JP2005258371A - Method of manufacturing mechanical splice - Google Patents

Method of manufacturing mechanical splice Download PDF

Info

Publication number
JP2005258371A
JP2005258371A JP2004112556A JP2004112556A JP2005258371A JP 2005258371 A JP2005258371 A JP 2005258371A JP 2004112556 A JP2004112556 A JP 2004112556A JP 2004112556 A JP2004112556 A JP 2004112556A JP 2005258371 A JP2005258371 A JP 2005258371A
Authority
JP
Japan
Prior art keywords
mechanical splice
optical fiber
parts
core wire
fixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004112556A
Other languages
Japanese (ja)
Inventor
Tetsuo Tanaka
鐵男 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004112556A priority Critical patent/JP2005258371A/en
Publication of JP2005258371A publication Critical patent/JP2005258371A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a mechanical splice which has a superior connection hole (hole diameter) for high-precision butt splicing of optical fibers and easily and surely splices and fixes the optical fibers. <P>SOLUTION: A sleeve method mechanical splice 29 comprises splicing parts for butt splicing of optical fibers, fixing parts for splicing and fixing the optical fibers, and auxiliary fixing parts. The cylindrical splicing parts having an optical fiber connection hole (hole diameter) which is perfectly circular and is superior in surface shape and is straight is manufactured by straightly supporting a matrix core wire having an optical fiber shape to electrodeposit a metal thereon while rotating it on its axis by electrocasting in a cathode rotation system and processing external shape dimensions of an obtained electrocast material and removing the core wire. The fixing parts are metallic tubes which have caulking parts for optical fiber coating cords in both ends and are soft to be suitable for caulking, and the auxiliary fixing parts are metallic tubes having such an internal diameter that optical fiber coating parts can be stored therein when splicing. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、2本の光ファイバを突き合わせ低接続損失に接続し、また、該光ファイバの折れ、脱落のない光ファイバまたは被覆コードの固定を行うメカニカルスプライスの製造方法に関する。The present invention relates to a method for manufacturing a mechanical splice in which two optical fibers are connected to each other with low connection loss, and the optical fiber or the covering cord is fixed without the optical fiber being bent or dropped.

近年、インターネットの普及により、情報流通が大容量化され、光ファイバ接続の需要が増大傾向にある。光ファイバを突き合わせ接続するメカニカルスプライスは、主に幹線での施設など永久接続する場所で使用され、2本の光ファイバを突き合わせ接続する部品と光ファイバ突き合わせ部が脱落しないように機械的に保持固定する部品により構成されており、低接続損失な接続でしかも信頼性の高い接続部固定のメカニカルスプライスが要望されている。In recent years, with the spread of the Internet, the volume of information distribution has increased, and the demand for optical fiber connection has been increasing. Mechanical splices that butt-connect optical fibers are mainly used in permanent connection locations such as mainline facilities, and are mechanically held and fixed so that the components that butt-connect two optical fibers and the optical fiber butt are not dropped. There is a demand for a mechanical splice that has a low connection loss and has a highly reliable connection portion.

図1、図2に一般的なスリーブ法によるメカニカルスプライスを示すが、図1(a)は光ファイバの接続孔(穴径)1有する円筒体の接続部品断面2、図1(b)は光ファイバ被覆コード形状の内径3を有する管形状の固定部品断面4であり、図2は一体化したスリーブ法メカニカルスプライスの断面である(非特許文献1参照。)。又、メカニカルスプライス接続方法には、スリーブ法の他に接続部にV溝を用いたV溝法による接続方法もある。
「オプトコム1996 4月号 NO.77 第5章光ファイバーの接続、施設 p.70 図5−7(a)」
FIG. 1 and FIG. 2 show a mechanical splice by a general sleeve method. FIG. 1A is a cross-sectional view of a connecting part 2 of a cylindrical body having a connection hole (hole diameter) 1 of an optical fiber, and FIG. FIG. 2 is a cross section of a tube-shaped fixed part 4 having an inner diameter 3 of a fiber-coated cord shape, and FIG. 2 is a cross section of an integrated sleeve method mechanical splice (see Non-Patent Document 1). In addition to the sleeve method, the mechanical splice connection method includes a connection method using a V-groove method in which a V-groove is used in the connection portion.
“Optcom 1996 April No. 77 Chapter 5 Optical Fiber Connection, Facility p.70 Figure 5-7 (a)”

スリーブ法のメカニカルスプライスは、光ファイバより僅かに大きい接続孔(穴径)の両端から光ファイバを挿入し、光ファイバー外径により軸あわせが行われる。また、光ファイバまたは被覆コード固定は、固定部品による保持力または接着剤により固定される。In the mechanical splice of the sleeve method, an optical fiber is inserted from both ends of a connection hole (hole diameter) that is slightly larger than the optical fiber, and the axis is aligned by the outer diameter of the optical fiber. Further, the optical fiber or the covering cord is fixed by a holding force by a fixing component or an adhesive.

上記の接続方法において、特に光ファイバを突き合わせる接続部品の接続孔(穴径)は、真円で光ファイバ表面形状であり、且つ真直とされる為、現状の製造方法である高温下での成型、または削穴加工で得る事は困難とされ、光ファイバまたは被覆コード部の固定に関しても、光ファイバの折れ、脱落のない安全で信頼性が高く、しかも作業性のよい固定部品が要求される。In the above connection method, in particular, the connection hole (hole diameter) of the connection component that abuts the optical fiber is a perfect circle, has a surface shape of the optical fiber, and is straightened. It is difficult to obtain by molding or drilling, and for fixing the optical fiber or the coated cord part, there is a need for a secure and reliable fixing part that does not break or drop off the optical fiber and has good workability. The

かかる問題を解決する方法としては、陰極回転方式による電気鋳造法により、母材に真円で光ファイバ表面形状である芯線の両端部を真直に支持し、該芯線の表面に金属電着する。得られた電鋳体の該芯線を除去する事で高精度な接続孔(穴径)を有した接続部品を得る事ができる。また、光ファイバの固定においても、軟質金属管を固定部品とし被覆コード部を加締める事で強固な固定がでる。更に、固定部品の内径調節する補助固定部品を併用する事で、異種外径の被覆コードに対応した固定が可能となる。As a method for solving such a problem, both ends of a core wire that is a perfect circle and has a surface shape of an optical fiber are supported straight by a base material by electrocasting using a cathode rotation method, and metal electrodeposition is performed on the surface of the core wire. By removing the core wire of the obtained electroformed body, a connection component having a highly accurate connection hole (hole diameter) can be obtained. Also, the optical fiber can be fixed firmly by crimping the covering cord portion using a soft metal tube as a fixing component. Furthermore, by using an auxiliary fixing part that adjusts the inner diameter of the fixing part in combination, it is possible to perform fixing corresponding to a coating cord having different outer diameters.

本発明は、かかる実情に鑑みされたものであり、その目的は、2本の光ファイバを低接続損失に接続し、該光ファイバの折れ、脱落のない固定を行うスリーブ法によるメカニカルスプライスの製造方法を提供する事にある。The present invention has been made in view of such circumstances, and its purpose is to manufacture a mechanical splice by a sleeve method in which two optical fibers are connected to each other with a low connection loss, and the optical fibers are fixed without bending or dropping off. Is to provide a way.

本発明に従えば、スリーブ法のメカニカルスプライスの製造方法であって、陰極回転方式の電鋳により金属電着した電鋳体は、外形を所定寸法に加工し、また芯線除去する事で、高精度な接続孔(穴径)を有する接続部品となり、また軟質金属管を加締め被覆コードを固定する固定部品と該固定部品を内径調節する金属管形状の補助固定部品により異種外径寸法の被覆コード固定にも対応したスリーブ法のメカニカルスプライスの製造方法が提供される。According to the present invention, there is provided a method of manufacturing a mechanical splice of a sleeve method, wherein an electroformed body that has been electrodeposited by electroforming using a cathode rotating method has a high profile by processing the outer shape to a predetermined dimension and removing the core wire. It becomes a connecting part with an accurate connecting hole (hole diameter), and it is covered with different outer diameters by a fixing part for fixing a covering cord by caulking a soft metal pipe and an auxiliary fixing part for adjusting the inner diameter of the fixing part. There is provided a method of manufacturing a mechanical splice of a sleeve method that also supports cord fixing.

本発明の製造方法においては、接続部品として、陰極回転方式電鋳により、真円性及び表面形状の優れた光ファイバ形状の芯線の両端部を一定の張力で支持し真直させ、回転させながら金属電着を行う。得られた円筒形状の電鋳体は、所定の寸法に外径研削加工を行い、更に所定の長さに切断、研磨し、該芯線の除去を行う。In the manufacturing method of the present invention, both ends of an optical fiber-shaped core wire having excellent roundness and surface shape are supported with a constant tension by a cathode rotation type electroforming as a connecting component, and straightened and rotated while rotating. Perform electrodeposition. The obtained cylindrical electroformed body is subjected to outer diameter grinding to a predetermined dimension, further cut and polished to a predetermined length, and the core wire is removed.

前記、電鋳体の外周を高精度に加工する為の装置には、ワイヤーセンターレス機を用いる事ができる。A wire centerless machine can be used for the apparatus for processing the outer periphery of the electroformed body with high accuracy.

次に、固定部品は、軟質金属管を使用し、長さは、前記、接続部品、及び該接続部品の両端部に補助固定部品を接合した長さより両端部が10mm〜20mm位長尺に切断する事とする。Next, the fixing part uses a soft metal tube, and the length is cut to a length of about 10 mm to 20 mm at both ends from the connecting part and the length of the auxiliary fixing part joined to both ends of the connecting part. I will do it.

また、補助固定部品は、金属管を使用し、長さ5mm〜10mmに切断し、該固定部品内径寸法を外径、また被覆コード外径寸法を内径とし、固定部品内径の寸法調節し被覆コードを収める事とする。The auxiliary fixing part uses a metal tube and is cut to a length of 5 mm to 10 mm. The inner diameter of the fixing part is the outer diameter, and the outer diameter of the covering cord is the inner diameter. Will be included.

接続部品は、固定部品の内径に挿入し中央位置に収め、次に補助固定部品であるが1つは該固定部品一端から、もう1つは他端から該固定部品に圧入し、該接続部品に隣接させ収めスリーブ法によるメカニカルスプライスとする。The connecting part is inserted into the inner diameter of the fixing part and is stored in the center position. Next, auxiliary connecting parts are inserted into the fixing part from one end of the fixing part and the other from the other end. A mechanical splice by the storage sleeve method.

本発明の製造方法では、接続部品である電鋳体の接続孔(穴径)は母材である芯線の外径で決定され、該接続孔(穴径)精度もまた該芯線の外径精度で決定される。したがって、特に、光ファイバどうしを突き合わせる接続部品に関しては、光ファイバと相似断面(真円形)であり、光ファイバより僅かに大きな径を有し、且つ高精度の真円性及び真直性を有する芯線を用いる事が極めて接続孔(穴径)精度の高いメカニカルスプライスを得る事ができる。In the manufacturing method of the present invention, the connection hole (hole diameter) of the electroformed body as the connection component is determined by the outer diameter of the core wire as the base material, and the accuracy of the connection hole (hole diameter) is also the outer diameter accuracy of the core wire. Determined by Therefore, in particular, with respect to the connecting parts for matching the optical fibers, the optical fiber has a similar cross section (true circle), has a slightly larger diameter than the optical fiber, and has high precision roundness and straightness. Using a core wire can provide a mechanical splice with extremely high connection hole (hole diameter) accuracy.

前記芯線は、電鋳時あるいは、引き抜きによる芯線除去時に切断する事がないように、ある程度、剛性強度を有する材料を用い構成する事が望ましく、かかる材料としては、ピアノ線に用いられる材料、ステンレス、鋼、鋼に諸元素を添加した特殊鋼が好適である。The core wire is preferably made of a material having rigidity to some extent so as not to be cut at the time of electroforming or removal of the core wire by drawing, such as a material used for piano wire, stainless steel Steel, special steel in which various elements are added to steel are suitable.

本発明の製造方法においては、前述の接続部品電鋳体から芯線を取り除くには、芯線のみを電鋳体から溶解させるか、または、押し出すか引き抜けばよい。これにより芯線の断面形状に相当する貫通孔が形成された円筒形状の金属管が得られる。In the manufacturing method of the present invention, in order to remove the core wire from the above-described connecting component electroformed body, only the core wire may be dissolved from the electroformed body, or extruded or pulled out. Thereby, a cylindrical metal tube having a through hole corresponding to the cross-sectional shape of the core wire is obtained.

本発明のスリーブ法であるメカニカルスプライスの製造方法により、真円性及び表面形状に優れ、且つ真直な接続孔(穴径)により、低損失な光伝送が可能となり、また光ファイバを強固に固定する事ができた。The mechanical splice manufacturing method, which is the sleeve method of the present invention, is excellent in roundness and surface shape, and a straight connection hole (hole diameter) enables low-loss optical transmission, and the optical fiber is firmly fixed. I was able to do it.

発明の実施するための最良の形態BEST MODE FOR CARRYING OUT THE INVENTION

以下、本発明の製造方法の実施形態について説明するが、本発明はこれに限定されるものではない。Hereinafter, although embodiment of the manufacturing method of this invention is described, this invention is not limited to this.

最初に、本発明のメカニカルスプライスを電鋳により製造する装置について図3.陰極回転方式電鋳装置略図を参照しながら説明する。図3に示した装置は、電鋳浴槽19と、その槽内に充填された電鋳液5、また、電鋳液加熱ヒーター18、陽極6及び陰極7を備える。陽極6は、電鋳浴槽19の底部に設置されたベース20上に設置する。陰極7は、後述するように、支治具上に設けられており、支治具の上下端部間に張られた芯線は、電気的に接続されている。支治具に設置した芯線は駆動モーター15及びモーターに連動したシャフト17が回転する事で、ギヤー16a(上部)、16b(下部)を介し、芯線9を中心軸とし回転する。また、循環、攪拌には、電鋳液5を循環ポンプ21で引き上げ、濾過塔21を介し、ベース20上の噴射用ノズル14から噴射される。First, FIG. 3 shows an apparatus for manufacturing the mechanical splice of the present invention by electroforming. This will be described with reference to a schematic diagram of a cathode rotating type electroforming apparatus. The apparatus shown in FIG. 3 includes an electroforming bath 19, an electroforming liquid 5 filled in the tank, an electroforming liquid heater 18, an anode 6, and a cathode 7. The anode 6 is installed on a base 20 installed at the bottom of the electroformed bath 19. As will be described later, the cathode 7 is provided on a support jig, and the core wire stretched between the upper and lower ends of the support jig is electrically connected. The core wire installed on the support jig rotates about the core wire 9 as the central axis through the gears 16a (upper part) and 16b (lower part) when the drive motor 15 and the shaft 17 linked to the motor rotate. For the circulation and stirring, the electroforming liquid 5 is pulled up by the circulation pump 21 and sprayed from the spray nozzle 14 on the base 20 through the filtration tower 21.

電鋳液5は、芯線9の周囲に電鋳しようとする金属の材質に応じて決定され、例えばニッケルまたはその合金、鉄またはその合金、銅またはその合金、コバルトまたはその合金、タングステン合金、微粒子分散金属などの電鋳用金属を用いることができ、スルファミン酸ニッケル、塩化ニッケル、硫酸ニッケル、スルファミン酸第一鉄、ホウフッ化第一鉄、ピロリン酸銅、硫酸コバルト、硫酸銅、ホウフッ化銅、ケイフッ化銅、チタンフッ化銅、アリカノールスルフォン酸銅、硫酸コバルト、タングステン酸ナトリウムなどの水溶性を主成分とする液またはこれらの液に炭化ケイ素、炭化タングステン、炭化ホウ素、酸化ジルコニウム、チッ化ケイ素、アルミナ、ダイヤモンドなどの微粉末を分散させた液が使用される。これらのうち特に、スルファミン酸ニッケルを主成分とする浴が、電鋳の容易さ、電着物の応力が小さい事、化学的安定性、溶接の容易性などの面で適している。The electroforming liquid 5 is determined according to the material of the metal to be electroformed around the core wire 9, for example, nickel or its alloy, iron or its alloy, copper or its alloy, cobalt or its alloy, tungsten alloy, fine particles Electroforming metals such as dispersed metals can be used, such as nickel sulfamate, nickel chloride, nickel sulfate, ferrous sulfamate, ferrous borofluoride, copper pyrophosphate, cobalt sulfate, copper sulfate, copper borofluoride, Liquids containing water-soluble components such as copper silicofluoride, copper copper fluoride, copper alkanol sulfonate, cobalt sulfate, sodium tungstate, etc., or silicon carbide, tungsten carbide, boron carbide, zirconium oxide, silicon nitride A liquid in which fine powders such as alumina and diamond are dispersed is used. Of these, a bath mainly composed of nickel sulfamate is suitable in terms of easiness of electroforming, low stress of the electrodeposit, chemical stability, ease of welding, and the like.

電鋳液5には、電鋳浴中に濾過精度の高いフェルターを用いて濾過を行い、加温は50±5℃程度の適正温度範囲に温度コントロールする。また、時々、活性炭処理をして有機不純物を除去する事が好ましい。また、ニッケルメッキした鉄製の波板を陰極、カーボンを陽極にして0.2A/dm程度の低電流密度で通電して銅などの金属不純物を、浴中の電鋳液から除去する事が望ましい。The electroforming liquid 5 is filtered using a felter with high filtration accuracy in an electroforming bath, and the temperature is controlled to an appropriate temperature range of about 50 ± 5 ° C. Further, it is sometimes preferable to remove the organic impurities by treating with activated carbon. In addition, it is possible to remove metal impurities such as copper from the electroforming liquid in the bath by using a nickel-plated iron corrugated sheet as a cathode and carbon as an anode at a low current density of about 0.2 A / dm 2. desirable.

陽極6は、電鋳しようとする金属に応じて選択され、ニッケル、鉄、銅、コバルトなどから選定され、板状、球状のものを適宜使用することができる。球状の電極を使用する場合は、例えば,チタン製のバスケットに入れ、ポリエステル製の布袋で覆って使用する。The anode 6 is selected according to the metal to be electroformed, and is selected from nickel, iron, copper, cobalt, etc., and a plate-like or spherical one can be used as appropriate. When using a spherical electrode, for example, it is placed in a titanium basket and covered with a polyester cloth bag.

支持具について図4.支治具略図を参照しながら詳細を説明する。(a)は側面図であり、(b)は下板13のB−B’方向から見た断面図である。支治具は、上板12と下板13が2本の支柱11を介して連結されており、上板12と下板13は、例えば、ポリ塩化ビニル樹脂、ポリアミド樹脂、ポリアセレート樹脂またはポリエチレン樹脂の電気絶縁材料で製造され、支柱11はステンレス、チタンなどの金属またはプラスチックで製造される。上板12及び下板13は、支柱11とそれぞれ、ネジで固定される。上板12の中央には、陰極7としてのステンレスネジが上板12を貫通するように設けられている。ステンレスネジは、上板12の下面にてステンレス製バネ8の一端8aを固定している。下板13の中央には、同様にステンレスネジ10が下板13を貫通して下板13の上面に突出するように設けられている。芯線9の一端9aは、ステンレス製のバネ8の他端8bに引っ掛けられ、両芯線を引っ張ってバネ8を伸ばしながら他端9bをステンレスネジ10で保持される。このように芯線9を支治具に取り付ける事により芯線は、垂直方向にまっすぐに張った状態で支持される。FIG. 4 shows the support. Details will be described with reference to the schematic diagram of the support jig. (A) is a side view, (b) is a sectional view of the lower plate 13 as seen from the B-B ′ direction. In the support jig, an upper plate 12 and a lower plate 13 are connected via two support columns 11, and the upper plate 12 and the lower plate 13 are, for example, polyvinyl chloride resin, polyamide resin, polyacetylate resin, or polyethylene resin. The support 11 is made of a metal such as stainless steel or titanium, or a plastic. The upper plate 12 and the lower plate 13 are fixed to the support column 11 with screws. In the center of the upper plate 12, a stainless steel screw as the cathode 7 is provided so as to penetrate the upper plate 12. The stainless steel screw fixes one end 8 a of the stainless steel spring 8 on the lower surface of the upper plate 12. Similarly, a stainless screw 10 is provided at the center of the lower plate 13 so as to penetrate the lower plate 13 and protrude from the upper surface of the lower plate 13. One end 9 a of the core wire 9 is hooked on the other end 8 b of the stainless steel spring 8, and the other end 9 b is held by the stainless screw 10 while the spring 8 is extended by pulling both core wires. By attaching the core wire 9 to the support jig in this way, the core wire is supported in a state of being stretched straight in the vertical direction.

図3にもどって、電鋳液の循環、攪拌には、噴き出しノズルより電鋳液を噴射、循環し攪拌を行っているが、その他に、プロペラによる攪拌、また特殊な場合として、超音波照射による攪拌も有効である。Returning to FIG. 3, the electroforming liquid is circulated and agitated by injecting the electroforming liquid from the ejection nozzle, circulating, and agitating. In addition, as a special case, the agitation is performed by ultrasonic irradiation. The stirring by is also effective.

芯線9は、鉄またはその合金、アルミニウムまたはその合金、銅またはその合金など金属線及びこの金属線状に薄いハンダメッキをしたもの、及びナイロン、ポリエステル、テフロン(登録商標)などのプラスチック線などから選定される。このうちプラスチックの場合は、導電性プラスチックのタイプである事とし、非導電性の場合は、表面に導電性のニッケル、銀などの無電解メッキが必要となる。The core wire 9 is made of a metal wire such as iron or an alloy thereof, aluminum or an alloy thereof, copper or an alloy thereof, a thin solder-plated metal wire, and a plastic wire such as nylon, polyester, or Teflon (registered trademark). Selected. Among these, in the case of plastic, it is assumed that it is a type of conductive plastic, and in the case of non-conductive, electroless plating such as conductive nickel or silver is required on the surface.

図3に示した陰極回転式電鋳装置を用いて管状部材を電鋳により形成する操作を説明する。電鋳浴槽20に電鋳液5を充填した後、駆動モーター15により陰極7を回転させ、4〜20A/dm程度の電流密度になるように陽極6、及び陰極7にDC電圧を印加する。An operation of forming a tubular member by electroforming using the cathode rotary electroforming apparatus shown in FIG. 3 will be described. After the electroforming bath 20 is filled with the electroforming solution 5, the cathode 7 is rotated by the drive motor 15, and a DC voltage is applied to the anode 6 and the cathode 7 so as to obtain a current density of about 4 to 20 A / dm 2. .

上記の陰極回転方式電鋳装置の操作により、所定の外径まで芯線9の表面に金属電着させる。By the operation of the above-described cathode rotation type electroforming apparatus, metal is electrodeposited on the surface of the core wire 9 to a predetermined outer diameter.

電鋳終了後、支持具を電鋳浴槽19から取り出し、電鋳体が形成されている芯線を支治具から取り外す。After completion of electroforming, the support is taken out from the electroforming bath 19 and the core wire on which the electroformed body is formed is removed from the support jig.

得られた電鋳体は、図5に示すように、両端に芯線9a及び芯線9bが露出した状態で光ファイバー接続部品となる電鋳体22が円筒形状に形成される。As shown in FIG. 5, in the obtained electroformed body, an electroformed body 22 serving as an optical fiber connecting component is formed in a cylindrical shape with the core wire 9a and the core wire 9b exposed at both ends.

次いでかかる接続部品電鋳体22の外周部を外径加工する。電鋳体の外周部の加工には、ワイヤーセンターレス機を用いる。Next, the outer peripheral portion of the connection component electroformed body 22 is processed to have an outer diameter. A wire centerless machine is used for processing the outer periphery of the electroformed body.

電鋳体の切断には、薄刃カッターを使用し、電鋳体の長手方向に対して、研磨代を含む所定の長さに切断し、両端を研磨し長さを整える。この時、切断、研磨は、電鋳体長手方向に対して直角に行う事とする。For cutting the electroformed body, a thin blade cutter is used, and the electroformed body is cut into a predetermined length including a grinding allowance with respect to the longitudinal direction of the electroformed body, and both ends are polished to adjust the length. At this time, cutting and polishing are performed at right angles to the longitudinal direction of the electroformed body.

芯線の除去方法には、芯線を押し出すか、引き抜くかあるいは薬品で溶解のいずれかの方法で可能であるが、選択した芯線の材料に基づいて決定すればよい。引張り強度の強い芯線であれば、引き抜きを利用し薬品に溶解しやすいものは溶解させるのが良い。本工程に於いては、超硬ピンで芯線を押し、押し出された芯線先端部を摘み引き抜き除去する事とする。The method for removing the core wire can be performed by either extruding the core wire, drawing it out, or dissolving it with a chemical, but it may be determined based on the material of the selected core wire. In the case of a core wire having a high tensile strength, it is preferable to dissolve a wire that is easily dissolved in a chemical by using drawing. In this step, the core wire is pressed with a carbide pin, and the tip of the extruded core wire is picked and removed.

また、接続部品の接続孔(穴径)両端にR形状の座繰り加工を行えば、光ファイバの挿入性が更に向上する。Moreover, if R-shaped countersinking is performed on both ends of the connection hole (hole diameter) of the connection component, the insertion property of the optical fiber is further improved.

固定部品は、市販の金属管を用い作製するが、両端部を加締めて使用する為、加締め加工に好適な軟質金属(アルミニウム、銅、ステンレス及びそれらの合金)を使用する事とする。The fixed part is manufactured using a commercially available metal tube, but since both ends are swaged, soft metals (aluminum, copper, stainless steel and alloys thereof) suitable for swaging are used.

次に、補助固定部品であるが、前記、固定部品同様に市販の金属管を用い作製する事ができる。Next, although it is an auxiliary | assistant fixed component, it can produce using a commercially available metal tube similarly to the said fixed component.

前記の固定部品及び補助固定部品は、薄刃カッターを使用し、研磨代を含む所定の長さに各々切断し、両端を研磨し長さを整えるが、この時、切断、研磨は、長手方向に対して直角に行う事とする。The fixed part and the auxiliary fixed part are each cut into a predetermined length including a grinding allowance using a thin blade cutter, and both ends are polished to adjust the length. At this time, cutting and polishing are performed in the longitudinal direction. It will be done at a right angle to it.

本開発品であるスリーブ法のメカニカルスプライスの部品断面図を図6に示すが、図6(a)が接続孔(穴径)23を有す接続部品24であり、図6(b)に、接続部品24、補助固定部品を収める内径26を有す固定部品25、また図6(c)に被覆コード部が収まる内径28を有す補助固定部品27を示す。FIG. 6 shows a sectional view of a part of the mechanical splice of the sleeve method, which is the newly developed product. FIG. 6 (a) is a connection part 24 having a connection hole (hole diameter) 23, and FIG. A connecting component 24, a fixing component 25 having an inner diameter 26 for accommodating the auxiliary fixing component, and an auxiliary fixing component 27 having an inner diameter 28 for accommodating the covering cord portion are shown in FIG.

次に、図7に一体化させたスリーブ法のメカニカルスプライス断面図29を示す。接続部品24は、固定部品内径26に挿入し中央位置に収め、更に補助固定部品27であるが、1つは該固定部品一端から、もう1つは他端から圧入し、該接続部品に隣接させ収める事とする。Next, FIG. 7 shows a mechanical splice sectional view 29 of the sleeve method integrated. The connection component 24 is inserted into the fixed component inner diameter 26 and accommodated at the center position, and further is an auxiliary fixed component 27. One is press-fitted from one end of the fixed component and the other is press-fitted from the other end. I will keep it.

上記工程で得られたメカニカルスプライスは、図8のスリーブ法メカニカルスプライス光ファイバ接続図30に示すように該メカニカルスプライス両端から光ファイバを挿入し突き合わせ、固定部品端部を絞るように加締め被覆コードを固定する。The mechanical splice obtained in the above process is a caulking coated cord so that the optical fiber is inserted and abutted from both ends of the mechanical splice as shown in FIG. To fix.

接続手順は、2本の光ファイバ被覆コード端部の被覆を除去し、更に光ファイバをアルコールで拭き取った後、端面をカッターで鏡面にカットする。次に、整合剤を注入した接続部品の接続孔(穴径)に、固定部品、補助固定部品の内径部を介し両端から光ファイバを挿入し突き合わせた状態で、該固定部品の両端部を加締める事で該光ファイバ被覆コードが固定され、光ファイバの折れ、脱落のない強固な固定が行われる。しかも安全で信頼性の高い、極めて低接続損失な光ファイバ接続を実現する事ができる。The connecting procedure is to remove the coating on the ends of the two optical fiber coating cords, wipe the optical fiber with alcohol, and then cut the end surface into a mirror surface with a cutter. Next, both ends of the fixing component are added to the connection hole (hole diameter) of the connecting component into which the matching agent has been injected, with the optical fiber inserted and abutted from both ends through the inner diameter of the fixing component and the auxiliary fixing component. By tightening, the optical fiber covering cord is fixed, and the optical fiber is firmly fixed without bending or dropping off. Moreover, it is possible to realize a safe and reliable optical fiber connection with extremely low connection loss.

一般的なスリーブ法メカニカルスプライスを示した分解断面図である。(a)接続部品断面図 (b)固定部品断面図It is the exploded sectional view showing the general sleeve method mechanical splice. (A) Connection part sectional view (b) Fixed part sectional view 一般的なスリーブ法メカニカルスプライスを示した断面である。It is the cross section which showed the general sleeve method mechanical splice. 陰極回転方式電鋳装置を示した略図である。It is the schematic which showed the cathode rotating system electroforming apparatus. 支治具を示した略図である。(a)側面図 (b)断面図It is the schematic which showed the support jig. (A) Side view (b) Cross section 接続部品電鋳体を示した図である。It is the figure which showed the connection component electroformed body. スリーブ法メカニカルスプライス部品を示した断面図である。(a)接続部品断面図 (b)固定部品断面図 (c)補助固定部品断面図It is sectional drawing which showed the sleeve method mechanical splice component. (A) Cross-sectional view of connecting parts (b) Cross-sectional view of fixed parts (c) Cross-sectional view of auxiliary fixed parts 一体化させたスリーブ法メカニカルスプライスを示した断面図である。It is sectional drawing which showed the sleeve method mechanical splice integrated. スリーブ法メカニカルスプライスの光ファイバ接続を示した断面図である。It is sectional drawing which showed the optical fiber connection of the sleeve method mechanical splice.

符号の説明Explanation of symbols

1 接続部品
2 接続孔(穴径)
3 内径
4 固定部品
5 電鋳液
6 陽極
7 陰極
8 ステンレス製バネ
8a ステンレス製バネの一端
8b ステンレス製バネの他端
9 芯線(接続部品母材)
9a 芯線の一端(接続部品母材)
9b 芯線の他端(接続部品母材)
10 ステンレスネジ
11 支柱
12 上板
13 下板
14 噴射用ノズル
15 駆動モーター
16a ギヤー(上部)
16b ギヤー(下部)
17 シャフト
18 加熱ヒーター
19 電鋳浴槽
20 ベース
21 濾過塔及び循環ポンプ
22 接続部品電鋳体
23 メカニカルスプライス接続部品接続孔
24 メカニカルスプライス接続部品
25 メカニカルスプライス固定部品
26 メカニカルスプライス固定部品内径
27 メカニカルスプライス補助固定部品
28 メカニカルスプライス補助固定部品内径
29 一体化させたスリーブ法のメカニカルスプライス図
30 スリーブ法メカニカルスプライス光ファイバ接続図
1 Connection component 2 Connection hole (hole diameter)
3 Inner Diameter 4 Fixed Parts 5 Electroforming Liquid 6 Anode 7 Cathode 8 Stainless Spring 8a One End of Stainless Spring 8b Other End of Stainless Spring 9 Core Wire (Connecting Parts Base Material)
9a One end of the core wire (base material for connecting parts)
9b The other end of the core wire (base material for connecting parts)
10 Stainless steel screw 11 Post 12 Upper plate 13 Lower plate 14 Nozzle for injection 15 Drive motor 16a Gear (upper part)
16b Gear (lower part)
17 Shaft 18 Heating heater 19 Electroformed bathtub 20 Base 21 Filtration tower and circulation pump 22 Connection part Electroformed body 23 Mechanical splice connection part connection hole 24 Mechanical splice connection part 25 Mechanical splice fixation part 26 Mechanical splice fixation part inner diameter 27 Mechanical splice auxiliary Fixed component 28 Mechanical splice auxiliary fixed component inner diameter 29 Mechanical splice diagram of integrated sleeve method 30 Sleeve method mechanical splice optical fiber connection diagram

Claims (6)

光ファイバ接続孔(穴径)を有す円筒形状の接続部品、また両端部に加締め部を有した管形状の被覆コード固定部品(以下、固定部品と記す)及び被覆コードを収める管形状の補助固定部品により構成され、該接続部品は真円性の高い光ファイバ形状である母材芯線を真直に支持し、陰極回転方式電鋳法により、金属電着した円筒形状の電鋳体により作製する事を特徴とするメカニカルスプライスの製造方法。Cylindrical connecting parts with optical fiber connection holes (hole diameters), tube-shaped coated cord fixing parts (hereinafter referred to as fixed parts) having crimped portions at both ends, and pipe-shaped receiving parts Constructed by auxiliary fixing parts, the connecting parts support the core wire in the shape of optical fiber with high roundness straightly, and are produced by metal electro-deposited cylindrical electroformed body by cathode rotating method electroforming method A method of manufacturing a mechanical splice characterized by: 前記、電鋳体は、所定の寸法に外径及び長さ加工を施し、更に母材芯線除去し光ファイバ接続孔(穴径)とした円筒体を接続部品とする事を特徴とする請求項1記載のメカニカルスプライスの製造方法。The electroformed body is characterized in that a cylindrical body having an outer diameter and a length processed to a predetermined dimension, and a base material core wire removed to form an optical fiber connection hole (hole diameter) is used as a connection part. A method for producing a mechanical splice according to 1. 固定部品は、該固定部品内径の長手中央位置に接続部品、該接続部品両端部に補助固定部品を隣接させ収め、両端部に長さ10〜20mm位の被覆コード加締め固定部を要した軟質金属管(アルミニウム、銅、ステンレス及びそれらの合金)である事を特徴とする請求項1記載のメカニカルスプライスの製造方法。The fixing component is a soft component that requires a connecting component at the longitudinal center position of the inner diameter of the fixing component, an auxiliary fixing component adjacent to both ends of the connecting component, and a covering cord caulking fixing portion having a length of about 10 to 20 mm at both ends. 2. The method of manufacturing a mechanical splice according to claim 1, wherein the mechanical splice is a metal tube (aluminum, copper, stainless steel and alloys thereof). 補助固定部品は、固定部品両端部に圧入し被覆コードを収める治具であり、長さ5〜10mm位、該固定部品内径寸法を外径、また被覆コード外径寸法を内径とした金属管である事を特徴とする請求項1記載のメカニカルスプライスの製造方法。The auxiliary fixing part is a jig that press-fits both ends of the fixing part and stores the covering cord, and is a metal tube having a length of about 5 to 10 mm, an inner diameter of the fixing part being an outer diameter, and an outer diameter of the covering cord being an inner diameter. The method for producing a mechanical splice according to claim 1, wherein: 上記金属は、アルミニウム、ニッケル、鉄、銅、コバルト、タングステン及びそれらの合金からなる群からえらばれた1種である事を特徴とする請求項1〜4記載のメカニカルスプライスの製造方法。5. The method of manufacturing a mechanical splice according to claim 1, wherein the metal is one selected from the group consisting of aluminum, nickel, iron, copper, cobalt, tungsten, and alloys thereof. 請求項1〜5のいずれか一項に記載の製造方法により製造された事を特徴とするメカニカルスプライスの製造方法。A method for manufacturing a mechanical splice, which is manufactured by the manufacturing method according to claim 1.
JP2004112556A 2004-03-11 2004-03-11 Method of manufacturing mechanical splice Pending JP2005258371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004112556A JP2005258371A (en) 2004-03-11 2004-03-11 Method of manufacturing mechanical splice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004112556A JP2005258371A (en) 2004-03-11 2004-03-11 Method of manufacturing mechanical splice

Publications (1)

Publication Number Publication Date
JP2005258371A true JP2005258371A (en) 2005-09-22

Family

ID=35084104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004112556A Pending JP2005258371A (en) 2004-03-11 2004-03-11 Method of manufacturing mechanical splice

Country Status (1)

Country Link
JP (1) JP2005258371A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180958A (en) * 2007-01-25 2008-08-07 Fujikura Ltd Optical connector and ferrule with connecting mechanism
JP2012027146A (en) * 2010-07-21 2012-02-09 Chichibu Fuji Co Ltd Connection mechanism for optical fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180958A (en) * 2007-01-25 2008-08-07 Fujikura Ltd Optical connector and ferrule with connecting mechanism
JP2012027146A (en) * 2010-07-21 2012-02-09 Chichibu Fuji Co Ltd Connection mechanism for optical fiber

Similar Documents

Publication Publication Date Title
EP1134603B1 (en) Method of producing a ferrule
US6712522B2 (en) Perforated sleeve connector
JP2005258371A (en) Method of manufacturing mechanical splice
TWI259298B (en) Manufacturing method of ferrule
US7090761B2 (en) Method of producing metal ferrules, and device therefor
US6830672B2 (en) Production method for ferrules
JP2006291345A (en) Production method for high precision metal fine tube by electroforming process
JP2005258372A (en) High-precision connector
JP2006063434A (en) Production method for high precision metal fine tube by electroforming process
US20060011481A1 (en) Method for manufacturing multi-core metal pipe by electroforming
JP4451959B2 (en) Manufacturing method of small diameter pipe
JP2005316345A (en) Method for manufacturing high quality conversion sleeve
JP2002212772A (en) Ferrule manufacturing method and ferrule obtained by the method
JP2002146583A (en) Method of manufacturing ferrule
JP4342066B2 (en) Core wire holder
JP4342062B2 (en) Manufacturing method of fine cylinder for forming metal ferrule
JP3930306B2 (en) Metal tube manufacturing method
JP2004258191A (en) Optical fiber splicer
TW539776B (en) Method of producing metal ferrules, and device therefor
JP3121456U (en) Connecting pipe
JP4357061B2 (en) Porous metal cylinder used for electroforming
WO2023127394A1 (en) Method for producing electrocast tube
WO2023210459A1 (en) Method for manufacturing electroformed tube, and electroforming device
JP2002146582A (en) Core wire holder used for manufacture of metallic ferrule and apparatus for manufacturing ferrule including the same
JP2001091790A (en) Method for manufacturing multiple ferrule and multiple ferrule