JP2006063434A - Production method for high precision metal fine tube by electroforming process - Google Patents

Production method for high precision metal fine tube by electroforming process Download PDF

Info

Publication number
JP2006063434A
JP2006063434A JP2004276127A JP2004276127A JP2006063434A JP 2006063434 A JP2006063434 A JP 2006063434A JP 2004276127 A JP2004276127 A JP 2004276127A JP 2004276127 A JP2004276127 A JP 2004276127A JP 2006063434 A JP2006063434 A JP 2006063434A
Authority
JP
Japan
Prior art keywords
metal
electroforming
core wire
salt
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004276127A
Other languages
Japanese (ja)
Inventor
Tetsuo Tanaka
鐵男 田中
Toshiyuki Shibata
利之 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004276127A priority Critical patent/JP2006063434A/en
Publication of JP2006063434A publication Critical patent/JP2006063434A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production method for a high precision metal fine tube having high predominance in machining, the method employing an electroforming process by a cathode rotary system in which an organic sulfur compound including a prescribed amount of salt is added to a metal plating bath, the method by which a base material core wire having an extremely excellent outer shape is electroformed, and the base material core wire is pulled out or extruded away. <P>SOLUTION: The production method employs electroforming process by a cathode rotary system. For the fundamental blending of an elecroforming plating bath, to a metal compound component(s) as simple salt, complex salt or amine-based salt as the main component(s), if required, a chloride component(s) and a pH buffer component(s) are composed, and further, an organic sulfur compound component(s) including a prescribed amount of salt is added. The organic sulfur compound including the salt gives the formation of a peelable film causing a release effect on the surface of the base material core wire 5 as the cathode 3 by the application of direct voltage in the electroforming, or applies internal stress of slight compression to an electroformed body to promote its peeling. In this way, regarding the electroformed body obtained by electro-depositing the metals on the base material core wire 5 with the electroforming plating bath while straightly supporting both the edge parts of the base material core wire 5 and rotating the same, the core wire 5 as the base material is pulled out or extruded, thus can be easily removed to produce fine pores. Thus, the high precision metal fine tube can be produced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、所定量の塩を含む有機硫黄化合物の添加により離型効果を得る金属電鋳メッキ浴を用いた電気鋳造法であり、高精度な金属微細管の製造方法に関する。The present invention relates to an electroforming method using a metal electroforming plating bath in which a mold release effect is obtained by adding an organic sulfur compound containing a predetermined amount of salt, and relates to a highly accurate method for producing a metal microtube.

高精度な微細管部品は、光通信に使用される光ファイバ接続部品であるフェルール、メカニカルスプライス、微細孔ではないが高い内径精度が要求され光コネクタ同士を突き合わせ接続する管状部品である接続スリーブ、また、医療器関連においては、注射針、カテーテルなどの製品がある。近年、特に高精度、高品質が要求される光通信部品は、市場での需要が増大化傾向にあるが、微細孔のある円筒形状体(微細管)を切削または研削による機械加工を施し、外径、内径、または同軸度をミクロンオーダー以下の寸法精度で仕上げ製造される為、機械加工を施すうえで、より優位性が高い高精度な微細管が必要であり、また簡易で量産化が可能な微細管の製造方法が要望されている。High precision micro tube parts are ferrules, mechanical splices that are optical fiber connection parts used for optical communications, connection sleeves that are tubular parts that are not micro holes but require high inner diameter accuracy and connect optical connectors together, In the medical device field, there are products such as injection needles and catheters. In recent years, the demand for optical communication components that require particularly high precision and high quality has been increasing in the market. However, a cylindrical body (microtube) with fine holes has been machined by cutting or grinding, Since the outer diameter, inner diameter, or coaxiality is finished and manufactured with a dimensional accuracy of the order of microns or less, high-precision fine tubes with higher superiority are required for machining, and simple and mass production is possible. There is a need for a method of manufacturing a fine tube.

微細管の製造方法としては、金型を使用し高温下での焼成により成型する方法、金属板を絞り製造する方法があり、また本製造方法でもある電鋳法においては、母材である芯線外周部に金属電着させ、得られた電鋳体中の該母材芯線を薬品または加熱により溶解する方法、樹脂である母材芯材の表面に金属被膜を形成し金属被膜を残し、該母材芯材を引き抜く方法、また、予め母材芯材の表面に離型処理し母材である芯線外周部に金属電着させ、得られた電鋳体中の該母材芯線を引き抜きまたは押し出す方法により、母材芯線を除去し貫通孔を作製し微細管を製造する方法がある(特許文献1参照、特許文献2参照、特許文献3参照)。
特許公開平4−311589 特許公開平11−193485 国際公開番号WO00/31574
As a manufacturing method of the fine tube, there are a method of forming by firing at a high temperature using a mold and a method of manufacturing a metal plate by drawing, and in the electroforming method which is also this manufacturing method, a core wire which is a base material Electrodepositing metal on the outer periphery, a method of dissolving the base material core wire in the obtained electroformed body by chemicals or heating, forming a metal film on the surface of the base material core material that is a resin, leaving a metal film, A method of pulling out the base material core material, or by subjecting the surface of the base material core material to mold release in advance and performing metal electrodeposition on the outer periphery of the core wire as the base material, and pulling out the base material core wire in the obtained electroformed body or There is a method of producing a fine tube by removing a base material core wire and producing a through hole by an extrusion method (see Patent Document 1, Patent Document 2, and Patent Document 3).
Patent Publication 4-3111589 Patent Publication 11-193485 International Publication Number WO00 / 31574

微細管である製品は、機械加工では困難である優れた内径精度の微細孔を有し、更には、光通信部品である光フェルールに代表されるように、内径の中心と外径の中心が高精度に一致した高い同心性も要求される。Products that are micro tubes have fine holes with excellent inner diameter accuracy that are difficult to machine, and furthermore, as represented by optical ferrules that are optical communication parts, the center of the inner diameter and the center of the outer diameter are High concentricity consistent with high accuracy is also required.

微細管の製造方法には、前述したように高温下で焼成し成型する製造方法、金属板を絞る製造方法あるいは電鋳による製造方法があるが、現在、高精度な寸法精度が要求される光通信部品の製造には、高温下での焼成により成型したジルコニアセラミックスに、機械加工を施し製造する方法が主流とされているが、硬質であるがゆえに難加工であり、微細孔の内径加工が必要である為、歩留まりの低下をまねき易く、更に生産工程数の増加、生産性の低下、設備コストがかかるという問題があり、また電鋳法による製造方法では、母材芯線除去の信頼性に問題があった。As described above, there are a manufacturing method of firing and molding at a high temperature, a manufacturing method of squeezing a metal plate, or a manufacturing method by electroforming as described above. For the production of communication components, the mainstream method is to process zirconia ceramics molded by firing at a high temperature by machining, but it is difficult because it is hard, and the inner diameter machining of fine holes is difficult. Because it is necessary, there is a problem that it is easy to cause a decrease in yield, and there is a problem that the number of production processes is increased, productivity is reduced, and equipment cost is increased. There was a problem.

かかる問題を解決する方法としては、金属メッキ浴に所定量の塩を含む有機硫黄化合物を添加した陰極回転方式による電鋳法であり、陰極部である導電性芯線の両端を真直に支持し、該芯線を中心軸に回転させ、所望の外径寸法に均一に金属電着させ電鋳体を作製するが、前記、電鋳体は、母材芯線に直流電圧の印加と同時に、電鋳メッキ浴に配合された塩を含む有機硫黄化合物成分が、該母材芯線外周部に吸着し、剥離皮膜を形成する為、該母材芯線と電鋳物との結合力を低下させる。更には、金属電着させた該電鋳物に僅かな圧縮内部応力を与える為、母材芯線との剥離効果が促進させる。つまり、電気化学的に形成された皮膜と、物理的な金属の圧縮内部応力の相乗効果により、該母材芯線を引き抜くか、または押し出す事で簡単に除去でき内径加工を要せず微細孔が作製でき、更に内径の中心と外径の中心が一致した同心性のある高精度な微細管を容易に製造する事ができる。また、同様な製造方法で複数本の母材芯線を用い電鋳する事で、必要に応じ複数の微細孔を作製する事も可能である。As a method for solving such a problem, it is an electroforming method by a cathode rotation method in which an organic sulfur compound containing a predetermined amount of salt is added to a metal plating bath, and straightly supports both ends of the conductive core wire which is a cathode portion, The core wire is rotated around the central axis, and a metal electrode is uniformly deposited to a desired outer diameter to produce an electroformed body. The electroformed body is formed by electroforming plating at the same time as applying a DC voltage to the base material core wire. Since the organic sulfur compound component containing the salt blended in the bath is adsorbed on the outer periphery of the base material core wire to form a release film, the bonding strength between the base material core wire and the electroformed product is reduced. Furthermore, since a slight compressive internal stress is applied to the electroformed metal electrodeposited product, the peeling effect from the base metal core wire is promoted. In other words, due to the synergistic effect of the electrochemically formed film and the physical compressive internal stress of the metal, the base material core wire can be easily removed by pulling or extruding, and fine pores can be formed without requiring inner diameter processing. Further, it is possible to easily manufacture a concentric high-precision fine tube in which the center of the inner diameter coincides with the center of the outer diameter. Moreover, it is also possible to produce a plurality of fine holes as necessary by electroforming using a plurality of base material core wires by the same manufacturing method.

本発明は、かかる実情に鑑みされたものであり、その目的は、金属メッキ浴に所定量の塩を含む有機硫黄化合物を添加し陰極回転方式による電鋳法であり、極めて外形形状の優れた母材芯線を電鋳し、該母材芯線を引き抜くか押し出し除去する製造方法により、機械加工するうえで優位性の高い、高精度な微細管の製造方法を提供する事にある。The present invention has been made in view of such circumstances, and the object thereof is an electroforming method using a cathode rotation method in which an organic sulfur compound containing a predetermined amount of salt is added to a metal plating bath, and has an extremely excellent outer shape. An object of the present invention is to provide a highly accurate manufacturing method of a fine tube having high superiority in machining by a manufacturing method in which a base material core wire is electroformed and the base material core wire is drawn or removed by extrusion.

発明が解決するための手段Means for Solving the Invention

本発明に従えば、電鋳法による金属微細管の製造方法であって、所定量の塩を含む有機硫黄化合物を添加した金属電鋳メッキ浴による陰極回転方式の電鋳により、母材芯線に金属電着させた電鋳体の該母材芯線を引き抜くかまたは押し出す事で除去し製造される高精度な微細管の製造方法が提供される。According to the present invention, a method for producing a metal microtubule by electroforming, wherein the base metal core wire is formed by cathodic rotation electroforming using a metal electroforming plating bath to which an organic sulfur compound containing a predetermined amount of salt is added. There is provided a method for producing a high-precision microtube that is produced by removing or producing the base metal core wire of a metal electrodeposited electroformed body by drawing or extruding it.

本発明の製造方法においては、所定量の塩を含む有機硫黄化合物を添加した金属電鋳メッキ浴を用いた陰極回転方式の電鋳法であり、真円性及び外径表面形状精度の優れた母材芯線の両端部を一定の張力で支持し真直させ、該金属電鋳メッキ浴中に浸漬し、該母材芯線を中心軸とし回転させながら均一に金属電着させる事で該母材芯線と相似断面形状である円筒形状の電鋳体が得られ、両端に露出した未電着部である該母材芯線の一端を引き抜く事で除去でき真円性及び内径表面形状精度の優れた母材芯線外形形状の貫通孔を有す微細管が製造でき金属微細管の製造方法とする。The production method of the present invention is a cathode rotation type electroforming method using a metal electroforming plating bath to which an organic sulfur compound containing a predetermined amount of salt is added, and is excellent in roundness and outer diameter surface shape accuracy. Supporting and straightening both ends of the base metal core wire with a constant tension, immersing it in the metal electroforming plating bath, and uniformly metal-depositing the base metal core wire while rotating around the base metal core wire. Can be removed by pulling out one end of the base metal core wire, which is an unelectrodeposited part exposed at both ends, and has excellent roundness and inner surface shape accuracy. A microtubule having a through-hole with a core shape can be manufactured, and a method for manufacturing a metal microtubule is provided.

前記、電鋳体を長さ調整により切断する場合は、薄刃カッターを使用し所定寸法に切断するが、母材芯線の除去方法は、切断面を研磨加工後に、切断面中心部にある該母材芯線を超硬ピンで押し出す事で除去するか、あるいは押し出しにより他端に突出した芯線を引き抜く事で簡単に除去する事ができる。When the electroformed body is cut by adjusting the length, a thin blade cutter is used to cut the electroformed body to a predetermined size. The method for removing the base metal core wire is a method of removing the base surface at the center of the cut surface after polishing. It can be removed by extruding the core wire with a carbide pin, or by simply pulling out the core wire protruding to the other end by extrusion.

また、母材である導電性芯線を、一本に限らず複数本使用し金属電着した電鋳体であれば、必要に応じ複数の該芯線を引き抜くか、または押し出し除去する事で、貫通孔である内径を複数作製する事も可能となる。In addition, if an electroformed body is formed by metal electrodeposition using a plurality of conductive core wires, not just one, the plurality of core wires can be pulled out or removed by extrusion as necessary. It is also possible to produce a plurality of inner diameters which are holes.

本発明の製造方法による金属電鋳メッキ浴は、基本配合とし、主成分の単純塩、錯塩またはアミン系塩である金属化合物成分に必要に応じ塩化物成分、pH緩衝剤成分を組成し、所定量の塩を含む有機硫黄化合物成分を添加するが、前記、塩を含む有機硫黄化合物成分は、直流電圧の印加により陰極である母材表面に吸着し剥離皮膜が形成され、該母材芯線と電鋳物との結合力を低下させる。更には、電鋳物は僅かな圧縮の内部応力をもつ為、母材芯線との剥離効果を促進させ、該母材芯線を引き抜くか、または押し出す事で容易に除去でき貫通孔が作製でき高精度な金属微細管の製造が可能となる。A metal electroforming plating bath according to the production method of the present invention has a basic composition, and if necessary, a chloride component and a pH buffer component are added to a metal compound component which is a simple salt, complex salt or amine salt as a main component. An organic sulfur compound component containing a fixed amount of salt is added, and the organic sulfur compound component containing the salt is adsorbed on the surface of the base material which is a cathode when a DC voltage is applied, and a release film is formed. Reduces the bonding strength with the electroformed product. Furthermore, since the electroformed product has a slight internal stress of compression, it promotes the peeling effect from the base metal core wire, and it can be easily removed by pulling out or extruding the base material core wire, and through holes can be produced with high accuracy. It is possible to manufacture a metal fine tube.

前記、塩を含む有機硫黄化合物成分は、一種または、二種以上の混合物質で組成し金属電鋳メッキ浴に金属脆化の起こらない最適量を添加させる事とする。The organic sulfur compound component containing a salt is composed of one or two or more mixed substances, and an optimum amount that does not cause metal embrittlement is added to the metal electroforming plating bath.

本発明の製造方法では、微細管の内径は芯線の外径で決定され、微細管の内径表面形状精度もまた芯線の外径表面形状精度で決定される為、高精度である外形形状を有する芯線を用いる事により極めて内径精度の高い金属微細管を得る事ができる。In the manufacturing method of the present invention, the inner diameter of the fine tube is determined by the outer diameter of the core wire, and the inner diameter surface shape accuracy of the fine tube is also determined by the outer diameter surface shape accuracy of the core wire. By using the core wire, it is possible to obtain a metal micro tube with extremely high inner diameter accuracy.

母材芯材の材料としては、ピアノ線に用いられる材料、ステンレス、鋼、鋼に諸元素を添加した特殊鋼が好適である。As a material for the base material core material, materials used for piano wires, stainless steel, steel, and special steel obtained by adding various elements to steel are suitable.

発明の効果The invention's effect

本発明の電鋳法による金属微細管の製造方法により、極めて内径寸法精度及び内径表面形状が優れ、内径の中心と外径の中心が高精度に一致した同心性の高い、高精度な金属微細管を製造する事ができた。By the method of manufacturing a metal micro tube by the electroforming method of the present invention, the inner diameter dimensional accuracy and inner diameter surface shape are extremely excellent, and the center of the inner diameter and the center of the outer diameter are matched with high precision, and the highly concentric, high precision metal micro I was able to manufacture a tube.

発明の実施するための最良の形態BEST MODE FOR CARRYING OUT THE INVENTION

以下、本発明の製造方法の実施形態について説明するが、本発明はこれに限定されるものではない。Hereinafter, although embodiment of the manufacturing method of this invention is described, this invention is not limited to this.

最初に、本発明の金属微細管を電鋳により製造する装置について図1.陰極回転方式電鋳装置略図を参照しながら説明する。図1に示した装置は、電鋳浴槽15と、その槽内に充填された電鋳メッキ浴1、また、電鋳メッキ浴加熱ヒーター14、陽極2及び陰極3を備える。陽極2は、電鋳浴槽15の底部に設置されたベース16上に設置する。陰極3は、後述するように、支治具上に設けられており、支治具の上下端部間に張られた芯線5は、電気的に接続されている。支治具に設置した芯線5は駆動モーター11及びモーターに連動したシャフト13が回転する事で、ギヤー12a、12bを介し、芯線5を中心軸とし回転する。また、循環、攪拌には、電鋳メッキ浴1をポンプ17で引き上げ、濾過塔17を介し、ベース16上の噴射用ノズル10から噴射される。First, an apparatus for producing a metal microtube according to the present invention by electroforming is shown in FIG. This will be described with reference to a schematic diagram of a cathode rotating type electroforming apparatus. The apparatus shown in FIG. 1 includes an electroformed bath 15, an electroformed plating bath 1 filled in the tank, an electroformed plating bath heater 14, an anode 2, and a cathode 3. The anode 2 is installed on a base 16 installed at the bottom of the electroformed bath 15. As will be described later, the cathode 3 is provided on a support jig, and the core wire 5 stretched between the upper and lower ends of the support jig is electrically connected. The core wire 5 installed on the support jig rotates about the core wire 5 as the central axis through the gears 12a and 12b by the rotation of the drive motor 11 and the shaft 13 linked to the motor. For circulation and stirring, the electroforming plating bath 1 is pulled up by a pump 17 and sprayed from the spray nozzle 10 on the base 16 through the filter tower 17.

電鋳メッキ浴1は、芯線5の周囲に電鋳しようとする金属の材質に応じて決定され、例えばニッケルまたはその合金、鉄またはその合金、銅またはその合金、コバルトまたはその合金、タングステン合金、微粒子分散金属などの電鋳用金属を用いる事ができ、スルファミン酸ニッケル、塩化ニッケル、硫酸ニッケル、スルファミン酸第一鉄、ホウフッ化第一鉄、ピロリン酸銅、硫酸コバルト、硫酸銅、ホウフッ化銅、ケイフッ化銅、チタンフッ化銅、アリカノールスルフォン酸銅、硫酸コバルト、タングステン酸ナトリウムなどの水溶性を主成分とする液またはこれらの液に炭化ケイ素、炭化タングステン、炭化ホウ素、酸化ジルコニウム、チッ化ケイ素、アルミナ、ダイヤモンドなどの微粉末を分散させた液が使用される。本法に使用する電鋳メッキ浴は、電鋳の容易さ、電鋳物の応力が小さい事、化学的安定性、溶接の容易性などの面で好適であるスルファミン酸ニッケルを主成分とした配合とし、表1に示すような電鋳メッキ浴により電鋳を行った。The electroforming plating bath 1 is determined according to the material of the metal to be electroformed around the core wire 5, for example, nickel or its alloy, iron or its alloy, copper or its alloy, cobalt or its alloy, tungsten alloy, Electroforming metals such as fine particle dispersed metals can be used. Nickel sulfamate, nickel chloride, nickel sulfate, ferrous sulfamate, ferrous borofluoride, copper pyrophosphate, cobalt sulfate, copper sulfate, copper borofluoride , Copper silicofluoride, Titanium copper fluoride, Aricanol sulfonate, Cobalt sulfate, Sodium tungstate, etc. A liquid in which fine powders such as silicon, alumina and diamond are dispersed is used. The electroforming plating bath used in this method is composed mainly of nickel sulfamate, which is suitable in terms of ease of electroforming, low stress of electroformed products, chemical stability, ease of welding, etc. Then, electroforming was performed using an electroforming plating bath as shown in Table 1.

Figure 2006063434
Figure 2006063434

電鋳メッキ浴1に配合された塩を含む有機硫黄化合物は、金属結晶の微細化により光沢を向上させる為に、通常10CC/L前後配合し使用されるが、本電鋳メッキ浴においては、母材と電鋳物との離型を目的とし、12〜35CC/L位の範囲で配合する事が可能であり、電鋳物の光沢または脆化の点から15〜20CCの配合が好適とされる。The organic sulfur compound containing a salt compounded in the electroforming plating bath 1 is usually used by compounding around 10 CC / L in order to improve the gloss by refining the metal crystal. In this electroforming plating bath, For the purpose of releasing the base material and the electroformed product, it can be compounded in the range of about 12 to 35 CC / L, and the composition of 15 to 20 CC is suitable from the viewpoint of gloss or embrittlement of the electroformed product. .

電鋳メッキ浴1には、電鋳浴中に濾過精度の高いフェルターを用いて濾過を行い、加温は50±5℃程度の適正温度範囲に温度コントロールする。また、時々、活性炭処理をして有機不純物を除去する事が好ましい。また、ニッケルメッキした鉄製の波板を陰極、カーボンを陽極にして0.2A/dm程度の低電流密度で通電して銅などの金属不純物を、浴中の電鋳メッキ浴1から除去する事が望ましい。The electroforming plating bath 1 is filtered using a felt with high filtration accuracy in the electroforming bath, and the temperature is controlled to an appropriate temperature range of about 50 ± 5 ° C. Further, it is sometimes preferable to remove the organic impurities by treating with activated carbon. In addition, a nickel-plated iron corrugated sheet is used as a cathode and carbon is used as an anode, and current is passed at a low current density of about 0.2 A / dm 2 to remove metal impurities such as copper from the electroforming plating bath 1 in the bath. Things are desirable.

陽極2は、電鋳しようとする金属に応じて選択され、ニッケル、鉄、銅、コバルトなどから選定され、板状、球状のものを適宜使用する事ができる。球状の電極を使用する場合は、例えば,チタン製のバスケットに入れ、ポリエステル製の布袋で覆って使用する。The anode 2 is selected according to the metal to be electroformed, and is selected from nickel, iron, copper, cobalt, etc., and a plate-like or spherical one can be used as appropriate. When using a spherical electrode, for example, it is placed in a titanium basket and covered with a polyester cloth bag.

支持具について図2.支治具略図を参照しながら詳細を説明する。(a)は側面図であり、(b)は下板15のB−B’方向から見た断面図である。支治具は、上板8と下板9が2本の支柱7を介して連結されており、上板8と下板9は、例えば、ポリ塩化ビニル樹脂、ポリアミド樹脂、ポリアセレート樹脂またはポリエチレン樹脂の電気絶縁材料で製造され、支柱7はステンレス、チタンなどの金属またはプラスチックで製造される。上板8及び下板9は、支柱7とそれぞれ、ネジで固定される。上板8の中央には、陰極3としてのステンレスネジが上板8を貫通するように設けられている。ステンレスネジは、上板8の下面にてステンレス製バネ4の一端の4aを固定している。下板9の中央には、同様にステンレスネジ6が下板9を貫通して下板9の上面に突出するように設けられている。芯線5の一端5aは、ステンレス製のバネ4の他端4bに引っ掛けられ、両芯線を引っ張ってバネ4を伸ばしながら他端5bがステンレスネジ6で保持される。このように芯線5を支治具に取り付ける事により芯線は、垂直方向にまっすぐに張った状態で支持される。Fig. 2 shows the support. Details will be described with reference to the schematic diagram of the support jig. (A) is a side view, (b) is a cross-sectional view of the lower plate 15 viewed from the B-B ′ direction. In the support jig, an upper plate 8 and a lower plate 9 are connected via two support columns 7. The upper plate 8 and the lower plate 9 are made of, for example, polyvinyl chloride resin, polyamide resin, polyacetate resin or polyethylene resin. The post 7 is made of a metal such as stainless steel or titanium, or a plastic. The upper plate 8 and the lower plate 9 are each fixed to the support column 7 with screws. In the center of the upper plate 8, a stainless steel screw as the cathode 3 is provided so as to penetrate the upper plate 8. The stainless steel screw fixes 4 a at one end of the stainless steel spring 4 on the lower surface of the upper plate 8. Similarly, a stainless screw 6 is provided at the center of the lower plate 9 so as to penetrate the lower plate 9 and protrude from the upper surface of the lower plate 9. One end 5 a of the core wire 5 is hooked on the other end 4 b of the stainless steel spring 4, and the other end 5 b is held by the stainless steel screw 6 while stretching the spring 4 by pulling both core wires. By attaching the core wire 5 to the support jig in this way, the core wire is supported in a state of being stretched straight in the vertical direction.

図1にもどって、電鋳メッキ浴の循環、攪拌には、噴き出しノズルより電鋳メッキ液を噴射、循環し攪拌を行っているが、その他に、プロペラによる攪拌、また特殊な場合として、超音波照射による攪拌も有効である。Returning to FIG. 1, the electroforming plating bath is circulated and agitated by injecting, circulating and agitating the electroforming plating solution from the spray nozzle. Agitation by sonication is also effective.

芯線5は、外径φ0.1mm、長さ400mmの、SUS304芯線を使用するが、前処理として脱脂洗浄を行い電鋳する事とする。As the core wire 5, an SUS304 core wire having an outer diameter of 0.1 mm and a length of 400 mm is used.

図1に示した陰極回転式電鋳装置を用いて微細管を電鋳により形成する操作を説明する。電鋳浴槽15に電鋳メッキ浴1を充填した後、4〜20A/dm程度の電流密度になるように陽極2、及び陰極3に直流電圧を印加し、芯線5外周部に所定寸法に金属電着させる。An operation for forming a fine tube by electroforming using the cathode rotary electroforming apparatus shown in FIG. 1 will be described. After filling the electroplating bath 1 electroforming bath 15, an anode 2 so that the current density of the order 4~20A / dm 2, and a DC voltage is applied to the cathode 3, to size the core wire 5 the outer peripheral portion Electrodeposit metal.

電鋳終了後、支持具を電鋳浴槽15から取り出し、電鋳物が形成されている芯線を支治具から取り外す。After completion of electroforming, the support is taken out from the electroforming bath 15 and the core wire on which the electroformed product is formed is removed from the support jig.

上記の陰極回転方式電鋳装置の操作により、図3に示すような外径φ1.3mm位の電鋳体18を作製する。An electroformed body 18 having an outer diameter of about 1.3 mm as shown in FIG. 3 is produced by operating the above-described cathode rotating type electroforming apparatus.

得られた電鋳体18は、図3に示すように、両端に芯線5a及び芯線5bが露出した状態で円柱状に形成される。芯線5a及び芯線5bは被覆により挟まれていた為に電着物は形成されていない。As shown in FIG. 3, the obtained electroformed body 18 is formed in a cylindrical shape with the core wire 5a and the core wire 5b exposed at both ends. Since the core wire 5a and the core wire 5b are sandwiched between the coverings, no electrodeposit is formed.

次に、電鋳体中の芯線5の除去であるが、図4に示すように、露出した芯線5の一端を引き抜き除去するが、引き抜き力18N以下で除去でき、芯線外形形状の微細孔を有す金属微細管19が製造される。Next, the removal of the core wire 5 in the electroformed body is performed. As shown in FIG. 4, one end of the exposed core wire 5 is pulled out and removed, but can be removed with a pulling force of 18 N or less. The existing metal microtube 19 is manufactured.

また、芯線を回転させながら金属電着させる為、芯線表面に均一な金属皮膜が形成され、内径及び外径の中心が一致した同心性の高い金属微細管となる。In addition, since the metal electrodeposition is performed while rotating the core wire, a uniform metal film is formed on the surface of the core wire, and a highly concentric metal micro tube with the center of the inner diameter and the outer diameter coincided.

上記工程により、内径寸法及び、同心性がミクロンオーダー以下である高精度な金属微細管を製造する事ができた。Through the above process, it was possible to manufacture a highly accurate metal microtube having an inner diameter dimension and concentricity of the order of micron or less.

陰極回転方式電鋳装置を示した略図である。  It is the schematic which showed the cathode rotating system electroforming apparatus. 支治具を示した略図である。 (a)側面図 (b)B−B’断面図  It is the schematic which showed the support jig. (A) Side view (b) B-B 'sectional view 電鋳体を示した図である。  It is the figure which showed the electroformed body. 芯線除去による微細管作製を示した図である。 (a)芯線を引き抜く電鋳体 (b)芯線除去し微細孔を形成した金属微細管  It is the figure which showed the microtube preparation by core wire removal. (A) Electroformed body from which the core wire is pulled out (b) Metal micro tube with the core wire removed to form fine holes

符号の説明Explanation of symbols

1 電鋳メッキ浴
2 陽極
3 陰極
4 ステンレス製バネ
4a ステンレス製バネの一端
4b ステンレス製バネの他端
5 母材芯線
5a 母材芯線の一端
5b 母材芯線の他端
6 ステンレスネジ
7 支柱
8 上板
9 下板
10 噴射用ノズル
11 駆動モーター
12a ギヤー(上部)
12b ギヤー(下部)
13 シャフト
14 加熱ヒーター
15 電鋳浴槽
16 ベース
17 濾過塔及び循環ポンプ
18 電鋳体
19 金属微細管
DESCRIPTION OF SYMBOLS 1 Electroforming plating bath 2 Anode 3 Cathode 4 Stainless steel spring 4a One end of stainless steel spring 4b The other end of stainless steel spring 5 Base material core wire 5a One end of base material core wire 5b The other end of base material core wire 6 Stainless steel screw 7 Strut 8 Top Plate 9 Lower plate 10 Injection nozzle 11 Drive motor 12a Gear (upper part)
12b Gear (lower part)
13 Shaft 14 Heating heater 15 Electroformed bathtub 16 Base 17 Filtration tower and circulation pump 18 Electroformed body 19 Metal fine tube

Claims (6)

製造方法は、金属電鋳メッキ浴に所定量の塩を含む有機硫黄化合物を添加した、陰極回転方式による電鋳法であり、陰極部である母材導電性芯線の両端を真直に支持し、該芯線を中心軸に回転させ外周部に所望寸法まで金属電着させ、得られた電鋳体の母材である該芯線を引き抜くか、または押し出す事で除去し貫通孔である内径を作製し製造する事を特徴とするの電鋳法による高精度な金属微細管の製造方法。The manufacturing method is an electroforming method by a cathode rotation method, in which an organic sulfur compound containing a predetermined amount of salt is added to a metal electroforming plating bath, and supports both ends of a base metal conductive core wire that is a cathode portion, The core wire is rotated around the central axis, and metal is electrodeposited on the outer periphery to the desired dimensions, and the core wire, which is the base material of the obtained electroformed body, is pulled out or removed by extrusion to produce an inner diameter that is a through hole. A high-precision method for producing fine metal pipes by electroforming, characterized by manufacturing. 前記、製造方法により、母材導電性芯線を、複数本使用し金属電着した電鋳体の、複数の該芯線を引き抜くか、または押し出し除去する事で、必要に応じた複数の貫通孔である内径を作製できる事を特徴とする請求項1記載の電鋳法による高精度な金属微細管の製造方法。By the above-described manufacturing method, a plurality of base metal conductive core wires are used, and a plurality of core wires are electrodeposited, and the plurality of core wires are drawn or removed by extrusion, so that a plurality of through holes can be formed as required. The method for producing a metal microtube with high accuracy by electroforming according to claim 1, wherein an inner diameter can be produced. 金属メッキ浴の基本配合は、主成分の単純塩、錯塩またはアミン系塩である金属化合物成分に必要に応じ塩化物成分、pH緩衝剤成分を組成し、更に所定量の塩を含む有機硫黄化合物成分を添加するが、該塩を含む有機硫黄化合物成分は、直流電圧の印加で母材陰極表面に離型効果となる剥離皮膜を形成または電鋳物に圧縮の内部応力を与える成分である事を特徴とする請求項1、2記載の電鋳法による高精度な金属微細管の製造方法。The basic composition of the metal plating bath is an organic sulfur compound containing a chloride component and a pH buffer component as required in addition to a metal compound component which is a simple salt, complex salt or amine salt as a main component, and further containing a predetermined amount of salt. Although the component is added, the organic sulfur compound component containing the salt is a component that forms a release film on the surface of the base material cathode when a DC voltage is applied, or gives compression internal stress to the electroformed product. A method for producing a metal microtube with high accuracy by electroforming according to claim 1 or 2. 前記、塩を含む有機硫黄化合物成分は、一種または、二種以上の混合組成で添加する事を特徴とする請求項1、2または3記載の電鋳法による高精度な金属微細管の製造方法。4. The method for producing a metal microtube with high accuracy by electroforming according to claim 1, 2 or 3, wherein the organic sulfur compound component containing a salt is added in one or two or more mixed compositions. . 微細管は、アルミニウム、ニッケル、鉄、銅、コバルト、タングステン及びそれらの合金からなる群からえらばれた一種である事を特徴とする請求項1〜4のいずれか一項に記載の電鋳法による高精度な金属微細管の製造方法。The electroforming method according to any one of claims 1 to 4, wherein the microtube is a kind selected from the group consisting of aluminum, nickel, iron, copper, cobalt, tungsten, and alloys thereof. A highly accurate method of manufacturing fine metal tubes. 請求項1〜5のいずれか一項に記載の製造方法により製造された事を特徴とする電鋳法による高精度な金属微細管の製造方法。A method for producing a highly accurate metal microtube by electroforming, characterized by being produced by the production method according to any one of claims 1 to 5.
JP2004276127A 2004-08-26 2004-08-26 Production method for high precision metal fine tube by electroforming process Pending JP2006063434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004276127A JP2006063434A (en) 2004-08-26 2004-08-26 Production method for high precision metal fine tube by electroforming process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004276127A JP2006063434A (en) 2004-08-26 2004-08-26 Production method for high precision metal fine tube by electroforming process

Publications (1)

Publication Number Publication Date
JP2006063434A true JP2006063434A (en) 2006-03-09

Family

ID=36110174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004276127A Pending JP2006063434A (en) 2004-08-26 2004-08-26 Production method for high precision metal fine tube by electroforming process

Country Status (1)

Country Link
JP (1) JP2006063434A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114322A1 (en) * 2006-03-31 2007-10-11 Nf Techno Summit Corporation Process for manufacturing injection needle and injection needle
JP2007302919A (en) * 2006-05-09 2007-11-22 Totoku Electric Co Ltd Multilayer fine tube and its manufacturing method
WO2008001449A1 (en) * 2006-06-29 2008-01-03 Cbr Co., Ltd. Fine tube
CN110777399A (en) * 2019-11-18 2020-02-11 河南理工大学 Core mould for electroforming to prepare thin-wall seamless metal round pipe
CN115491740A (en) * 2022-11-01 2022-12-20 中国工程物理研究院材料研究所 Static outer wall tubular uranium electroplating device
CN117339063A (en) * 2023-12-06 2024-01-05 杭州迪视医疗生物科技有限公司 Micro needle tube and manufacturing method of micro injection needle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147896A (en) * 1984-12-20 1986-07-05 Nippon Kagaku Sangyo Kk Nickel and nickel alloy electroplating bath
JP2002080991A (en) * 2000-09-11 2002-03-22 Oudenshiya:Kk Method of manufacturing thin hole tube
JP2003201590A (en) * 2001-12-28 2003-07-18 Hikari Tekku Kk Multi-core ferrule manufacturing method
JP3461177B1 (en) * 2003-04-23 2003-10-27 株式会社大館製作所 Electroforming equipment for manufacturing thin tubes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147896A (en) * 1984-12-20 1986-07-05 Nippon Kagaku Sangyo Kk Nickel and nickel alloy electroplating bath
JP2002080991A (en) * 2000-09-11 2002-03-22 Oudenshiya:Kk Method of manufacturing thin hole tube
JP2003201590A (en) * 2001-12-28 2003-07-18 Hikari Tekku Kk Multi-core ferrule manufacturing method
JP3461177B1 (en) * 2003-04-23 2003-10-27 株式会社大館製作所 Electroforming equipment for manufacturing thin tubes

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114322A1 (en) * 2006-03-31 2007-10-11 Nf Techno Summit Corporation Process for manufacturing injection needle and injection needle
JP2007302919A (en) * 2006-05-09 2007-11-22 Totoku Electric Co Ltd Multilayer fine tube and its manufacturing method
WO2008001449A1 (en) * 2006-06-29 2008-01-03 Cbr Co., Ltd. Fine tube
CN110777399A (en) * 2019-11-18 2020-02-11 河南理工大学 Core mould for electroforming to prepare thin-wall seamless metal round pipe
CN115491740A (en) * 2022-11-01 2022-12-20 中国工程物理研究院材料研究所 Static outer wall tubular uranium electroplating device
CN117339063A (en) * 2023-12-06 2024-01-05 杭州迪视医疗生物科技有限公司 Micro needle tube and manufacturing method of micro injection needle

Similar Documents

Publication Publication Date Title
CN1328651A (en) Optical fiber connector and ferrule used for it and production method for ferrule
JP2006063434A (en) Production method for high precision metal fine tube by electroforming process
US3591466A (en) Composite structure production
JP2006291345A (en) Production method for high precision metal fine tube by electroforming process
CN1259458C (en) Method of producing metal ferrules and device therefor
US20060011481A1 (en) Method for manufacturing multi-core metal pipe by electroforming
JP4342066B2 (en) Core wire holder
JP2002332588A (en) Method of manufacturing high-accuracy tubular parts by electroforming
JP4357061B2 (en) Porous metal cylinder used for electroforming
JP4342062B2 (en) Manufacturing method of fine cylinder for forming metal ferrule
JP4596500B2 (en) Manufacturing method of optical fiber connector parts
US6730207B2 (en) Method of manufacturing part for optical fiber connector
JP2005316345A (en) Method for manufacturing high quality conversion sleeve
JP2002146583A (en) Method of manufacturing ferrule
JP2005258371A (en) Method of manufacturing mechanical splice
JP2001192883A (en) Method and apparatus of manufacturing metal ferrule
JP2002212772A (en) Ferrule manufacturing method and ferrule obtained by the method
JP2005258372A (en) High-precision connector
JP4545915B2 (en) Core wire holder used for manufacturing metal ferrule and ferrule manufacturing apparatus including the same
JP2001172787A (en) Manufacturing method of part for optical fiber connector
JP2002241983A (en) Method for producing sleeve
KR100434181B1 (en) Method of manufacturing ferrule
JP2004244693A (en) Apparatus for manufacturing metallic fiber using electroforming technique and method for the same
JP2001192882A (en) Manufacturing method of thin column for forming metal ferrule
JP3930306B2 (en) Metal tube manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070824

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080311

A711 Notification of change in applicant

Effective date: 20081122

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Effective date: 20081125

Free format text: JAPANESE INTERMEDIATE CODE: A821

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

A131 Notification of reasons for refusal

Effective date: 20100810

Free format text: JAPANESE INTERMEDIATE CODE: A131

A711 Notification of change in applicant

Effective date: 20100916

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100917

A521 Written amendment

Effective date: 20101011

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20101012

Free format text: JAPANESE INTERMEDIATE CODE: A821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A02 Decision of refusal

Effective date: 20110308

Free format text: JAPANESE INTERMEDIATE CODE: A02