60 micrometers, and the depth was about 20-25 micrometers. And the pitch which is the space | interval of the groove | channel formed in each group was about 65 micrometers, and the number of the largest groove | channels was 13.

また、試料No.1、2の溝の表面の導電性組成物は2〜5μmの円形となり、溝の表面の導電性組成物の密度は内部の密度よりも小さくなった。   Sample No. The conductive composition on the surface of the grooves 1 and 2 was a circle of 2 to 5 μm, and the density of the conductive composition on the surface of the groove was smaller than the internal density.

一方、試料No.3の溝の表面の導電性組成物の密度は図11のように内部と差がほとんどなかった。   On the other hand, Sample No. The density of the conductive composition on the surface of the groove 3 was almost the same as the inside as shown in FIG.

また、それぞれの明度についても確認した。簡易的に明度の差を確認する方法として、先ずそれぞれの表面を金属顕微鏡にて写真を撮り、その写真を白黒のコピーを取り、白色の強さを確認した。明度は白色が強いほど大きくなり、逆に黒色が強いほど小さくなる。その結果、試料No.1、2は溝以外の表面よりも溝の表面の黒色が強く、明度が小さかった。一方、試料No.3は明度に差がなかった。   Moreover, it confirmed also about each brightness. As a simple method for confirming the difference in brightness, first, each surface was photographed with a metallurgical microscope, and a black and white copy of the photograph was taken to confirm the intensity of white. The brightness increases as the white color increases, and conversely decreases as the black color increases. As a result, Sample Nos. 1 and 2 were stronger in black on the surface of the groove and lighter than the surface other than the groove. On the other hand, Sample No. 3 had no difference in brightness.

そして、上記均熱板を金属ケースに取り付け、測温素子や給電端子等を取り付け試料No.1〜3のヒータを完成させた。   Then, the soaking plate is attached to a metal case, and a temperature measuring element, a power feeding terminal and the like are attached to the sample No. 1-3 heaters were completed.

尚、完成した試料の溝の群gの表面を200倍のSEMで確認したところ、表1にも示しているとおり、それぞれ長さ5μmの微小クラックが確認された。   When the surface of the groove group g of the completed sample was confirmed by SEM of 200 times, as shown in Table 1, 5 μm long microcracks were confirmed.

尚、クラックの長さはクラックの起点から終点の直線距離で測定しその平均値を求めた。 In addition, the length of the crack was measured by the linear distance from the starting point to the ending point of the crack, and the average value was obtained.

その後、試料No.1〜3のヒータに測温素子付きのシリコンウェハを載置面に載せてヒータを加熱し、ウェハ全体の温度の平均が200℃になるようにして、前記の測温素子付きのシリコンウェハを用いてウェハ面内の温度差を測定した。   Thereafter, sample No. A silicon wafer with a temperature measuring element is placed on the placement surface of the heaters 1 to 3 and the heater is heated so that the average temperature of the entire wafer becomes 200 ° C. The temperature difference in the wafer surface was measured.

更にその後、試料No.1〜3のヒータをウェハの表面温度の平均温度が1分間で室温から350℃となるように電圧を印加し、3分間保持した後、2分で40℃以下に冷却する熱サイクルを1サイクルとして、その熱サイクルを5000回繰り返した。そしてその後の溝部分の観察および各試料の各抵抗発熱体の抵抗変化率及びウェハ面内の温度差を測定した。   Thereafter, sample No. Apply a voltage to the heaters 1 to 3 so that the average temperature of the wafer surface temperature is from room temperature to 350 ° C. in 1 minute, hold it for 3 minutes, and then cool it to 40 ° C. or less in 2 minutes. The thermal cycle was repeated 5000 times. Then, the subsequent groove portion was observed, the resistance change rate of each resistance heating element of each sample, and the temperature difference in the wafer surface were measured.

各試料の抵抗発熱体の抵抗変化率は、抵抗変化量を初期の抵抗値で除して求めた。複数の抵抗変化率がある場合は最大値を抵抗変化率として表に示した。また、抵抗発熱体の抵抗変化率はウェハ表面の温度差が0.1℃以内の変化で収まる3%以内が好ましく、望ましくはウェハ表面の温度差が0.03℃以内で収まる1%以内の抵抗変化率が更に好ましい。   The resistance change rate of the resistance heating element of each sample was obtained by dividing the resistance change amount by the initial resistance value. When there are a plurality of resistance change rates, the maximum value is shown in the table as the resistance change rate. Further, the rate of change in resistance of the resistance heating element is preferably within 3% where the temperature difference on the wafer surface falls within 0.1 ° C., and preferably within 1% where the temperature difference on the wafer surface falls within 0.03 ° C. A resistance change rate is more preferable.

それぞれの結果は表1に示すとおりである。

Figure 2006066742
Each result is as shown in Table 1.
Figure 2006066742

表1に示すように、溝の表面の導電性組成物の密度が抵抗発熱体の内部の導電性組成物の密度より小さい試料No.1、2は、絶縁性組成物であるガラスの粒径が大きく微小クラックの成長は見られなかった。また、冷熱サイクルを5000回繰り返しても、抵抗値の変化もそれぞれ0.7%、0.6%とその変化は小さかった。また、ウェハ面内の温度差は0.37℃、0.38℃とウェハ面内の温度差が冷熱サイクル後も小さく良好であった。   As shown in Table 1, sample Nos. 1 and 2 in which the density of the conductive composition on the surface of the groove is smaller than the density of the conductive composition inside the resistance heating element are the particle sizes of the glass that is the insulating composition. The growth of microcracks was not observed. Further, even when the cooling cycle was repeated 5000 times, the changes in resistance value were 0.7% and 0.6%, respectively, and the changes were small. Further, the temperature differences in the wafer surface were 0.37 ° C. and 0.38 ° C., and the temperature differences in the wafer surface were small and good after the cooling cycle.

一方、溝の表面の導電性組成物の密度が抵抗発熱体の内部の導電性組成物の密度より大きい試料No.3は、冷熱サイクル後、微小クラックが約50μmにまで成長をしていた。そのため発熱抵抗体の抵抗値も約5%変化を生じ、ウェハ面内の温度差が0.86℃と大きくなり、連続的に使用できなかった。   On the other hand, Sample No. 3 in which the density of the conductive composition on the surface of the groove was larger than the density of the conductive composition inside the resistance heating element had microcracks growing to about 50 μm after the cooling and heating cycle. Therefore, the resistance value of the heating resistor also changed by about 5%, the temperature difference in the wafer surface became as large as 0.86 ° C., and could not be used continuously.

また、溝の表面の明度が溝以外の抵抗発熱体の表面の明度より小さい試料No.1、2は同様に冷熱サイクル後のウェハ面内の温度差が0.37℃、0.38℃と小さく抵抗変化率も1%以下と小さく優れた特性を示すことが分った。   In addition, the sample No. 1 in which the lightness of the surface of the groove is smaller than the lightness of the surface of the resistance heating element other than the groove. 1 and 2 show that the temperature difference in the wafer surface after the cooling / heating cycle is as small as 0.37 ° C. and 0.38 ° C., and the resistance change rate is also as small as 1% or less, indicating excellent characteristics.

実施例1と同様な方法で試料No.4〜8を作製した。試料No.4〜8の絶縁性組成物は、ガラスからなりその平均粒径は1.5μm、5μm、20μm、40μm、60μmとした。そして、レーザビームにより溝を形成した後の表面の導電性組成物の平均径は、0.5μm、1μm 3.2μm、8.5μm、20μmとなった。尚、導電性組成物の平均径は、表面SEM写真から20個の導電性組成物の平均面積と等価な円の直径で示した。   In the same manner as in Example 1, Sample No. 4-8 were produced. Sample No. The insulating compositions 4 to 8 were made of glass, and the average particle size was 1.5 μm, 5 μm, 20 μm, 40 μm, and 60 μm. And the average diameter of the electroconductive composition of the surface after forming a groove | channel by a laser beam became 0.5 micrometer, 1 micrometer 3.2 micrometer, 8.5 micrometer, and 20 micrometers. In addition, the average diameter of the electroconductive composition was shown by the diameter of the circle equivalent to the average area of 20 electroconductive compositions from the surface SEM photograph.

その後、表面の観察及び実施例1と同様に5000サイクルの熱サイクルをし、抵抗値の変化率及びウェハ温度のばらつきを確認した。   Thereafter, the surface was observed and the thermal cycle of 5000 cycles was performed in the same manner as in Example 1, and the variation rate of the resistance value and the variation in the wafer temperature were confirmed.

その結果を表2に示す。

Figure 2006066742
The results are shown in Table 2.
Figure 2006066742

表2に示すように、溝の群の表面の導電性組成物の粒径が約0.5μmである試料No.4は冷熱サイクル後微小クラックが10μmにまで成長し、2.8%の抵抗変化を生じた。   As shown in Table 2, the sample No. 1 in which the particle size of the conductive composition on the surface of the groove group is about 0.5 μm. In No. 4, microcracks grew to 10 μm after the thermal cycle, resulting in a resistance change of 2.8%.

これに対し、導電性組成物が円形であり、群の溝の表面の導電性組成物の粒径が1〜20μmである試料No.5〜8は、微小クラックの成長は見られず、抵抗値の変化も1%以下であり、より好ましいことがわかった。   On the other hand, Sample No. in which the conductive composition is circular and the particle size of the conductive composition on the surface of the groove of the group is 1 to 20 μm. Nos. 5 to 8 showed no growth of microcracks, and the change in resistance value was 1% or less, which was found to be more preferable.

抵抗発熱体のガラスを実施例1で良好な結果を示した平均粒径1.5μm、20μmの混合とし、実施例1と同様な方法で試料を作製し、レーザービームにより溝の群を形成した。   A glass of a resistance heating element was mixed with an average particle diameter of 1.5 μm and 20 μm, which showed good results in Example 1, a sample was prepared by the same method as in Example 1, and a group of grooves was formed by a laser beam. .

尚、溝の集合体である群の中心は抵抗発熱体の帯の中央部に形成したものを試料No.9とした。また、群の中心が帯の端より25%の位置に形成したものを試料No.10とした。更に、帯の端から溝を形成したものを試料No.11とした。尚、抵抗発熱体の帯の中央部とは帯の幅の範囲の中心から幅の±5%の範囲とした。そして、実施例1と同様に評価した。   The center of the group which is an aggregate of grooves is formed at the center of the band of the resistance heating element. It was set to 9. In addition, a sample in which the center of the group is formed at a position of 25% from the end of the belt is designated as Sample No. It was set to 10. Further, a sample in which a groove was formed from the end of the band was designated as Sample No. It was set to 11. The central part of the band of the resistance heating element is a range of ± 5% of the width from the center of the range of the band width. And it evaluated similarly to Example 1. FIG.

その結果を表3に示す。

Figure 2006066742
The results are shown in Table 3.
Figure 2006066742

表3に示すように、抵抗発熱体の帯の中央部に溝の群が形成されている本発明の試料No.9はウェハW表面の面内温度差が0.29℃であり温度分布が小さく良好な結果を示した。   As shown in Table 3, the sample No. 9 of the present invention in which a group of grooves is formed in the central portion of the band of the resistance heating element has an in-plane temperature difference of 0.29 ° C. on the surface of the wafer W and a temperature distribution. Small and good results were shown.

それに対し群の中心をずらして溝を形成した試料No.10、11はそれぞれ0.35℃、0.39℃となりウェハ面内の温度差は試料No.9と比較して大きかった。   On the other hand, Sample Nos. 10 and 11 in which grooves were formed by shifting the center of the group were 0.35 ° C. and 0.39 ° C., respectively, and the temperature difference in the wafer surface was Sample No. It was big compared with 9.

実施例3と同様な方法で試料を作製し、レーザビームにより溝の群を形成した。溝の群の中心は、実施例3で良好の結果を示した中央部として、溝と溝との間隔であるピッチを変えて溝の群の幅を調整して、溝の群の幅が抵抗発熱体の帯の幅の50%、70%、90%、95%、100%とした。その後、ウェハの表面温度の平均温度が1分間で室温から350℃となるように電圧を印加し、3分間保持した後、2分で40℃以下に冷却する熱サイクルを1サイクルとして、その熱サイクルを5000回繰り返した。そしてその前後の溝部分の観察および各試料の各抵抗発熱体の抵抗変化率を測定した。   A sample was prepared in the same manner as in Example 3, and a groove group was formed by a laser beam. The center of the groove group is the central portion that showed good results in Example 3, and the width of the groove group was adjusted by changing the pitch, which is the interval between the grooves. 50%, 70%, 90%, 95%, and 100% of the width of the heating element band. Thereafter, a voltage is applied so that the average surface temperature of the wafer is from room temperature to 350 ° C. in 1 minute, and held for 3 minutes, and then cooled to 40 ° C. or less in 2 minutes. The cycle was repeated 5000 times. And the observation of the groove part before and after that and the resistance change rate of each resistance heating element of each sample were measured.

その結果を表4に示す。

Figure 2006066742
The results are shown in Table 4.
Figure 2006066742

表4の結果からも判るように試料No.12〜14の溝の群の幅が帯の幅の90%以内で形成した試料は5000サイクルの熱サイクルで抵抗変化はそれぞれ1%以下であり良好であった。   As can be seen from the results in Table 4, the samples formed with the groove width of sample Nos. 12 to 14 within 90% of the width of the belt are excellent in thermal resistance of 5000 cycles and the resistance change is 1% or less respectively. Met.

一方試料No.15,16は、試料No.12〜14と比較して抵抗変化は大きかった。   On the other hand, sample Nos. 15 and 16 are sample nos. The resistance change was large compared to 12-14.

実施例3と同様な方法で試料を作製し、レーザにより溝の群を形成した。溝の群の中心は、実施例3で良好の結果を示した中央部とし、溝の群の幅は、実施例4で良好の結果を示した抵抗発熱体の帯の幅の90%以内とした。さらに、レーザビームの出力を0.1〜0.6Wまで変えて溝の深さを、溝の幅の10%、20%、50%、75%、85%まで調整した。   A sample was prepared in the same manner as in Example 3, and a group of grooves was formed by laser. The center of the groove group is the central portion that showed good results in Example 3, and the width of the groove group was within 90% of the width of the band of the resistance heating element that showed good results in Example 4. did. Further, the laser beam power was changed from 0.1 to 0.6 W, and the groove depth was adjusted to 10%, 20%, 50%, 75%, and 85% of the groove width.

そして実施例1と同様に熱サイクル試験を行い、抵抗値の変化率を確認した。結果を表5に示す。   And the heat cycle test was done like Example 1, and the change rate of resistance value was confirmed. The results are shown in Table 5.

尚、抵抗値は5つの抵抗発熱体の耐久前後の抵抗値の中から最も抵抗変化率の大きなものを記載した。

Figure 2006066742
In addition, the resistance value with the largest resistance change rate was described among the resistance values before and after the durability of the five resistance heating elements.
Figure 2006066742

溝の深さが溝の幅の10%として抵抗発熱体の各部の抵抗を調整した試料No.17は各部の抵抗値を充分調整できず溝を形成しても抵抗発熱体の抵抗値のばらつきは大きいままでウェハW面内の温度を小さくすることができなかった。   In sample No. 17 in which the resistance of each part of the resistance heating element was adjusted with the groove depth being 10% of the groove width, the resistance value of each part could not be adjusted sufficiently. The temperature in the surface of the wafer W could not be reduced while the temperature remained large.

試料No.18〜20は、溝の深さが20%〜75%であり、熱サイクル5000回後の抵抗変化率が1%以内であり良好な結果であった。   In Sample Nos. 18 to 20, the groove depth was 20% to 75%, and the resistance change rate after 5000 thermal cycles was within 1%, which was a good result.

しかし、試料No.21の溝の深さは幅の85%であり、抵抗発熱体の抵抗値が2.04%変化した。   However, the depth of the groove of sample No. 21 was 85% of the width, and the resistance value of the resistance heating element changed by 2.04%.

本発明のヒータの断面図である。It is sectional drawing of the heater of this invention. 本発明のヒータにおける抵抗発熱体を示す図である。It is a figure which shows the resistance heating element in the heater of this invention. 本発明のヒータにおける抵抗発熱体を示す図である。It is a figure which shows the resistance heating element in the heater of this invention. 本発明のヒータにおける抵抗発熱体を示す図である。It is a figure which shows the resistance heating element in the heater of this invention. 本発明のヒータにおける抵抗発熱体の拡大図である。It is an enlarged view of the resistance heating element in the heater of the present invention. 本発明のヒータにおける抵抗発熱体の拡大図である。It is an enlarged view of the resistance heating element in the heater of the present invention. 本発明のヒータにおける抵抗発熱体の拡大図である。It is an enlarged view of the resistance heating element in the heater of the present invention. 本発明のヒータにおける抵抗発熱体の拡大図である。It is an enlarged view of the resistance heating element in the heater of the present invention. 本発明のヒータにおける抵抗発熱体の断面図である。It is sectional drawing of the resistance heating element in the heater of this invention. 本発明のヒータにおける抵抗発熱体の断面図である。It is sectional drawing of the resistance heating element in the heater of this invention. 従来のセラミックヒータにおける抵抗発熱体の拡大図である。It is an enlarged view of a resistance heating element in a conventional ceramic heater. 従来のセラミックヒータにおける抵抗発熱体の拡大図である。It is an enlarged view of a resistance heating element in a conventional ceramic heater. 従来のセラミックヒータにおける抵抗発熱体の断面図である。It is sectional drawing of the resistance heating element in the conventional ceramic heater. 従来のセラミックヒータにおける抵抗発熱体の断面図である。It is sectional drawing of the resistance heating element in the conventional ceramic heater. 従来のセラミックヒータにおける抵抗発熱体を示す図である。It is a figure which shows the resistance heating element in the conventional ceramic heater. 従来のウェハ加熱装置の断面図である。It is sectional drawing of the conventional wafer heating apparatus. 従来のウェハ加熱装置における抵抗発熱体を示す図である。It is a figure which shows the resistance heating element in the conventional wafer heating apparatus.

符号の説明Explanation of symbols

W:ウェハ
m:溝
g:溝の群
1、71:セラミックヒータ
2,72:板状セラミック体
3、73:載置面
5、75:抵抗発熱体
6:給電部
8:支持ピン
10:測温素子
11、77:給電端子
12:ガス噴射口
14,45:リフトピン
15:リフトピンガイド
16、80:ボルト
18:弾性体
19、79:金属ケース
20:ナット
21:補強部材
51:導電性組成物
52:絶縁性組成物
76:リード線引出用の孔
78:リード線
100:均熱板
W: Wafer m: Groove g: Groove group
DESCRIPTION OF SYMBOLS 1, 71: Ceramic heater 2, 72: Plate-shaped ceramic body 3, 73: Mounting surface 5, 75: Resistance heating element 6: Feeding part 8: Support pin 10: Temperature measuring element 11, 77: Feeding terminal 12: Gas Injection ports 14 and 45: Lift pin 15: Lift pin guide 16, 80: Bolt 18: Elastic body 19, 79: Metal case 20: Nut 21: Reinforcement member 51: Conductive composition 52: Insulative composition 76: Lead wire drawing Hole 78: Lead wire 100: Heat equalizing plate

Claims (10)

板状体の表面に帯状の抵抗発熱体を備え、前記抵抗発熱体の帯の長手方向に略並行な溝を備えたヒータにおいて、前記抵抗発熱体は絶縁性組成物と導電性組成物の複合材からなり、上記溝の表面の導電性組成物の密度が上記抵抗発熱体の内部の導電性組成物の密度より小さいことを特徴とするヒータ。 A heater having a strip-like resistance heating element on a surface of a plate-like body and a groove substantially parallel to the longitudinal direction of the strip of the resistance heating element, wherein the resistance heating element is a composite of an insulating composition and a conductive composition. A heater comprising a material, wherein the density of the conductive composition on the surface of the groove is smaller than the density of the conductive composition inside the resistance heating element. 板状体の表面に帯状の抵抗発熱体を備え、前記抵抗発熱体の帯の長手方向に略並行な溝を備えたヒータにおいて、前記抵抗発熱体は絶縁性組成物と導電性組成物の複合材からなり、上記溝の表面の導電性組成物が略円形であることを特徴とするヒータ。 A heater having a strip-like resistance heating element on a surface of a plate-like body and a groove substantially parallel to the longitudinal direction of the strip of the resistance heating element, wherein the resistance heating element is a composite of an insulating composition and a conductive composition. A heater comprising a material, wherein the conductive composition on the surface of the groove is substantially circular. 板状体の表面に帯状の抵抗発熱体を備え、前記抵抗発熱体の帯の長手方向に略並行な溝を備えたヒータにおいて、前記抵抗発熱体は絶縁性組成物と導電性組成物の複合材からなり、上記溝の表面の明度が上記抵抗発熱体の他の表面の明度より小さいことを特徴とするヒータ。 A heater having a strip-like resistance heating element on a surface of a plate-like body and a groove substantially parallel to the longitudinal direction of the strip of the resistance heating element, wherein the resistance heating element is a composite of an insulating composition and a conductive composition. A heater made of a material, wherein the brightness of the surface of the groove is smaller than the brightness of the other surface of the resistance heating element. 上記溝の表面の導電性組成物の平均径が1〜20μmであることを特徴とする請求項2または3に記載のヒータ。 The heater according to claim 2 or 3, wherein an average diameter of the conductive composition on the surface of the groove is 1 to 20 µm. 上記抵抗発熱体は、その断面において多数の前記導電性粒子に囲まれた前記絶縁性組成物の塊を有することを特徴とする請求項1〜4の何れかに記載のヒータ。 The heater according to any one of claims 1 to 4, wherein the resistance heating element has a lump of the insulating composition surrounded by a large number of the conductive particles in its cross section. 前記溝は、前記抵抗発熱体の帯の長手方向に略並行な複数の溝の群を有し、前記群は前記抵抗発熱体の帯の幅の中央部にあることを特徴とする請求項1〜5の何れかに記載のヒータ。 The groove has a group of a plurality of grooves substantially parallel to the longitudinal direction of the band of the resistance heating element, and the group is at a central portion of the width of the band of the resistance heating element. The heater in any one of -5. 前記群の幅は、抵抗発熱体の帯の幅の90%以内にあることを特徴とする請求項5〜6の何れかに記載のヒータ。 The heater according to any one of claims 5 to 6, wherein the width of the group is within 90% of the width of the band of the resistance heating element. 前記溝の深さは、前記溝の幅の20%〜75%であることを特徴とする請求項1〜7の何れかに記載のヒータ。 The heater according to any one of claims 1 to 7, wherein a depth of the groove is 20% to 75% of a width of the groove. 前記溝がレーザビームにより形成されたことを特徴とする請求項1〜8の何れかに記載のヒータ。 The heater according to claim 1, wherein the groove is formed by a laser beam. 請求項1〜9のいずれかに記載のヒータを用い、前記板状体の抵抗発熱体を形成した面と反対側にウェハを載せる載置面を備え、前記抵抗発熱体に独立して電力を供給する給電部と、該給電部を囲む金属ケースとを備えたことを特徴とするウェハ加熱装置。 The heater according to any one of claims 1 to 9, further comprising a mounting surface on which a wafer is placed on a side opposite to a surface on which the resistance heating element of the plate-like body is formed, and power is independently supplied to the resistance heating element. A wafer heating apparatus comprising: a power feeding unit to be supplied; and a metal case surrounding the power feeding unit.
JP2004249295A 2003-08-27 2004-08-27 Heater and wafer heating apparatus using the same Expired - Lifetime JP4562460B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004249295A JP4562460B2 (en) 2004-08-27 2004-08-27 Heater and wafer heating apparatus using the same
US11/138,943 US7361865B2 (en) 2003-08-27 2005-05-25 Heater for heating a wafer and method for fabricating the same
CN 200510074602 CN1708190B (en) 2004-05-26 2005-05-26 Heater and device for heating a wafer and method for fabricating the same
KR1020050044514A KR101098798B1 (en) 2004-05-26 2005-05-26 Heater, wafer heating device and method for fabricating the heater
US11/852,162 US20080017632A1 (en) 2004-05-26 2007-09-07 Heater For Heating a Wafer and Method For Fabricating The Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004249295A JP4562460B2 (en) 2004-08-27 2004-08-27 Heater and wafer heating apparatus using the same

Publications (2)

Publication Number Publication Date
JP2006066742A true JP2006066742A (en) 2006-03-09
JP4562460B2 JP4562460B2 (en) 2010-10-13

Family

ID=36112923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004249295A Expired - Lifetime JP4562460B2 (en) 2003-08-27 2004-08-27 Heater and wafer heating apparatus using the same

Country Status (1)

Country Link
JP (1) JP4562460B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221436A1 (en) * 2017-05-29 2018-12-06 京セラ株式会社 Sample holder
CN113853513A (en) * 2019-05-21 2021-12-28 东华隆株式会社 Temperature regulating unit
US12120781B2 (en) 2019-04-16 2024-10-15 Niterra Co., Ltd. Method of manufacturing holding device, method of manufacturing structure for holding device, and holding device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060983A (en) * 1983-09-08 1985-04-08 株式会社デンソー Ceramic heater and manufacture
JPS6396883A (en) * 1986-10-09 1988-04-27 株式会社デンソー Ceramic heater
WO1995021139A1 (en) * 1994-02-03 1995-08-10 Ngk Insulators, Ltd. Aluminum nitride sinter and production method therefor
JP2001244059A (en) * 2000-02-28 2001-09-07 Kyocera Corp Ceramic heating resistor and its applied wafer heating device
JP2002093551A (en) * 2000-09-14 2002-03-29 Ibiden Co Ltd Ceramic heater
JP2002190373A (en) * 2000-12-19 2002-07-05 Ibiden Co Ltd Manufacturing method of ceramic heater
JP2002246155A (en) * 2001-02-16 2002-08-30 Ibiden Co Ltd Ceramic heater

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060983A (en) * 1983-09-08 1985-04-08 株式会社デンソー Ceramic heater and manufacture
JPS6396883A (en) * 1986-10-09 1988-04-27 株式会社デンソー Ceramic heater
WO1995021139A1 (en) * 1994-02-03 1995-08-10 Ngk Insulators, Ltd. Aluminum nitride sinter and production method therefor
JP2001244059A (en) * 2000-02-28 2001-09-07 Kyocera Corp Ceramic heating resistor and its applied wafer heating device
JP2002093551A (en) * 2000-09-14 2002-03-29 Ibiden Co Ltd Ceramic heater
JP2002190373A (en) * 2000-12-19 2002-07-05 Ibiden Co Ltd Manufacturing method of ceramic heater
JP2002246155A (en) * 2001-02-16 2002-08-30 Ibiden Co Ltd Ceramic heater

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221436A1 (en) * 2017-05-29 2018-12-06 京セラ株式会社 Sample holder
JPWO2018221436A1 (en) * 2017-05-29 2020-03-19 京セラ株式会社 Sample holder
US11295967B2 (en) 2017-05-29 2022-04-05 Kyocera Corporation Sample holder
US12120781B2 (en) 2019-04-16 2024-10-15 Niterra Co., Ltd. Method of manufacturing holding device, method of manufacturing structure for holding device, and holding device
CN113853513A (en) * 2019-05-21 2021-12-28 东华隆株式会社 Temperature regulating unit

Also Published As

Publication number Publication date
JP4562460B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
US6753601B2 (en) Ceramic substrate for semiconductor fabricating device
US6891263B2 (en) Ceramic substrate for a semiconductor production/inspection device
US20050016986A1 (en) Ceramic heater
US20040155025A1 (en) Ceramic heater
KR20020092967A (en) Ceramic substrate and its production method
US20050258164A1 (en) Hot plate
JP2001253777A (en) Ceramic substrate
EP1280380A1 (en) Ceramic board
JP2001244059A (en) Ceramic heating resistor and its applied wafer heating device
JP2007142441A (en) Wafer supporting member
JP2004031630A (en) Wafer supporting member
JP4562460B2 (en) Heater and wafer heating apparatus using the same
JP2006054125A (en) Heater, its manufacturing method, and wafer heating device using the same
JP4325894B2 (en) Wafer heating device
JP3872256B2 (en) Wafer heating device
JP2004031593A (en) Wafer supporting member
JP3771795B2 (en) Wafer heating device
JP2005071916A (en) Ceramic heater
JP3909266B2 (en) Wafer support member
JP4693429B2 (en) Heater, wafer heating heater and wafer heating apparatus using the same
JP2004288933A (en) Wafer heating device
JP3563728B2 (en) Wafer heating device
JP2002329566A (en) Wafer heating device
JP3921433B2 (en) Wafer heating device
JP3924513B2 (en) Wafer support member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4562460

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150