JP2004244693A - Apparatus for manufacturing metallic fiber using electroforming technique and method for the same - Google Patents

Apparatus for manufacturing metallic fiber using electroforming technique and method for the same Download PDF

Info

Publication number
JP2004244693A
JP2004244693A JP2003037162A JP2003037162A JP2004244693A JP 2004244693 A JP2004244693 A JP 2004244693A JP 2003037162 A JP2003037162 A JP 2003037162A JP 2003037162 A JP2003037162 A JP 2003037162A JP 2004244693 A JP2004244693 A JP 2004244693A
Authority
JP
Japan
Prior art keywords
cathode material
electrolyte
metal
anode material
contact windows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003037162A
Other languages
Japanese (ja)
Inventor
Yong Bum Park
ヨン・ブン・パーク
Chang Sung Ha
チャン・スン・ハ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Future Metal Co Ltd
Original Assignee
Future Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Future Metal Co Ltd filed Critical Future Metal Co Ltd
Priority to US10/366,551 priority Critical patent/US20040159549A1/en
Priority to EP03003412A priority patent/EP1447462A1/en
Priority to JP2003037162A priority patent/JP2004244693A/en
Publication of JP2004244693A publication Critical patent/JP2004244693A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for manufacturing metallic fibers using electroforming technique capable of manufacturing the continuous metallic fibers and a method for the same. <P>SOLUTION: The apparatus for manufacturing the metallic fibers comprises an electrolytic cell in which an electrolyte necessary for electrodeposition of the metallic fiber can be housed, an insoluble anode material which is installed in the electrolyte and to which a (-) terminal of a power supply device is connected, a cathode material 15 which is connected to a (+) terminal of the power supply device, and is rotatably installed by being partially immersed in the electrolyte apart a specified distance from the anode material in the precisely polished state of the counter surface to be electrodeposited, and a plurality of non-conducting patterns 14 for forming a plurality of parallel annular contact windows 15a disposed on the outer peripheral surface of the cathode material and aligned to the rotating direction of the cathode material. The apparatus is constituted to obtain a plurality of the metallic fibers by continuous peeling of the plurality of the metallic patterns electrodeposited to the shape corresponding to the plurality of the annular contact windows by accompanying the rotation of the cathode material in the state impressed with a power source from the surface of the cathode material exposed in the air. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電鋳技法を用いた金属繊維の製造装置およびその方法に関するものであって、特に電気メッキが可能なすべての種類の金属に対して、電解槽から陰極の表面の不導体パターンに対応する所望の大きさの直径にて陰極の表面に電着させて、これを連続的に分離する方法により連続的な金属繊維を製造することができる電鋳技法を用いた金属繊維の製造装置およびその方法に関する。
【0002】
【従来の技術】
従来の金属繊維の製造に関する技術は、韓国特許公報第特2001−0036472号に開示されているとおりに、金属繊維における材料の制限性と急冷凝固法で製造する時の難点、また直径は30μm以下にしなければならない短所がある。
【0003】
さらに、韓国特許公報第1995−0005949号に開示されているように、押出あるいは引抜による金属繊維を製造する方法においては、押出中、金属粒子間の接合が生じて、押出後、個々の繊維の間を分離するのが困難である。
【0004】
これを解決するための方法として、金属粉末の表面を予め酸化させるか金属粉末の表面に別の金属をメッキする方法、そして金属粉末と塩、酸化物あるいはカーボンブラックを混合する方法等があるが、製造工程の複雑さとこれに伴う製造コストの増加という問題点を持っている。
【0005】
【発明が解決しようとする課題】
よって、本発明はこのような従来技術の問題点を鑑みて案出されたものであって、本発明の第1の目的は複雑な工程を通じて製造される従来の金属繊維の製造方法とは異なって、電鋳技法(Electroforming)を用いて単一のまたは最少の工程数によって製造可能な金属繊維の製造方法およびこれを実現する金属繊維の製造装置を提供することにある。
【0006】
本発明の第2の目的は、メッキ可能なすべての金属材料を所望の大きさの繊維に製造することにある。
【0007】
本発明の第3の目的は、金属繊維を連続的に製造して従来方法の問題点である繊維の長さの限界を克服することにある。
【0008】
本発明の第4の目的は、金属繊維の大きさ(幅及び厚さ)を容易に調節して数μm〜数mmまで断面の大きさに制限されないようにすることにある。
【0009】
【課題を解決するための手段】
上記の目的を達成するために、本発明は、金属繊維を連続的に製造する金属繊維の製造装置において、目的の金属繊維の電着に必要な電解液を収容できる電解槽と、前記電解液中に設けられ電源供給装置の(−)端子が連結される不溶性陽極材と、前記電源供給装置の(+)端子が連結され電着される対向面が精密に磨かれた状態で前記陽極材と一定の距離をおいて電解液に部分的に浸漬されて回転可能に設置される陰極材と、該陰極材の外周面に設けられ陰極材の回転方向と一致する平行な複数の環状接触窓を形成するための複数の不導体パターンとから構成され、電源が印加された状態で陰極材の回転に伴って前記複数の環状接触窓に対応する形状にて電着された複数の金属パターンが、空気中に露出された陰極材の表面から連続的に剥離されて複数の金属繊維として得られることを特徴とする電鋳技法を用いた金属繊維の製造装置を提供する。
【0010】
前記陰極材はその両端部が回転可能に支持される円筒体からなり、前記陽極材は、前記陰極材と一定の間隙を維持する半球型のシェル状をなすことが好ましい。
【0011】
さらに、前記陰極材は回転可能に支持された無限ループ形態のベルトからなり、前記陽極材は電解液に浸漬される陰極材の下部面と一定の間隙を維持するように平板形状を成すことも可能である。
【0012】
前記製造装置は電解液の均一な組成を維持するために電解液を循環させるための電解液の循環手段をさらに含むことが好ましい。この場合、前記電解液の循環手段は、電解槽の下部から引出され陰極材と陽極材との間の空間へ先端部のノズルが位置されている循環配管と、該循環配管に設置され異物を除去するための濾過器と、電解液を循環するための循環ポンプとから構成されることができる。
【0013】
本発明の第2の特徴によると、金属繊維を不連続的に製造する金属繊維の製造装置は、目的の金属繊維の電着に必要な電解液を収容できる電解槽と、前記電解液中に設けられ電源供給装置の(−)端子が連結される不溶性陽極材と、前記電源供給装置の(+)端子が連結され電着される対向面が精密に磨かれた状態で前記陽極材と一定の距離をおいて電解液に浸漬された陰極材と、前記陽極材と対向する陰極材の外周面に設けられ平行な複数の線状接触窓を形成するための複数の不導体パターンとから構成され、電源が印加された状態で複数の線状接触窓に対応する形状にて陰極材の表面に電着された金属パターンを剥離し複数の金属繊維として得ることを特徴とする。
【0014】
本発明の第3の特徴によると、本発明は目的の金属繊維の電着に必要な電解液を電解槽に準備する段階と、前記電解液中に設けられる不溶性陽極材と、該陽極材と一定の距離をおいて電解液に部分的に浸漬されて回転可能に設置され、回転方向と一致する平行な複数の環状接触窓をなす複数の不導体パターンが精密に磨かれた外周面に形成された陰極材の間にDC電源を印加し、複数の環状接触窓を通じて陰極材の外周面に目的の金属を電着するとともに陰極材を回転させる段階と、前記陰極材の回転に伴って複数の環状接触窓に対応する形状にて陰極材の表面に電着され空気中へ露出される複数の金属パターンを金属繊維として連続的に剥離させる段階、とから構成されることを特徴とする電鋳技法を用いた連続された金属繊維の製造方法を提供する。
【0015】
本発明の第4の特徴によると、本発明は目的の金属繊維の電着に必要な電解液を電解槽に準備する段階と、前記電解液中に設けられる不溶性の板状陽極材と、該陽極材と一定の距離をおいて電解液に浸漬され平行な複数の線状接触窓をなす複数の不導体パターンが精密に磨かれた外周面に形成された板状陰極材の間にDC電源を印加し、複数の線状接触窓を通じて陰極材の外周面に目的の金属を電着させる段階と、前記複数の線状接触窓に対応する形状にて電着された陰極材を空気中へ露出させて複数の金属パターンを金属繊維として剥離させる段階、とから構成されることを特徴とする電鋳技法を用いた不連続金属繊維の製造方法が提供される。
【0016】
好ましくは、前記製造方法は、電解液の組成を均一に維持するように電解槽の下部の電解液をドレインして、濾過した後、前記陰極材と陽極材との間の対向面へ注入する段階がさらに含まれる。
【0017】
前記のように、本発明においては従来の技術とは異なって、連続工程による金属繊維の製造により繊維の長さに制限されずに制作することができる。さらに、既存の押出や引抜あるいは急冷凝固法により製造される方法とは異なって,電気メッキを応用した電鋳技法によって製造することにより、工程の単純化による製造コストが顕著に節約されるし、狭い空間で簡単な設備を用いて金属繊維を生産することができる。
【0018】
さらに、本発明においては、金属繊維の長さだけではなく、幅、厚さを数μm〜数mmまで調節しやすく、所望の大きさの金属繊維を容易に製造できるし、純金属だけではなく、さまざまな合金と既存のメッキ工程において使用可能なすべての金属による繊維製造が可能である。
【0019】
【発明の実施の形態】
以下に、上記の本発明を、望ましい実施例が示された添付の図面を参照しながらさらに詳しく説明する。
【0020】
添付の図1は、ドラム型の陰極を用いた本発明の第1実施例により連続的な金属繊維の製造装置を示す概略構成図、図2はベルト型の陰極を用いた本発明の第2実施例により連続的な金属繊維の製造装置を示す概略構成図、図3はバッチ(Batch)型の陰極を用いた本発明の第3実施例により不連続的な金属繊維の製造装置を示す概略構成図、図4a及び図4bは第1ないし第3実施例の陰極材の表面のパターンを示す断面図と正面図である。
【0021】
まず、図1を参照すると、本発明の第1実施例による金属繊維の連続製造装置は、目的の金属繊維9の電解液3が収容できる電解槽10と、電解液3中に設けられ半球型のシェル状を成す不溶性陽極材2と、その陽極材2と一定の距離をおいて対向する円筒体として両断部の回転軸が回転可能に支持されて、円筒体の外周面が精密に磨かれた後、円周方向に平行な複数の環状接触窓(contact window)を形成するように複数の不導体パターンが固定され設置された陰極材1とが含まれている。
【0022】
前記の陰極材1は、パイプのように内部が中空体となって電解液とは反応しないステンレススチールのような伝導体からなり、陽極材2はTi鋼板にIrOをコーティングした不溶性材料を使用するのが好ましい。
【0023】
さらに、前記陰極材を詳しく説明すると、図4a及び図4bに示された展開図のように複数の不導体パターン14によって複数の環状接触窓15aが陰極材15の表面に形成された構造を有する。この場合、陰極材15に対する環状接触窓15aの幅と深さとは製造しようとする金属繊維9の幅と厚さに対応して決定される。前記不導体パターン14は硬化性樹脂として高強度の材料のものが適合している。
【0024】
前記の製造装置は陽極材2と陰極材1とに電気メッキに必要なDC電流を均一に供給する電流供給装置4と、電解液3の均一な組成を維持し陰極より生じた水素などを除去するために電解液3を循環させるための循環ポンプ5と、金属繊維の連続的な製造工程中に生じる異物の除去のための濾過器6等、がさらに含まれて構成される。
【0025】
この場合、電解槽10の下部から濾過器6と循環ポンプ5及び循環配管8aを経て電解槽10へ循環する濾過された電解液3は、均一な攪拌のために陰極材1と陽極材2との間の空間へノズル8を通じて供給されるのが好ましい。
【0026】
さらに、前記濾過器6と循環ポンプ5及び循環配管8aとから構成される電解液の攪拌手段は、陰極の回転軸に両端が支持され円周に沿って旋回するか軸方向に沿って移動するパドル(paddle)から構成してもよい。
【0027】
上記のように構成される本発明の第1実施例の製造装置においては、目的の金属繊維の製造に符合する電解液3を電解槽10に準備して、電解液3に部分的に浸漬され回転する陰極材1と完全に浸漬された陽極材2との間に所定の隙間をおいて対向する二つの極の間に直流電源を供給すると、電解槽3から複数の環状接触窓15aを通じて陰極材1の表面へ接触窓15aの形状に対応する電着が行われる。
【0028】
この場合、陰極材1の回転に伴って接触窓に電着され空気中へ露出される陰極材1の表面に接着テープを付着後、分離させると、陰極材1の表面が磨かれているため、陰極材1の表面に電着された金属は複数の金属繊維9として容易に剥離されて得られ、陰極材1の回転に伴って環状接触窓15aのパターンに対応する金属繊維9が連続的に得られるようになる。
【0029】
よって、剥離された金属繊維9を巻線部7に固定させた状態で陰極材1の回転に伴って連続的に生成される金属繊維9を巻線部7に巻取させると、均一な組成と均一な大きさの金属繊維とを使用者の求める長さで得られるようになる。
【0030】
上記の製造方法によって製造されうる金属繊維9は電気メッキが可能ないずれの種類の金属に対しても適用されうるし、環状接触窓15aの大きさの設定にしたがって数μm〜数mmの大きさの繊維を得ることができる。
【0031】
第1実施例によって、例えば、Fe−80wt%Ni合金繊維を製造する場合、ニッケルクロライドと硫酸塩溶液を主成分とする電解液3を用いてドラム型の陰極材1を回転させると、均一な組成のFe−80wt%Ni合金繊維を連続的に製造することができる。この時、電流密度は3〜40A/dmの範囲で供給し、電解液3の攪拌のためのポンプの流速は30〜200cm/sec、電解液のpHは1〜5、電解液の温度は常温〜50℃の範囲が好ましい。
【0032】
図2を参照すると、本発明の第2実施例によるベルト型の陰極を使用した連続的な金属繊維の製造装置が示されている。
【0033】
前記第2実施例においては、陰極材11が回転可能に支持された無限ループ形態のベルト構造をなしていて、陽極材2aは陰極材11と一定の間隙を維持するように平板形状を成していることを除いて、他の部分は第1実施例と同一な構成となっている。
【0034】
したがって、第1実施例と同一な部分に対しては同一な部材符号を与えて、これに関する説明は省略する。この場合、陰極材11の表面には第1実施例のように複数の不導体パターン14が付着されている。
【0035】
よって、前記のように構成された第2実施例においては、ベルト駆動ローラ11a、11bを回転させると陰極材11の回転方向と一致した複数の環状接触窓15aに対応する金属繊維9が連続的に生産され、その生産された金属繊維9はガイドローラ12を経て巻取部7に巻取される。
【0036】
上記の第2実施例により得られる金属繊維9は第1実施例によって得られる金属繊維と同一である。
【0037】
図3はバッチ型の陰極を用いて不連続的な金属繊維を製造することができる本発明の第3実施例による製造装置であって、陰極材13と陽極材2aがお互いに対応する平板形状となっている。
【0038】
第3実施例において、陰極材13の形状を除いて他の部分は第2実施例と同一な構成となっている。したがって、第2実施例と同一な部分に対しては同一な部材の符号を与えて、これに関する説明は省略する。この場合、陰極材11の表面には第2実施例のように複数の不導体パターン14が付着されている(図4a及び図4b参照)。
【0039】
第3実施例においては、陰極材13を電解槽10に設置し電気メッキを施して陰極材の表面に電着が行われる時、不導体パターン14によって決定される複数の平行な接触窓に対応する均一な長さの複数の金属繊維が切断過程なしに得られるようになる。前記の第3実施例は、このような過程を周期的に繰り返して一定期間ごとに均一な長さの金属繊維を得るバッチ型の製造方法である。
【0040】
上記の本発明による金属繊維の製造方法を、実施例を参照してさらに詳しく説明する。
【0041】
(実施例1)
図1のように、ドラム型の陰極材1を用いてFe−80wt%Niの組成を有する合金繊維を製造した。Fe−80wt%Ni合金繊維を製造するためにニッケルクロライドと硫酸塩溶液とを主成分とする電解液3を使用してドラム型の陰極材1を回転しながらFe−80wt%Ni合金繊維を製造し、その結果、均一な組成の金属繊維を連続的に製造することができた。この時、電流密度は10A/dmの範囲で供給し、電解液2の攪拌のためのポンプの流速は120cm/sec、電解液のpHは3、電解液の温度は45℃で行った。
【0042】
以上のような条件により製造された金属繊維の強度を測定したグラフを図5に表した。一般的に80wt%Ni−Fe合金の降伏強度(Yield strength)と硬度の値は各々97MPaと60HRB(345MPa)であることが知られている(Metal Handbook, ASM. 9th ed. Vol. 3 p. 610)。本発明において製造されたFe−80wt%Ni合金繊維の強度を測定した結果、降伏強度と硬度の値は各々2119MPaと6170MPaであり、この結果より本発明の金属繊維は従来に比べて約20倍程の優れた機械的な特性を持っているものであることが明らかになった。
【0043】
(実施例2)
図1のように、ドラム型の陰極材1を用いてNi繊維を製造した。Ni繊維を製造するためにニッケルクロライドと硫酸塩溶液とを主成分とする電解液3を使用してドラム型の陰極材1を回転しながらNi繊維を製造し、その結果、均一な組成の金属繊維を連続的に製造することができた。この時、電流密度は10A/dmの範囲で供給し、電解液2の攪拌のためのポンプの流速は120cm/secの範囲で、電解液のpHは3、電解液の温度は45℃で行った。
【0044】
以上のような条件により製造された金属繊維の顕微鏡の写真を図6に表す。製造された金属繊維の厚さは均一であることが観測された。
【0045】
【発明の効果】
上記のように、本発明においては従来の技術とは異なって連続工程による金属繊維の製造によって繊維の長さに制限されずに作製することができる。さらに、既存の押出や引抜あるいは急冷凝固法によって製造される方法とは異なって、電気メッキを応用した電鋳技法によって製造することにより、工程の単純化によって製造コストが顕著に節約され、狭い空間で簡単な設備を用いて金属繊維を生産することができる。
【0046】
さらに、本発明においては金属繊維の長さだけではなく、幅、厚さを数μm〜数mmまで調節しやすく、所望の大きさの金属繊維を容易に製造することができるし、純金属だけではなく、さまざまな合金と既存のメッキ工程において使用可能なすべての金属による繊維製造が可能である。
【0047】
以上、本発明を特定の望ましい実施例を例として説明したが、本発明は上記の実施例に限定されることなく、本発明の主旨を外れない範囲内で、当該発明が属する技術分野において通常の知識を有する者によってさまざまな変更と修正とが可能である。
【図面の簡単な説明】
【図1】ドラム型の陰極を用いた本発明の第1実施例による連続的な金属繊維の製造装置を示す概略構成図。
【図2】ベルト型の陰極を用いた本発明の第2実施例による連続的な金属繊維の製造装置を示す概略構成図。
【図3】バッチ型の陰極を用いた本発明の第3実施例による不連続的な金属繊維の製造装置を示す概略構成図。
【図4】第1ないし第3実施例の陰極材の表面のパターンを示す断面図と正面図。
【図5】本発明によって製造された試片の引張試験の結果を示したグラフ。
【図6】本発明によって製造された金属繊維の顕微鏡写真。
【符号の説明】
1,11,13,15…陰極材、2,2a…陽極材、3…電解液、4…電流供給装置、5…循環ポンプ、6…濾過器、7…巻線部、8…ノズル、8a…循環配管、9…金属繊維、10…電解槽、11a,11b…ベルト駆動ローラ、12…ガイドローラ、14…不導体パターン、15a…環状接触窓。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus and a method for producing metal fibers using an electroforming technique, and particularly to all kinds of metals that can be electroplated, from an electrolytic cell to a nonconductive pattern on the surface of a cathode. A metal fiber manufacturing apparatus using an electroforming technique capable of manufacturing a continuous metal fiber by a method of electrodepositing a desired desired diameter on the surface of the cathode and continuously separating the electrode. And its method.
[0002]
[Prior art]
As disclosed in Korean Patent Publication No. 2001-0036472, the conventional technology related to the production of metal fibers is limited in the material of the metal fibers and the difficulties in producing by the rapid solidification method, and the diameter is 30 μm or less. There are disadvantages that must be made.
[0003]
Further, as disclosed in Korean Patent Publication No. 1995-0005949, in a method for producing metal fibers by extrusion or drawing, bonding between metal particles occurs during extrusion, and after extrusion, individual fibers are formed. Difficult to separate between.
[0004]
As a method for solving this, there is a method of previously oxidizing the surface of the metal powder or plating another metal on the surface of the metal powder, and a method of mixing the metal powder with a salt, oxide or carbon black. However, there is a problem that the manufacturing process is complicated and the manufacturing cost is increased accordingly.
[0005]
[Problems to be solved by the invention]
Therefore, the present invention has been devised in view of such problems of the related art, and the first object of the present invention is different from the conventional method of manufacturing metal fibers manufactured through complicated processes. It is another object of the present invention to provide a metal fiber manufacturing method which can be manufactured by a single or minimum number of steps by using an electroforming technique (Electroforming) and a metal fiber manufacturing apparatus which realizes the method.
[0006]
A second object of the present invention is to produce all metal materials that can be plated into fibers of a desired size.
[0007]
A third object of the present invention is to continuously manufacture metal fibers to overcome the limitation of the fiber length, which is a problem of the conventional method.
[0008]
A fourth object of the present invention is to easily adjust the size (width and thickness) of the metal fiber so that the size of the cross section is not limited to several μm to several mm.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a metal fiber manufacturing apparatus for continuously manufacturing metal fibers, an electrolytic tank capable of containing an electrolytic solution required for electrodeposition of the target metal fibers, An insoluble anode material provided therein, to which a (-) terminal of a power supply device is connected, and an anode material in which the opposite surface to which the (+) terminal of the power supply device is connected and electrodeposited is precisely polished, And a rotatable cathode material partially immersed in the electrolyte at a certain distance from the electrolyte solution, and a plurality of parallel annular contact windows provided on the outer peripheral surface of the cathode material and coinciding with the rotation direction of the cathode material. And a plurality of metal patterns electrodeposited in a shape corresponding to the plurality of annular contact windows with the rotation of the cathode material in a state where power is applied while a plurality of non-conductive patterns are formed. From the surface of the cathode material exposed to air. It is to provide an apparatus for producing metal fibers using electroforming techniques, characterized in that it is obtained as a plurality of metal fibers.
[0010]
It is preferable that the cathode material is formed of a cylindrical body whose both ends are rotatably supported, and that the anode material has a hemispherical shell shape that maintains a constant gap with the cathode material.
[0011]
Further, the cathode material is formed of an endless loop-shaped belt rotatably supported, and the anode material may have a flat plate shape so as to maintain a constant gap with a lower surface of the cathode material immersed in the electrolyte. It is possible.
[0012]
Preferably, the manufacturing apparatus further includes an electrolyte circulating means for circulating the electrolyte in order to maintain a uniform composition of the electrolyte. In this case, the circulating means of the electrolytic solution is a circulating pipe in which the nozzle at the tip is located in a space between the cathode material and the anodic material that is drawn out from the lower part of the electrolytic cell, It can be composed of a filter for removing and a circulation pump for circulating the electrolyte.
[0013]
According to a second feature of the present invention, a metal fiber manufacturing apparatus for manufacturing metal fibers discontinuously includes an electrolytic cell capable of storing an electrolytic solution necessary for electrodeposition of a target metal fiber, An insoluble anode material provided to which the (-) terminal of the power supply device is connected, and an insoluble anode material which is connected to the (+) terminal of the power supply device and is fixed to the anode material in a state where the facing surface to be electrodeposited is precisely polished. A cathode material immersed in an electrolytic solution at a distance of, and a plurality of non-conductive patterns for forming a plurality of parallel linear contact windows provided on the outer peripheral surface of the cathode material facing the anode material. Then, the metal pattern electrodeposited on the surface of the cathode material in a shape corresponding to the plurality of linear contact windows in a state where power is applied is obtained as a plurality of metal fibers.
[0014]
According to a third feature of the present invention, the present invention provides a step of preparing an electrolytic solution required for electrodeposition of a target metal fiber in an electrolytic cell, an insoluble anode material provided in the electrolytic solution, A plurality of non-conductive patterns that form a plurality of parallel annular contact windows that are partially immersed in the electrolyte at a certain distance and that are rotatably installed in the direction of rotation are formed on the precisely polished outer peripheral surface Applying a DC power supply between the cathode material and depositing a target metal on the outer peripheral surface of the cathode material through a plurality of annular contact windows and rotating the cathode material; Continuously exfoliating as a metal fiber a plurality of metal patterns which are electrodeposited on the surface of the cathode material in a shape corresponding to the annular contact window, and are exposed to the air. Method for producing continuous metal fiber using casting technique To provide.
[0015]
According to a fourth aspect of the present invention, the present invention provides a step of preparing an electrolytic solution necessary for electrodeposition of a target metal fiber in an electrolytic cell; and an insoluble plate-like anode material provided in the electrolytic solution; A DC power source is applied between the plate-shaped cathode material formed on the outer surface, which is polished on the outer surface, where a plurality of non-conductive patterns forming a plurality of parallel linear contact windows immersed in the electrolyte at a fixed distance from the anode material Applying a target metal to the outer peripheral surface of the cathode material through a plurality of linear contact windows, and placing the cathode material electrodeposited in a shape corresponding to the plurality of linear contact windows into the air. Exposing and exfoliating a plurality of metal patterns as metal fibers. A method for manufacturing discontinuous metal fibers using an electroforming technique is provided.
[0016]
Preferably, in the manufacturing method, the electrolytic solution in the lower part of the electrolytic cell is drained so as to maintain a uniform composition of the electrolytic solution, filtered, and then injected into a facing surface between the cathode material and the anode material. Further steps are included.
[0017]
As described above, in the present invention, unlike the conventional technique, the metal fiber can be manufactured without being limited by the fiber length by manufacturing the metal fiber in a continuous process. Further, unlike the method of manufacturing by the existing extrusion, drawing or rapid solidification method, by manufacturing by the electroforming technique applying the electroplating, the manufacturing cost is significantly reduced by simplifying the process, Metal fibers can be produced in a small space using simple equipment.
[0018]
Furthermore, in the present invention, not only the length of the metal fiber, but also the width and the thickness can be easily adjusted from several μm to several mm, and the metal fiber of a desired size can be easily produced, and not only pure metal but also The production of fibers from various alloys and all metals available in existing plating processes is possible.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings showing preferred embodiments.
[0020]
FIG. 1 is a schematic structural view showing a continuous apparatus for producing metal fibers according to a first embodiment of the present invention using a drum type cathode, and FIG. 2 is a second embodiment of the present invention using a belt type cathode. FIG. 3 is a schematic structural view showing a continuous apparatus for producing metal fibers according to an embodiment, and FIG. 3 is a schematic view showing an apparatus for producing discontinuous metal fibers according to a third embodiment of the present invention using a batch type cathode. 4A and 4B are a cross-sectional view and a front view showing a pattern of the surface of the cathode material of the first to third embodiments.
[0021]
First, referring to FIG. 1, an apparatus for continuously producing metal fibers according to a first embodiment of the present invention includes an electrolytic tank 10 capable of storing an electrolytic solution 3 of a target metal fiber 9 and a hemispherical type provided in the electrolytic solution 3. The insoluble anode material 2 in the form of a shell, and the rotating shafts of both cut portions are rotatably supported as a cylindrical body facing the anode material 2 at a certain distance, and the outer peripheral surface of the cylindrical body is precisely polished. After that, a cathode material 1 on which a plurality of nonconductor patterns are fixed and installed so as to form a plurality of circular contact windows parallel to the circumferential direction is included.
[0022]
The cathode material 1 is made of a conductor such as stainless steel that has a hollow body inside and does not react with the electrolytic solution like a pipe, and the anode material 2 uses an insoluble material obtained by coating a Ti steel plate with IrO 2. Is preferred.
[0023]
Further, the cathode material will be described in detail. The cathode material has a structure in which a plurality of annular contact windows 15a are formed on the surface of the cathode material 15 by a plurality of non-conductive patterns 14 as shown in the developed views of FIGS. 4A and 4B. . In this case, the width and depth of the annular contact window 15a with respect to the cathode material 15 are determined according to the width and thickness of the metal fiber 9 to be manufactured. The nonconductive pattern 14 is made of a high-strength material as a curable resin.
[0024]
The above-mentioned manufacturing apparatus includes a current supply device 4 for uniformly supplying a DC current required for electroplating to the anode material 2 and the cathode material 1, and a method for maintaining a uniform composition of the electrolytic solution 3 and removing hydrogen and the like generated from the cathode. In addition, a circulation pump 5 for circulating the electrolytic solution 3 and a filter 6 for removing foreign substances generated during a continuous production process of metal fibers are further included.
[0025]
In this case, the filtered electrolytic solution 3 circulating from the lower part of the electrolytic cell 10 to the electrolytic cell 10 through the filter 6, the circulation pump 5 and the circulation pipe 8 a is mixed with the cathode material 1 and the anode material 2 for uniform stirring. Is preferably supplied through a nozzle 8 to the space between them.
[0026]
Further, the agitating means for the electrolytic solution composed of the filter 6, the circulating pump 5 and the circulating pipe 8a is supported at both ends by the rotating shaft of the cathode, and turns around the circumference or moves along the axial direction. It may be composed of a paddle.
[0027]
In the manufacturing apparatus of the first embodiment of the present invention configured as described above, the electrolytic solution 3 suitable for the production of the target metal fiber is prepared in the electrolytic bath 10 and partially immersed in the electrolytic solution 3. When a DC power is supplied between two opposing poles with a predetermined gap between the rotating cathode material 1 and the completely immersed anode material 2, the cathode is supplied from the electrolytic cell 3 through a plurality of annular contact windows 15a. Electrodeposition corresponding to the shape of the contact window 15a is performed on the surface of the material 1.
[0028]
In this case, when the adhesive tape is attached to the surface of the cathode material 1 that is electrodeposited on the contact window with the rotation of the cathode material 1 and is exposed to the air and then separated, the surface of the cathode material 1 is polished. The metal electrodeposited on the surface of the cathode material 1 is easily separated and obtained as a plurality of metal fibers 9, and the metal fibers 9 corresponding to the pattern of the annular contact window 15a are continuously formed with the rotation of the cathode material 1. Will be obtained.
[0029]
Therefore, when the metal fibers 9 continuously generated with the rotation of the cathode material 1 are wound around the winding portion 7 in a state where the separated metal fibers 9 are fixed to the winding portion 7, a uniform composition is obtained. And metal fibers having a uniform size can be obtained with a length desired by the user.
[0030]
The metal fiber 9 that can be manufactured by the above manufacturing method can be applied to any type of metal that can be electroplated, and has a size of several μm to several mm depending on the size of the annular contact window 15a. Fiber can be obtained.
[0031]
According to the first embodiment, for example, in the case of manufacturing Fe-80 wt% Ni alloy fiber, when the drum type cathode material 1 is rotated using the electrolytic solution 3 containing nickel chloride and a sulfate solution as main components, a uniform It is possible to continuously produce Fe-80 wt% Ni alloy fiber having the composition. At this time, the current density is supplied in the range of 3 to 40 A / dm 2 , the flow rate of the pump for stirring the electrolyte 3 is 30 to 200 cm / sec, the pH of the electrolyte is 1 to 5, and the temperature of the electrolyte is The range from normal temperature to 50 ° C is preferable.
[0032]
Referring to FIG. 2, there is shown a continuous metal fiber manufacturing apparatus using a belt-type cathode according to a second embodiment of the present invention.
[0033]
In the second embodiment, the cathode material 11 has a belt structure of an infinite loop shape rotatably supported, and the anode material 2a has a flat plate shape so as to maintain a constant gap with the cathode material 11. Other than that, the other parts have the same configuration as the first embodiment.
[0034]
Therefore, the same parts as those of the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. In this case, a plurality of non-conductive patterns 14 are attached to the surface of the cathode material 11 as in the first embodiment.
[0035]
Therefore, in the second embodiment configured as described above, when the belt driving rollers 11a and 11b are rotated, the metal fibers 9 corresponding to the plurality of annular contact windows 15a that match the rotation direction of the cathode material 11 are continuously formed. And the produced metal fiber 9 is wound around the winding unit 7 via the guide roller 12.
[0036]
The metal fibers 9 obtained according to the second embodiment are the same as the metal fibers obtained according to the first embodiment.
[0037]
FIG. 3 shows a manufacturing apparatus according to a third embodiment of the present invention capable of manufacturing discontinuous metal fibers using a batch type cathode, in which a cathode material 13 and an anode material 2a correspond to each other in a flat plate shape. It has become.
[0038]
In the third embodiment, the other parts are the same as those of the second embodiment except for the shape of the cathode material 13. Therefore, the same parts as those of the second embodiment are denoted by the same reference numerals, and the description thereof will be omitted. In this case, a plurality of nonconductive patterns 14 are attached to the surface of the cathode material 11 as in the second embodiment (see FIGS. 4A and 4B).
[0039]
In the third embodiment, when the cathode material 13 is placed in the electrolytic cell 10 and subjected to electroplating to perform electrodeposition on the surface of the cathode material, the cathode material 13 corresponds to a plurality of parallel contact windows determined by the non-conductive pattern 14. A plurality of metal fibers having a uniform length can be obtained without a cutting process. The third embodiment is a batch-type manufacturing method in which such a process is periodically repeated to obtain a metal fiber having a uniform length at regular intervals.
[0040]
The method for producing a metal fiber according to the present invention will be described in more detail with reference to examples.
[0041]
(Example 1)
As shown in FIG. 1, an alloy fiber having a composition of Fe-80 wt% Ni was manufactured using a drum type cathode material 1. In order to produce Fe-80 wt% Ni alloy fiber, an electrolytic solution 3 containing nickel chloride and a sulfate solution as main components is used to produce a Fe-80 wt% Ni alloy fiber while rotating a drum type cathode material 1. As a result, it was possible to continuously produce metal fibers having a uniform composition. At this time, the current density was supplied in the range of 10 A / dm 2 , the flow rate of the pump for stirring the electrolytic solution 2 was 120 cm / sec, the pH of the electrolytic solution was 3, and the temperature of the electrolytic solution was 45 ° C.
[0042]
FIG. 5 shows a graph in which the strength of the metal fiber manufactured under the above conditions was measured. It is generally known that the yield strength and the hardness of an 80 wt% Ni-Fe alloy are 97 MPa and 60 HRB (345 MPa), respectively (Metal Handbook, ASM. 9th ed. Vol. 3 p. 610). As a result of measuring the strength of the Fe-80 wt% Ni alloy fiber manufactured in the present invention, the values of the yield strength and the hardness are 2119 MPa and 6170 MPa, respectively. From these results, the metal fiber of the present invention is about 20 times as large as the conventional one. It was found that the material had excellent mechanical properties.
[0043]
(Example 2)
As shown in FIG. 1, Ni fibers were manufactured using a drum-shaped cathode material 1. In order to produce Ni fibers, Ni fibers are produced while rotating drum-type cathode material 1 using electrolytic solution 3 containing nickel chloride and a sulfate solution as main components. The fibers could be produced continuously. At this time, the current density is supplied in the range of 10 A / dm 2 , the flow rate of the pump for stirring the electrolytic solution 2 is in the range of 120 cm / sec, the pH of the electrolytic solution is 3, and the temperature of the electrolytic solution is 45 ° C. went.
[0044]
FIG. 6 shows a micrograph of the metal fiber manufactured under the above conditions. It was observed that the thickness of the manufactured metal fiber was uniform.
[0045]
【The invention's effect】
As described above, in the present invention, unlike the conventional technique, the metal fiber can be manufactured without being limited by the fiber length by manufacturing the metal fiber in a continuous process. Furthermore, unlike the method of manufacturing by the existing extrusion, drawing or rapid solidification method, by manufacturing by the electroforming technique applying the electroplating, the manufacturing cost is remarkably reduced by the simplification of the process and the narrow space. Thus, metal fibers can be produced using simple equipment.
[0046]
Furthermore, in the present invention, not only the length of the metal fiber, but also the width and the thickness can be easily adjusted from several μm to several mm, the metal fiber of a desired size can be easily produced, and only pure metal is used. Instead, fiber production is possible with various alloys and all metals available in existing plating processes.
[0047]
As described above, the present invention has been described by taking a specific preferred embodiment as an example. However, the present invention is not limited to the above-described embodiment, and is generally used in the technical field to which the present invention belongs without departing from the gist of the present invention. Various changes and modifications can be made by those skilled in the art.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a continuous apparatus for producing metal fibers according to a first embodiment of the present invention using a drum-type cathode.
FIG. 2 is a schematic configuration diagram showing an apparatus for continuously producing metal fibers according to a second embodiment of the present invention using a belt-type cathode.
FIG. 3 is a schematic configuration diagram showing an apparatus for producing discontinuous metal fibers according to a third embodiment of the present invention using a batch type cathode.
FIG. 4 is a cross-sectional view and a front view showing a pattern on the surface of the cathode material of the first to third embodiments.
FIG. 5 is a graph showing the results of a tensile test of a specimen manufactured according to the present invention.
FIG. 6 is a micrograph of a metal fiber produced according to the present invention.
[Explanation of symbols]
1, 11, 13, 15: Cathode material, 2, 2a: Anode material, 3: Electrolyte, 4: Current supply device, 5: Circulation pump, 6: Filter, 7: Winding part, 8: Nozzle, 8a ... circulation piping, 9 ... metal fiber, 10 ... electrolyzer, 11a, 11b ... belt drive roller, 12 ... guide roller, 14 ... non-conductive pattern, 15a ... ring contact window.

Claims (11)

金属繊維を連続的に製造する金属繊維の製造装置において、
目的の金属繊維の電着に必要な電解液を収容できる電解槽と、
前記電解液中に設けられ電源供給装置の(−)端子が連結される不溶性陽極材と、
前記電源供給装置の(+)端子が連結され電着される対向面が精密に磨かれた状態で前記陽極材と一定の距離をおいて電解液に部分的に浸漬されて回転可能に設置される陰極材と、
前記陰極材の外周面に設けられ陰極材の回転方向と一致する平行な複数の環状接触窓を形成するための複数の不導体パターンとから構成され、
電源が印加された状態で陰極材の回転に伴って前記複数の環状接触窓に対応する形状にて電着された複数の金属パターンが、空気中に露出された陰極材の表面から連続的に剥離されて複数の金属繊維として得られることを特徴とする電鋳技法を用いた金属繊維の製造装置。
In a metal fiber manufacturing apparatus that continuously manufactures metal fibers,
An electrolytic cell capable of containing an electrolytic solution necessary for electrodeposition of a target metal fiber,
An insoluble anode material provided in the electrolytic solution and connected to a (-) terminal of a power supply device;
The (+) terminal of the power supply unit is connected to the anode material and is immersed in an electrolyte at a predetermined distance in a state where the facing surface to be electrodeposited is precisely polished, and is rotatably installed. Cathode material,
And a plurality of non-conductive patterns for forming a plurality of parallel annular contact windows that are provided on the outer peripheral surface of the cathode material and coincide with the rotation direction of the cathode material,
A plurality of metal patterns electrodeposited in a shape corresponding to the plurality of annular contact windows with the rotation of the cathode material in a state where power is applied, continuously from the surface of the cathode material exposed to the air. An apparatus for producing metal fibers using an electroforming technique, wherein the apparatus is obtained by being peeled off to obtain a plurality of metal fibers.
前記陰極材はその両端部が回転可能に支持される円筒体からなり、
前記陽極材は前記陰極材と一定の間隙を維持する半球型のシェル状をなすことを特徴とする請求項1に記載の電鋳技法を用いた金属繊維の製造装置。
The cathode material is formed of a cylindrical body whose both ends are rotatably supported,
The apparatus of claim 1, wherein the anode material has a hemispherical shell shape that maintains a constant gap with the cathode material.
前記陰極材は回転可能に支持された無限ループ形態のベルトからなり、
前記陽極材は電解液に浸漬される陰極材の下部面と一定の間隙を維持するように平板形状を成すことを特徴とする請求項1に記載の電鋳技法を用いた金属繊維の製造装置。
The cathode material is formed of an endless loop-shaped belt rotatably supported,
The apparatus according to claim 1, wherein the anode material has a flat shape so as to maintain a constant gap with a lower surface of the cathode material immersed in an electrolyte. .
前記陰極材は電解液とは反応しない伝導体からなり、陽極材はTi鋼板にIrOをコーティングした不溶性材料からなることを特徴とする請求項1に記載の電鋳技法を用いた金属繊維の製造装置。The cathode material consists not react with electrolyte conductor, anode material is metal fibers with the technique electroforming according to claim 1, characterized in that it consists of insoluble material coated with IrO 2 to Ti steel manufacturing device. 前記不導体パターンにより陰極材の表面に形成される各々の環状接触窓の幅と深さは、製造しようとする金属繊維の幅と厚さに対応して決定されることを特徴とする請求項1に記載の電鋳技法を用いた金属繊維の製造装置。The width and the depth of each annular contact window formed on the surface of the cathode material by the non-conductive pattern are determined according to the width and the thickness of the metal fiber to be manufactured. 2. An apparatus for producing metal fibers using the electroforming technique according to 1. 前記電解液の均一な組成を維持するために電解液を循環させるための電解液の循環手段をさらに含むことを特徴とする請求項1ないし請求項5のいずれかに記載の電鋳技法を用いた金属繊維の製造装置。6. The electroforming technique according to claim 1, further comprising an electrolyte circulating means for circulating the electrolyte to maintain a uniform composition of the electrolyte. Metal fiber manufacturing equipment. 前記電解液の循環手段は、電解槽の下部から引出されて陰極材と陽極材との間の空間に先端部のノズルが位置されている循環配管と、該循環配管に設置され異物を除去するための濾過器と、電解液を循環させるための循環ポンプとから構成されることを特徴とする請求項6に記載の電鋳技法を用いた金属繊維の製造装置。The electrolytic solution circulating means is a circulating pipe which is drawn out from the lower part of the electrolytic cell and has a nozzle at a tip end located in a space between the cathode material and the anodic material, and is installed in the circulating pipe to remove foreign matter. The apparatus for producing metal fibers using an electroforming technique according to claim 6, comprising a filter for circulating the electrolyte and a circulation pump for circulating the electrolyte. 金属繊維を不連続的に製造する金属繊維の製造装置において、
目的の金属繊維の電着に必要な電解液を収容できる電解槽と、
前記電解液中に設けられ電源供給装置の(−)端子が連結される不溶性陽極材と、
前記電源供給装置の(+)端子が連結され電着される対向面が精密に磨かれた状態で前記陽極材と一定の距離をおいて電解液に浸漬された陰極材と、
前記陽極材と対向する陰極材の外周面に設けられ平行な複数の線状接触窓を形成するための複数の不導体パターンから構成され、
電源が印加された状態で複数の線状接触窓に対応する形状にて陰極材の表面に電着された複数の金属パターンを剥離し複数の金属繊維として得ることを特徴とする電鋳技法を用いた金属繊維の製造装置。
In a metal fiber manufacturing apparatus for manufacturing metal fibers discontinuously,
An electrolytic cell capable of containing an electrolytic solution necessary for electrodeposition of a target metal fiber,
An insoluble anode material provided in the electrolytic solution and connected to a (-) terminal of a power supply device;
A cathode material immersed in an electrolytic solution at a predetermined distance from the anode material in a state where a facing surface to which the (+) terminal of the power supply device is connected and electrodeposited is precisely polished;
Consisting of a plurality of nonconductor patterns for forming a plurality of parallel linear contact windows provided on the outer peripheral surface of the cathode material facing the anode material,
An electroforming technique characterized in that a plurality of metal patterns electrodeposited on the surface of the cathode material are peeled in a shape corresponding to a plurality of linear contact windows in a state where power is applied to obtain a plurality of metal fibers. Used metal fiber manufacturing equipment.
目的の金属繊維の電着に必要な電解液を電解槽に準備する段階と、
前記電解液中に設けられる不溶性陽極材と、該陽極材と一定の距離をおいて電解液に部分的に浸漬されて回転可能に設置され、回転方向と一致する平行な複数の環状接触窓をなす複数の不導体パターンが精密に磨かれた外周面に形成された陰極材の間にDC電源を印加し、複数の線状接触窓を通じて陰極材の外周面に目的の金属を電着するとともに陰極材を回転させる段階と、
前記陰極材の回転に伴って複数の環状接触窓に対応する形状にて陰極材の表面に電着され、空気中へ露出される複数の金属パターンを金属繊維として連続的に剥離させる段階、とから構成されることを特徴とする電鋳技法を用いた連続する金属繊維の製造方法。
A step of preparing an electrolytic solution necessary for electrodeposition of a target metal fiber in an electrolytic cell,
An insoluble anode material provided in the electrolyte solution, a plurality of parallel annular contact windows that are rotatably installed by being partially immersed in the electrolyte solution at a certain distance from the anode material and that are rotatably installed and coincide with the rotation direction. A DC power is applied between the cathode material formed on the outer surface where the plurality of non-conductive patterns are precisely polished, and the target metal is electrodeposited on the outer surface of the cathode material through a plurality of linear contact windows. Rotating the cathode material,
Electrodeposited on the surface of the cathode material in a shape corresponding to a plurality of annular contact windows with the rotation of the cathode material, and continuously peeling a plurality of metal patterns exposed to the air as metal fibers, The manufacturing method of the continuous metal fiber using the electroforming technique characterized by comprising.
目的の金属繊維の電着に必要な電解液を電解槽に準備する段階と、
前記電解液中に設けられる不溶性の板状陽極材と、該陽極材と一定の距離をおいて電解液に浸漬され、複数の線状接触窓をなす複数の不導体パターンが精密に磨かれた外周面に形成された板状陰極材の間にDC電源を印加し、複数の線状接触窓を通じて陰極材の外周面に目的の金属を電着させる段階と、
前記複数の線状接触窓に対応する形状にて電着された陰極材を空気中へ露出させて複数の金属パターンを金属繊維として剥離させる段階、とから構成されることを特徴とする電鋳技法を用いた不連続金属繊維の製造方法。
A step of preparing an electrolytic solution necessary for electrodeposition of a target metal fiber in an electrolytic cell,
Insoluble plate-shaped anode material provided in the electrolyte solution, the anode material is immersed in the electrolyte solution at a certain distance from the anode material, and a plurality of non-conductor patterns forming a plurality of linear contact windows are precisely polished. Applying DC power between the plate-shaped cathode material formed on the outer peripheral surface, electrodepositing a target metal on the outer peripheral surface of the cathode material through a plurality of linear contact windows;
Exposing the cathode material electrodeposited in a shape corresponding to the plurality of linear contact windows to the air and exfoliating a plurality of metal patterns as metal fibers. A method for producing discontinuous metal fibers using a technique.
前記電解液の組成を均一に維持するように電解槽の下部の電解液をドレインして、濾過した後、前記陰極材と陽極材の間の対向面へ注入する段階をさらに含むことを特徴とする請求項9または請求項10に記載の電鋳技法を用いた不連続の金属繊維の製造方法。Draining the electrolyte below the electrolytic bath so as to maintain the composition of the electrolyte uniform, filtering, and injecting the electrolyte into the opposite surface between the cathode material and the anode material. A method for producing discontinuous metal fibers using the electroforming technique according to claim 9.
JP2003037162A 2003-02-14 2003-02-14 Apparatus for manufacturing metallic fiber using electroforming technique and method for the same Pending JP2004244693A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/366,551 US20040159549A1 (en) 2003-02-14 2003-02-14 Apparatus and method for fabricating metal fibers using electroforming
EP03003412A EP1447462A1 (en) 2003-02-14 2003-02-14 Apparatus and method for fabricating metal fibres using electroforming
JP2003037162A JP2004244693A (en) 2003-02-14 2003-02-14 Apparatus for manufacturing metallic fiber using electroforming technique and method for the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/366,551 US20040159549A1 (en) 2003-02-14 2003-02-14 Apparatus and method for fabricating metal fibers using electroforming
EP03003412A EP1447462A1 (en) 2003-02-14 2003-02-14 Apparatus and method for fabricating metal fibres using electroforming
JP2003037162A JP2004244693A (en) 2003-02-14 2003-02-14 Apparatus for manufacturing metallic fiber using electroforming technique and method for the same

Publications (1)

Publication Number Publication Date
JP2004244693A true JP2004244693A (en) 2004-09-02

Family

ID=33313855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003037162A Pending JP2004244693A (en) 2003-02-14 2003-02-14 Apparatus for manufacturing metallic fiber using electroforming technique and method for the same

Country Status (3)

Country Link
US (1) US20040159549A1 (en)
EP (1) EP1447462A1 (en)
JP (1) JP2004244693A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4913925B2 (en) * 2010-03-25 2012-04-11 三菱レイヨン株式会社 Method for producing imprint roll mold
KR20160077334A (en) * 2014-12-22 2016-07-04 주식회사 포스코 Master roll for fabricating micro metal wires and method for fabricating micro metal wires using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008056054A1 (en) * 2008-11-05 2010-05-06 Emitec Gesellschaft Für Emissionstechnologie Mbh Fleece for exhaust treatment and emission control device
CN111575745A (en) * 2020-06-01 2020-08-25 赣州逸豪新材料股份有限公司 Intelligent preparation equipment of electrolyte for multi-functional electrolytic copper foil

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2569367A (en) * 1946-01-08 1951-09-25 Champion Paper & Fibre Co Endless metal belt and method of making the same
NL266994A (en) * 1960-07-13
GB1172906A (en) * 1967-10-02 1969-12-03 British Copper Refiners Ltd Improved Method of Producing Copper Wire
GB1350758A (en) * 1970-06-18 1974-04-24 Dawkins J C F Production of abrasive metal wire by elecgro-deposition
US3767537A (en) * 1971-11-08 1973-10-23 Gould Inc Method and apparatus for continuous production of nickel foil
DE2233172A1 (en) * 1972-07-06 1974-01-24 Otto Nockemann Electrolytic wire or band mfr - using a conductive groove held on a cylinder by a detachable, flexible member
US3929610A (en) * 1974-05-31 1975-12-30 Kennecott Copper Corp Electroformation of metallic strands
IT7849594A0 (en) * 1977-06-01 1978-05-30 British Insulated Callenders PROCEDURE FOR THE MANUFACTURE OF COPPER PRODUCTS AND PRODUCTS OBTAINED SO
CA2155207C (en) * 1993-04-19 2000-05-16 David P. Burgess Process for making copper metal powder, copper oxides and copper foil
DE19942849A1 (en) * 1999-09-08 2001-03-15 Dsl Dresden Material Innovatio Process for the continuous manufacture of a metallic strip involves removing the strip from the cathode in a first electrolytic bath when it is inherently stable
US6291080B1 (en) * 2000-04-11 2001-09-18 Yates Foll Usa, Inc. Thin copper foil, and process and apparatus for the manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4913925B2 (en) * 2010-03-25 2012-04-11 三菱レイヨン株式会社 Method for producing imprint roll mold
KR20160077334A (en) * 2014-12-22 2016-07-04 주식회사 포스코 Master roll for fabricating micro metal wires and method for fabricating micro metal wires using the same
KR101674760B1 (en) * 2014-12-22 2016-11-10 주식회사 포스코 Master roll for fabricating micro metal wires and method for fabricating micro metal wires using the same

Also Published As

Publication number Publication date
US20040159549A1 (en) 2004-08-19
EP1447462A1 (en) 2004-08-18

Similar Documents

Publication Publication Date Title
KR100359485B1 (en) THE APPARATUS and METHOD FOR MANUFACTURING Ni-Fe ALLOY THIN FOIL
US4647345A (en) Metallurgical structure control of electrodeposits using ultrasonic agitation
KR100917278B1 (en) Electroforming method thereof metal current collector plate for secondary battery
US5837118A (en) Method of producing hollow electroformed product of precious metal
JP2003534459A (en) Cathode for electrochemical regeneration of permanganate etching solution
US5441627A (en) Metal foil manufacturing method and an anodized film forming apparatus used therefor
KR20190052895A (en) Manufacturing apparatus of electrolytic copper foil
JP2004244693A (en) Apparatus for manufacturing metallic fiber using electroforming technique and method for the same
KR100750314B1 (en) Mesh type cathode drum for precision electroforming and method for manufacturing
CN104818512B (en) Device and method for preparing magnetically soft alloy continuous films through electric deposition of soluble separated anodes
KR100431488B1 (en) Apparatus and method for fabricating metal fibres using electroforming
JPH10195689A (en) Manufacture of finely perforated metallic foil
US4076597A (en) Method of forming iron foil at high current densities
KR100704685B1 (en) A fabrication device of a continuous metal mesh by cathode drum electrodeposition process
KR101253268B1 (en) An Electroforming Master and Manufacturing Method thereof
KR20020095173A (en) Method of producing metal ferrules, and device therefor
KR100516770B1 (en) Apparatus for fabricating metal foils by electroforming
JP2659911B2 (en) Manufacturing method of metal foil
JPH07216586A (en) Device for forming anodic oxidation film on cathode body surface
US3887440A (en) Method of manufacturing a continuous magnetic foil by electrodeposition
JPH08209378A (en) Collor-cell-type electrodeposition treating apparatus
JP3724364B2 (en) Manufacturing method of metal products
JP2006274363A (en) Cathode for manufacturing metallic fiber and metallic fiber manufacturing apparatus
KR101211136B1 (en) An metal mesh and manufacturing method thereof
JP2006063434A (en) Production method for high precision metal fine tube by electroforming process

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060110