WO2008001449A1 - Fine tube - Google Patents

Fine tube Download PDF

Info

Publication number
WO2008001449A1
WO2008001449A1 PCT/JP2006/313016 JP2006313016W WO2008001449A1 WO 2008001449 A1 WO2008001449 A1 WO 2008001449A1 JP 2006313016 W JP2006313016 W JP 2006313016W WO 2008001449 A1 WO2008001449 A1 WO 2008001449A1
Authority
WO
WIPO (PCT)
Prior art keywords
microtube
optical fiber
tube
hole
slit
Prior art date
Application number
PCT/JP2006/313016
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuya Matsunaga
Original Assignee
Cbr Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cbr Co., Ltd. filed Critical Cbr Co., Ltd.
Priority to PCT/JP2006/313016 priority Critical patent/WO2008001449A1/en
Publication of WO2008001449A1 publication Critical patent/WO2008001449A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3801Permanent connections, i.e. wherein fibres are kept aligned by mechanical means

Definitions

  • the present invention relates to a microtubule used for connecting optical fibers, for example.
  • Such a connector includes a ferrule attached to an optical fiber and a connector main body that holds the ferrule.
  • a ferrule attached to an optical fiber
  • a connector main body that holds the ferrule.
  • the optical fiber micropipe (connecting sleeve) of Patent Document 1 above has the tip of the optical fiber inserted through the openings at both ends of the micropipe, and the end faces of the two optical fibers are the micropipe.
  • the optical fibers are held so as to face each other at the center.
  • Such a microtube can be simpler in structure than a connector.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-126306
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide a microtube capable of reducing the connection loss of light.
  • the microtube according to the present invention is configured as a tube having an outer diameter of 2.5 mm or less, and an end face of the optical fiber into which the one end force of the tube is inserted, and the tube A fine tube that keeps the portions of the two optical fibers inserted into the tube in a straight line in contact with the end face of the optical fiber inserted from the other end of the optical fiber.
  • the coaxiality indicating the deviation width between the central axis on the outer peripheral surface of the tube and the central axis on the inner peripheral surface of the microtube is formed so as to be within 3 zm.
  • the microtubule is made of dinoleconium oxide.
  • the microtube is made of aluminum nitride.
  • the microtube of the present invention is made of ceramics such as dinenoconium oxide, for example, so that it has excellent heat resistance and is difficult to be deformed as compared with conventional metal microtubes. Because of its small and long service life, it is possible to prevent the occurrence of misalignment, gaps, and other misalignments between the two inserted optical fibers. As a result, optical connection loss can be reduced. Furthermore, in a very small tube with an outer diameter of 2.5 mm or less, the coaxiality is within 3 zm, so that the end faces of two extremely thin optical fibers can be held accurately and reliably in contact with each other. Even in such an optical fiber, the optical connection loss can be reduced and the space can be saved.
  • the coaxiality is within 3 / im, so that the end faces of the optical fibers can be brought into contact with each other with high accuracy, and the optical connection Loss can be reduced.
  • a recess having an opening having a diameter larger than the diameter of the hole is formed so as to communicate with the hole surrounded by the inner peripheral surface. A little as a feature.
  • the opening of the recess communicating with the hole is larger than the diameter of the hole,
  • One end of the optical fiber can be easily inserted into the hole.
  • the convenience of the microtubule can be improved.
  • the concave portion into which the optical fiber is inserted is filled with an adhesive made of, for example, a resin material, the optical fiber can be securely fixed.
  • the recess may be formed such that a width of the recess in a direction perpendicular to the depth direction is substantially constant along the depth direction.
  • the inner surface of the concave portion of the microtube can be brought into contact with the coating material of the optical fiber over a wide area, and the optical fiber inserted into the hole can be reliably held.
  • the recess may be formed such that a width of the recess in a direction perpendicular to the depth direction is narrowed toward a deeper direction of the depth.
  • the one end of the optical fiber is inserted into the recess, the one end is guided to the hole by the recess, so that one end of the optical fiber can be easily inserted into the hole.
  • the microtube may be formed with a slit having an opening on the outer peripheral surface and communicating with the hole.
  • the optical fiber inserted into the hole can be seen, and it can be confirmed whether or not the end faces of the two optical fibers are in contact with each other. Furthermore, if this slit is filled with an adhesive that is a resin material, it can be reliably fixed in a state where the end faces of the two optical fibers are in contact with each other.
  • the inner circumferential surface of the microtube is formed with a groove extending from one of the recesses to the other of the recesses.
  • the air in the hole confined by the insertion into the hole of the optical fiber can escape to the outside of the fine tube through the groove.
  • the optical fiber can be smoothly inserted into the hole, and the optical fiber can be firmly fixed on the inner peripheral surface.
  • the composite pipe of the present invention comprises the fine pipe as described above and a covering pipe covering the fine pipe, and both ends of the covering pipe protrude from the fine pipe. To do.
  • the inner surfaces of both ends of the cladding tube can be brought into contact with the coating material of the optical fiber over a wide area, and the optical fiber inserted into the hole can be securely held. If there is a gap between the inner surface of both ends of the cladding tube and the coating material of the optical fiber, the gap If an adhesive made of a resin material is filled in between, the optical fiber can be securely fixed.
  • the optical fiber connection method according to the present invention is an optical fiber connection method for connecting two optical fibers using a micro tube having an outer diameter of 2.5 mm or less, and the micro tube includes: And made of ceramics so that the coaxiality indicating the deviation width between the central axis on the outer peripheral surface of the microtube and the central axis on the inner peripheral surface of the microtube is within 3 ⁇ m.
  • the end portion is coupled so that the end surface of the optical fiber is inclined at a predetermined angle with respect to a plane perpendicular to the axial direction at the end portion of the optical fiber.
  • a first insertion step in which one optical fiber processed in the processing step is inserted from one end of the micro tube into a hole surrounded by the inner peripheral surface, and the processing The other optical fiber processed in the process is connected to the other end of the microtube.
  • the connection loss of light can be reduced as described above. Furthermore, the end of the optical fiber is processed by so-called oblique cutting, and the end face is inclined and elliptical. Therefore, if the end faces of these two optical fibers are brought into contact with each other, the contact is made. The area can be increased, and the optical connection loss can be more reliably reduced.
  • a recess having an opening having a diameter larger than the diameter of the hole is formed in communication with the hole.
  • the one light The covering material that covers the other optical fiber by inserting the one optical fiber into the hole until the covering material that covers the fiber comes into contact with the bottom surface of the recess formed at one end of the microtube.
  • the other optical fiber may be inserted into the hole until it contacts the bottom surface of the recess formed at the other end of the microtube.
  • the optical fiber is exposed by peeling off the coating material from one end of the optical fiber covered with the coating material by a length corresponding to, for example, half the length of the hole, the dew
  • the inserted optical fiber is inserted into the hole, and when the end of the covering material is engaged with the bottom surface of the recess, the optical fiber cannot be inserted any further.
  • the surface can be reliably placed in the center of the hole. As a result, the gap between the two end faces can be prevented and the end faces can be reliably brought into contact with each other at the center of the hole.
  • the present invention can be realized as such a fine tube for an optical fiber and a connection method as well as a fine tube used for an industrial nozzle, precision equipment, etc. S it can.
  • the microtube of the present invention has the effect of reducing the connection loss of light.
  • FIG. 1A is a perspective view of a microtubule according to Embodiment 1 of the present invention.
  • FIG. 1B is a front view of the above-mentioned microtube.
  • FIG. 1C is a side cross-sectional view of the above-described microtube.
  • FIG. 2 is an explanatory diagram for explaining the coaxiality of the micropipe of the above.
  • Fig. 3 is a diagram showing a state in which the above-mentioned microtube connects two optical fiber cables.
  • FIG. 4A is a diagram showing end surfaces of the two optical fibers connected to each other.
  • FIG. 4B is a diagram showing a state of two optical fibers connected by the microtubules.
  • FIG. 5A is a side sectional view of a microtube having a depth of 1.5 mm.
  • FIG. 5B is a side cross-sectional view of a microtubule having a slit same as above.
  • FIG. 5C is a front sectional view of the above-mentioned microtube.
  • FIG. 5D is a side cross-sectional view of a microtube having an outer diameter of 1.25 mm and a diameter of 0.9 mm.
  • FIG. 5E is a side cross-sectional view of a microtubule having the same slit.
  • FIG. 5F is a side sectional view of a microtube having an outer diameter of 2.5 mm and a diameter of 0.9 mm.
  • FIG. 5G is a side sectional view of a microtube having an outer diameter of 2.5 mm, a diameter of 2. Omm, and a slit.
  • FIG. 6A is a perspective view of a microtubule according to Embodiment 2 of the present invention.
  • FIG. 6B is a front view of the above-mentioned microtube.
  • FIG. 6C is a side cross-sectional view of the same microtubule.
  • FIG. 7 is a view showing a state in which the above-mentioned microtubule connects two optical fiber cables.
  • FIG. 8A is a side cross-sectional view of a microtubule having the same slit.
  • FIG. 8B is a side sectional view of the microtube having an outer diameter of 1.25 mm.
  • FIG. 8C is a side cross-sectional view of a microtubule having the same slit.
  • FIG. 8D is a side sectional view of the microtube having an outer diameter of 2.5 mm.
  • FIG. 8E is a side cross-sectional view of a microtubule having the same slit.
  • FIG. 9A is a side sectional view of a microtubule according to Modification 1 of the above.
  • FIG. 9B is a side cross-sectional view of a microtube having a slit according to Modification 1 of the above.
  • FIG. 10A is a side sectional view of a microtubule according to Modification 2 of the above.
  • Fig. 10B is a side cross-sectional view of a microtube having a slit according to Modification 2 of the above.
  • FIG. 11A is a side cross-sectional view of a microtubule according to Modification 3 of the above.
  • FIG. 11B is a side cross-sectional view of a microtube having a slit according to Modification 3 of the above.
  • FIG. 11C is a front sectional view of a microtubule according to Modification 4 of the above.
  • FIG. 12A is a configuration diagram showing the configuration of the electronic apparatus in the third embodiment of the present invention.
  • FIG. 12B is another configuration diagram showing the configuration of the above utility pole device.
  • FIG. 13 is a diagram showing a current flowing through the core wire same as above.
  • FIG. 14 is a diagram showing a process of separating the metal coating from the mold and the core wire.
  • FIG. 15 is an explanatory diagram for explaining a state in which the metal film is polished.
  • FIG. 16 is a flowchart showing a manufacturing method of the microtube according to the above.
  • FIG. 17 is a configuration diagram showing a configuration of a lighting apparatus according to Modification 1 of the above.
  • FIG. 18A is a view showing the shape of a molding die according to Modification 2 of the above.
  • FIG. 18B is a view showing another shape of the molding die according to Modification 2 of the above.
  • FIG. 18C is a view showing still another shape of the molding die according to the second modification of the above. Explanation of symbols
  • FIGS. 1A to 1C are diagrams showing the shape of a microtubule according to the first embodiment of the present invention.
  • FIG. 1A is a perspective view of a microtube
  • FIG. 1B is a front view of the microtube
  • FIG. 1C is a side sectional view of the microtube.
  • the microtube 100 is made of, for example, zirconium oxide (zircoua) or the like, and is formed in a generally cylindrical shape having a large wall thickness as a whole.
  • a well-shaped recess 120a is formed in a substantially central portion of the two end faces 120 of the microtube 100.
  • the well type is a shape of a hole having the same width in the direction perpendicular to the depth direction at any depth.
  • the bottom surface of the recess 120 a communicates with the through hole 130 of the microtube 100.
  • the through hole 130 is surrounded by the inner peripheral surface of the microtube 100.
  • the length L1 of the microtube 100 is, for example, 0.1 mm to 45 cm
  • the outer diameter d2 of the microtube 100 is, for example, 0.7 mm
  • the diameter of the through hole 130 of the microtube 100 (the inner diameter of the microtube 100).
  • Dl is, for example, 0.05 mm to 2 mm.
  • the shape of the recess 120a is shown as a circle, and the diameter d3 of the circle is, for example, 0.5 mm.
  • the depth L2 is 2 mm, for example.
  • microtube 100 in the present embodiment is characterized in that the degree of coaxiality is small.
  • the coaxiality indicates a deviation width between the central axis on the outer peripheral surface of the microtube 100 and the central axis on the inner peripheral surface of the microtube.
  • FIG. 2 is an explanatory diagram for explaining the coaxiality of the microtubule 100 in the present embodiment.
  • the center of through-hole 130 (inner periphery r2 in microtube 100) and the microtube 100 The deviation from the center of the outer periphery rl, that is, the coaxiality is within 1 ⁇ m. That is, the length variation between the outer periphery rl and the inner periphery r2 is within l x m. Specifically, the variations of the lengths XI, X2,..., X8 between the outer periphery rl and the inner periphery r2 are within l x m. In other words, the relationship Xn_Xm ⁇ l (x m) holds at the two apertures.
  • n and m are arbitrary integers of 1 to 8 different from each other.
  • the opening surface is a surface perpendicular to the axial direction of the microtubule 100 and corresponds to a surface including the bottom surface of the recess 120a shown in FIG. 1C.
  • the outer circumference rl is the outer circumference of the microtube 100 in the plane perpendicular to the axial direction of the microtube 100
  • the inner circumference r2 is the inner circumference of the microtube 100 in the plane perpendicular to the axial direction of the microtubule 100. It is the circumference of (through hole 130 side).
  • the length between the outer circumference rl and the inner circumference r2 is the distance between the point on the outer circumference rl and the point on the inner circumference r2 that is closest to that point.
  • FIG. 3 is a diagram illustrating a state in which the microtubule 100 connects two optical fiber cables.
  • the optical fiber cable F1 includes an optical fiber Fla having a core and cladding force, and a covering material Fib covering the optical fiber Fla.
  • the optical fiber cable F2 to be connected to the optical fiber cable F1 also has an optical fiber F2a composed of a core and a clad, and a covering material F2b covering the optical fiber F2a, as described above.
  • optical fiber cable F2 passes through the recess 120a on the other side (the right side in FIG. 3) of the microtube 100 in a state where the covering material F2b is peeled off and the optical fiber F2a is exposed. It is inserted into the hole 130.
  • the diameter dl of the through hole 130 is smaller than the outer diameter of the portion of the optical fiber cable F2 having the coating material F2b that is larger than the outer shape of the optical fiber F2a. Therefore, the portion of the optical fiber cable F2 having the coating material F2b on the tip side is fitted into the recess 120a of the microtube 100 that is not inserted into the through hole 130. That is, in the present embodiment, the optical fiber F2a is inserted into the through hole 130 until the covering material F2b covering the optical fiber F2a comes into contact with the bottom surface of the recess 120a formed at one end of the microtube 100. .
  • the two optical fiber cables Fl 1 and F 2 are in a state in which the end faces of the respective optical fibers Fla and F 2 a are abutted at the approximate center of the microtube 100.
  • the microtubule 100 is held and fixed in a straight line with the two optical fibers Fla and F2a in contact with each other in this way.
  • the two optical fiber cables Fl and F2 are fixed by adhering the inner surface of the recess 120a and the covering materials Fib and F2b with an adhesive made of a resin material.
  • the two optical fiber cables Fl and F2 may be fixed by pressing a wedge or the like between the inner surface of the recess 120a and the covering materials Flb and F2b.
  • the coating material is peeled off from one end of the optical fiber covered with the coating material by a length corresponding to, for example, half of the length of the through hole 130 to remove the optical fiber. If it is exposed, the exposed optical fiber is inserted into the through hole 130, and when the end of the covering material engages the bottom surface of the recess 120a, the optical fiber is inserted deeper. Therefore, the end face of the optical fiber can be reliably arranged in the center of the insertion hole 130. As a result, it is possible to prevent the gap between the two end faces from being generated, and to reliably contact the end faces at the center of the insertion hole 130.
  • the opening of the recess 120a communicating with the insertion hole 130 is larger than the diameter of the through hole 130, one end of the optical fiber can be easily inserted into the insertion hole 130 via the recess 120a. Can be inserted.
  • the recess 120a is formed in a well shape, that is, the width of the recess 120a in the direction perpendicular to the depth direction is substantially constant along the depth direction. Therefore, the inner surface of the recess 120a of the microtube 100 can contact the optical fiber coating material in a wide area, and can securely hold the optical fiber inserted into the through hole 130. be able to.
  • the size of the recess 120a is arbitrarily set according to the size of the optical fiber to be inserted and the holding strength. For example, although the diameter d3 of the recess 120a is 0.5 mm, the depth L2 of the recess 120a is 2 mm. Any size of 5mm or more may be used.
  • FIG. 4A is a diagram showing end surfaces of the optical fibers Fla and F2a that are connected to each other.
  • each end surface is formed in an ellipse rather than a circle.
  • FIG. 4B is a diagram showing a state of the optical fibers Fla and F2a connected by the microtubule 100.
  • the end face of the optical fiber Fla and the end face of the optical fiber F2a face each other and are in contact with each other without a gap.
  • the end portions of the optical fibers Fla and F2a are processed by so-called oblique cutting, and the end surfaces are inclined and have an elliptical shape. If the end faces of the fibers Fla and F2a are opposed to each other and contacted without gaps, the contact area can be increased and the optical connection loss can be reduced more reliably.
  • the force with the depth L2 of the recess 120a being 2 mm is set to 1.5 mm.
  • the microtubule 100a is the above-described microtubule 1 except that the depth L2 of the recess 120a is 1.5 mm.
  • the depth L2 of the recess 120a is 1.5 mm, and the microtube
  • the optical fiber Since it is shallower than the depth L2 of the 100 recesses 120a, the optical fiber can be easily passed through the through hole 130 of the microtubule 100a. As a result, the two optical fibers can be easily connected.
  • a slit may be provided in a substantially central portion of the microtube 100a.
  • FIG. 5B is a side cross-sectional view of a microtube having a slit.
  • the microtube 100b is formed with a slit 140b that has an opening at a substantially central portion of the side surface of the microtube 100b and communicates with the through hole 130.
  • the opening surface of the slit 140b is an elongated, substantially rectangular shape, and the length of the opening surface along the axial direction of the microtube 100b is, for example, approximately lmm.
  • the microtube 100b is formed to be equal to the above-described microtube 100a except that the slit 140b is formed.
  • the slit 140b While observing the inside, the other optical fiber is inserted into the through hole 130 until the end surface of the other optical fiber appears in the back of the slit 140b and contacts the end surface of the one optical fiber described above.
  • the slit 140b is viewed, it is possible to see the optical fiber inserted into the through hole 130, and it is confirmed whether the end faces of the two optical fibers are in contact with each other. Is possible.
  • the slit 140b is filled with an adhesive made of a resin material, it can be reliably fixed in a state where the end faces of the two optical fibers are in contact with each other.
  • the force S is set such that the outer diameter d2 of the microtube 100 is 0.7 mm and the direct diameter d3 of the recess 120a is 0.5 mm, and the outer diameter d2 is 1.25 mm.
  • the diameter d3 of 120a may be 0.9 mm.
  • FIG. 5C is a front sectional view of the microtubule 100b.
  • the slit 140b has a wide opening on the outer peripheral surface side of the microtube 100b and a narrow opening on the insertion hole 130 side. That is, the width of the slit 140b becomes narrower from the outer peripheral surface side of the microtube 100b toward the insertion hole 130 side.
  • the microtube 100c is formed to be equal to the microtube 100 described above except that the outer diameter d2 is 1.25 mm and the diameter d3 of the recess 120a is 0.9 mm.
  • the diameter d3 of the recess 120a is 0.9 mm, which is longer than the diameter d3 of the recess 120a of the microtube 100. Therefore, a thick optical fiber cable is inserted into the recess 120a. be able to. Furthermore, the outer diameter d2 of the microtubule 100c is larger than the outer diameter d2 of the microtubule 100. The microtubule 100c is thicker than the microtubule 100, so the connection between the two optical fibers is more reliable. Can be protected.
  • a slit may be provided in a substantially central portion of the microtubule 100c.
  • FIG. 5E is a side cross-sectional view of a microtubule having a slit.
  • the microtube 100d is formed with a slit 140d that has an opening at a substantially central portion of the side surface of the microtube 100d and communicates with the through hole 130.
  • the opening surface of the slit 140d has an elongated and substantially rectangular shape, and the length of the opening surface along the axial direction of the microtube 100d is, for example, approximately 1.5 mm.
  • the microtube 100d is formed to be equal to the microtube 100c described above except that the slit 140d is formed.
  • the slit 140d has a force S, it is possible to visually confirm that the end faces of the two optical fibers are connected.
  • the outer diameter d2 of the microtube 100 is set to 0.7 mm
  • the direct diameter d3 of the recess 120a is set to 0.5 mm
  • the outer diameter d2 is set to 2.5 mm.
  • the diameter d3 may be 0.9 mm.
  • the microtube lOOe is formed to be equal to the microtube 100 described above except that the outer diameter d2 is 2.5 mm and the diameter d3 of the recess 120a is 0.9 mm.
  • the diameter d3 of the recess 120a is 0.9 mm
  • the outer diameter d2 of the microtube 100e is larger than the outer diameter d2 of the microtubule 100.
  • the microtube 100e is thicker than the microtube 100, so the connection between the two optical fibers is more reliable. Can be protected.
  • force S is set so that the outer diameter d2 of the microtube 100 is 0.7 mm and the diameter d3 of the recess 120a is 0.5 mm, and the outer diameter d2 is 2.5 mm, and the recess 120a
  • the diameter d3 may be 2 mm.
  • you may provide a slit in the approximate center part of a microtube.
  • the microtube 100f is formed so that the outer diameter d2 is 2.5 mm and the diameter d3 of the recess 120a is 2.0 mm. Further, the microtube 100f is formed with a slit 140f that has an opening at a substantially central portion of the side surface of the microtube 100f and communicates with the through hole 130.
  • the opening surface of the slit 140f is an elongated and substantially rectangular shape, and the length of the opening surface along the axial direction of the microtube 100f is, for example, approximately 2 mm.
  • the fine tube 100f is formed to be equal to the above-described fine tube 100 except for the slit 140f, the outer diameter d2 and the diameter d3.
  • the diameter d3 of the recess 120a is 2.0 mm, which is longer than the diameter d3 of the micro tube 100, so that a thicker optical fiber cable can be inserted into the recess 120a.
  • the outer diameter d2 of the microtube 100f is larger than the outer diameter d2 of the microtubule 100.
  • the microtubule 100f is thicker than the microtube 100. It can be surely protected. Furthermore, since the microtube 100f has the slit 140f, it is possible to visually confirm the state in which the end faces of the two optical fibers are connected.
  • the microtubule is made of ceramics, it has excellent heat resistance and is difficult to be deformed as compared with a conventional metal microtubule. This can prevent the occurrence of axial misalignment, angular misalignment, and gaps, and as a result, light connection loss can be reduced. Furthermore, since the coaxiality is within 1 / im in a very small tube with an outer diameter of 2.5 mm or less, the end faces of two extremely thin optical fibers can be held accurately and securely in contact with each other. As a result, the optical connection loss can be reduced even for such an optical fiber. Furthermore, space saving can be achieved.
  • 6A to 6C are diagrams showing the shape of the microtubule in the second embodiment of the present invention.
  • FIG. 6A is a perspective view of the microtube
  • FIG. 6B is a front view of the microtube
  • FIG. 6C is a side sectional view of the microtube.
  • the microtube 200 in the present embodiment is made of, for example, zirconium oxide, as in the microtube 100 of the first embodiment, and is formed in a generally cylindrical shape with a large wall thickness.
  • a V-shaped recess 220a is formed in a substantially central portion of the two end faces 220 of the microtube 200 so that the width decreases toward the back.
  • the bottom of the recess 220a communicates with the through hole 230 of the microtube 200.
  • Such a recess 220a is provided to guide one end of the optical fiber to the through hole 230. Therefore, the optical fiber can be easily inserted into the through hole 230 by such a recess 220a.
  • the length L1 of the microtube 200 is, for example, 0.1 mm to 45 cm
  • the outer diameter d2 of the microtube 200 is, for example, 0.7 mm
  • the diameter of the through hole 230 of the microtube 200 (fine
  • the inner diameter (dl) of the tube 200 is, for example, 0.05 mm to 2 mm.
  • microtube 200 in the present embodiment is formed to have a coaxial force lzm or less, like microtube 100 in the first embodiment.
  • FIG. 7 is a diagram showing a state in which the microtubule 200 connects two optical fiber cables.
  • the front end side of the optical fiber cable F1 has a through hole from the recess 220a on one side (left side in FIG. 7) of the microtube 200 in a state where the coating material Fib is peeled off and the optical fiber Fl a is exposed. Inserted into 230.
  • the diameter dl of the through hole 230 is smaller than the outer diameter of the portion having the coating material Fib of the optical fiber cable F1 larger than the outer diameter of the optical fiber Fla. Therefore, the portion having the coating material Fib on the distal end side of the optical fiber cable F1 is fitted into the recess 220a of the microtubule 200 without being inserted into the insertion hole 230.
  • the optical fiber Fla is inserted into the insertion hole 230 until the covering material Fib covering the optical fiber Fla contacts the bottom surface of the recess 220a formed at one end of the microtube 200.
  • the distal end side of the optical fiber cable F2 is passed through the recess 220a on the other side (right side in FIG. 7) of the microtube 200 in a state where the coating material F2b is peeled off and the optical fiber F2a is exposed. Hole 2 30 is inserted.
  • the diameter dl of the through hole 230 is larger than the outer shape of the optical fiber F2a and smaller than the outer diameter of the portion of the optical fiber cable F2 having the covering material F2b. Therefore, the portion having the coating material F2b on the tip side of the optical fiber cable F2 is fitted into the recess 220a of the microtube 200 that is not inserted into the through hole 230. That is, in the present embodiment, the optical fiber F2a is inserted into the through hole 230 until the covering material F2b covering the optical fiber F2a contacts the bottom surface of the recess 220a formed at one end of the microtube 200. .
  • the two optical fiber cables Fl 1 and F 2 are in a state in which the end faces of the optical fibers Fla and F 2 a are abutted at the approximate center of the microtube 200.
  • the microtube 200 is held and fixed in a straight line with the two optical fibers Fla and F2a in contact with each other.
  • the two optical fiber cables Fl and F2 are fixed by adhering the inner surface of the recess 220a and the covering materials Fib and F2b with an adhesive. Note that the inner surface of the recess 220a and the covering material Fib, F
  • the two optical fiber cables Fl and F2 may be fixed by inserting a wedge or the like between 2b.
  • the coating is applied from one end of the optical fiber covered with the coating material by a length corresponding to, for example, half the length of the through hole 230. If the optical fiber is exposed by peeling off the material S, when the exposed optical fiber is inserted into the through hole 230 and the end of the covering material is engaged with the bottom surface of the recess 220a, the optical fiber is exposed. The optical fiber can no longer be inserted further, and the end face of the optical fiber can be reliably placed in the center of the through hole 230. As a result, the occurrence of a gap between the two end faces can be prevented, and the end faces can be reliably brought into contact with each other at the center of the through hole 230.
  • the opening of the recess 220a communicating with the through hole 230 is larger than the diameter of the through hole 230, one end of the optical fiber can be easily inserted into the insertion hole 230 through the recess 220a. Can be inserted. As a result, the convenience of the fine tube can be improved.
  • a slit may be provided in a substantially central portion of the microtube 200.
  • FIG. 8A is a side cross-sectional view of a microtube having a slit.
  • the microtube 200a is formed with a slit 240a having an opening at the substantially central portion of the side surface of the microtube 200a and communicating with the through hole 230.
  • the opening surface of the slit 240a is an elongated, substantially rectangular shape, and the length of the opening surface along the axial direction of the microtube 200a is, for example, approximately lmm.
  • the microtube 200a is formed to be equal to the microtube 200 described above except that the slit 240a is formed.
  • the outer diameter d2 of the microtube 200 is set to 0.7 mm, but the outer diameter d2 may be set to 1.25 mm.
  • the fine yarn field pipe 200b is formed to be equal to the fine pipe 200 described above except that the outer diameter d2 is 1.25 mm.
  • the outer diameter d2 of the micro tube 200b is larger than the outer diameter d2 of the micro tube 200.
  • Optical fiber The connecting portion can be more reliably protected.
  • a slit may be provided in a substantially central portion of the microtube 200b.
  • FIG. 8C is a side sectional view of a microtubule having a slit.
  • the microtube 200c is formed with a slit 240c that has an opening at a substantially central portion of the side surface of the microtube 200c and communicates with the through hole 230.
  • the opening surface of the slit 240c is an elongated, substantially rectangular shape, and the length of the opening surface along the axial direction of the microtube 200c is approximately 1.5 mm.
  • the microtube 200c is formed to be equal to the microtube 200b described above except that the slit 240c is formed.
  • the outer diameter d2 of the microtube 200 is set to 0.7 mm, but the outer diameter d2 may be set to 2.5 mm.
  • the microtube 200d is formed to be equal to the microtube 200 described above except that the outer diameter d2 is 2.5 mm.
  • the outer diameter d2 of the microtube 200d is larger than the outer diameter d2 of the microtube 200.
  • the connecting part of the optical fiber can be protected more reliably.
  • a slit may be provided in a substantially central portion of the microtube 200d.
  • FIG. 8E is a side cross-sectional view of a microtube having a slit.
  • the microtube 200e is formed with a slit 240e having an opening at the substantially central portion of the side surface of the microtube 200e and communicating with the through hole 230.
  • the fine yarn field pipe 200e is formed to be equal to the above-described fine pipe 200d except that a slit 240e force is formed.
  • the microtubule is made of ceramics as in the first embodiment, it has excellent heat resistance and is difficult to be deformed as compared with the conventional metal microtubule. It is possible to prevent the occurrence of axial misalignment, angular misalignment, and gaps between the two inserted optical fibers. As a result, the optical connection loss can be reduced. Furthermore, since the coaxiality is less than 2.5 mm for an extremely small tube with an outer diameter of 2.5 mm or less, the end faces of two extremely thin optical fibers can be held accurately and securely in contact with each other. As a result, the optical connection loss can be reduced even for such an optical fiber. In addition, space can be saved.
  • the micropipe according to this modification is composed of a micropipe main body and a cladding tube covering the micropipe main body.
  • FIG. 9A is a side sectional view of a microtubule according to this modification.
  • the microtube 201 according to this modification is composed of a microtube body 200f and a cladding tube 250f.
  • the fine tube body 200f is formed so as to be equal to the fine tube 200 of the above embodiment except that the outer diameter d2 is 0.9 mm.
  • the cladding tube 250f is made of a metal such as stainless steel, for example, and is formed so that its inner surface contacts the outer surface of the microtube body 200f and covers the microtube body 200f. Further, the cladding tube 25 Of is formed longer in the axial direction than the fine tube main body 200f.
  • the fine tube main body 200f is inserted into a substantially central portion of the cladding tube 250f, and both ends of the fine tube main body 200f are placed in the cladding tube 250f. That is, both ends of the cladding tube 250f protrude from the fine tube body 200f.
  • the portion of the optical fiber cable having the coating material is inserted into the concave portion 220a of the microtube main body 200f of the one end force of the cladding tube 250f, and the light of the optical fiber cable. Only the fiber is passed through the through hole 230 of the fine tube body 200f. Also, the optical fiber cable connected to the above-described optical fiber cable is inserted from the other end of the cladding tube 250f in the same manner as described above. As a result, the end faces of the two optical fibers are brought into contact with each other at the approximate center of the fine tube body 200f.
  • the inner surfaces of both ends of the cladding tube 250f and the coating material of the optical fiber cable are fixed by, for example, an adhesive. This connects the two optical fiber cables.
  • the inner surface of both ends of the cladding tube 250f and the coating The two optical fiber cables may be fixed by pushing a wedge or the like between the materials.
  • the cladding tube 250f is made of a metal, the cladding tube 250f can be welded or soldered to another metal. Can be easily and reliably fixed to other members.
  • a slit may be provided in a substantially central portion of the microtubule 201.
  • FIG. 9B is a side cross-sectional view of a microtube having a slit.
  • the microtube 202 is formed with a slit 270g having an opening at the substantially central portion of the side surface of the microtube 202 and communicating with the through hole 230.
  • the microtube 202 is formed to be equal to the microtube 201 described above except that the slit 270g is formed.
  • the microtube 202 is composed of a microtube body 200g having a slit 240g and a cladding tube 250g having a slit 260g. Then, the slit 270g is formed by communication between the slit 240g and the slit 260g.
  • the fine tube main body 200g is formed to be equal to the fine tube main body 200f described above except for the slit 240g.
  • the slit 240g is formed so as to communicate with the through hole 230 having an opening at a substantially central portion of the side surface of the fine tube main body 200g.
  • the cladding tube 250g is formed to be equal to the above-described cladding tube 250f except for the slit 260g.
  • the slit 260g is formed to have an opening at the substantially central portion of the side surface of the cladding tube 250g so as to communicate with the inside.
  • the optical fiber inserted into the through hole 230 can be seen, and it is possible to confirm whether or not the end faces of the two optical fibers are in contact with each other. More In addition, if the slit 270g is filled with an adhesive made of a resin material, the two optical fibers can be reliably fixed in contact with each other.
  • the fine tubes 201 and 202 are treated as composite tubes, and the fine tube bodies 200f, 2
  • the composite tube 201 is a fine tube.
  • the composite tube 202 is configured to include a fine tube 200g and a cladding tube 250g.
  • the micropipe according to this modification is composed of a micropipe main body and two covered pipes that cover a part of the micropipe main body.
  • FIG. 10A is a side cross-sectional view of a microtubule according to this modification.
  • the micropipe 203 according to this modification is composed of a micropipe main body 200f and two cladding tubes 250.
  • the fine tube main body 200f is formed to be equal to the fine tube 200 of the above-described embodiment except that the outer diameter d2 is 0.9 mm.
  • Each of the two cladding tubes 250 is made of, for example, a metal such as stainless steel, and is formed so that its inner surface is in contact with the outer surface of the fine tube main body 200f and covers one end of the fine tube main body 200f.
  • Both ends of the fine tube main body 200f are respectively inserted into the cladding tube 250 and arranged in a state of being accommodated in the cladding tube 250. That is, the end of each cladding tube 250 protrudes from the end of the fine tube body 200f. The substantially central portion of the fine tube main body 200f is exposed without being covered with the cladding tube 250.
  • a portion having a coating material of an optical fiber cable is inserted into the recess 220a of the microtube main body 200f from one of the cladding tubes 250, and the optical fiber cable light Only the fiber is passed through the through hole 230 of the fine tube body 200f.
  • the optical fiber cable connected to the above-described optical fiber cable is also inserted from the other cladding tube 250 as described above.
  • the end faces of the two optical fibers are brought into contact with each other at the approximate center of the microtubule body 200f.
  • the inner surface of the cladding tube 250 and the coating material of the optical fiber cable are fixed by, for example, an adhesive. This allows two lights A fiber cable is connected.
  • the two optical fiber cables may be fixed by pushing a wedge or the like between the inner surface of the cladding tube 250 and the coating material.
  • the cladding tube 250 is made of a metal, the cladding tube 250 can be welded or soldered to another metal.
  • a slit may be provided in a substantially central portion of the microtubule 203.
  • FIG. 10B is a side cross-sectional view of a microtube having a slit.
  • the micropipe 204 is composed of a micropipe main body 200g in which a slit 240g is formed and two cladding tubes 250.
  • the microtube 204 is formed to be equal to the microtube 203 described above except for the slit 240g.
  • the slit 240g is fully inserted, the optical fiber inserted into the through hole 230 can be seen, and it is possible to confirm whether or not the end faces of the two optical fibers are in contact with each other. Furthermore, if this slit 240g is filled with an adhesive made of a resin material, the two optical fibers can be securely fixed in contact with each other.
  • the fine tubes 203 and 204 may be handled as composite tubes, and the fine tube main bodies 200f and 200g may be handled as the fine tubes of the above embodiment. That is, the composite tube 203 includes a fine tube 200f and two cladding tubes 250, and the composite tube 204 includes a fine tube 200g and two cladding tubes 250.
  • FIG. 11A is a side cross-sectional view of a microtubule according to this modification.
  • the microtubule 301 according to this modification has a concave portion instead of the concave portion 220a of the microtubule 200b of Fig. 8B.
  • a portion 320 is formed and formed so as to be equal to the microtube 200b except for the concave portion 320.
  • the recess 320 is formed in the substantially central portion of the two end faces 220 of the microtube 301.
  • the concave portion 320 is formed so that the width in the direction perpendicular to the depth direction is the same at any depth from the end face 220 to a predetermined depth, and further, the depth is increased from the predetermined depth. Accordingly, the width is formed to be small.
  • the bottom of the recess 320 communicates with the through hole 230.
  • the diameter d3 of the opening in the end surface 220 of the recess 320 is, for example, 0.5 mm.
  • a slit may be provided in a substantially central portion of the microtubule 301.
  • FIG. 11B is a side sectional view of a microtube having a slit.
  • the microtube 302 is formed with a slit 240c having an opening at a substantially central portion of the side surface of the microtube 302 and communicating with the through hole 230.
  • the opening surface of the slit 240c is an elongated and substantially rectangular shape, and the length of the opening surface along the axial direction of the microtube 302 is, for example, approximately lmm.
  • the microtube 302 is formed so as to be equal to the microtube 301 described above except that the slit 240c is formed.
  • FIG. 11C is a front sectional view of the microtubule according to this modification.
  • the fine thread field pipes 200 to 204, 200a to 200e, 301, and 302 that are in this modified ⁇ row are inserted in the inner circumferential surface of the 230, and are grooves along the longitudinal direction of the through hole 230.
  • the groove 350 is formed from one end to the other end of the through hole 230, that is, from one recess 220a to the other recess 220a of the microtube.
  • the bottom of the groove 350 is formed in a rectangular shape or an arc shape in a cross section perpendicular to the longitudinal direction of the groove 350.
  • the shape of the groove 350 is not limited to the above-described rectangular shape or arc shape, and the shape and dimensions thereof do not affect the arrangement of the optical fibers Fla and F2a passed through the through hole 230. You can set it arbitrarily.
  • the optical fibers Fla and F2a are inserted.
  • the air in the through-hole 230 confined by the insertion into the through-hole 230 can escape to the outside of the fine tube through the groove 350.
  • the optical fibers Fla and F2a can be smoothly inserted into the through hole 230, and the optical fibers Fla and F2a can be inserted into the inner peripheral surface of the through hole 230. Can be fixed.
  • the air in the through hole 230 can be released to the outside of the microtube through the slit.
  • the optical fibers Fla and F2a are inserted into the through-hole 230 from different directions and pushed in strongly, the ends of these optical fibers Fla and F2a By pressing, the leading ends of them will warp to the slit side.
  • the connection loss may increase due to the presence of the slit. Therefore, by forming the groove 350 as described above instead of the slit, the optical fiber can be smoothly inserted and the connection loss can be reliably suppressed.
  • the groove 350 is formed in the microtubule of the second embodiment, but the groove 350 may be formed in the microtubules 100, 100a to:! OOf of the first embodiment.
  • the groove 350 is formed along the longitudinal direction of the through hole 130 on the inner peripheral surface constituting the through hole 130 of the microtube.
  • the microtube in the present embodiment is made of metal, not ceramics. That is, the microtube in the present embodiment has the same configuration and dimensions as the microtubule in the second embodiment, but is formed of metal instead of ceramics.
  • the fine tube 200 made of such a metal is manufactured by using an electroplating apparatus.
  • FIGS. 12A and 12B are configuration diagrams showing the configuration of the electronic apparatus.
  • the electric device 30 includes a water tank 31 filled with the electrolytic solution 2, a holding mechanism 35 that holds the core wire 1 linearly, a motor 32 that rotates the holding mechanism 35, and a metal member 33 that serves as an electrode. , A power source 38 for flowing a current between the core wire 1 and the metal member 33 via the electrolyte 2, a pump 34 for circulating the electrolyte 2, and a current for measuring the current flowing in the core 1 And a current control unit 37 that controls the current flowing through the core wire 1 based on the measurement result of the ammeter 36.
  • nickel metal or an alloy thereof, iron or an alloy thereof, copper or an alloy thereof, cobalt or an alloy thereof, a tungsten alloy, or a fine particle-dispersed metal can be used as the electrolytic solution 2.
  • a bath mainly composed of nickel sulfamate is particularly suitable in terms of easiness of electric heating
  • Core wire 1 is a metal wire such as iron or an alloy thereof, aluminum or an alloy thereof, copper or an alloy thereof, tungsten alloy, or the like, and a thin soldered metal on the metal wire, and a plastic such as nylon or polyester. It is appropriately selected from ceramic wires such as wire and glass. Of these, in the case of plastic and ceramic wires, electroless plating such as nickel and silver is required to impart conductivity to the surface.
  • the side wall of the water tank 31 is formed in, for example, a cylindrical shape having an inner diameter of 1.5 m.
  • the inner periphery of the side wall may be oval.
  • the major axis of the ellipse is 5m and the minor axis is 1.5m.
  • the holding mechanism 35 includes two disk bodies 35a formed in a disk shape, a plurality of pillars 35b for fixing the two disk bodies 35a so as to face each other at a distance from each other, and a core wire 1 And two elastic bodies 35c for pulling both ends in opposite directions.
  • the core wire 1 is installed on the holding mechanism 35 so that both ends thereof engage with the elastic body 35c. As a result, the core wire 1 is pulled by the elastic body 35c and kept straight.
  • two molding dies 20 having a shape that fits into the recess 220a of the microtube 200 are attached to the core wire 1 installed in the holding mechanism 35 apart from each other by the length L1 of the microtube 200. It has been. With such a mold 20, it is possible to easily form the recess 220a of the microtube 200.
  • the motor 32 rotates the core wire 1 by rotating the holding mechanism 35 at a rotation speed of, for example, 1 to 3 seconds per rotation.
  • the motor 32 is disposed below the holding mechanism 35 and the water tank 31; however, the motor 32 may be disposed elsewhere, for example, above the holding mechanism 35 or the water tank. It can be placed above 31.
  • the pump 34 circulates the electrolyte 2 along the inner surface of the water tank 31, thereby making the concentration of the electrolyte 2 in the water tank 31 uniform.
  • the temperature of the electrolyte 2 is kept at 50 ⁇ 2 ° C, for example.
  • the power source 38 passes a current between the core wire 1 and the metal member 33 via the electrolyte 2 so that the core wire 1 becomes a cathode and the metal member 33 becomes an anode, for example.
  • the metal member 33 is composed of a force such as a plurality of nickel balls.
  • the current control unit 37 controls the power supply 38 so that the current flowing through the core wire 1 increases smoothly with time.
  • FIG. 13 is a diagram showing a current flowing through the core wire 1.
  • the current control unit 37 has a function of calculating a current value from the energization time, and increases the current along a quadratic curve such as a parabola, a hyperbola, or an elliptical circumference. You can also switch the function according to the energization time.
  • FIG. 14 is a diagram showing a process of separating the metal coating from the mold 20 and the core wire 1.
  • the core wire 1 is removed from the holding mechanism 35.
  • a metal film 10a is formed in the area sandwiched between the two forming dies 20 of the core wire 1 that has been removed. Then, the two molds 20 are pulled out from the core wire 1 respectively. As a result, the metal coating 10 a is separated from the mold 20. Further, the core wire 1 is pulled out from the metal coating 10a. Thereby, the tubular metal coating 10a is separated from the core wire 1.
  • the molding die 20 is made of, for example, ceramic, and integrally includes a substantially conical conical portion 21 having one surface protruding in a tapered shape and a substantially cylindrical cylindrical portion 22. ing . That is, the mold 20 is formed so that the outer periphery of the bottom surface of the conical portion 21 and the outer periphery of the end surface of the cylindrical portion 22 are overlapped to form a pencil shape as a whole. In addition, a hole for inserting the core wire 1 is formed in the axis of the mold 20, that is, the axis of the conical part 21 and the cylindrical part 22.
  • the metal coating 10a separated from the core wire 1 and the mold 20 is polished.
  • FIG. 15 is an explanatory diagram for explaining a state in which the metal coating 10a is polished.
  • the metal coating 10a is rubbed with a brush 50 as shown in FIG.
  • burrs and the like of the metal coating 10a are removed, and R is applied to the surface formed by the conical portion 21 of the mold 20 (the surface corresponding to the wall around the recess 220a of the microtube 200). Tick.
  • the metal coating 10a thus polished is completed as a micro tube 200 by being washed.
  • FIG. 16 is a flowchart showing a method for manufacturing the microtubule 200 in the present embodiment.
  • step S100 only one core wire 1 is immersed in the electrolyte 2 (step S100). Then, the motor 32 rotates the core wire 1 (step S102), and the core wire 1 continues for a predetermined period during which the rotation continues. Electricity is generated by smoothly increasing the current flowing through (step S104). The tubular metal film 10a formed by this electric power is separated from the core wire 1 and the mold 20 (step S106). Further, the separated metal film 10a is polished (step S108), and then washed (step S110).
  • FIG. 17 is a configuration diagram showing a configuration of a lighting apparatus according to the present modification.
  • the electric device 30a allows a current to flow between the water tank 31 filled with the electrolytic solution 2, the motor 32 that rotates the core wire 1, the metal member 33 that serves as an electrode, and the core wire 1 and the metal member 33.
  • a power supply 38 for circulating the electrolytic solution 2 and a watering pipe 39 for spraying the electrolytic solution 2.
  • the core wire 1 on which the molding die 20 is arranged as described above is installed in a water tank 31 filled with the electrolysis liquid 2 in a state of extending in a straight line in the horizontal direction.
  • the motor 32 rotates the core wire 1 thus installed in the circumferential direction.
  • the pump 34 takes in the electrolytic solution 2 at the top of the water tank 31 and supplies it to the sprinkling pipe 39.
  • the water sprinkling pipe 39 is provided at the bottom of the water tank 31, and discharges the electrolyte 2 supplied from the pump 34 from a plurality of water spouts 39a. Thereby, the electrolytic solution 2 in the water tank 1 is circulated and the concentration thereof is made uniform. Note that the temperature of the electrolysis solution 2 is kept substantially constant.
  • the electrolysis solution 2 is, for example, nickel sulfamate.
  • the power source 38 causes a current to flow between the core wire 1 and the metal member 33 via the electrolyte 2 so that the core wire 1 is a cathode and the metal member 33 is an anode, for example.
  • a metal film is formed on the surface of the core wire 1 sandwiched between the molds 20.
  • the mold 20 of the above embodiment includes the conical portion 21 and the cylindrical portion 22, but as long as it has a conical portion, it may be formed in another shape as a whole. Good.
  • FIG. 18A to FIG. 18C are views showing the shape of a mold according to this modification.
  • a molding die 20a according to the present modification includes a substantially cylindrical column part 2 2a and a substantially conical conical portion 21a projecting from one end face of the cylindrical portion 22a.
  • the outer periphery of the bottom surface of the conical portion 21a does not overlap the outer periphery of the end surface of the cylindrical portion 22a.
  • a molding die 20b includes the above-described cylindrical portion 22a and the above-described conical portions 21a that are projected from both end surfaces of the cylindrical portion 22a. It is prepared.
  • the outer periphery of the bottom surface of the conical part 21a and the outer periphery of the end surface of the cylindrical part 22a do not overlap, similar to the mold 20a.
  • one mold 20b has two conical portions 21a, if three or more of these molds 20b are arranged on one core wire 1 in the electric apparatus, a plurality of micro tubes 200 are formed. It can be manufactured efficiently.
  • a molding die 20c according to this modification includes the above-described two conical portions 21, and a so-called abacus ball in which the bottom surfaces of the conical portions 21 face each other. It is formed in a shape. In this mold 20c, the outer circumferences of the bottom surfaces of the two conical portions 21 are overlapped. As described above, since one molding die 20c has two conical portions 21 as described above, if three or more of these molding dies 20c are arranged on one core wire 1 in the electrical apparatus, a plurality of molding dies 20c are arranged. The microtube 200 can be manufactured efficiently.
  • the metal formed on the core wire 1 that is not electrically affected by other core wires since only one core wire 1 is immersed in the electrolyte 2, the metal formed on the core wire 1 that is not electrically affected by other core wires. It is possible to prevent distortion of the shape of the coating 10a. As a result, if the core wire 1 is cut through the tubular metal coating 10a, the microtube 200 made of the tubular metal coating 10a can be manufactured with high accuracy. Therefore, since the microtube 200 manufactured by such a manufacturing method has no distortion, the optical fibers can be appropriately connected.
  • the electric power is applied to only one core wire 1.
  • the electric power may be applied to a plurality of core wires 1.
  • the inside of the water tank 31 is partitioned, and a plurality of regions for storing the electrolytic solution 2 are provided in the water tank 31.
  • the electrolytes 2 accumulated in each of these areas are electrically insulated from each other.
  • only one core wire 1 is immersed in the electrolysis liquid 2 for each region, and the wire 1 is electroplated in the same manner as described above.
  • Metal coating formed on 1 Oa is not affected by other core wires as in the conventional example.
  • each core wire 1 is pulled out from each tubular metal coating 10a, a plurality of microtubules 200 made of each tubular metal coating 10a can be manufactured with high accuracy.
  • microtubules of the present invention have been described above using Embodiments 1 to 3 and modifications thereof, the present invention is not limited to these.
  • the outer diameter of the fine tube may be 0.07 mm to 10 mm, and the total length of the fine tube may be 45 cm or more.
  • the force may be 3 x m or less, where the coaxiality of the micropipe is 1 / im.
  • the ends of the optical fibers are processed into a so-called slanted cut into an elliptical force S, and a plane perpendicular to the longitudinal direction of the optical fiber is formed. It may be processed into a circle.
  • the microtubule may be composed of force S composed of dinolecon oxide and aluminum nitride.
  • the thermal conductivity of aluminum nitride is approximately 160 to 180 W / m′K, which is higher than that of zirconium oxide. Therefore, such a micro tube made of aluminum nitride can be used in places and applications where excellent heat conductivity such as heat dissipation is required. For example, it can be attached to an endoscope or a special optical fiber. It can be applied to ferrules and light emitting devices.
  • the fine tube may be made of, for example, quartz glass.
  • the thermal expansion coefficient of the micropipe and the thermal expansion coefficient of the optical fiber are approximately equal, so the connection is made according to changes in ambient temperature. It is possible to suppress the occurrence of loss. Furthermore, since the fine tube has translucency, the connection state of the end portions of the two optical fibers can be visually observed, and the usability can be improved.
  • the microtube may be made of a light-transmitting material (glass or the like) other than quartz glass.
  • the microtubule of the present invention has an effect of reducing the connection loss of light, and is suitable for parts used for connecting optical fibers.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

A fine tube (100) reduces connection loss of light. The tube has an outer diameter of 2.5mm or less, and in a status where the end surface of an optical fiber inserted from one end of the fine tube (100) is brought into contact with the end surface of the optical fiber inserted from the other end of the fine tube (100), the two portions inserted into the fine tube (100) of the optical fiber are kept on one straight line. The fine tube is made of ceramics, and a coaxial degree, showing a deviation between the center axis on an outer circumference surface of the fine tube (100) and that within the inner circumference surface of the fine tube (100), is within 3μm.

Description

明 細 書  Specification
微細管  Fine tube
技術分野  Technical field
[0001] 本発明は、例えば光ファイバを連結するために用いられる微細管に関する。  [0001] The present invention relates to a microtubule used for connecting optical fibers, for example.
背景技術  Background art
[0002] 従来より、光ファイバを接続するためにコネクタが使用されている。このようなコネク タは、光ファイバに装着されるフエルールと、そのフエルールを保持するコネクタ本体 とから構成されている。例えば、 2つの光ファイバを接続するときには、接続対象とな る 2つの光ファイバのそれぞれの先端部にフエルールを装着する。そして、それらの フエルールが装着された先端部をそれぞれコネクタ本体に挿入し、その 2つの光ファ ィバの端面を互いに突き合わせる。これにより、 2つの光ファイバが接続される。  Conventionally, connectors have been used to connect optical fibers. Such a connector includes a ferrule attached to an optical fiber and a connector main body that holds the ferrule. For example, when connecting two optical fibers, attach a ferrule to the tip of each of the two optical fibers to be connected. Then, the end portions to which these ferrules are attached are respectively inserted into the connector bodies, and the end surfaces of the two optical fibers are brought into contact with each other. This connects the two optical fibers.
[0003] しかしながら、このようなコネクタは、上述のようにコネクタ本体とフェルールとを備え ているため、構造が複雑になる。  However, since such a connector includes the connector main body and the ferrule as described above, the structure is complicated.
[0004] そこで、近年、光ファイバを連結するために用いられる微細管が提案されている(例 えば、特許文献 1参照。)。  [0004] Thus, in recent years, a microtube used for connecting optical fibers has been proposed (for example, see Patent Document 1).
[0005] 上記特許文献 1の光ファイバの微細管(接続スリーブ)は、その微細管の両端の開 口部から光ファイバの先端がそれぞれ揷入されて、 2つの光ファイバの端面がその微 細管の中央で突き合うように、それらの光ファイバを保持する。このような微細管は、 コネクタよりも構造を簡単にすることができる。  [0005] The optical fiber micropipe (connecting sleeve) of Patent Document 1 above has the tip of the optical fiber inserted through the openings at both ends of the micropipe, and the end faces of the two optical fibers are the micropipe. The optical fibers are held so as to face each other at the center. Such a microtube can be simpler in structure than a connector.
特許文献 1:特開 2004— 126306号公報  Patent Document 1: Japanese Patent Laid-Open No. 2004-126306
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] し力 ながら、上記特許文献 1の微細管では、連結される光ファイバ間での光の接 続損失が大きくなつてしまうという問題がある。 [0006] However, the micropipe described in Patent Document 1 has a problem that the connection loss of light between the optical fibers to be connected increases.
[0007] つまり上記特許文献 1の微細管は、金属から構成されているため、周りからの圧力 によって変形し易い。さらに、金属から構成されているために、その微細管の熱膨張 係数は大きぐ耐用年数が短い。その結果、上記特許文献 1の微細管では、圧力や 熱、経年変化などによって、揷入された光ファイバの軸ずれなどが発生し、光の接続 損失が増大してしまうのである。 [0007] That is, since the fine tube of Patent Document 1 is made of metal, it is easily deformed by pressure from the surroundings. Furthermore, because it is made of metal, the coefficient of thermal expansion of the microtube is large and its service life is short. As a result, in the micropipe of Patent Document 1 above, pressure and Due to heat, aging, etc., the inserted optical fiber will be misaligned and the optical connection loss will increase.
[0008] そこで、本発明は、力かる問題に鑑みてなされたものであって、光の接続損失を低 減可能な微細管を提供することを目的とする。  [0008] Therefore, the present invention has been made in view of such a problem, and an object of the present invention is to provide a microtube capable of reducing the connection loss of light.
課題を解決するための手段  Means for solving the problem
[0009] 上記目的を達成するために、本発明に係る微細管は、外径が 2. 5mm以下の管と して構成され、前記管の一端力 挿入された光ファイバの端面と、前記管の他端から 挿入された光ファイバの端面とが接した状態で、 2つの前記光ファイバの前記管に挿 入された部分を一直線状に保つ微細管であって、セラミックスからなり、前記微細管 の外周面における中心軸と、前記微細管の内周面における中心軸とのずれ幅を示 す同軸度が 3 z m以内に収まるように形成されていることを特徴とする。例えば、前記 微細管は酸化ジノレコニゥムからなる。または、前記微細管は窒化アルミニウムからな る。 [0009] In order to achieve the above object, the microtube according to the present invention is configured as a tube having an outer diameter of 2.5 mm or less, and an end face of the optical fiber into which the one end force of the tube is inserted, and the tube A fine tube that keeps the portions of the two optical fibers inserted into the tube in a straight line in contact with the end face of the optical fiber inserted from the other end of the optical fiber. The coaxiality indicating the deviation width between the central axis on the outer peripheral surface of the tube and the central axis on the inner peripheral surface of the microtube is formed so as to be within 3 zm. For example, the microtubule is made of dinoleconium oxide. Alternatively, the microtube is made of aluminum nitride.
[0010] これにより、本発明の微細管は例えば酸化ジノレコニゥムなどのセラミックスからなるこ とにより、従来の金属製の微細管と比べて、耐熱性に優れるとともに変形し難いため 、さらに熱膨張係数が小さぐ耐用年数が長いため、揷入された 2つの光ファイバの 軸ずれや角度ずれ、隙間などの発生を防ぐことができ、その結果、光の接続損失を 低減することができる。さらに、外径が 2. 5mm以下という極めて微小な管において、 同軸度が 3 z m以内であるため、 2つの極めて細い光ファイバの端面を精度良く確実 に保持して接触させることができ、その結果、このような光ファイバに対しても光の接 続損失を低減することができるとともに、省スペース化を図ることができる。また、この ような微細管を例えば光ファイバのフエルールとして用いたときにも、同軸度が 3 /i m 以内であるため、互いの光ファイバの端面を精度良く接触させることができ、光の接 続損失を低減することができる。  [0010] Thereby, the microtube of the present invention is made of ceramics such as dinenoconium oxide, for example, so that it has excellent heat resistance and is difficult to be deformed as compared with conventional metal microtubes. Because of its small and long service life, it is possible to prevent the occurrence of misalignment, gaps, and other misalignments between the two inserted optical fibers. As a result, optical connection loss can be reduced. Furthermore, in a very small tube with an outer diameter of 2.5 mm or less, the coaxiality is within 3 zm, so that the end faces of two extremely thin optical fibers can be held accurately and reliably in contact with each other. Even in such an optical fiber, the optical connection loss can be reduced and the space can be saved. Also, when such a fine tube is used as a ferrule for an optical fiber, for example, the coaxiality is within 3 / im, so that the end faces of the optical fibers can be brought into contact with each other with high accuracy, and the optical connection Loss can be reduced.
[0011] また、前記微細管の両端には、前記内周面に囲まれて構成される孔に連通し、前 記孔の直径よりも大きな直径の開口を有する凹部が形成されていることを特徴として ちょい。  [0011] Further, at both ends of the fine tube, a recess having an opening having a diameter larger than the diameter of the hole is formed so as to communicate with the hole surrounded by the inner peripheral surface. A little as a feature.
[0012] これにより、孔に連通する凹部の開口はその孔の径よりも大きいため、その凹部を 介して光ファイバの一端を孔に容易に揷入することができる。その結果、微細管の利 便性を向上することができる。さらに、光ファイバが揷入されたこの凹部に、例えば樹 脂材料からなる接着剤を満たせば、その光ファイバを確実に固定することができる。 [0012] Thereby, since the opening of the recess communicating with the hole is larger than the diameter of the hole, One end of the optical fiber can be easily inserted into the hole. As a result, the convenience of the microtubule can be improved. Furthermore, if the concave portion into which the optical fiber is inserted is filled with an adhesive made of, for example, a resin material, the optical fiber can be securely fixed.
[0013] また、前記凹部は、前記凹部における深さ方向に垂直な方向の幅が、前記深さ方 向に沿って略一定になるように形成されていることを特徴としてもよい。  [0013] Further, the recess may be formed such that a width of the recess in a direction perpendicular to the depth direction is substantially constant along the depth direction.
[0014] これにより、微細管におけるその凹部の内面は、光ファイバの被覆材に広い面積で 接触することができ、孔に揷入された光ファイバを確実に保持することができる。 [0014] Thereby, the inner surface of the concave portion of the microtube can be brought into contact with the coating material of the optical fiber over a wide area, and the optical fiber inserted into the hole can be reliably held.
[0015] また、前記凹部は、前記凹部における深さ方向に垂直な方向の幅が、前記深さ方 向の深い方に向かって狭まるように形成されていることを特徴としてもよい。 [0015] Further, the recess may be formed such that a width of the recess in a direction perpendicular to the depth direction is narrowed toward a deeper direction of the depth.
[0016] これにより、光ファイバの一端を凹部に挿入すれば、その一端はその凹部によって 孔に案内されるため、光ファイバの一端を孔に容易に挿入することができる。 Accordingly, if one end of the optical fiber is inserted into the recess, the one end is guided to the hole by the recess, so that one end of the optical fiber can be easily inserted into the hole.
[0017] また、前記微細管には、前記外周面に開口を有して前記孔に連通するスリットが形 成されてレ、ることを特徴としてもよレ、。 [0017] In addition, the microtube may be formed with a slit having an opening on the outer peripheral surface and communicating with the hole.
[0018] これにより、スリットを司見き込めば、孔に挿入された光ファイバを見ることができ、 2つ の光ファイバの端面が接触しているか否かを確認することができる。さらに、このスリツ トに樹脂材料力 なる接着剤を満たせば、 2つの光ファイバの端面を接触させた状態 で確実に固定することができる。 [0018] Thus, if the slit is inserted, the optical fiber inserted into the hole can be seen, and it can be confirmed whether or not the end faces of the two optical fibers are in contact with each other. Furthermore, if this slit is filled with an adhesive that is a resin material, it can be reliably fixed in a state where the end faces of the two optical fibers are in contact with each other.
[0019] また、前記微細管の前記内周面には、一方の前記凹部から他方の前記凹部にまで 続く溝が形成されてレ、ることを特徴としてもょレ、。 [0019] Further, the inner circumferential surface of the microtube is formed with a groove extending from one of the recesses to the other of the recesses.
[0020] これにより、光ファイバの孔への挿入によって閉じ込められた孔内の空気を、その溝 を通じて微細管の外へ逃がすことができる。その結果、光ファイバを孔にスムーズに 揷入することができるとともに、その光ファイバを内周面でしつカ^と固定することがで きる。 [0020] Thereby, the air in the hole confined by the insertion into the hole of the optical fiber can escape to the outside of the fine tube through the groove. As a result, the optical fiber can be smoothly inserted into the hole, and the optical fiber can be firmly fixed on the inner peripheral surface.
[0021] また、本発明の複合管は、上述のような微細管と、前記微細管を覆う被覆管とを備 え、前記被覆管の両端は前記微細管よりも突出していることを特徴とする。  [0021] Further, the composite pipe of the present invention comprises the fine pipe as described above and a covering pipe covering the fine pipe, and both ends of the covering pipe protrude from the fine pipe. To do.
[0022] これにより、被覆管の両端部内面はそれぞれ、光ファイバの被覆材に広い面積で 接触することができ、孔に揷入された光ファイバを確実に保持することができる。また 、被覆管の両端部内面と、光ファイバの被覆材との間に隙間があるときには、その隙 間に樹脂材料からなる接着剤を満たせば、その光ファイバを確実に固定することがで きる。 [0022] Thereby, the inner surfaces of both ends of the cladding tube can be brought into contact with the coating material of the optical fiber over a wide area, and the optical fiber inserted into the hole can be securely held. If there is a gap between the inner surface of both ends of the cladding tube and the coating material of the optical fiber, the gap If an adhesive made of a resin material is filled in between, the optical fiber can be securely fixed.
[0023] ここで、本発明に係る光ファイバの連結方法は、外径が 2. 5mm以下の微細管を用 いて 2つの光ファイバを連結する光ファイバの連結方法であって、前記微細管は、セ ラミックスからなり、前記微細管の外周面における中心軸と、前記微細管の内周面に おける中心軸とのずれ幅を示す同軸度が 3 μ m以内に収まるように形成され、前記連 結方法は、連結対象の光ファイバごとに、当該光ファイバの端部における軸方向に 垂直な面に対して当該光ファイバの端面が予め定められた角度で傾くように、前記端 部をカ卩ェする加工工程と、前記加工工程で加工された一方の光ファイバを、前記微 細管の一端から、前記内周面に囲まれて構成される孔に挿入する第 1挿入工程と、 前記加工工程で加工された他方の光ファイバを、前記微細管の他端から前記孔に 挿入することにより、前記 2つの光ファイバの端面を対向させて接触させる第 2挿入ェ 程とを含むことを特徴とする。  [0023] Here, the optical fiber connection method according to the present invention is an optical fiber connection method for connecting two optical fibers using a micro tube having an outer diameter of 2.5 mm or less, and the micro tube includes: And made of ceramics so that the coaxiality indicating the deviation width between the central axis on the outer peripheral surface of the microtube and the central axis on the inner peripheral surface of the microtube is within 3 μm. In the connection method, for each optical fiber to be connected, the end portion is coupled so that the end surface of the optical fiber is inclined at a predetermined angle with respect to a plane perpendicular to the axial direction at the end portion of the optical fiber. A first insertion step in which one optical fiber processed in the processing step is inserted from one end of the micro tube into a hole surrounded by the inner peripheral surface, and the processing The other optical fiber processed in the process is connected to the other end of the microtube. By inserting al the hole, characterized in that it comprises a second insertion extent E of contacting by opposing end faces of the two optical fibers.
[0024] このように、セラミックスからなり同軸度が 3 μ ΐη以内に収まるように形成された微細 管を用いるため、上述のように、光の接続損失を低減することができる。さらに、光フ アイバの端部は、所謂斜め切りによって加工され、その端面は傾いて楕円形となって いるため、このような 2つの光ファイバの端面を互いに対向させて接触させれば、その 接触面積を広くすることができ、光の接続損失をより確実に低減することができる。  [0024] As described above, since the micro tube made of ceramics and formed so that the coaxiality is within 3 μΐη is used, the connection loss of light can be reduced as described above. Furthermore, the end of the optical fiber is processed by so-called oblique cutting, and the end face is inclined and elliptical. Therefore, if the end faces of these two optical fibers are brought into contact with each other, the contact is made. The area can be increased, and the optical connection loss can be more reliably reduced.
[0025] また、前記微細管の両端には、前記孔に連通して前記孔の直径よりも大きな直径 の開口を有する凹部が形成されてあり、前記第 1揷入工程では、前記一方の光フアイ バを被覆する被覆材が、前記微細管の一端に形成された前記凹部の底面に接する まで、前記一方の光ファイバを前記孔に揷入し、前記他方の光ファイバを被覆する被 覆材が、前記微細管の他端に形成された前記凹部の底面に接するまで、前記他方 の光ファイバを前記孔に揷入することを特徴としてもよい。  [0025] Further, at both ends of the microtube, a recess having an opening having a diameter larger than the diameter of the hole is formed in communication with the hole. In the first insertion step, the one light The covering material that covers the other optical fiber by inserting the one optical fiber into the hole until the covering material that covers the fiber comes into contact with the bottom surface of the recess formed at one end of the microtube. However, the other optical fiber may be inserted into the hole until it contacts the bottom surface of the recess formed at the other end of the microtube.
[0026] これにより、被覆材で覆われた光ファイバの一端から、例えばその孔の長さの半分 に相当する長さだけ、その被覆材を剥がして光ファイバを露出させておけば、その露 出された光ファイバを孔に揷入して、その被覆材の端が凹部の底面に係合したときに は、その光ファイバをそれ以上奥に挿入することができなくなり、その光ファイバの端 面を、孔の中央に確実に配置することができる。その結果、 2つの端面の隙間の発生 などを防いで、それらの端面を孔の中央で確実に接触させることができる。 [0026] With this, if the optical fiber is exposed by peeling off the coating material from one end of the optical fiber covered with the coating material by a length corresponding to, for example, half the length of the hole, the dew The inserted optical fiber is inserted into the hole, and when the end of the covering material is engaged with the bottom surface of the recess, the optical fiber cannot be inserted any further. The surface can be reliably placed in the center of the hole. As a result, the gap between the two end faces can be prevented and the end faces can be reliably brought into contact with each other at the center of the hole.
[0027] なお、本発明は、このような光ファイバ用の微細管や連結方法として実現することが できるだけでなぐ工業用ノズルや精密機器などに使用される微細管としても実現す ること力 Sできる。 [0027] It should be noted that the present invention can be realized as such a fine tube for an optical fiber and a connection method as well as a fine tube used for an industrial nozzle, precision equipment, etc. S it can.
発明の効果  The invention's effect
[0028] 本発明の微細管は、光の接続損失を低減することができるという作用効果を奏する 図面の簡単な説明  [0028] The microtube of the present invention has the effect of reducing the connection loss of light.
[0029] [図 1A]図 1Aは、本発明の実施の形態 1における微細管の斜視図である。  [0029] FIG. 1A is a perspective view of a microtubule according to Embodiment 1 of the present invention.
[図 1B]図 1Bは、同上の微細管の正面図である。  FIG. 1B is a front view of the above-mentioned microtube.
[図 1C]図 1Cは、同上の微細管の側面断面図である。  [FIG. 1C] FIG. 1C is a side cross-sectional view of the above-described microtube.
[図 2]図 2は、同上の微細管の同軸度を説明するための説明図である。  [FIG. 2] FIG. 2 is an explanatory diagram for explaining the coaxiality of the micropipe of the above.
[図 3]図 3は、同上の微細管が 2つの光ファイバケーブルを連結している様子を示す 図である。  [Fig. 3] Fig. 3 is a diagram showing a state in which the above-mentioned microtube connects two optical fiber cables.
[図 4A]図 4Aは、同上の 2つの光ファイバの互いに連結される端面を示す図である。  [FIG. 4A] FIG. 4A is a diagram showing end surfaces of the two optical fibers connected to each other.
[図 4B]図 4Bは、同上の微細管によって連結される 2つの光ファイバの状態を示す図 である。  [FIG. 4B] FIG. 4B is a diagram showing a state of two optical fibers connected by the microtubules.
[図 5A]図 5Aは、同上の深さ 1. 5mmの微細管の側面断面図である。  [FIG. 5A] FIG. 5A is a side sectional view of a microtube having a depth of 1.5 mm.
[図 5B]図 5Bは、同上のスリットを有する微細管の側面断面図である。  [FIG. 5B] FIG. 5B is a side cross-sectional view of a microtubule having a slit same as above.
[図 5C]図 5Cは、同上の微細管の正面断面図である。  [FIG. 5C] FIG. 5C is a front sectional view of the above-mentioned microtube.
[図 5D]図 5Dは、同上の外径 1. 25mm,直径 0. 9mmの微細管の側面断面図であ る。  [FIG. 5D] FIG. 5D is a side cross-sectional view of a microtube having an outer diameter of 1.25 mm and a diameter of 0.9 mm.
[図 5E]図 5Eは、同上のスリットを有する微細管の側面断面図である。  [FIG. 5E] FIG. 5E is a side cross-sectional view of a microtubule having the same slit.
[図 5F]図 5Fは、外径 2. 5mm,直径 0. 9mmの微細管の側面断面図である。  [FIG. 5F] FIG. 5F is a side sectional view of a microtube having an outer diameter of 2.5 mm and a diameter of 0.9 mm.
[図 5G]図 5Gは、外径 2. 5mm、直径 2. Ommでスリットを有する微細管の側面断面 図である。  [FIG. 5G] FIG. 5G is a side sectional view of a microtube having an outer diameter of 2.5 mm, a diameter of 2. Omm, and a slit.
[図 6A]図 6Aは、本発明の実施の形態 2における微細管の斜視図である。 [図 6B]図 6Bは、同上の微細管の正面図である。 FIG. 6A is a perspective view of a microtubule according to Embodiment 2 of the present invention. [FIG. 6B] FIG. 6B is a front view of the above-mentioned microtube.
[図 6C]図 6Cは、同上の微細管の側面断面図である。  [FIG. 6C] FIG. 6C is a side cross-sectional view of the same microtubule.
[図 7]図 7は、同上の微細管が 2つの光ファイバケーブルを連結している様子を示す 図である。  [FIG. 7] FIG. 7 is a view showing a state in which the above-mentioned microtubule connects two optical fiber cables.
[図 8A]図 8Aは、同上のスリットを有する微細管の側面断面図である。  [FIG. 8A] FIG. 8A is a side cross-sectional view of a microtubule having the same slit.
[図 8B]図 8Bは、同上の外径 1. 25mmの微細管の側面断面図である。  [FIG. 8B] FIG. 8B is a side sectional view of the microtube having an outer diameter of 1.25 mm.
[図 8C]図 8Cは、同上のスリットを有する微細管の側面断面図である。  [FIG. 8C] FIG. 8C is a side cross-sectional view of a microtubule having the same slit.
[図 8D]図 8Dは、同上の外径 2. 5mmの微細管の側面断面図である。  [FIG. 8D] FIG. 8D is a side sectional view of the microtube having an outer diameter of 2.5 mm.
[図 8E]図 8Eは、同上のスリットを有する微細管の側面断面図である。  [FIG. 8E] FIG. 8E is a side cross-sectional view of a microtubule having the same slit.
[図 9A]図 9Aは、同上の変形例 1に係る微細管の側面断面図である。  FIG. 9A is a side sectional view of a microtubule according to Modification 1 of the above.
[図 9B]図 9Bは、同上の変形例 1に係るスリットを有する微細管の側面断面図である。 園 10A]図 10Aは、同上の変形例 2に係る微細管の側面断面図である。  FIG. 9B is a side cross-sectional view of a microtube having a slit according to Modification 1 of the above. 10A] FIG. 10A is a side sectional view of a microtubule according to Modification 2 of the above.
園 10B]図 10Bは、同上の変形例 2に係るスリットを有する微細管の側面断面図であ る。 Fig. 10B is a side cross-sectional view of a microtube having a slit according to Modification 2 of the above.
[図 11A]図 11Aは、同上の変形例 3に係る微細管の側面断面図である。  FIG. 11A is a side cross-sectional view of a microtubule according to Modification 3 of the above.
[図 11B]図 11Bは、同上の変形例 3に係るスリットを有する微細管の側面断面図であ る。  FIG. 11B is a side cross-sectional view of a microtube having a slit according to Modification 3 of the above.
[図 11C]図 11Cは、同上の変形例 4に係る微細管の正面断面図である。  FIG. 11C is a front sectional view of a microtubule according to Modification 4 of the above.
[図 12A]図 12Aは、本発明の実施の形態 3における電鎳装置の構成を示す構成図で ある。  [FIG. 12A] FIG. 12A is a configuration diagram showing the configuration of the electronic apparatus in the third embodiment of the present invention.
[図 12B]図 12Bは、同上の電柱装置の構成を示す他の構成図である。  FIG. 12B is another configuration diagram showing the configuration of the above utility pole device.
[図 13]図 13は、同上の芯線に流れる電流を示す図である。 FIG. 13 is a diagram showing a current flowing through the core wire same as above.
[図 14]図 14は、同上の金属被膜が成形型および芯線から分離される工程を示す図 である。  FIG. 14 is a diagram showing a process of separating the metal coating from the mold and the core wire.
[図 15]図 15は、同上の金属被膜が研磨される様子を説明するための説明図である。  FIG. 15 is an explanatory diagram for explaining a state in which the metal film is polished.
[図 16]図 16は、同上の微細管の製造方法を示すフローチャートである。 FIG. 16 is a flowchart showing a manufacturing method of the microtube according to the above.
[図 17]図 17は、同上の変形例 1に係る電铸装置の構成を示す構成図である。 FIG. 17 is a configuration diagram showing a configuration of a lighting apparatus according to Modification 1 of the above.
[図 18A]図 18Aは、同上の変形例 2に係る成形型の形状を示す図である。 [図 18B]図 18Bは、同上の変形例 2に係る成形型の他の形状を示す図である。 FIG. 18A is a view showing the shape of a molding die according to Modification 2 of the above. FIG. 18B is a view showing another shape of the molding die according to Modification 2 of the above.
[図 18C]図 18Cは、同上の変形例 2に係る成形型のさらに他の形状を示す図である。 符号の説明  FIG. 18C is a view showing still another shape of the molding die according to the second modification of the above. Explanation of symbols
[0030] 100 微細管 [0030] 100 microtubules
120 端面  120 End face
120a  120a
130 挿通孔  130 Insertion hole
200 微細管  200 fine tubes
220 端面  220 End face
220a  220a
230 揷通孔  230 through hole
250, 250f, 250g 被覆管  250, 250f, 250g cladding tube
301, 302 微糸田管  301, 302
320 凹部  320 recess
F1 光ファイバケープノレ  F1 fiber optic cape
Fla 光ファイバ  Fla optical fiber
Fib 被覆材  Fib coating
F2 光ファイバケープノレ  F2 fiber optic cape
F2a 光ファイバ  F2a optical fiber
F2b 被覆材  F2b coating material
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0031] 以下、本発明の実施の形態における微細管について図面を参照しながら説明する [0031] Hereinafter, a microtube according to an embodiment of the present invention will be described with reference to the drawings.
[0032] (実施の形態 1) [Embodiment 1]
図 1A〜図 1Cは、本発明の第 1の実施の形態における微細管の形状を示す図であ る。  1A to 1C are diagrams showing the shape of a microtubule according to the first embodiment of the present invention.
[0033] 図 1Aは微細管の斜視図であり、図 1Bは微細管の正面図であり、図 1Cは微細管の 側面断面図である。 [0034] 微細管 100は、例えば酸化ジルコニウム(ジルコユア)などからなり、全体的に肉厚 の略円筒形に形成されている。 FIG. 1A is a perspective view of a microtube, FIG. 1B is a front view of the microtube, and FIG. 1C is a side sectional view of the microtube. [0034] The microtube 100 is made of, for example, zirconium oxide (zircoua) or the like, and is formed in a generally cylindrical shape having a large wall thickness as a whole.
[0035] 微細管 100の 2つの端面 120の略中央部分には、井戸型の凹部 120aが形成され ている。ここで井戸型とは、何れの深さにおいても、深さ方向に垂直な方向の幅が等 しい穴の形状である。この凹部 120aの底面は、微細管 100の揷通孔 130に連通して いる。揷通孔 130は、微細管 100の内周面に囲まれて構成される。微細管 100の長 さ L1は、例えば 0. lmm〜45cmであり、微細管 100の外径 d2は、例えば 0. 7mm であり、微細管 100の揷通孔 130の直径(微細管 100の内径) dlは、例えば 0. 05m m〜2mmである。また、微細管 100における凹部 120aが形成された部分の軸方向 に垂直な断面では、その凹部 120aの形状は円形で示され、その円形の直径 d3は例 えば 0· 5mmであり、凹部 120aの深さ L2は、例えば 2mmである。  [0035] A well-shaped recess 120a is formed in a substantially central portion of the two end faces 120 of the microtube 100. Here, the well type is a shape of a hole having the same width in the direction perpendicular to the depth direction at any depth. The bottom surface of the recess 120 a communicates with the through hole 130 of the microtube 100. The through hole 130 is surrounded by the inner peripheral surface of the microtube 100. The length L1 of the microtube 100 is, for example, 0.1 mm to 45 cm, the outer diameter d2 of the microtube 100 is, for example, 0.7 mm, and the diameter of the through hole 130 of the microtube 100 (the inner diameter of the microtube 100). Dl is, for example, 0.05 mm to 2 mm. Further, in the cross section perpendicular to the axial direction of the portion of the microtube 100 where the recess 120a is formed, the shape of the recess 120a is shown as a circle, and the diameter d3 of the circle is, for example, 0.5 mm. The depth L2 is 2 mm, for example.
[0036] ここで本実施の形態における微細管 100は、同軸度が小さい点に特徴がある。同 軸度とは、微細管 100の外周面における中心軸と、その微細管の内周面における中 心軸とのずれ幅を示す。  Here, microtube 100 in the present embodiment is characterized in that the degree of coaxiality is small. The coaxiality indicates a deviation width between the central axis on the outer peripheral surface of the microtube 100 and the central axis on the inner peripheral surface of the microtube.
[0037] 図 2は、本実施の形態における微細管 100の同軸度を説明するための説明図であ る。  FIG. 2 is an explanatory diagram for explaining the coaxiality of the microtubule 100 in the present embodiment.
[0038] 本実施の形態における微細管 100では、揷通孔 130の開口がある 2つの開口面に おいて、揷通孔 130 (微細管 100における内周 r2)の中心と、微細管 100における外 周 rlの中心とのずれ幅、即ち同軸度が 1 μ m以内である。つまり、外周 rlと内周 r2と の間の長さのばらつきが l x m以内である。具体的に、外周 rlと内周 r2との間の長さ XI、 X2、■· ·、 X8のばらつきは l x m以内となる。言い換えれば、 Xn_Xm≤l ( x m )の関係が上記 2つの開口面において成立する。  [0038] In microtube 100 in the present embodiment, the center of through-hole 130 (inner periphery r2 in microtube 100) and the microtube 100 The deviation from the center of the outer periphery rl, that is, the coaxiality is within 1 μm. That is, the length variation between the outer periphery rl and the inner periphery r2 is within l x m. Specifically, the variations of the lengths XI, X2,..., X8 between the outer periphery rl and the inner periphery r2 are within l x m. In other words, the relationship Xn_Xm≤l (x m) holds at the two apertures.
[0039] なお、 n、 mは互いに異なる 1〜8の任意の整数である。また、上記開口面は、微細 管 100の軸方向に垂直な面であって、図 1Cに示す凹部 120aの底面を含む面に相 当する。また、外周 rlは、微細管 100の軸方向に垂直な面における微細管 100の外 側の周であって、内周 r2は、微細管 100の軸方向に垂直な面における微細管 100 の内側(揷通孔 130側)の周である。外周 rlと内周 r2との間の長さは、外周 rl上の点 と、その点から最も近い内周 r2上の点との間の距離である。 [0040] このような微細管 100は、揷通孔 130に互いに異なる方向力も光ファイバケーブル が揷入されることによって、これらの光ファイバケーブルの端面を連結する。 [0039] Note that n and m are arbitrary integers of 1 to 8 different from each other. Further, the opening surface is a surface perpendicular to the axial direction of the microtubule 100 and corresponds to a surface including the bottom surface of the recess 120a shown in FIG. 1C. The outer circumference rl is the outer circumference of the microtube 100 in the plane perpendicular to the axial direction of the microtube 100, and the inner circumference r2 is the inner circumference of the microtube 100 in the plane perpendicular to the axial direction of the microtubule 100. It is the circumference of (through hole 130 side). The length between the outer circumference rl and the inner circumference r2 is the distance between the point on the outer circumference rl and the point on the inner circumference r2 that is closest to that point. [0040] Such a micro-tube 100 connects the end faces of these optical fiber cables by inserting the optical fiber cables into the through holes 130 with different directional forces.
[0041] 図 3は、微細管 100が 2つの光ファイバケーブルを連結している様子を示す図であ る。  [0041] FIG. 3 is a diagram illustrating a state in which the microtubule 100 connects two optical fiber cables.
[0042] 光ファイバケーブル F1は、コアおよびクラッド力 なる光ファイバ Flaと、その光ファ ィバ Flaを被覆する被覆材 Fibとを有する。  [0042] The optical fiber cable F1 includes an optical fiber Fla having a core and cladding force, and a covering material Fib covering the optical fiber Fla.
[0043] このような光ファイバケーブル F1の先端側は、被覆材 Fibが剥がされて光ファイバ Flaが露出された状態で、微細管 100の一方(図 3中の左側)の凹部 120aから挿通 孔 130に挿入される。なお、挿通孔 130の直径 dlは、光ファイバ Flaの外径よりも大 きぐ光ファイバケーブル F1の被覆材 Fibを有する部分の外径よりも小さい。したが つて、光ファイバケーブル F1の先端側の被覆材 Fibを有する部分は、揷通孔 130に 挿入されることなぐ微細管 100の凹部 120aに嵌め込まれる。つまり、本実施の形態 では、光ファイバ Flaを被覆する被覆材 Fibが、微細管 100の一端に形成された凹 部 120aの底面に接するまで、光ファイバ Flaは揷通孔 130に挿入される。  [0043] The end side of such an optical fiber cable F1 is inserted through the recess 120a on one side (left side in FIG. 3) of the microtubule 100 in a state where the coating material Fib is peeled off and the optical fiber Fla is exposed. Inserted into 130. The diameter dl of the insertion hole 130 is smaller than the outer diameter of the portion having the coating material Fib of the optical fiber cable F1 that is larger than the outer diameter of the optical fiber Fla. Therefore, the portion having the coating material Fib on the distal end side of the optical fiber cable F1 is fitted into the recess 120a of the microtube 100 that is not inserted into the through hole 130. That is, in the present embodiment, the optical fiber Fla is inserted into the through hole 130 until the covering material Fib covering the optical fiber Fla comes into contact with the bottom surface of the recess 120a formed at one end of the microtube 100.
[0044] 一方、上述の光ファイバケーブル F1の接続相手となる光ファイバケーブル F2も、 上述と同様、コアおよびクラッドからなる光ファイバ F2aと、その光ファイバ F2aを被覆 する被覆材 F2bとを有する。  [0044] On the other hand, the optical fiber cable F2 to be connected to the optical fiber cable F1 also has an optical fiber F2a composed of a core and a clad, and a covering material F2b covering the optical fiber F2a, as described above.
[0045] このような光ファイバケーブル F2の先端側は、被覆材 F2bが剥がされて光ファイバ F2aが露出された状態で、微細管 100の他方(図 3中の右側)の凹部 120aから揷通 孔 130に揷入される。なお、揷通孔 130の直径 dlは、光ファイバ F2aの外形よりも大 きぐ光ファイバケーブル F2の被覆材 F2bを有する部分の外径よりも小さい。したが つて、光ファイバケーブル F2の先端側の被覆材 F2bを有する部分は、揷通孔 130に 揷入されることな 微細管 100の凹部 120aに嵌め込まれる。つまり、本実施の形態 では、光ファイバ F2aを被覆する被覆材 F2bが、微細管 100の一端に形成された凹 部 120aの底面に接するまで、光ファイバ F2aは揷通孔 130に揷入される。  [0045] The end side of such an optical fiber cable F2 passes through the recess 120a on the other side (the right side in FIG. 3) of the microtube 100 in a state where the covering material F2b is peeled off and the optical fiber F2a is exposed. It is inserted into the hole 130. The diameter dl of the through hole 130 is smaller than the outer diameter of the portion of the optical fiber cable F2 having the coating material F2b that is larger than the outer shape of the optical fiber F2a. Therefore, the portion of the optical fiber cable F2 having the coating material F2b on the tip side is fitted into the recess 120a of the microtube 100 that is not inserted into the through hole 130. That is, in the present embodiment, the optical fiber F2a is inserted into the through hole 130 until the covering material F2b covering the optical fiber F2a comes into contact with the bottom surface of the recess 120a formed at one end of the microtube 100. .
[0046] その結果、 2つの光ファイバケーブル Fl , F2は、それぞれの光ファイバ Fla, F2a の端面を微細管 100の略中央で突き合わせた状態となる。微細管 100は、このように 2つの光ファイバ Fla, F2aを接触させた状態で一直線状に保持して固定する。また 、凹部 120aの内面と被覆材 Fib, F2bとが樹脂材料からなる接着剤により接着され ることにより、 2つの光ファイバケーブル Fl , F2は固定される。なお、凹部 120aの内 面と被覆材 Flb, F2bとの間に、くさびなどを押し込むことにより、 2つの光ファイバケ 一ブル Fl , F2を固定してもよい。 As a result, the two optical fiber cables Fl 1 and F 2 are in a state in which the end faces of the respective optical fibers Fla and F 2 a are abutted at the approximate center of the microtube 100. The microtubule 100 is held and fixed in a straight line with the two optical fibers Fla and F2a in contact with each other in this way. Also The two optical fiber cables Fl and F2 are fixed by adhering the inner surface of the recess 120a and the covering materials Fib and F2b with an adhesive made of a resin material. The two optical fiber cables Fl and F2 may be fixed by pressing a wedge or the like between the inner surface of the recess 120a and the covering materials Flb and F2b.
[0047] このように本実施の形態では、被覆材で覆われた光ファイバの一端から、例えば揷 通孔 130の長さの半分に相当する長さだけ、その被覆材を剥がして光ファイバを露 出させておけば、その露出された光ファイバを揷通孔 130に揷入して、その被覆材の 端が凹部 120aの底面に係合したときには、その光ファイバをそれ以上奥に挿入する ことができなくなり、その光ファイバの端面を、挿通孔 130の中央に確実に配置するこ とができる。その結果、 2つの端面の隙間の発生などを防いで、それらの端面を挿通 孔 130の中央で確実に接触させることができる。また、本実施の形態では、挿通孔 1 30に連通する凹部 120aの開口はその揷通孔 130の径よりも大きいため、その凹部 1 20aを介して光ファイバの一端を挿通孔 130に容易に挿入することができる。その結 果、微細管 100の利便性を向上することができる。さらに、本実施の形態では、凹部 120aは、井戸型に形成されている、つまり、その凹部 120aにおける深さ方向に垂直 な方向の幅が、その深さ方向に沿って略一定になるように形成されているため、微細 管 100におけるその凹部 120aの内面は、光ファイバの被覆材に広い面積で接触す ること力 Sでき、揷通孔 130に揷入された光ファイバを確実に保持することができる。な お、このような凹部 120aの寸法は、揷入される光ファイバの寸法や保持強度などに 応じて任意に設定される。例えば、上述の凹部 120aの直径 d3を 0. 5mmとしたが、 例えば 0. lmm〜3mmの何れの寸法にしてもよぐさらに、上述の凹部 120aの深さ L2を 2mmとしたが、例えば 1. 5mm以上の任意の寸法にしてもよい。  As described above, in the present embodiment, the coating material is peeled off from one end of the optical fiber covered with the coating material by a length corresponding to, for example, half of the length of the through hole 130 to remove the optical fiber. If it is exposed, the exposed optical fiber is inserted into the through hole 130, and when the end of the covering material engages the bottom surface of the recess 120a, the optical fiber is inserted deeper. Therefore, the end face of the optical fiber can be reliably arranged in the center of the insertion hole 130. As a result, it is possible to prevent the gap between the two end faces from being generated, and to reliably contact the end faces at the center of the insertion hole 130. In this embodiment, since the opening of the recess 120a communicating with the insertion hole 130 is larger than the diameter of the through hole 130, one end of the optical fiber can be easily inserted into the insertion hole 130 via the recess 120a. Can be inserted. As a result, the convenience of the microtube 100 can be improved. Further, in the present embodiment, the recess 120a is formed in a well shape, that is, the width of the recess 120a in the direction perpendicular to the depth direction is substantially constant along the depth direction. Therefore, the inner surface of the recess 120a of the microtube 100 can contact the optical fiber coating material in a wide area, and can securely hold the optical fiber inserted into the through hole 130. be able to. The size of the recess 120a is arbitrarily set according to the size of the optical fiber to be inserted and the holding strength. For example, although the diameter d3 of the recess 120a is 0.5 mm, the depth L2 of the recess 120a is 2 mm. Any size of 5mm or more may be used.
[0048] 図 4Aは、光ファイバ Fla, F2aの互いに連結される端面を示す図である。  FIG. 4A is a diagram showing end surfaces of the optical fibers Fla and F2a that are connected to each other.
[0049] 光ファイバ Fl a, F2aを連結するときには、それらの端部は予め加工される。つまり、 光ファイバ Flaの端面と、光ファイバ F2aの端面とは、それぞれ軸方向に対して垂直 ではなく同一の角度で傾くように加工される。つまり、それぞれの端面は、円形ではな く楕円形に形成されている。  [0049] When the optical fibers Fl a and F2a are connected, their ends are processed in advance. In other words, the end face of the optical fiber Fla and the end face of the optical fiber F2a are processed so as to be inclined at the same angle rather than perpendicular to the axial direction. In other words, each end surface is formed in an ellipse rather than a circle.
[0050] 図 4Bは、微細管 100によって連結される光ファイバ Fla, F2aの状態を示す図であ る。 FIG. 4B is a diagram showing a state of the optical fibers Fla and F2a connected by the microtubule 100. The
[0051] 光ファイバ Flaの端面と、光ファイバ F2aの端面とは、互いに対向して隙間なく接触 される。  [0051] The end face of the optical fiber Fla and the end face of the optical fiber F2a face each other and are in contact with each other without a gap.
[0052] このように、本実施の形態では、光ファイバ Fla, F2aの端部は、所謂斜め切りによ つて加工され、その端面は傾いて楕円形となっているため、このような 2つの光フアイ ノ Fla, F2aの端面を互いに対向させて隙間なく接触させれば、その接触面積を広 くすることができ、光の接続損失をより確実に低減することができる。  [0052] Thus, in the present embodiment, the end portions of the optical fibers Fla and F2a are processed by so-called oblique cutting, and the end surfaces are inclined and have an elliptical shape. If the end faces of the fibers Fla and F2a are opposed to each other and contacted without gaps, the contact area can be increased and the optical connection loss can be reduced more reliably.
[0053] なお、上記実施の形態では、凹部 120aの深さ L2を 2mmとした力 1. 5mmとして ちょい。  [0053] In the above embodiment, the force with the depth L2 of the recess 120a being 2 mm is set to 1.5 mm.
[0054] 図 5Aは、深さ L2 = l . 5mmの微細管の側面断面図である。  FIG. 5A is a side cross-sectional view of a microtube having a depth of L2 = 1/5 mm.
[0055] 微細管 100aは、凹部 120aの深さ L2が 1. 5mmであることを除き、上述の微細管 1 [0055] The microtubule 100a is the above-described microtubule 1 except that the depth L2 of the recess 120a is 1.5 mm.
00と等しくなるように形成されてレ、る。 It is formed to be equal to 00.
[0056] このような微細管 100aでは、その凹部 120aの深さ L2が 1. 5mmであって、微細管[0056] In such a microtube 100a, the depth L2 of the recess 120a is 1.5 mm, and the microtube
100の凹部 120aの深さ L2よりも浅いため、光ファイバを微細管 100aの揷通孔 130 に通し易くすることができる。その結果、 2つの光ファイバを容易に連結することができ る。 Since it is shallower than the depth L2 of the 100 recesses 120a, the optical fiber can be easily passed through the through hole 130 of the microtubule 100a. As a result, the two optical fibers can be easily connected.
[0057] また、微細管 100aの略中央部にスリットを設けてもよい。  [0057] Further, a slit may be provided in a substantially central portion of the microtube 100a.
[0058] 図 5Bは、スリットを有する微細管の側面断面図である。 FIG. 5B is a side cross-sectional view of a microtube having a slit.
[0059] 微細管 100bには、微細管 100bの側面略中央部に開口を有し、揷通孔 130に連 通するスリット 140bが形成されている。スリット 140bの開口面は細長い略矩形状であ つて、その開口面における微細管 100bの軸方向に沿った長さは例えば略 lmmであ る。また、この微細管 100bは、スリット 140bが形成されていることを除き、上述の微細 管 100aと等しくなるように形成されている。  [0059] The microtube 100b is formed with a slit 140b that has an opening at a substantially central portion of the side surface of the microtube 100b and communicates with the through hole 130. The opening surface of the slit 140b is an elongated, substantially rectangular shape, and the length of the opening surface along the axial direction of the microtube 100b is, for example, approximately lmm. The microtube 100b is formed to be equal to the above-described microtube 100a except that the slit 140b is formed.
[0060] このような微細管 100bでは、スリット 140b力 Sあるため、 2つの光ファイバのそれぞれ の端面が連結された状態を目視して確認することができる。  [0060] In such a fine tube 100b, since there is a slit 140b force S, it is possible to visually confirm the state in which the end faces of the two optical fibers are connected.
[0061] つまり、微細管 100bにおいて、 2本の光ファイバを揷通孔 130に揷入するときには 、まず、スリット 140b内を目視しながら、一方の光ファイバの端面がスリット 140bの奥 に現れるまで、その一方の光ファイバを挿通孔 130に挿入する。そして、スリット 140b 内を目視しながら、他方の光ファイバの端面がスリット 140bの奥に現れ、上述の一方 の光ファイバの端面に接触するまで、その他方の光ファイバを揷通孔 130に揷入す る。これにより、スリット 140bを視き込めば、揷通孔 130に揷入された光ファイバを見 ること力 Sでき、 2つの光ファイバの端面が接触してレ、るか否かを確認することができる 。さらに、このスリット 140bに樹脂材料からなる接着剤を満たせば、 2つの光ファイバ の端面を接触させた状態で確実に固定することができる。 That is, in inserting the two optical fibers into the through-hole 130 in the microtube 100b, first, while visually observing the inside of the slit 140b, until the end face of one optical fiber appears at the back of the slit 140b. Then, one of the optical fibers is inserted into the insertion hole 130. And slit 140b While observing the inside, the other optical fiber is inserted into the through hole 130 until the end surface of the other optical fiber appears in the back of the slit 140b and contacts the end surface of the one optical fiber described above. As a result, if the slit 140b is viewed, it is possible to see the optical fiber inserted into the through hole 130, and it is confirmed whether the end faces of the two optical fibers are in contact with each other. Is possible. Furthermore, if the slit 140b is filled with an adhesive made of a resin material, it can be reliably fixed in a state where the end faces of the two optical fibers are in contact with each other.
[0062] また、上記実施の形態では、微細管 100の外径 d2を 0. 7mmとし、凹部 120aの直 径 d3を 0. 5mmとした力 S、外径 d2を 1. 25mmとし、凹咅 120aの直径 d3を 0. 9mmと してもよい。 [0062] Further, in the above embodiment, the force S is set such that the outer diameter d2 of the microtube 100 is 0.7 mm and the direct diameter d3 of the recess 120a is 0.5 mm, and the outer diameter d2 is 1.25 mm. The diameter d3 of 120a may be 0.9 mm.
[0063] 図 5Cは、微細管 100bの正面断面図である。  [0063] FIG. 5C is a front sectional view of the microtubule 100b.
[0064] スリット 140bは、この図 5Cに示すように、微細管 100bの外周面側に広い開口を有 するとともに、挿通孔 130側に狭い開口を有する。つまり、スリット 140bの幅は、微細 管 100bの外周面側から挿通孔 130側に向力うにつれて狭くなる。  [0064] As shown in Fig. 5C, the slit 140b has a wide opening on the outer peripheral surface side of the microtube 100b and a narrow opening on the insertion hole 130 side. That is, the width of the slit 140b becomes narrower from the outer peripheral surface side of the microtube 100b toward the insertion hole 130 side.
[0065] 図 5Dは、外径 d2 = l . 25mm,直径 d3 = 0. 9mmの微細管の側面断面図である。  FIG. 5D is a side cross-sectional view of a microtube having an outer diameter d2 = l.25 mm and a diameter d3 = 0.9 mm.
[0066] 微細管 100cは、外径 d2が 1. 25mmであって、凹部 120aの直径 d3が 0. 9mmで あることを除き、上述の微細管 100と等しくなるように形成されている。  [0066] The microtube 100c is formed to be equal to the microtube 100 described above except that the outer diameter d2 is 1.25 mm and the diameter d3 of the recess 120a is 0.9 mm.
[0067] このような微細管 100cでは、その凹部 120aの直径 d3が 0. 9mmであって、微細管 100の凹部 120aの直径 d3よりも長いため、太い光ファイバケーブルをその凹部 120 aに差し込むことができる。さらに、微細管 100cの外径 d2は、微細管 100の外径 d2よ りも大きぐ微細管 100cの方が微細管 100よりも肉厚であるため、 2つの光ファイバの 連結部をより確実に保護することができる。  [0067] In such a microtubule 100c, the diameter d3 of the recess 120a is 0.9 mm, which is longer than the diameter d3 of the recess 120a of the microtube 100. Therefore, a thick optical fiber cable is inserted into the recess 120a. be able to. Furthermore, the outer diameter d2 of the microtubule 100c is larger than the outer diameter d2 of the microtubule 100. The microtubule 100c is thicker than the microtubule 100, so the connection between the two optical fibers is more reliable. Can be protected.
[0068] また、微細管 100cの略中央部にスリットを設けてもよい。  [0068] Further, a slit may be provided in a substantially central portion of the microtubule 100c.
[0069] 図 5Eは、スリットを有する微細管の側面断面図である。  FIG. 5E is a side cross-sectional view of a microtubule having a slit.
[0070] 微細管 100dには、微細管 100dの側面略中央部に開口を有し、揷通孔 130に連 通するスリット 140dが形成されている。スリット 140dの開口面は細長い略矩形状であ つて、その開口面における微細管 100dの軸方向に沿った長さは例えば略 1. 5mm である。また、この微細管 100dは、スリット 140dが形成されていることを除き、上述の 微細管 100cと等しくなるように形成されている。 [0071] このような微細管 lOOdでは、スリット 140d力 Sあるため、 2つの光ファイバのそれぞれ の端面が連結された状態を目視して確認することができる。 [0070] The microtube 100d is formed with a slit 140d that has an opening at a substantially central portion of the side surface of the microtube 100d and communicates with the through hole 130. The opening surface of the slit 140d has an elongated and substantially rectangular shape, and the length of the opening surface along the axial direction of the microtube 100d is, for example, approximately 1.5 mm. The microtube 100d is formed to be equal to the microtube 100c described above except that the slit 140d is formed. [0071] In such a microtubule lOOd, since the slit 140d has a force S, it is possible to visually confirm that the end faces of the two optical fibers are connected.
[0072] また、上記実施の形態では、微細管 100の外径 d2を 0. 7mmとし、凹部 120aの直 径 d3を 0. 5mmとした力 外径 d2を 2. 5mmとし、凹咅 ^120aの直径 d3を 0. 9mmと してもよい。 [0072] In the above embodiment, the outer diameter d2 of the microtube 100 is set to 0.7 mm, the direct diameter d3 of the recess 120a is set to 0.5 mm, and the outer diameter d2 is set to 2.5 mm. The diameter d3 may be 0.9 mm.
[0073] 図 5Fは、外径 d2 = 2. 5mm,直径 d3 = 0. 9mmの微細管の側面断面図である。  FIG. 5F is a side sectional view of a microtube having an outer diameter d2 = 2.5 mm and a diameter d3 = 0.9 mm.
[0074] 微細管 lOOeは、外径 d2が 2. 5mmであって、凹部 120aの直径 d3が 0. 9mmであ ることを除き、上述の微細管 100と等しくなるように形成されている。 [0074] The microtube lOOe is formed to be equal to the microtube 100 described above except that the outer diameter d2 is 2.5 mm and the diameter d3 of the recess 120a is 0.9 mm.
[0075] このような微細管 lOOeでは、その凹部 120aの直径 d3が 0. 9mmであって、微細管[0075] In such a microtube lOOe, the diameter d3 of the recess 120a is 0.9 mm,
100の凹部 120aの直径 d3よりも長いため、太い光ファイバケーブルをその凹部 120 aに差し込むことができる。さらに、微細管 100eの外径 d2は、微細管 100の外径 d2よ りも大きぐ微細管 100eの方が微細管 100よりも肉厚であるため、 2つの光ファイバの 連結部をより確実に保護することができる。 Since it is longer than the diameter d3 of 100 recesses 120a, a thick optical fiber cable can be inserted into the recess 120a. Furthermore, the outer diameter d2 of the microtube 100e is larger than the outer diameter d2 of the microtubule 100. The microtube 100e is thicker than the microtube 100, so the connection between the two optical fibers is more reliable. Can be protected.
[0076] また、上記実施の形態では、微細管 100の外径 d2を 0. 7mmとし、凹部 120aの直 径 d3を 0. 5mmとした力 S、外径 d2を 2. 5mmとし、凹部 120aの直径 d3を 2mmとして もよい。さらに、微細管の略中央部にスリットを設けてもよい。 [0076] Further, in the above embodiment, force S is set so that the outer diameter d2 of the microtube 100 is 0.7 mm and the diameter d3 of the recess 120a is 0.5 mm, and the outer diameter d2 is 2.5 mm, and the recess 120a The diameter d3 may be 2 mm. Furthermore, you may provide a slit in the approximate center part of a microtube.
[0077] 図 5Gは、外径 d2 = 2. 5mm、直径 d3 = 2. 0mmでスリットを有する微細管の側面 断面図である。 FIG. 5G is a side cross-sectional view of a microtube having an outer diameter d2 = 2.5 mm, a diameter d3 = 2.0 mm, and a slit.
[0078] 微細管 100fは、外径 d2が 2. 5mmであって、凹部 120aの直径 d3が 2. 0mmとな るように形成されている。さらに、微細管 100fには、微細管 100fの側面略中央部に 開口を有し、揷通孔 130に連通するスリット 140fが形成されている。スリット 140fの開 口面は細長い略矩形状であって、その開口面における微細管 100fの軸方向に沿つ た長さは例えば略 2mmである。なお、この微細管 100fは、スリット 140f、外径 d2お よび直径 d3を除き、上述の微細管 100と等しくなるように形成されている。  [0078] The microtube 100f is formed so that the outer diameter d2 is 2.5 mm and the diameter d3 of the recess 120a is 2.0 mm. Further, the microtube 100f is formed with a slit 140f that has an opening at a substantially central portion of the side surface of the microtube 100f and communicates with the through hole 130. The opening surface of the slit 140f is an elongated and substantially rectangular shape, and the length of the opening surface along the axial direction of the microtube 100f is, for example, approximately 2 mm. The fine tube 100f is formed to be equal to the above-described fine tube 100 except for the slit 140f, the outer diameter d2 and the diameter d3.
[0079] このような微細管 100fでは、凹部 120aの直径 d3が 2. 0mmであって、微細管 100 の直径 d3よりも長いため、より太い光ファイバケーブルをその凹部 120aに差し込むこ とができる。さらに、微細管 100fの外径 d2は、微細管 100の外径 d2よりも大きぐ微 細管 100fの方が微細管 100よりも肉厚であるため、 2つの光ファイバの連結部をより 確実に保護することができる。さらに、この微細管 100fでは、スリット 140fがあるため 、 2つの光ファイバのそれぞれの端面が連結された状態を目視して確認することがで きる。 [0079] In such a micro tube 100f, the diameter d3 of the recess 120a is 2.0 mm, which is longer than the diameter d3 of the micro tube 100, so that a thicker optical fiber cable can be inserted into the recess 120a. . Furthermore, the outer diameter d2 of the microtube 100f is larger than the outer diameter d2 of the microtubule 100. The microtubule 100f is thicker than the microtube 100. It can be surely protected. Furthermore, since the microtube 100f has the slit 140f, it is possible to visually confirm the state in which the end faces of the two optical fibers are connected.
[0080] このように本実施の形態では、微細管がセラミックスからなることにより、従来の金属 製の微細管と比べて、耐熱性に優れるとともに変形し難いため、揷入された 2つの光 ファイバの軸ずれや角度ずれ、隙間などの発生を防ぐことができ、その結果、光の接 続損失を低減することができる。さらに、外径が 2. 5mm以下という極めて微小な管に おいて、同軸度が 1 /i m以内であるため、 2つの極めて細い光ファイバの端面を精度 良く確実に保持して接触させることができ、その結果、このような光ファイバに対しても 光の接続損失を低減することができる。さらに、省スペース化を図ることができる。また 、このような微細管を例えば光ファイバのフエルールとして用いたときにも、同軸度が l x m以内であるため、互いの光ファイバの端面を精度良く接触させることができ、光 の接続損失を低減することができる。  As described above, in this embodiment, since the microtubule is made of ceramics, it has excellent heat resistance and is difficult to be deformed as compared with a conventional metal microtubule. This can prevent the occurrence of axial misalignment, angular misalignment, and gaps, and as a result, light connection loss can be reduced. Furthermore, since the coaxiality is within 1 / im in a very small tube with an outer diameter of 2.5 mm or less, the end faces of two extremely thin optical fibers can be held accurately and securely in contact with each other. As a result, the optical connection loss can be reduced even for such an optical fiber. Furthermore, space saving can be achieved. In addition, when such a fine tube is used as a ferrule for an optical fiber, for example, since the coaxiality is within lxm, the end surfaces of the optical fibers can be brought into contact with each other with high accuracy, thereby reducing the optical connection loss. can do.
[0081] (実施の形態 2)  [0081] (Embodiment 2)
図 6A〜図 6Cは、本発明の第 2の実施の形態における微細管の形状を示す図であ る。  6A to 6C are diagrams showing the shape of the microtubule in the second embodiment of the present invention.
[0082] 図 6Aは微細管の斜視図であり、図 6Bは微細管の正面図であり、図 6Cは微細管の 側面断面図である。  FIG. 6A is a perspective view of the microtube, FIG. 6B is a front view of the microtube, and FIG. 6C is a side sectional view of the microtube.
[0083] 本実施の形態における微細管 200は、実施の形態 1の微細管 100と同様、例えば 酸化ジルコニウムなどからなり、全体的に肉厚の略円筒形に形成されている。微細管 200の 2つの端面 220の略中央部分には、奥に向力 ほど幅が小さくなるような V字 状の凹部 220aが形成されている。この凹部 220aの底部は微細管 200の揷通孔 23 0に連通している。なお、このような凹部 220aは、光ファイバの一端を揷通孔 230に 案内するために設けられている。したがって、このような凹部 220aによって、光フアイ バを揷通孔 230に容易に揷入することができる。  [0083] The microtube 200 in the present embodiment is made of, for example, zirconium oxide, as in the microtube 100 of the first embodiment, and is formed in a generally cylindrical shape with a large wall thickness. A V-shaped recess 220a is formed in a substantially central portion of the two end faces 220 of the microtube 200 so that the width decreases toward the back. The bottom of the recess 220a communicates with the through hole 230 of the microtube 200. Such a recess 220a is provided to guide one end of the optical fiber to the through hole 230. Therefore, the optical fiber can be easily inserted into the through hole 230 by such a recess 220a.
[0084] 微細管 200の長さ L1は、例えば、 0. lmm〜45cmであり、微細管 200の外径 d2 は、例えば 0. 7mmであり、微細管 200の揷通孔 230の直径(微細管 200の内径) dl は、例えば 0. 05mm〜2mmである。 [0085] このような微細管 200は、揷通孔 230に互いに異なる方向から光ファイバが揷入さ れることによって、これらの光ファイバの端面を連結し、 2つの光ファイバを一直線状 に保つ。 [0084] The length L1 of the microtube 200 is, for example, 0.1 mm to 45 cm, the outer diameter d2 of the microtube 200 is, for example, 0.7 mm, and the diameter of the through hole 230 of the microtube 200 (fine The inner diameter (dl) of the tube 200 is, for example, 0.05 mm to 2 mm. In such a microtubule 200, optical fibers are inserted into the through holes 230 from different directions, thereby connecting the end faces of these optical fibers and keeping the two optical fibers in a straight line.
[0086] また、本実施の形態における微細管 200は、上記実施の形態 1の微細管 100と同 様、同軸度力 l z m以内になるように形成されている。  [0086] In addition, microtube 200 in the present embodiment is formed to have a coaxial force lzm or less, like microtube 100 in the first embodiment.
[0087] 図 7は、微細管 200が 2つの光ファイバケーブルを連結している様子を示す図であ る。 [0087] FIG. 7 is a diagram showing a state in which the microtubule 200 connects two optical fiber cables.
[0088] 光ファイバケーブル F1の先端側は、被覆材 Fibが剥がされて光ファイバ Fl aが露 出された状態で、微細管 200の一方(図 7中の左側)の凹部 220aから揷通孔 230に 挿入される。なお、揷通孔 230の直径 dlは、光ファイバ Flaの外径よりも大きぐ光フ アイバケーブル F1の被覆材 Fibを有する部分の外径よりも小さい。したがって、光フ アイバケーブル F1の先端側の被覆材 Fibを有する部分は、挿通孔 230に挿入され ることなく、微細管 200の凹部 220aに嵌め込まれる。つまり、本実施の形態では、光 ファイバ Flaを被覆する被覆材 Fibが、微細管 200の一端に形成された凹部 220a の底面に接するまで、光ファイバ Flaは挿通孔 230に挿入される。  [0088] The front end side of the optical fiber cable F1 has a through hole from the recess 220a on one side (left side in FIG. 7) of the microtube 200 in a state where the coating material Fib is peeled off and the optical fiber Fl a is exposed. Inserted into 230. The diameter dl of the through hole 230 is smaller than the outer diameter of the portion having the coating material Fib of the optical fiber cable F1 larger than the outer diameter of the optical fiber Fla. Therefore, the portion having the coating material Fib on the distal end side of the optical fiber cable F1 is fitted into the recess 220a of the microtubule 200 without being inserted into the insertion hole 230. In other words, in the present embodiment, the optical fiber Fla is inserted into the insertion hole 230 until the covering material Fib covering the optical fiber Fla contacts the bottom surface of the recess 220a formed at one end of the microtube 200.
[0089] 一方、光ファイバケーブル F2の先端側は、被覆材 F2bが剥がされて光ファイバ F2 aが露出された状態で、微細管 200の他方(図 7中の右側)の凹部 220aから揷通孔 2 30に揷入される。なお、揷通孔 230の直径 dlは、光ファイバ F2aの外形よりも大きく 、光ファイバケーブル F2の被覆材 F2bを有する部分の外径よりも小さい。したがって 、光ファイバケーブル F2の先端側の被覆材 F2bを有する部分は、揷通孔 230に揷 入されることな 微細管 200の凹部 220aに嵌め込まれる。つまり、本実施の形態で は、光ファイバ F2aを被覆する被覆材 F2bが、微細管 200の一端に形成された凹部 220aの底面に接するまで、光ファイバ F2aは揷通孔 230に揷入される。  On the other hand, the distal end side of the optical fiber cable F2 is passed through the recess 220a on the other side (right side in FIG. 7) of the microtube 200 in a state where the coating material F2b is peeled off and the optical fiber F2a is exposed. Hole 2 30 is inserted. The diameter dl of the through hole 230 is larger than the outer shape of the optical fiber F2a and smaller than the outer diameter of the portion of the optical fiber cable F2 having the covering material F2b. Therefore, the portion having the coating material F2b on the tip side of the optical fiber cable F2 is fitted into the recess 220a of the microtube 200 that is not inserted into the through hole 230. That is, in the present embodiment, the optical fiber F2a is inserted into the through hole 230 until the covering material F2b covering the optical fiber F2a contacts the bottom surface of the recess 220a formed at one end of the microtube 200. .
[0090] その結果、 2つの光ファイバケーブル Fl , F2は、それぞれの光ファイバ Fla, F2a の端面を微細管 200の略中央で突き合わせた状態となる。微細管 200は、このように 2つの光ファイバ Fla, F2aを接触させた状態で一直線状に保持して固定する。また 、凹部 220aの内面と被覆材 Fib, F2bとが接着剤により接着されることにより、 2つの 光ファイバケーブル Fl, F2は固定される。なお、凹部 220aの内面と被覆材 Fib, F 2bとの間に、くさびなどを押し込むことにより、 2つの光ファイバケーブル Fl, F2を固 定してもよい。 As a result, the two optical fiber cables Fl 1 and F 2 are in a state in which the end faces of the optical fibers Fla and F 2 a are abutted at the approximate center of the microtube 200. The microtube 200 is held and fixed in a straight line with the two optical fibers Fla and F2a in contact with each other. In addition, the two optical fiber cables Fl and F2 are fixed by adhering the inner surface of the recess 220a and the covering materials Fib and F2b with an adhesive. Note that the inner surface of the recess 220a and the covering material Fib, F The two optical fiber cables Fl and F2 may be fixed by inserting a wedge or the like between 2b.
[0091] このように本実施の形態では、実施の形態 1と同様、被覆材で覆われた光ファイバ の一端から、例えば揷通孔 230の長さの半分に相当する長さだけ、その被覆材を剥 力 Sして光ファイバを露出させておけば、その露出された光ファイバを揷通孔 230に揷 入して、その被覆材の端が凹部 220aの底面に係合したときには、その光ファイバを それ以上奥に揷入することができなくなり、その光ファイバの端面を、揷通孔 230の 中央に確実に配置することができる。その結果、 2つの端面の隙間の発生などを防い で、それらの端面を揷通孔 230の中央で確実に接触させることができる。また、本実 施の形態では、揷通孔 230に連通する凹部 220aの開口はその揷通孔 230の径より も大きいため、その凹部 220aを介して光ファイバの一端を挿通孔 230に容易に挿入 することができる。その結果、微細管の利便性を向上することができる。  As described above, in this embodiment, as in the first embodiment, the coating is applied from one end of the optical fiber covered with the coating material by a length corresponding to, for example, half the length of the through hole 230. If the optical fiber is exposed by peeling off the material S, when the exposed optical fiber is inserted into the through hole 230 and the end of the covering material is engaged with the bottom surface of the recess 220a, the optical fiber is exposed. The optical fiber can no longer be inserted further, and the end face of the optical fiber can be reliably placed in the center of the through hole 230. As a result, the occurrence of a gap between the two end faces can be prevented, and the end faces can be reliably brought into contact with each other at the center of the through hole 230. In this embodiment, since the opening of the recess 220a communicating with the through hole 230 is larger than the diameter of the through hole 230, one end of the optical fiber can be easily inserted into the insertion hole 230 through the recess 220a. Can be inserted. As a result, the convenience of the fine tube can be improved.
[0092] なお、微細管 200の略中央部にスリットを設けてもよい。  It should be noted that a slit may be provided in a substantially central portion of the microtube 200.
[0093] 図 8Aは、スリットを有する微細管の側面断面図である。  FIG. 8A is a side cross-sectional view of a microtube having a slit.
[0094] 微細管 200aには、微細管 200aの側面略中央部に開口を有し、揷通孔 230に連 通するスリット 240aが形成されている。スリット 240aの開口面は細長い略矩形状であ つて、その開口面における微細管 200aの軸方向に沿った長さは例えば略 lmmであ る。また、この微細管 200aは、スリット 240aが形成されていることを除き、上述の微細 管 200と等しくなるように形成されてレ、る。  [0094] The microtube 200a is formed with a slit 240a having an opening at the substantially central portion of the side surface of the microtube 200a and communicating with the through hole 230. The opening surface of the slit 240a is an elongated, substantially rectangular shape, and the length of the opening surface along the axial direction of the microtube 200a is, for example, approximately lmm. The microtube 200a is formed to be equal to the microtube 200 described above except that the slit 240a is formed.
[0095] このような微細管 200aでは、スリット 240aがあるため、 2つの光ファイバのそれぞれ の端面が連結された状態を目視して確認することができる。  In such a fine tube 200a, since there is a slit 240a, it is possible to visually confirm the state in which the end faces of the two optical fibers are connected.
[0096] また、上記実施の形態では、微細管 200の外径 d2を 0. 7mmとしたが、外径 d2を 1 . 25mmとしてもよい。  In the above embodiment, the outer diameter d2 of the microtube 200 is set to 0.7 mm, but the outer diameter d2 may be set to 1.25 mm.
[0097] 図 8Bは、外径 d2 = l . 25mmの微細管の側面断面図である。  FIG. 8B is a side cross-sectional view of a microtube having an outer diameter d2 = 1.25 mm.
[0098] 微糸田管 200bは、外径 d2が 1. 25mmであることを除き、上述の微細管 200と等しく なるように形成されている。  [0098] The fine yarn field pipe 200b is formed to be equal to the fine pipe 200 described above except that the outer diameter d2 is 1.25 mm.
[0099] このような微細管 200bでは、微細管 200bの外径 d2は、微細管 200の外径 d2より も大きぐ微細管 200bの方が微細管 200よりも肉厚であるため、 2つの光ファイバの 連結部をより確実に保護することができる。 [0099] In such a micro tube 200b, the outer diameter d2 of the micro tube 200b is larger than the outer diameter d2 of the micro tube 200. Optical fiber The connecting portion can be more reliably protected.
[0100] また、微細管 200bの略中央部にスリットを設けてもよい。 [0100] Further, a slit may be provided in a substantially central portion of the microtube 200b.
[0101] 図 8Cは、スリットを有する微細管の側面断面図である。 [0101] FIG. 8C is a side sectional view of a microtubule having a slit.
[0102] 微細管 200cには、微細管 200cの側面略中央部に開口を有し、揷通孔 230に連 通するスリット 240cが形成されている。スリット 240cの開口面は細長い略矩形状であ つて、その開口面における微細管 200cの軸方向に沿った長さは略 1. 5mmである。 また、この微細管 200cは、スリット 240cが形成されていることを除き、上述の微細管 2 00bと等しくなるように形成されている。  [0102] The microtube 200c is formed with a slit 240c that has an opening at a substantially central portion of the side surface of the microtube 200c and communicates with the through hole 230. The opening surface of the slit 240c is an elongated, substantially rectangular shape, and the length of the opening surface along the axial direction of the microtube 200c is approximately 1.5 mm. The microtube 200c is formed to be equal to the microtube 200b described above except that the slit 240c is formed.
[0103] このような微細管 200cでは、スリット 240cがあるため、 2つの光ファイバのそれぞれ の端面が連結された状態を目視して確認することができる。  [0103] In such a fine tube 200c, since there is a slit 240c, it is possible to visually confirm the state in which the end faces of the two optical fibers are connected.
[0104] また、上記実施の形態では、微細管 200の外径 d2を 0. 7mmとしたが、外径 d2を 2 . 5mmとしてもよい。  [0104] In the above embodiment, the outer diameter d2 of the microtube 200 is set to 0.7 mm, but the outer diameter d2 may be set to 2.5 mm.
[0105] 図 8Dは、外径 d2 = 2. 5mmの微細管の側面断面図である。  FIG. 8D is a side cross-sectional view of a microtube having an outer diameter d2 = 2.5 mm.
[0106] 微細管 200dは、外径 d2が 2. 5mmであることを除き、上述の微細管 200と等しくな るように形成されている。  [0106] The microtube 200d is formed to be equal to the microtube 200 described above except that the outer diameter d2 is 2.5 mm.
[0107] このような微細管 200dでは、微細管 200dの外径 d2が、微細管 200の外径 d2より も大きぐ微細管 200dの方が微細管 200よりも肉厚であるため、 2つの光ファイバの 連結部をより確実に保護することができる。  [0107] In such a microtube 200d, the outer diameter d2 of the microtube 200d is larger than the outer diameter d2 of the microtube 200. The connecting part of the optical fiber can be protected more reliably.
[0108] さらに、微細管 200dの略中央部にスリットを設けてもよい。  [0108] Furthermore, a slit may be provided in a substantially central portion of the microtube 200d.
[0109] 図 8Eは、スリットを有する微細管の側面断面図である。  FIG. 8E is a side cross-sectional view of a microtube having a slit.
[0110] 微細管 200eには、微細管 200eの側面略中央部に開口を有し、揷通孔 230に連 通するスリット 240eが形成されている。なお、この微糸田管 200eは、スリット 240e力形 成されていることを除き、上述の微細管 200dと等しくなるように形成されている。  [0110] The microtube 200e is formed with a slit 240e having an opening at the substantially central portion of the side surface of the microtube 200e and communicating with the through hole 230. The fine yarn field pipe 200e is formed to be equal to the above-described fine pipe 200d except that a slit 240e force is formed.
[0111] このような微細管 200eでは、スリット 240eがあるため、 2つの光ファイバのそれぞれ の端面が連結された状態を目視して確認することができる。  [0111] In such a microtube 200e, since there is a slit 240e, it is possible to visually confirm the state in which the end faces of the two optical fibers are connected.
[0112] このように本実施の形態では、実施の形態 1と同様、微細管がセラミックスからなるこ とにより、従来の金属製の微細管と比べて、耐熱性に優れるとともに変形し難いため 、挿入された 2つの光ファイバの軸ずれや角度ずれ、隙間などの発生を防ぐことがで き、その結果、光の接続損失を低減することができる。さらに、外径が 2. 5mm以下と レ、う極めて微小な管において、同軸度が 以内であるため、 2つの極めて細い光 ファイバの端面を精度良く確実に保持して接触させることができ、その結果、このよう な光ファイバに対しても光の接続損失を低減することができる。さらに、省スペース化 を図ることができる。また、このような微細管を例えば光ファイバのフェルールとして用 レ、たときにも、同軸度が l z m以内であるため、互いの光ファイバの端面を精度良く 接触させることができ、光の接続損失を低減することができる。 [0112] As described above, in this embodiment, since the microtubule is made of ceramics as in the first embodiment, it has excellent heat resistance and is difficult to be deformed as compared with the conventional metal microtubule. It is possible to prevent the occurrence of axial misalignment, angular misalignment, and gaps between the two inserted optical fibers. As a result, the optical connection loss can be reduced. Furthermore, since the coaxiality is less than 2.5 mm for an extremely small tube with an outer diameter of 2.5 mm or less, the end faces of two extremely thin optical fibers can be held accurately and securely in contact with each other. As a result, the optical connection loss can be reduced even for such an optical fiber. In addition, space can be saved. Also, when such a fine tube is used as an optical fiber ferrule, for example, since the coaxiality is within lzm, the end faces of the optical fibers can be brought into contact with each other with high accuracy, and the optical connection loss can be reduced. Can be reduced.
[0113] (変形例 1) [0113] (Variation 1)
本変形例に係る微細管は、微細管本体と、その微細管本体を覆う被覆管とから構 成される。  The micropipe according to this modification is composed of a micropipe main body and a cladding tube covering the micropipe main body.
[0114] 図 9Aは、本変形例に係る微細管の側面断面図である。  [0114] FIG. 9A is a side sectional view of a microtubule according to this modification.
[0115] 本変形例に係る微細管 201は、微細管本体 200fと被覆管 250fとから構成される。  [0115] The microtube 201 according to this modification is composed of a microtube body 200f and a cladding tube 250f.
[0116] 微細管本体 200fは、外径 d2が 0. 9mmであることを除き、上記実施の形態の微細 管 200と等しくなるように形成されてレ、る。  [0116] The fine tube body 200f is formed so as to be equal to the fine tube 200 of the above embodiment except that the outer diameter d2 is 0.9 mm.
[0117] 被覆管 250fは、例えばステンレス鋼などの金属からなり、その内面が微細管本体 2 00fの外面と接触して微細管本体 200fを覆うように形成されている。また、被覆管 25 Ofは、微細管本体 200fよりも軸方向に長く形成されている。  [0117] The cladding tube 250f is made of a metal such as stainless steel, for example, and is formed so that its inner surface contacts the outer surface of the microtube body 200f and covers the microtube body 200f. Further, the cladding tube 25 Of is formed longer in the axial direction than the fine tube main body 200f.
[0118] 微細管本体 200fは、被覆管 250f内の略中央部に揷入され、微細管本体 200fの 両端が被覆管 250f内に納められた状態に配置される。つまり、被覆管 250fの両端 は、微細管本体 200fから突出している。  [0118] The fine tube main body 200f is inserted into a substantially central portion of the cladding tube 250f, and both ends of the fine tube main body 200f are placed in the cladding tube 250f. That is, both ends of the cladding tube 250f protrude from the fine tube body 200f.
[0119] 本変形例に係る微細管 201では、例えば、光ファイバケーブルの被覆材を有する 部分が、被覆管 250fの一端力 微細管本体 200fの凹部 220a内に挿入され、その 光ファイバケーブルの光ファイバのみが微細管本体 200fの揷通孔 230に揷通される 。また、上述の光ファイバケーブルと連結される光ファイバケーブルも、上述と同様に 、被覆管 250fの他端から揷入される。その結果、 2つの光ファイバの端面が、微細管 本体 200fの略中央で突き合わされた状態となる。そして、被覆管 250fの両端部内 面と、光ファイバケーブルの被覆材とが例えば接着剤などにより固定される。これによ り、 2つの光ファイバケーブルが連結される。なお、被覆管 250fの両端部内面と被覆 材との間に、くさびなどを押し込むことにより、 2つの光ファイバケーブルを固定しても よい。 [0119] In the microtube 201 according to this modification, for example, the portion of the optical fiber cable having the coating material is inserted into the concave portion 220a of the microtube main body 200f of the one end force of the cladding tube 250f, and the light of the optical fiber cable. Only the fiber is passed through the through hole 230 of the fine tube body 200f. Also, the optical fiber cable connected to the above-described optical fiber cable is inserted from the other end of the cladding tube 250f in the same manner as described above. As a result, the end faces of the two optical fibers are brought into contact with each other at the approximate center of the fine tube body 200f. Then, the inner surfaces of both ends of the cladding tube 250f and the coating material of the optical fiber cable are fixed by, for example, an adhesive. This connects the two optical fiber cables. The inner surface of both ends of the cladding tube 250f and the coating The two optical fiber cables may be fixed by pushing a wedge or the like between the materials.
[0120] このような微細管 201では、被覆管 250fが金属から構成されているため、その被覆 管 250fを他の金属に溶接したりはんだ付けしたりすることができ、その結果、微細管 201を他の部材に容易に且つ確実に固定することができる。  [0120] In such a fine tube 201, since the cladding tube 250f is made of a metal, the cladding tube 250f can be welded or soldered to another metal. Can be easily and reliably fixed to other members.
[0121] なお、微細管 201の略中央部にスリットを設けてもよい。  [0121] Note that a slit may be provided in a substantially central portion of the microtubule 201.
[0122] 図 9Bは、スリットを有する微細管の側面断面図である。  FIG. 9B is a side cross-sectional view of a microtube having a slit.
[0123] 微細管 202には、微細管 202の側面略中央部に開口を有し、揷通孔 230に連通 するスリット 270gが形成されている。なお、この微細管 202は、スリット 270gが形成さ れてレ、ることを除き、上述の微細管 201と等しくなるように形成されてレ、る。  [0123] The microtube 202 is formed with a slit 270g having an opening at the substantially central portion of the side surface of the microtube 202 and communicating with the through hole 230. The microtube 202 is formed to be equal to the microtube 201 described above except that the slit 270g is formed.
[0124] 即ち、微細管 202は、スリット 240gを有する微細管本体 200gと、スリット 260gを有 する被覆管 250gとから構成されている。そして、スリット 240gとスリット 260gとが連通 することにより上述のスリット 270gが形成される。  [0124] That is, the microtube 202 is composed of a microtube body 200g having a slit 240g and a cladding tube 250g having a slit 260g. Then, the slit 270g is formed by communication between the slit 240g and the slit 260g.
[0125] ここで、微細管本体 200gは、スリット 240gを除き、上述の微細管本体 200fと等しく なるように形成されている。そして、スリット 240gは、微細管本体 200gの側面略中央 部に開口を有して揷通孔 230に連通するように形成されている。また、被覆管 250g は、スリット 260gを除き、上述の被覆管 250fと等しくなるように形成されている。そし て、スリット 260gは、被覆管 250gの側面略中央部に開口を有して内部に連通するよ うに形成されている。  [0125] Here, the fine tube main body 200g is formed to be equal to the fine tube main body 200f described above except for the slit 240g. The slit 240g is formed so as to communicate with the through hole 230 having an opening at a substantially central portion of the side surface of the fine tube main body 200g. The cladding tube 250g is formed to be equal to the above-described cladding tube 250f except for the slit 260g. The slit 260g is formed to have an opening at the substantially central portion of the side surface of the cladding tube 250g so as to communicate with the inside.
[0126] このように微細管 202では、スリット 270gが形成されているため、 2つの光ファイバ のそれぞれの端面が連結された状態を目視して確認することができる。  [0126] As described above, since the slit 270g is formed in the microtube 202, it is possible to visually confirm the state in which the end faces of the two optical fibers are connected.
[0127] つまり、微細管 202において、 2本の光ファイバを揷通孔 230に揷入するときには、 まず、スリット 270g内を目視しながら、一方の光ファイバの端面がスリット 270gの奥に 現れるまで、その一方の光ファイバを揷通孔 230に揷入する。そして、スリット 270g内 を目視しながら、他方の光ファイバの端面がスリット 270gの奥に現れ、上述の一方の 光ファイバの端面に接触するまで、その他方の光ファイバを揷通孔 230に揷入する。 これにより、スリット 270gを司見き込めば、揷通孔 230に揷入された光ファイバを見るこ とができ、 2つの光ファイバの端面が接触しているか否力を確認することができる。さら に、このスリット 270gに樹脂材料からなる接着剤を満たせば、 2つの光ファイバの端 面を接触させた状態で確実に固定することができる。 That is, in inserting the two optical fibers into the through-hole 230 in the microtube 202, first, while observing the inside of the slit 270g, until the end face of one optical fiber appears in the back of the slit 270g. One of the optical fibers is inserted into the through hole 230. While observing the inside of the slit 270g, the other optical fiber is inserted into the through hole 230 until the end face of the other optical fiber appears in the back of the slit 270g and contacts the end face of the one optical fiber described above. To do. Thus, if the slit 270g is inserted, the optical fiber inserted into the through hole 230 can be seen, and it is possible to confirm whether or not the end faces of the two optical fibers are in contact with each other. More In addition, if the slit 270g is filled with an adhesive made of a resin material, the two optical fibers can be reliably fixed in contact with each other.
[0128] なお、本変形例では、微細管 201, 202を複合管として扱い、微細管本体 200f, 2In this modification, the fine tubes 201 and 202 are treated as composite tubes, and the fine tube bodies 200f, 2
00gを上記実施の形態の微細管として扱ってもよい。つまり、複合管 201は、微細管00 g may be handled as the fine tube of the above embodiment. That is, the composite tube 201 is a fine tube.
200fと被覆管 250fとを備えて構成され、複合管 202は、微細管 200gと被覆管 250 gとを備えて構成される。 The composite tube 202 is configured to include a fine tube 200g and a cladding tube 250g.
[0129] (変形例 2) [0129] (Variation 2)
本変形例に係る微細管は、微細管本体と、その微細管本体の一部を覆う 2つの被 覆管とから構成される。  The micropipe according to this modification is composed of a micropipe main body and two covered pipes that cover a part of the micropipe main body.
[0130] 図 10Aは、本変形例に係る微細管の側面断面図である。 [0130] FIG. 10A is a side cross-sectional view of a microtubule according to this modification.
[0131] 本変形例に係る微細管 203は、微細管本体 200fと 2つの被覆管 250とから構成さ れる。  [0131] The micropipe 203 according to this modification is composed of a micropipe main body 200f and two cladding tubes 250.
[0132] 微細管本体 200fは、外径 d2が 0. 9mmであることを除き、上記実施の形態の微細 管 200と等しくなるように形成されてレ、る。  [0132] The fine tube main body 200f is formed to be equal to the fine tube 200 of the above-described embodiment except that the outer diameter d2 is 0.9 mm.
[0133] 2つの被覆管 250はそれぞれ、例えばステンレス鋼などの金属からなり、その内面 が微細管本体 200fの外面と接触して微細管本体 200fの一端部を覆うように形成さ れている。 [0133] Each of the two cladding tubes 250 is made of, for example, a metal such as stainless steel, and is formed so that its inner surface is in contact with the outer surface of the fine tube main body 200f and covers one end of the fine tube main body 200f.
[0134] 微細管本体 200fの両端はそれぞれ、被覆管 250内に挿入され、その被覆管 250 内に納められた状態に配置される。つまり、各被覆管 250の端は、微細管本体 200f の端から突出している。そして、微細管本体 200fの略中央部は、被覆管 250に覆わ れることなく露出された状態となる。  [0134] Both ends of the fine tube main body 200f are respectively inserted into the cladding tube 250 and arranged in a state of being accommodated in the cladding tube 250. That is, the end of each cladding tube 250 protrudes from the end of the fine tube body 200f. The substantially central portion of the fine tube main body 200f is exposed without being covered with the cladding tube 250.
[0135] 本変形例に係る微細管 203では、例えば、光ファイバケーブルの被覆材を有する 部分が、一方の被覆管 250から微細管本体 200fの凹部 220a内に挿入され、その光 ファイバケーブルの光ファイバのみが微細管本体 200fの揷通孔 230に揷通される。 また、上述の光ファイバケーブルと連結される光ファイバケーブルも、上述と同様に、 他方の被覆管 250から挿入される。その結果、 2つの光ファイバの端面が、微細管本 体 200fの略中央で突き合わされた状態となる。そして、被覆管 250の内面と、光ファ ィバケーブルの被覆材とが例えば接着剤などにより固定される。これにより、 2つの光 ファイバケーブルが連結される。なお、被覆管 250の内面と被覆材との間に、くさびな どを押し込むことにより、 2つの光ファイバケーブルを固定してもよい。 [0135] In the microtube 203 according to this modification, for example, a portion having a coating material of an optical fiber cable is inserted into the recess 220a of the microtube main body 200f from one of the cladding tubes 250, and the optical fiber cable light Only the fiber is passed through the through hole 230 of the fine tube body 200f. Further, the optical fiber cable connected to the above-described optical fiber cable is also inserted from the other cladding tube 250 as described above. As a result, the end faces of the two optical fibers are brought into contact with each other at the approximate center of the microtubule body 200f. Then, the inner surface of the cladding tube 250 and the coating material of the optical fiber cable are fixed by, for example, an adhesive. This allows two lights A fiber cable is connected. The two optical fiber cables may be fixed by pushing a wedge or the like between the inner surface of the cladding tube 250 and the coating material.
[0136] このような微細管 203では、被覆管 250が金属から構成されているため、その被覆 管 250を他の金属に溶接したりはんだ付けしたりすることができ、その結果、微細管 2[0136] In such a fine tube 203, since the cladding tube 250 is made of a metal, the cladding tube 250 can be welded or soldered to another metal.
03を他の部材に容易に且つ確実に固定することができる。 03 can be easily and securely fixed to other members.
[0137] なお、微細管 203の略中央部にスリットを設けてもよい。 [0137] Note that a slit may be provided in a substantially central portion of the microtubule 203.
[0138] 図 10Bは、スリットを有する微細管の側面断面図である。 FIG. 10B is a side cross-sectional view of a microtube having a slit.
[0139] 微細管 204は、スリット 240gが形成された微細管本体 200gと 2つの被覆管 250と から構成される。なお、この微細管 204は、スリット 240gを除き、上述の微細管 203と 等しくなるように形成されている。  [0139] The micropipe 204 is composed of a micropipe main body 200g in which a slit 240g is formed and two cladding tubes 250. The microtube 204 is formed to be equal to the microtube 203 described above except for the slit 240g.
[0140] このような微細管 204では、スリット 240g力 Sあるため、 2つの光ファイバのそれぞれ の端面が連結された状態を目視して確認することができる。  [0140] In such a fine tube 204, since there is a slit 240g force S, it is possible to visually confirm the state in which the end faces of the two optical fibers are connected.
[0141] つまり、微細管 204において、 2本の光ファイバを挿通孔 230に挿入するときには、 まず、スリット 240g内を目視しながら、一方の光ファイバの端面がスリット 240gの奥に 現れるまで、その一方の光ファイバを揷通孔 230に挿入する。そして、スリット 240g内 を目視しながら、他方の光ファイバの端面がスリット 240gの奥に現れ、上述の一方の 光ファイバの端面に接触するまで、その他方の光ファイバを揷通孔 230に挿入する。 これにより、スリット 240gを司見き込めば、揷通孔 230に揷入された光ファイバを見るこ とができ、 2つの光ファイバの端面が接触しているか否力を確認することができる。さら に、このスリット 240gに樹脂材料からなる接着剤を満たせば、 2つの光ファイバの端 面を接触させた状態で確実に固定することができる。  [0141] That is, when inserting two optical fibers into the insertion hole 230 in the microtube 204, first, while visually observing the inside of the slit 240g, until the end face of one optical fiber appears in the back of the slit 240g, One optical fiber is inserted into the through hole 230. Then, while observing the inside of the slit 240g, insert the other optical fiber into the through hole 230 until the end surface of the other optical fiber appears in the back of the slit 240g and contacts the end surface of the one optical fiber described above. . Thus, if the slit 240g is fully inserted, the optical fiber inserted into the through hole 230 can be seen, and it is possible to confirm whether or not the end faces of the two optical fibers are in contact with each other. Furthermore, if this slit 240g is filled with an adhesive made of a resin material, the two optical fibers can be securely fixed in contact with each other.
[0142] なお、本変形例では、微細管 203, 204を複合管として扱い、微細管本体 200f, 2 00gを上記実施の形態の微細管として扱ってもよい。つまり、複合管 203は、微細管 200fと 2つの被覆管 250とを備えて構成され、複合管 204は、微細管 200gと 2つの 被覆管 250とを備えて構成される。  [0142] In this modification, the fine tubes 203 and 204 may be handled as composite tubes, and the fine tube main bodies 200f and 200g may be handled as the fine tubes of the above embodiment. That is, the composite tube 203 includes a fine tube 200f and two cladding tubes 250, and the composite tube 204 includes a fine tube 200g and two cladding tubes 250.
[0143] (変形例 3)  [0143] (Variation 3)
図 11Aは、本変形例に係る微細管の側面断面図である。  FIG. 11A is a side cross-sectional view of a microtubule according to this modification.
[0144] 本変形例に係る微細管 301は、図 8Bの微細管 200bの凹部 220aの代わりに、凹 部 320が形成され、その凹部 320を除き、微細管 200bと等しくなるように形成されて いる。 [0144] The microtubule 301 according to this modification has a concave portion instead of the concave portion 220a of the microtubule 200b of Fig. 8B. A portion 320 is formed and formed so as to be equal to the microtube 200b except for the concave portion 320.
[0145] 凹部 320は、微細管 301の 2つの端面 220の略中央部に形成されている。この凹 部 320では、端面 220から所定の深さまで、何れの深さにおいても、深さ方向に垂直 な方向の幅が等しくなるように形成され、さらに、その所定の深さから、深くなるにつ れて上述の幅が小さくなるように形成されている。そして、この凹部 320の底部は揷 通孔 230に連通している。また、凹部 320の端面 220における開口の直径 d3は、例 えば 0· 5mmである。  [0145] The recess 320 is formed in the substantially central portion of the two end faces 220 of the microtube 301. The concave portion 320 is formed so that the width in the direction perpendicular to the depth direction is the same at any depth from the end face 220 to a predetermined depth, and further, the depth is increased from the predetermined depth. Accordingly, the width is formed to be small. The bottom of the recess 320 communicates with the through hole 230. The diameter d3 of the opening in the end surface 220 of the recess 320 is, for example, 0.5 mm.
[0146] なお、微細管 301の略中央部にスリットを設けてもよい。  [0146] Note that a slit may be provided in a substantially central portion of the microtubule 301.
[0147] 図 11Bは、スリットを有する微細管の側面断面図である。  FIG. 11B is a side sectional view of a microtube having a slit.
[0148] 微細管 302には、微細管 302の側面略中央部に開口を有し、揷通孔 230に連通 するスリット 240cが形成されている。スリット 240cの開口面は細長い略矩形状であつ て、その開口面における微細管 302の軸方向に沿った長さは例えば略 lmmである。 また、この微細管 302は、スリット 240cが形成されていることを除き、上述の微細管 3 01と等しくなるように形成されてレ、る。  [0148] The microtube 302 is formed with a slit 240c having an opening at a substantially central portion of the side surface of the microtube 302 and communicating with the through hole 230. The opening surface of the slit 240c is an elongated and substantially rectangular shape, and the length of the opening surface along the axial direction of the microtube 302 is, for example, approximately lmm. The microtube 302 is formed so as to be equal to the microtube 301 described above except that the slit 240c is formed.
[0149] このような微細管 302では、スリット 240cがあるため、 2つの光ファイバのそれぞれ の端面が連結された状態を目視して確認することができる。  [0149] In such a microtube 302, since there is a slit 240c, it is possible to visually confirm the state in which the end faces of the two optical fibers are connected.
[0150] (変形例 4)  [0150] (Modification 4)
図 11Cは、本変形例に係る微細管の正面断面図である。  FIG. 11C is a front sectional view of the microtubule according to this modification.
[0151] 本変形 ί列にィ系る微糸田管 200〜204, 200a〜200e, 301, 302は、挿通孑し 230を 構成する内周面に、その揷通孔 230の長手方向に沿う溝 350を有する。この溝 350 は、揷通孔 230の一端から他端まで、つまり微細管の一方の凹部 220aから他方の 凹部 220aまで形成されている。また、この溝 350の底は、その溝 350の長手方向に 垂直な断面において、矩形状または円弧状に形成されている。なお、溝 350の形状 は上述の矩形状や円弧状に限定されず、その形状および寸法を、揷通孔 230に揷 通される光ファイバ Fla, F2aの配置にずれなどの影響を与えない範囲で、任意に設 定してもよい。  [0151] The fine thread field pipes 200 to 204, 200a to 200e, 301, and 302 that are in this modified ί row are inserted in the inner circumferential surface of the 230, and are grooves along the longitudinal direction of the through hole 230. Have 350. The groove 350 is formed from one end to the other end of the through hole 230, that is, from one recess 220a to the other recess 220a of the microtube. The bottom of the groove 350 is formed in a rectangular shape or an arc shape in a cross section perpendicular to the longitudinal direction of the groove 350. The shape of the groove 350 is not limited to the above-described rectangular shape or arc shape, and the shape and dimensions thereof do not affect the arrangement of the optical fibers Fla and F2a passed through the through hole 230. You can set it arbitrarily.
[0152] このように本変形例では、微細管が溝 350を有するため、光ファイバ Fla, F2aの挿 通孔 230への揷入によって閉じ込められた揷通孔 230内の空気を、溝 350を通じて 微細管の外へ逃がすことができる。その結果、本変形例では、光ファイバ Fla, F2a を揷通孔 230にスムーズに揷入することができるとともに、その光ファイバ Fla, F2a を揷通孔 230の内周面でしつカ^と固定することができる。 [0152] As described above, in this modified example, since the microtubule has the groove 350, the optical fibers Fla and F2a are inserted. The air in the through-hole 230 confined by the insertion into the through-hole 230 can escape to the outside of the fine tube through the groove 350. As a result, in this modification, the optical fibers Fla and F2a can be smoothly inserted into the through hole 230, and the optical fibers Fla and F2a can be inserted into the inner peripheral surface of the through hole 230. Can be fixed.
[0153] なお、例えば微細管 200aのように、スリットを有する微細管であっても、揷通孔 230 内の空気を、そのスリットを通じて微細管の外へ逃がすことができる。しかし、このよう なスリットを有する微細管では、光ファイバ Fla, F2aが互いに異なる方向から揷通孔 230に挿入されて強く押し込められれば、これらの光ファイバ Fla, F2aの先端が互 いに相手方を押圧することによって、それらの先端がスリット側に反り上がってしまうこ ととなる。つまり、スリットがあることによって、接続損失が大きくなつてしまうことがある。 そこで、スリットの代わりに上述のような溝 350を形成することによって、光ファイバをス ムーズに挿入することができるとともに接続損失を確実に抑えることができる。 Note that even in the case of a microtube having a slit, such as the microtube 200a, the air in the through hole 230 can be released to the outside of the microtube through the slit. However, in such a micro tube having a slit, if the optical fibers Fla and F2a are inserted into the through-hole 230 from different directions and pushed in strongly, the ends of these optical fibers Fla and F2a By pressing, the leading ends of them will warp to the slit side. In other words, the connection loss may increase due to the presence of the slit. Therefore, by forming the groove 350 as described above instead of the slit, the optical fiber can be smoothly inserted and the connection loss can be reliably suppressed.
[0154] また、本変形例では、実施の形態 2の微細管に溝 350を形成したが、実施の形態 1 の微細管 100, 100a〜: !OOfに溝 350を形成してもよい。この場合、溝 350は、その 微細管の挿通孔 130を構成する内周面に、その揷通孔 130の長手方向に沿うように 形成される。 [0154] In this modification, the groove 350 is formed in the microtubule of the second embodiment, but the groove 350 may be formed in the microtubules 100, 100a to:! OOf of the first embodiment. In this case, the groove 350 is formed along the longitudinal direction of the through hole 130 on the inner peripheral surface constituting the through hole 130 of the microtube.
[0155] (実施の形態 3) [Embodiment 3]
本実施の形態における微細管は、セラミックスではなく金属からなる。即ち、本実施 の形態における微細管は、実施の形態 2における微細管と同一の構成および寸法を 有するが、セラミックスではなく金属から形成されている。  The microtube in the present embodiment is made of metal, not ceramics. That is, the microtube in the present embodiment has the same configuration and dimensions as the microtubule in the second embodiment, but is formed of metal instead of ceramics.
[0156] このような金属からなる微細管 200は、電铸装置を用いて製造される。 [0156] The fine tube 200 made of such a metal is manufactured by using an electroplating apparatus.
[0157] 図 12Aおよび図 12Bは、電鎳装置の構成を示す構成図である。 [0157] FIGS. 12A and 12B are configuration diagrams showing the configuration of the electronic apparatus.
[0158] 電鎳装置 30は、電鎳液 2が満たされる水槽 31と、芯線 1を直線状に保持する保持 機構 35と、保持機構 35を回転させるモータ 32と、電極となる金属部材 33と、電铸液 2を介して芯線 1と金属部材 33との間に電流を流すための電源 38と、電铸液 2を循 環させるためのポンプ 34と、芯線 1に流れる電流を計測する電流計 36と、その電流 計 36による計測結果に基づいて、芯線 1に流れる電流を制御する電流制御部 37と を備えている。 [0159] 電鎳液 2には、例えばニッケノレまたはその合金、鉄またはその合金、銅またはその 合金、コバルトまたはその合金、タングステン合金、微粒子分散金属などの電鎳金属 が採用可能であり、スルファミン酸ニッケル、塩化ニッケル、硫酸ニッケル、スノレフアミ ン酸第一鉄、ホウフッ化第一鉄、ピロリン酸銅、硫酸銅、ホウフッ化銅、ケィフッ化銅、 チタンフッ化銅、アルカノールスルフォン酸銅、硫酸コバルト、タングステン酸ナトリウ ムなどの水溶液を主成分とする水溶液、又は、これらの液に炭化ケィ素、炭化タンダ ステン、炭化ホウ素、酸化ジノレコニゥム、チッ化ケィ素、アルミナ、ダイヤモンドなどの 微粉末を分散させた液が使用される。これらのうち特にスルファミン酸ニッケルを主成 分とする浴が、電铸のやり易さ、硬度などの物性の多様性、化学的安定性、溶接の 容易性などの面で適している。 [0158] The electric device 30 includes a water tank 31 filled with the electrolytic solution 2, a holding mechanism 35 that holds the core wire 1 linearly, a motor 32 that rotates the holding mechanism 35, and a metal member 33 that serves as an electrode. , A power source 38 for flowing a current between the core wire 1 and the metal member 33 via the electrolyte 2, a pump 34 for circulating the electrolyte 2, and a current for measuring the current flowing in the core 1 And a current control unit 37 that controls the current flowing through the core wire 1 based on the measurement result of the ammeter 36. [0159] For example, nickel metal or an alloy thereof, iron or an alloy thereof, copper or an alloy thereof, cobalt or an alloy thereof, a tungsten alloy, or a fine particle-dispersed metal can be used as the electrolytic solution 2. Nickel, nickel chloride, nickel sulfate, ferrous sulphonate, ferrous borofluoride, copper pyrophosphate, copper sulfate, copper borofluoride, copper copper fluoride, copper titanium fluoride, copper alkanol sulfonate, cobalt sulfate, tungstic acid An aqueous solution mainly composed of an aqueous solution of sodium or the like, or a liquid in which fine powders such as carbon carbide, tantalite carbide, boron carbide, zinc oxide, silicon nitride, alumina, and diamond are dispersed in these liquids. used. Among these, a bath mainly composed of nickel sulfamate is particularly suitable in terms of easiness of electric heating, various physical properties such as hardness, chemical stability, and ease of welding.
[0160] 芯線 1は、鉄またはその合金、アルミニウムまたはその合金、銅またはその合金、タ ングステン合金などの金属線、及びこの金属線の上に薄いハンダメツキをしたもの、 及びナイロン、ポリエステルなどのプラスチック線、ガラスなどのセラミック線などから 適宜選択使用される。このうちプラスチック、セラミック線の場合は、表面に導電性の 付与のためニッケル、銀などの無電解メツキが必要となる。  [0160] Core wire 1 is a metal wire such as iron or an alloy thereof, aluminum or an alloy thereof, copper or an alloy thereof, tungsten alloy, or the like, and a thin soldered metal on the metal wire, and a plastic such as nylon or polyester. It is appropriately selected from ceramic wires such as wire and glass. Of these, in the case of plastic and ceramic wires, electroless plating such as nickel and silver is required to impart conductivity to the surface.
[0161] 水槽 31の側壁は、例えば、内径 1. 5mの円筒状に形成されている。なお、その側 壁の内周は楕円状であってもよい。この場合、楕円の長軸の長さは 5mであり、短軸 の長さは 1. 5mである。  [0161] The side wall of the water tank 31 is formed in, for example, a cylindrical shape having an inner diameter of 1.5 m. The inner periphery of the side wall may be oval. In this case, the major axis of the ellipse is 5m and the minor axis is 1.5m.
[0162] 保持機構 35は、円盤状に形成された 2つの円盤体 35aと、 2つの円盤体 35aが互 いに距離を離して対向するようにこれらを固定する複数の支柱 35bと、芯線 1の両端 を互いに反対方向に引っ張るための 2つの弾性体 35cとを備えている。  [0162] The holding mechanism 35 includes two disk bodies 35a formed in a disk shape, a plurality of pillars 35b for fixing the two disk bodies 35a so as to face each other at a distance from each other, and a core wire 1 And two elastic bodies 35c for pulling both ends in opposite directions.
[0163] 芯線 1は、その両端が上述の弾性体 35cに係合するように保持機構 35に据え付け られる。その結果、芯線 1は、弾性体 35cによって引っ張られて直線状に保たれる。  [0163] The core wire 1 is installed on the holding mechanism 35 so that both ends thereof engage with the elastic body 35c. As a result, the core wire 1 is pulled by the elastic body 35c and kept straight.
[0164] また、保持機構 35に据え付けられる芯線 1には、微細管 200の凹部 220aに嵌合す るような形状を有する 2つの成形型 20が、微細管 200の長さ L1だけ離れて取り付け られている。このような成形型 20によって、微細管 200の凹部 220aを簡単に形成す ること力 Sできる。  [0164] In addition, two molding dies 20 having a shape that fits into the recess 220a of the microtube 200 are attached to the core wire 1 installed in the holding mechanism 35 apart from each other by the length L1 of the microtube 200. It has been. With such a mold 20, it is possible to easily form the recess 220a of the microtube 200.
[0165] このように本実施の形態では、電铸液 2には芯線 1が 1本だけ浸されている。 [0166] モータ 32は、 1回転あたり例えば 1〜3秒の回転速度で保持機構 35を回転させるこ とによって芯線 1を自転させる。なお、図 12Aでは、モータ 32を、保持機構 35および 水槽 31よりも下側に配設したが、他の場所に配設してもよぐ例えば、保持機構 35よ りも上側に、または水槽 31よりも上側に配設してもょレ、。 [0165] As described above, in the present embodiment, only one core wire 1 is immersed in the electrolysis liquid 2. [0166] The motor 32 rotates the core wire 1 by rotating the holding mechanism 35 at a rotation speed of, for example, 1 to 3 seconds per rotation. In FIG. 12A, the motor 32 is disposed below the holding mechanism 35 and the water tank 31; however, the motor 32 may be disposed elsewhere, for example, above the holding mechanism 35 or the water tank. It can be placed above 31.
[0167] ポンプ 34は、電鎳液 2を水槽 31の内面に沿うように循環させることにより、水槽 31 内の電铸液 2の濃度を均一にする。なお、電鎳液 2の温度は、例えば 50± 2°Cに保 たれている。  [0167] The pump 34 circulates the electrolyte 2 along the inner surface of the water tank 31, thereby making the concentration of the electrolyte 2 in the water tank 31 uniform. The temperature of the electrolyte 2 is kept at 50 ± 2 ° C, for example.
[0168] 電源 38は、例えば、芯線 1が陰極で金属部材 33が陽極となるように、芯線 1と金属 部材 33との間で電铸液 2を介して電流を流す。なお、金属部材 33は、例えば複数の ニッケル球など力 構成されてレ、る。  [0168] The power source 38 passes a current between the core wire 1 and the metal member 33 via the electrolyte 2 so that the core wire 1 becomes a cathode and the metal member 33 becomes an anode, for example. The metal member 33 is composed of a force such as a plurality of nickel balls.
[0169] 電流制御部 37は、芯線 1に流れる電流が、時間経過に伴って滑らかに増加するよ うに、電源 38を制御する。  [0169] The current control unit 37 controls the power supply 38 so that the current flowing through the core wire 1 increases smoothly with time.
[0170] 図 13は、芯線 1に流れる電流を示す図である。  FIG. 13 is a diagram showing a current flowing through the core wire 1.
[0171] 電流制御部 37は、例えば、通電時間 t = 0〜6までの 6時間、芯線 1に流れる電流 が一定となることなく 0. 5Aから滑らかに増加するように電源 38を制御する。例えば、 1分間に 1 A以上増加することがないように電流を滑らかに増加させる。これにより、例 えば、厚みが約 1. 25mmの金属被膜が歪みなく形成される。つまり、外径 d2が 2. 5 mmの微細管 200が精度良く製造される。なお、通電時間 t = 4〜6までの電流の増 加率は、通電時間 t = 0〜4までの電流の増加率よりも大きい。  [0171] The current control unit 37 controls the power source 38 so that the current flowing through the core wire 1 does not become constant and increases smoothly from 0.5A for 6 hours from the energization time t = 0 to 6, for example. For example, increase the current smoothly so that it does not increase more than 1 A per minute. Thereby, for example, a metal film having a thickness of about 1.25 mm is formed without distortion. That is, the microtube 200 having an outer diameter d2 of 2.5 mm is manufactured with high accuracy. Note that the current increase rate from energization time t = 4 to 6 is larger than the current increase rate from energization time t = 0 to 4.
[0172] 例えば、電流制御部 37は、通電時間から電流値を算出する関数を有し、放物線な どの 2次曲線や、双曲線、楕円の円周などに沿うように電流を増加させる。また、通電 時間に応じてその関数を切り換えてもよレヽ。  [0172] For example, the current control unit 37 has a function of calculating a current value from the energization time, and increases the current along a quadratic curve such as a parabola, a hyperbola, or an elliptical circumference. You can also switch the function according to the energization time.
[0173] ここで、従来では、図 13の点線に示すように、芯線に流れる電流が一定となる期間 があるように、電流を段階的に増加させている。例えば、通電時間 t = 0から暫くの期 間に 0. 2Aの電流を芯線に流し続け、その後、急激に電流を上げて、再び、所定期 間に、一定の電流を芯線に流し続ける。したがって、このような段階的な電流の増加 、すなわち、急激な電流の変化によって、芯線に形成される金属被膜の形状や寸法 に歪みが生じることがある。 [0174] そこで、本実施の形態では、従来のように電流を段階的に増加させることなぐ滑ら かに増加させることによって、金属被膜、つまり微細管 200の形状および寸法の歪み の発生を防ぎ、精度の高い微細管 200を製造することができる。 Here, in the prior art, as indicated by the dotted line in FIG. 13, the current is increased stepwise so that there is a period during which the current flowing through the core wire is constant. For example, a current of 0.2 A continues to flow through the core wire for a while from the energization time t = 0, then the current is increased rapidly and a constant current continues to flow through the core wire for a predetermined period. Therefore, such a stepwise increase in current, that is, a sudden change in current, may cause distortion in the shape and dimensions of the metal coating formed on the core wire. [0174] Therefore, in the present embodiment, by increasing the current smoothly without increasing the current stepwise as in the prior art, the occurrence of distortion of the shape and dimensions of the metal coating, that is, the microtube 200, is prevented. A highly accurate microtube 200 can be manufactured.
[0175] このように電铸によって形成された金属被膜は、成形型 20および芯線 1から分離さ れる。  [0175] The metal film thus formed by electric plating is separated from the mold 20 and the core wire 1.
[0176] 図 14は、金属被膜が成形型 20および芯線 1から分離される工程を示す図である。  FIG. 14 is a diagram showing a process of separating the metal coating from the mold 20 and the core wire 1.
[0177] まず、電铸が行なわれた後、芯線 1が保持機構 35から取り外される。取り外された 芯線 1の 2つの成形型 20によって挟まれた範囲には、金属被膜 10aが形成されてい る。そして、その 2つの成形型 20がそれぞれ芯線 1から引き抜かれる。これによつて、 金属被膜 10aが成形型 20から分離される。さらに、芯線 1が金属被膜 10aから引き抜 かれる。これによつて、管状の金属被膜 10aが芯線 1から分離される。 [0177] First, after electric heating, the core wire 1 is removed from the holding mechanism 35. A metal film 10a is formed in the area sandwiched between the two forming dies 20 of the core wire 1 that has been removed. Then, the two molds 20 are pulled out from the core wire 1 respectively. As a result, the metal coating 10 a is separated from the mold 20. Further, the core wire 1 is pulled out from the metal coating 10a. Thereby, the tubular metal coating 10a is separated from the core wire 1.
[0178] なお、本実施の形態では、成形型 20は、例えば、セラミックからなり、一面がテーパ 状に突出する略円錐状の円錐部 21と、略円柱状の円柱部 22とを一体に備えている 。つまり、成形型 20は、円錐部 21の底面の外周と、円柱部 22の端面の外周とが重な つて、全体的に鉛筆の形状となるように形成されている。また、成形型 20の軸心、つ まり円錐部 21と円柱部 22の軸心には、芯線 1を挿通するための孔が形成されている [0178] In the present embodiment, the molding die 20 is made of, for example, ceramic, and integrally includes a substantially conical conical portion 21 having one surface protruding in a tapered shape and a substantially cylindrical cylindrical portion 22. ing . That is, the mold 20 is formed so that the outer periphery of the bottom surface of the conical portion 21 and the outer periphery of the end surface of the cylindrical portion 22 are overlapped to form a pencil shape as a whole. In addition, a hole for inserting the core wire 1 is formed in the axis of the mold 20, that is, the axis of the conical part 21 and the cylindrical part 22.
[0179] そして、芯線 1および成形型 20から分離された金属被膜 10aは研磨される。 [0179] Then, the metal coating 10a separated from the core wire 1 and the mold 20 is polished.
[0180] 図 15は、金属被膜 10aが研磨される様子を説明するための説明図である。 FIG. 15 is an explanatory diagram for explaining a state in which the metal coating 10a is polished.
[0181] 金属被膜 10aは、図 15の(a)に示すように、ブラシ 50で擦られることにより、図 15の [0181] The metal coating 10a is rubbed with a brush 50 as shown in FIG.
(b)に示すように、その金属被膜 10aのバリなどが取り除かれるとともに、成形型 20の 円錐部 21によって成形された面 (微細管 200の凹部 220a周辺の壁面に相当する面 )に Rがっく。そして、このように研磨された金属被膜 10aは、洗浄されることにより、微 細管 200として完成される。  As shown in (b), burrs and the like of the metal coating 10a are removed, and R is applied to the surface formed by the conical portion 21 of the mold 20 (the surface corresponding to the wall around the recess 220a of the microtube 200). Tick. The metal coating 10a thus polished is completed as a micro tube 200 by being washed.
[0182] 図 16は、本実施の形態における微細管 200の製造方法を示すフローチャートであ る。 FIG. 16 is a flowchart showing a method for manufacturing the microtubule 200 in the present embodiment.
[0183] まず、芯線 1を電铸液 2に 1本だけ浸す (ステップ S 100)。そして、モータ 32は、そ の芯線 1を自転させ (ステップ S 102)、その自転が継続されている所定期間、芯線 1 に流れる電流を滑らかに増加させて電铸を行なう(ステップ S104)。この電鎳によつ て形成された管状の金属被膜 10aを芯線 1および成形型 20から分離する (ステップ S 106)。さらに、その分離された金属被膜 10aに対して研磨を行い(ステップ S108)、 その後、洗浄を行う(ステップ S 110)。 [0183] First, only one core wire 1 is immersed in the electrolyte 2 (step S100). Then, the motor 32 rotates the core wire 1 (step S102), and the core wire 1 continues for a predetermined period during which the rotation continues. Electricity is generated by smoothly increasing the current flowing through (step S104). The tubular metal film 10a formed by this electric power is separated from the core wire 1 and the mold 20 (step S106). Further, the separated metal film 10a is polished (step S108), and then washed (step S110).
[0184] (変形例 1) [0184] (Variation 1)
上記実施の形態における電铸装置の変形例について説明する。  A modified example of the electronic apparatus in the above embodiment will be described.
[0185] 図 17は、本変形例に係る電鎳装置の構成を示す構成図である。 [0185] FIG. 17 is a configuration diagram showing a configuration of a lighting apparatus according to the present modification.
[0186] 電铸装置 30aは、電铸液 2が満たされる水槽 31と、芯線 1を回転させるモータ 32と 、電極となる金属部材 33と、芯線 1と金属部材 33との間に電流を流すための電源 38 と、電铸液 2を循環させるためのポンプ 34と、電铸液 2を散水するための散水パイプ 3 9とを備えている。 [0186] The electric device 30a allows a current to flow between the water tank 31 filled with the electrolytic solution 2, the motor 32 that rotates the core wire 1, the metal member 33 that serves as an electrode, and the core wire 1 and the metal member 33. A power supply 38 for circulating the electrolytic solution 2, and a watering pipe 39 for spraying the electrolytic solution 2.
[0187] 上述のように成形型 20が配置された芯線 1は、電铸液 2が満たされている水槽 31 に、水平方向に一直線状に延ばした状態で据え付けられる。モータ 32は、そのよう に据え付けられた芯線 1を周方向に回転させる。ポンプ 34は、例えば、水槽 31の上 部にある電铸液 2を取り込んで散水パイプ 39に供給する。散水パイプ 39は、水槽 31 の底部に備えられており、ポンプ 34から供給された電铸液 2を複数の散水口 39aか ら排出する。これにより、水槽 1内の電铸液 2は循環されてその濃度が均一化される。 なお、電鎳液 2の温度は略一定に保たれている。また、電铸液 2は、例えばスルフアミ ン酸ニッケノレである。  [0187] The core wire 1 on which the molding die 20 is arranged as described above is installed in a water tank 31 filled with the electrolysis liquid 2 in a state of extending in a straight line in the horizontal direction. The motor 32 rotates the core wire 1 thus installed in the circumferential direction. For example, the pump 34 takes in the electrolytic solution 2 at the top of the water tank 31 and supplies it to the sprinkling pipe 39. The water sprinkling pipe 39 is provided at the bottom of the water tank 31, and discharges the electrolyte 2 supplied from the pump 34 from a plurality of water spouts 39a. Thereby, the electrolytic solution 2 in the water tank 1 is circulated and the concentration thereof is made uniform. Note that the temperature of the electrolysis solution 2 is kept substantially constant. The electrolysis solution 2 is, for example, nickel sulfamate.
[0188] このような状態において、電源 38は例えば芯線 1が陰極で金属部材 33が陽極とな るように、芯線 1と金属部材 33との間で電鎳液 2を介して電流を流す。その結果、各 成形型 20に挟まれた芯線 1の表面に金属被膜が形成される。  In such a state, the power source 38 causes a current to flow between the core wire 1 and the metal member 33 via the electrolyte 2 so that the core wire 1 is a cathode and the metal member 33 is an anode, for example. As a result, a metal film is formed on the surface of the core wire 1 sandwiched between the molds 20.
[0189] (変形例 2)  [0189] (Modification 2)
ここで、上記実施の形態における成形型 20の変形例について説明する。  Here, a modification of the mold 20 in the above embodiment will be described.
[0190] 上記実施の形態の成形型 20は、円錐部 21と円柱部 22とを備えていたが、円錐状 の部分を有していれば、全体的に他の形状に形成されていてもよい。  [0190] The mold 20 of the above embodiment includes the conical portion 21 and the cylindrical portion 22, but as long as it has a conical portion, it may be formed in another shape as a whole. Good.
[0191] 図 18A〜図 18Cは、本変形例に係る成形型の形状を示す図である。  FIG. 18A to FIG. 18C are views showing the shape of a mold according to this modification.
[0192] 例えば、図 18Aに示すように、本変形例に係る成形型 20aは、略円柱状の円柱部 2 2aと、その円柱部 22aの一端面に凸設された略円錐状の円錐部 21aとを備えて構成 されている。この成形型 20aでは、上記成形型 20と異なり、円錐部 21aの底面の外周 と、円柱部 22aの端面の外周とは重ならない。 [0192] For example, as shown in FIG. 18A, a molding die 20a according to the present modification includes a substantially cylindrical column part 2 2a and a substantially conical conical portion 21a projecting from one end face of the cylindrical portion 22a. In this molding die 20a, unlike the molding die 20, the outer periphery of the bottom surface of the conical portion 21a does not overlap the outer periphery of the end surface of the cylindrical portion 22a.
[0193] また、図 18Bに示すように、本変形例に係る成形型 20bは、上述の円柱部 22aと、 その円柱部 22aの両端面のそれぞれに凸設された上述の円錐部 21aとを備えて構 成されている。この成形型 20bでは、上記成形型 20aと同様、円錐部 21aの底面の外 周と、円柱部 22aの端面の外周とは重ならなレ、。このように、 1つの成形型 20bは、 2 つの円錐部 21aを有するため、電铸装置における 1本の芯線 1にこれらの成形型 20b を 3つ以上配置すれば、複数個の微細管 200を効率良く製造することができる。  Further, as shown in FIG. 18B, a molding die 20b according to the present modification includes the above-described cylindrical portion 22a and the above-described conical portions 21a that are projected from both end surfaces of the cylindrical portion 22a. It is prepared. In this mold 20b, the outer periphery of the bottom surface of the conical part 21a and the outer periphery of the end surface of the cylindrical part 22a do not overlap, similar to the mold 20a. Thus, since one mold 20b has two conical portions 21a, if three or more of these molds 20b are arranged on one core wire 1 in the electric apparatus, a plurality of micro tubes 200 are formed. It can be manufactured efficiently.
[0194] また、図 18Cに示すように、本変形例に係る成形型 20cは、上述の 2つの円錐部 21 を備え、それらの円錐部 21の底面を対向して突き合わせたような所謂ソロバン玉状 に形成されている。この成形型 20cでは、 2つの円錐部 21の底面の外周は重なって いる。このように、 1つの成形型 20cは、上述と同様、 2つの円錐部 21を有するため、 電铸装置における 1本の芯線 1にこれらの成形型 20cを 3つ以上配置すれば、複数 個の微細管 200を効率良く製造することができる。  Further, as shown in FIG. 18C, a molding die 20c according to this modification includes the above-described two conical portions 21, and a so-called abacus ball in which the bottom surfaces of the conical portions 21 face each other. It is formed in a shape. In this mold 20c, the outer circumferences of the bottom surfaces of the two conical portions 21 are overlapped. As described above, since one molding die 20c has two conical portions 21 as described above, if three or more of these molding dies 20c are arranged on one core wire 1 in the electrical apparatus, a plurality of molding dies 20c are arranged. The microtube 200 can be manufactured efficiently.
[0195] このように本実施の形態では、電铸液 2には芯線 1が 1本しか浸されていないため、 他の芯線から電気的な影響を受けることがなぐ芯線 1に形成される金属被膜 10aの 形状に歪みが生じることを防ぐことができる。その結果、管状の金属被膜 10aから芯 線 1を弓 Iき抜けば、その管状の金属被膜 10aからなる微細管 200を高い精度で製造 することができる。したがって、このような製造方法により製造された微細管 200では、 歪みがないため、光ファイバを適切に連結することができる。  [0195] Thus, in the present embodiment, since only one core wire 1 is immersed in the electrolyte 2, the metal formed on the core wire 1 that is not electrically affected by other core wires. It is possible to prevent distortion of the shape of the coating 10a. As a result, if the core wire 1 is cut through the tubular metal coating 10a, the microtube 200 made of the tubular metal coating 10a can be manufactured with high accuracy. Therefore, since the microtube 200 manufactured by such a manufacturing method has no distortion, the optical fibers can be appropriately connected.
[0196] なお、上記実施の形態では、 1本の芯線 1だけに対して電铸を行なったが、複数本 の芯線 1に対して電鎳を行ってもよい。この場合には、例えば、水槽 31の内部を仕切 つて、水槽 31の内部に電鎳液 2を溜める複数の領域を設ける。このような各領域に溜 まった電鎳液 2は、互いに電気的に絶縁されている。そして、領域ごとに芯線 1を 1本 だけ電鎳液 2に浸し、上述と同様に、各芯線 1に対して電鎳を行なう。これにより、上 述と同様、各領域の電铸液 2にはそれぞれ芯線 1が 1本しか浸されておらず、各領域 の電铸液 2は電気的に絶縁されているため、それらの芯線 1に形成される金属被膜 1 Oaは、従来例のように他の芯線から電気的な影響を受けることがなぐそれらの芯線[0196] In the above-described embodiment, the electric power is applied to only one core wire 1. However, the electric power may be applied to a plurality of core wires 1. In this case, for example, the inside of the water tank 31 is partitioned, and a plurality of regions for storing the electrolytic solution 2 are provided in the water tank 31. The electrolytes 2 accumulated in each of these areas are electrically insulated from each other. Then, only one core wire 1 is immersed in the electrolysis liquid 2 for each region, and the wire 1 is electroplated in the same manner as described above. As a result, as described above, only one core wire 1 is immersed in the electrolyte 2 in each region, and the electrolyte 2 in each region is electrically insulated. Metal coating formed on 1 Oa is not affected by other core wires as in the conventional example.
1に形成される金属被膜 10aの形状に歪みが生じることを防ぐことができる。その結果It is possible to prevent the shape of the metal coating 10a formed on 1 from being distorted. as a result
、管状の各金属被膜 10aから各芯線 1を引き抜けば、その管状の各金属被膜 10aか らなる複数の微細管 200を高い精度で製造することができる。 If each core wire 1 is pulled out from each tubular metal coating 10a, a plurality of microtubules 200 made of each tubular metal coating 10a can be manufactured with high accuracy.
[0197] 以上、本発明の微細管について実施の形態 1〜3およびそれらの変形例を用いて 説明したが、本発明は、これらに限定されるものではない。 [0197] Although the microtubules of the present invention have been described above using Embodiments 1 to 3 and modifications thereof, the present invention is not limited to these.
[0198] 例えば、微細管の外径を 0. 07mmm〜10mmとしても良ぐ微細管の全長を 45c m以上としてもよい。さらに、微細管の同軸度を 1 /i mとした力 3 x m以下としてもよ い。 [0198] For example, the outer diameter of the fine tube may be 0.07 mm to 10 mm, and the total length of the fine tube may be 45 cm or more. Furthermore, the force may be 3 x m or less, where the coaxiality of the micropipe is 1 / im.
[0199] また、光ファイバ Fla, F2aを連結するときには、互いの光ファイバの端部を、所謂 斜め切りに加工して楕円形にした力 S、光ファイバの長手方向に垂直な面となるように 加工して円形にしてもよい。  [0199] Also, when connecting the optical fibers Fla and F2a, the ends of the optical fibers are processed into a so-called slanted cut into an elliptical force S, and a plane perpendicular to the longitudinal direction of the optical fiber is formed. It may be processed into a circle.
[0200] さらに、微細管を酸化ジノレコニゥムから構成した力 S、窒化アルミニウムから構成して もよい。窒化アルミニウムの熱伝導率は、およそ 160〜: 180W/m'Kであって、酸化 ジルコニウムの熱伝導率よりも高い。したがって、このような窒化アルミニウムからなる 微細管では、放熱性などの優れた熱伝導性を必要とされる場所や用途に用いること ができ、例えば、内視鏡や、特殊な光ファイバに取り付けられるフエルール、発光デ ノイスなどに適用することができる。  [0200] Further, the microtubule may be composed of force S composed of dinolecon oxide and aluminum nitride. The thermal conductivity of aluminum nitride is approximately 160 to 180 W / m′K, which is higher than that of zirconium oxide. Therefore, such a micro tube made of aluminum nitride can be used in places and applications where excellent heat conductivity such as heat dissipation is required. For example, it can be attached to an endoscope or a special optical fiber. It can be applied to ferrules and light emitting devices.
[0201] つまり、近年では、高密度に実装する技術と、デバイスの高出力および高速化とに 伴レ、、電子部品および機器の放熱冷却技術の重要性がますます増加している。例え ば、 CPU (Central Processing Unit)などでは、小型化および高速化が行われる一方 で熱密度が上昇し、 CPUの放熱冷却技術が大きな課題となっている。  [0201] In other words, in recent years, the importance of heat dissipation and cooling technology for electronic components and equipment has increased more and more with high-density mounting technology and higher output and higher speed of devices. For example, in CPUs (Central Processing Units) and the like, while miniaturization and speeding-up are performed, the heat density increases, and CPU heat-dissipation cooling technology is a major issue.
[0202] そこで、この課題解決のためのツールとなるヒートパイプやヒートシンク、ペルチェデ ノ イスに使用される部材として、上述の窒化アルミニウムの精密微細管が活用される と期待される。即ち、この精密微細管は、熱設計や冷却方法、冷却デバイスに活用さ れる。  [0202] Therefore, it is expected that the above-mentioned precision micropipe of aluminum nitride will be used as a member used in heat pipes, heat sinks, and Peltier devices that serve as a tool for solving this problem. In other words, this precision micropipe is used for thermal design, cooling methods, and cooling devices.
[0203] また、微細管を例えば石英ガラスから構成してもよい。この場合には、微細管の熱 膨張係数と光ファイバの熱膨張係数が略等しいため、周囲温度の変化によって接続 損失などが発生するのを抑えることができる。さらに、微細管が透光性を有するため、 2つの光ファイバの端部の接続状態を目視することができ、使い勝手を向上すること ができる。なお、石英ガラス以外の透光性を有する材質 (ガラスなど)で微細管を構成 してもよい。 [0203] The fine tube may be made of, for example, quartz glass. In this case, the thermal expansion coefficient of the micropipe and the thermal expansion coefficient of the optical fiber are approximately equal, so the connection is made according to changes in ambient temperature. It is possible to suppress the occurrence of loss. Furthermore, since the fine tube has translucency, the connection state of the end portions of the two optical fibers can be visually observed, and the usability can be improved. Note that the microtube may be made of a light-transmitting material (glass or the like) other than quartz glass.
産業上の利用可能性 Industrial applicability
本発明の微細管は、光の接続損失を低減することができるという効果を奏し、光ファ ィバを連結するために用レ、られる部品に適してレ、る。  The microtubule of the present invention has an effect of reducing the connection loss of light, and is suitable for parts used for connecting optical fibers.

Claims

請求の範囲 The scope of the claims
[1] 外径が 2. 5mm以下の管として構成され、前記管の一端力 挿入された光ファイバ の端面と、前記管の他端から挿入された光ファイバの端面とが接した状態で、 2つの 前記光ファイバの前記管に挿入された部分を一直線状に保つ微細管であって、 セラミックスからなり、  [1] The tube is configured as a tube having an outer diameter of 2.5 mm or less, and the end surface of the optical fiber inserted into one end of the tube is in contact with the end surface of the optical fiber inserted from the other end of the tube. Two micro-tubes that keep the portions of the optical fibers inserted into the tube in a straight line, made of ceramics,
前記微細管の外周面における中心軸と、前記微細管の内周面における中心軸との ずれ幅を示す同軸度が 3 μ m以内に収まるように形成されてレ、る  The coaxiality indicating the deviation width between the central axis on the outer peripheral surface of the microtube and the central axis on the inner peripheral surface of the microtube is formed to be within 3 μm.
ことを特徴とする微細管。  A fine tube characterized by that.
[2] 前記微細管は酸化ジノレコニゥムからなる [2] The microtubule is made of dinoleconium oxide
ことを特徴とする請求の範囲第 1項記載の微細管。  2. The microtubule according to claim 1, wherein
[3] 前記微細管の両端には、 [3] At both ends of the microtube,
前記内周面に囲まれて構成される孔に連通し、前記孔の直径よりも大きな直径の 開口を有する凹部が形成されている  A recess having an opening having a diameter larger than the diameter of the hole is formed in communication with the hole surrounded by the inner peripheral surface.
ことを特徴とする請求の範囲第 2項記載の微細管。  3. The microtube according to claim 2, wherein
[4] 前記凹部は、前記凹部における深さ方向に垂直な方向の幅が、前記深さ方向に沿 つて略一定になるように形成されてレ、る [4] The recess is formed such that a width of the recess in a direction perpendicular to the depth direction is substantially constant along the depth direction.
ことを特徴とする請求の範囲第 3項記載の微細管。  4. The microtubule according to claim 3, wherein:
[5] 前記凹部は、前記凹部における深さ方向に垂直な方向の幅が、前記深さ方向の深 い方に向かって狭まるように形成されている [5] The concave portion is formed such that a width of the concave portion in a direction perpendicular to the depth direction is narrowed toward a depth direction in the depth direction.
ことを特徴とする請求の範囲第 3項記載の微細管。  4. The microtubule according to claim 3, wherein:
[6] 前記凹部は、前記凹部における深さ方向に垂直な方向の幅が、前記開口から所定 の深さまで前記深さ方向に沿って略一定になり、前記所定の深さから前記深さ方向 の深レ、方に向かって狭まるように形成されてレ、る [6] The width of the concave portion in the direction perpendicular to the depth direction of the concave portion is substantially constant along the depth direction from the opening to a predetermined depth, and from the predetermined depth to the depth direction. It is formed so as to narrow toward the depth
ことを特徴とする請求の範囲第 3項記載の微細管。  4. The microtubule according to claim 3, wherein:
[7] 前記微細管には、前記外周面に開口を有して前記孔に連通するスリットが形成され ている [7] The fine tube is formed with a slit having an opening on the outer peripheral surface and communicating with the hole.
ことを特徴とする請求の範囲第 6項記載の微細管。  7. The microtubule according to claim 6, wherein
[8] 前記微細管の前記内周面には、一方の前記凹部から他方の前記凹部にまで続く 溝が形成されている [8] The inner surface of the microtubule continues from one of the recesses to the other recess. Grooves are formed
ことを特徴とする請求の範囲第 3記載の微細管。  4. The fine tube according to claim 3, wherein
[9] 前記請求の範囲第 1項記載の微細管と、 [9] The microtubule according to claim 1;
前記微細管を覆う被覆管とを備え、  A cladding tube covering the fine tube,
前記被覆管の両端は前記微細管よりも突出している  Both ends of the cladding tube protrude from the fine tube.
ことを特徴とする複合管。  A composite tube characterized by that.
[10] 前記微細管の両端には、 [10] At both ends of the microtube,
前記内周面に囲まれて構成される孔に連通し、前記孔の直径よりも大きな直径の 開口を有する凹部が形成されている  A recess having an opening having a diameter larger than the diameter of the hole is formed in communication with the hole surrounded by the inner peripheral surface.
ことを特徴とする請求の範囲第 9項記載の微細管。  10. The microtubule according to claim 9, wherein
[11] 前記微細管には、前記外周面に開口を有し、前記微細管の前記内周面に囲まれ て構成される孔に連通する第 1スリットが形成され、 [11] In the microtube, a first slit having an opening on the outer peripheral surface and communicating with a hole surrounded by the inner peripheral surface of the microtube is formed.
前記被覆管には、前記微細管の第 1スリットに連通する第 2スリットが形成されてい る  The cladding tube is formed with a second slit communicating with the first slit of the fine tube.
ことを特徴とする請求の範囲第 10項記載の複合管。  11. The composite pipe according to claim 10, wherein
[12] 前記請求の範囲第 1項記載の微細管と、 [12] The microtubule according to claim 1;
前記微細管の一端を覆う第 1被覆管と、  A first cladding tube covering one end of the fine tube;
前記微細管の他端を覆う第 2被覆管とを備え、  A second cladding tube covering the other end of the fine tube,
前記第 1被覆管は、前記微細管の一端から突出し、  The first cladding tube protrudes from one end of the microtube;
前記第 2被覆管は、前記微細管の他端から突出している  The second cladding tube protrudes from the other end of the fine tube
ことを特徴する複合管。  A composite tube characterized by that.
[13] 前記微細管の両端には、 [13] At both ends of the microtube,
前記内周面に囲まれて構成される孔に連通し、前記孔の直径よりも大きな直径の 開口を有する凹部が形成されている  A recess having an opening having a diameter larger than the diameter of the hole is formed in communication with the hole surrounded by the inner peripheral surface.
ことを特徴とする請求の範囲第 12項記載の微細管。  13. The microtubule according to claim 12, wherein the microtubule is characterized in that:
[14] 前記微細管には、前記外周面の露出された部分に開口を有し、前記微細管の前 記内周面に囲まれて構成される孔に連通するスリットが形成されている [14] The fine tube has an opening in an exposed portion of the outer peripheral surface, and a slit is formed that communicates with a hole that is surrounded by the inner peripheral surface of the fine tube.
ことを特徴とする請求の範囲第 13項記載の複合管。 14. The composite pipe according to claim 13, wherein the composite pipe is characterized in that:
[15] 前記微細管は窒化アルミニウムからなる [15] The microtubule is made of aluminum nitride.
ことを特徴とする請求の範囲第 1項記載の微細管。  2. The microtubule according to claim 1, wherein
[16] 前記同軸度が 1 μ以内に収まるように形成されている [16] The coaxiality is formed to be within 1 μ.
ことを特徴とする請求の範囲第 1項記載の微細管。  2. The microtubule according to claim 1, wherein
[17] 外径が 2. 5mm以下の微細管であって、 [17] A fine tube with an outer diameter of 2.5 mm or less,
セラミックスからなり、  Made of ceramics,
前記微細管の外周面における中心軸と、前記微細管の内周面における中心軸との ずれ幅を示す同軸度が 3 μ m以内に収まるように形成されてレ、る  The coaxiality indicating the deviation width between the central axis on the outer peripheral surface of the microtube and the central axis on the inner peripheral surface of the microtube is formed to be within 3 μm.
ことを特徴とする微細管。  A fine tube characterized by that.
[18] 前記微細管の内径は 125 μ m以内であって、前記微細管の全長は 45cm以上であ る [18] The inner diameter of the microtubule is within 125 μm, and the total length of the microtubule is 45 cm or more.
ことを特徴とする請求の範囲第 17項記載の微細管。  18. The microtube according to claim 17, wherein the microtube is characterized in that:
[19] 外径が 2. 5mm以下の微細管を用いて 2つの光ファイバを連結する光ファイバの連 結方法であって、 [19] An optical fiber connecting method for connecting two optical fibers using a micro tube having an outer diameter of 2.5 mm or less,
前記微細管は、セラミックスからなり、前記微細管の外周面における中心軸と、前記 微細管の内周面における中心軸とのずれ幅を示す同軸度が 3 μ ΐη以内に収まるよう に形成され、  The microtube is made of ceramics, and is formed so that the coaxiality indicating the deviation width between the central axis on the outer peripheral surface of the microtube and the central axis on the inner peripheral surface of the microtube is within 3 μΐη,
前記連結方法は、  The connection method includes:
連結対象の光ファイバごとに、当該光ファイバの端部における軸方向に垂直な面に 対して当該光ファイバの端面が予め定められた角度で傾くように、前記端部を加工す る加工工程と、  For each optical fiber to be connected, a processing step for processing the end so that the end surface of the optical fiber is inclined at a predetermined angle with respect to a surface perpendicular to the axial direction at the end of the optical fiber; ,
前記加工工程でカ卩ェされた一方の光ファイバを、前記微細管の一端から、前記内 周面に囲まれて構成される孔に揷入する第 1揷入工程と、  A first insertion step of inserting one optical fiber covered in the processing step from one end of the microtube into a hole surrounded by the inner peripheral surface;
前記加工工程でカ卩ェされた他方の光ファイバを、前記微細管の他端から前記孔に 揷入することにより、前記 2つの光ファイバの端面を対向させて接触させる第 2揷入ェ 程と  The second optical fiber which is brought into contact with the end faces of the two optical fibers facing each other by inserting the other optical fiber cabled in the processing step into the hole from the other end of the microtube. When
を含むことを特徴とする連結方法。  A connection method comprising:
[20] 前記微細管の両端には、前記孔に連通して前記孔の直径よりも大きな直径の開口 を有する凹部が形成されてあり、 [20] Openings having a diameter larger than the diameter of the hole communicated with the hole at both ends of the microtube A recess having
前記第 1揷入工程では、  In the first insertion step,
前記一方の光ファイバを被覆する被覆材が、前記微細管の一端に形成された前記 凹部の底面に接するまで、前記一方の光ファイバを前記孔に揷入し、  The one optical fiber is inserted into the hole until the covering material covering the one optical fiber comes into contact with the bottom surface of the recess formed at one end of the microtube,
前記他方の光ファイバを被覆する被覆材が、前記微細管の他端に形成された前記 凹部の底面に接するまで、前記他方の光ファイバを前記孔に揷入する  The other optical fiber is inserted into the hole until the covering material covering the other optical fiber contacts the bottom surface of the recess formed at the other end of the microtube.
ことを特徴とする請求の範囲第 19項記載の連結方法。  20. The connecting method according to claim 19, wherein the connecting method.
[21] 前記連結方法は、さらに、 [21] The connection method further includes:
前記微細管の前記凹部の内面と、前記光ファイバの被覆材とを樹脂材料を介して 接着する接着工程を含む  A bonding step of bonding the inner surface of the concave portion of the microtubule and the coating material of the optical fiber via a resin material
ことを特徴とする請求の範囲第 20項記載の連結方法。  21. The connection method according to claim 20, wherein
[22] 前記微細管は被覆管に覆われて、前記被覆管の両端は前記微細管よりも突出して おり、 [22] The fine tube is covered with a cladding tube, and both ends of the cladding tube protrude from the fine tube,
前記接着工程では、さらに、  In the bonding step,
前記被覆管の端部の内面と、前記光ファイバの被覆材とを樹脂材料を介して接着 する  The inner surface of the end portion of the cladding tube and the coating material of the optical fiber are bonded via a resin material.
ことを特徴とする請求の範囲第 21項記載の連結方法。  22. The connection method according to claim 21, wherein the connection method is characterized in that:
[23] 前記微細管には、前記外周面に開口を有して前記孔に連通する第 1スリットが形成 され、 [23] The microtube is formed with a first slit having an opening on the outer peripheral surface and communicating with the hole,
前記被覆管には、前記微細管の第 1スリットに連通する第 2スリットが形成されてあり 前記第 1揷入工程では、  The cladding tube is formed with a second slit that communicates with the first slit of the microtube, and in the first insertion step,
前記第 1および第 2スリット内を目視しながら、前記一方の光ファイバの端面が前記 第 1および第 2スリットの奥に現れるまで、前記一方の光ファイバを前記孔に揷入し、 前記第 2揷入工程では、  While visually observing the inside of the first and second slits, the one optical fiber is inserted into the hole until the end face of the one optical fiber appears in the back of the first and second slits, and the second In the insertion process,
前記第 1および第 2スリット内を目視しながら、前記他方の光ファイバの端面が前記 第 1および第 2スリットの奥に現れ、前記一方の光ファイバの端面に接触するまで、前 記他方の光ファイバを前記孔に挿入する ことを特徴とする請求の範囲第 22項記載の連結方法。 While observing the inside of the first and second slits, until the end face of the other optical fiber appears in the back of the first and second slits and contacts the end face of the one optical fiber, the other light is used. Insert the fiber into the hole 23. The connecting method according to claim 22, wherein the connecting method is characterized in that:
[24] 前記連結方法は、さらに、 [24] The connection method further includes:
前記第 1および第 2スリット内に樹脂材料を流し込むことにより、前記 2つの光フアイ バの端面が互いに接触した状態で前記 2つの光ファイバを固定する固定工程を含む ことを特徴とする請求の範囲第 23項記載の連結方法。  A fixing step of fixing the two optical fibers in a state where end surfaces of the two optical fibers are in contact with each other by pouring a resin material into the first and second slits. The method of consolidation as described in item 23.
[25] 前記微細管の一端は第 1被覆管に覆われて、前記第 1被覆管は前記微細管の一 端から突出し、 [25] One end of the microtube is covered with a first cladding tube, and the first cladding tube protrudes from one end of the microtube,
前記微細管の他端は第 2被覆管に覆われて、前記第 2被覆管は前記微細管の他 端から突出し、  The other end of the microtube is covered with a second cladding tube, and the second cladding tube projects from the other end of the microtube,
前記接着工程では、さらに、  In the bonding step,
前記第 1被覆管の端部の内面と、前記一方の光ファイバの被覆材とを樹脂材料を 介して接着するとともに、前記第 2被覆管の端部の内面と、前記他方の光ファイバの 被覆材とを樹脂材料を介して接着する  The inner surface of the end portion of the first cladding tube and the coating material of the one optical fiber are bonded via a resin material, and the inner surface of the end portion of the second cladding tube and the coating of the other optical fiber The material is bonded with resin material
ことを特徴とする請求の範囲第 21項記載の連結方法。  22. The connection method according to claim 21, wherein the connection method is characterized in that:
[26] 前記微細管には、露出された外周面に開口を有して前記孔に連通するスリットが形 成されてあり、 [26] The fine tube is formed with a slit having an opening on the exposed outer peripheral surface and communicating with the hole,
前記第 1挿入工程では、  In the first insertion step,
前記スリット内を目視しながら、前記一方の光ファイバの端面が前記スリットの奥に 現れるまで、前記一方の光ファイバを前記孔に揷入し、  While observing the inside of the slit, until the end face of the one optical fiber appears in the back of the slit, the one optical fiber is inserted into the hole,
前記第 2揷入工程では、  In the second insertion step,
前記スリット内を目視しながら、前記他方の光ファイバの端面が前記スリットの奥に 現れ、前記一方の光ファイバの端面に接触するまで、前記他方の光ファイバを前記 孔に揷入する  While visually observing the inside of the slit, the other optical fiber is inserted into the hole until the end surface of the other optical fiber appears in the back of the slit and contacts the end surface of the one optical fiber.
ことを特徴とする請求の範囲第 25項記載の連結方法。  26. The connection method according to claim 25.
[27] 前記連結方法は、さらに、 [27] The connection method further includes:
前記スリット内に樹脂材料を流し込むことにより、前記 2つの光ファイバの端面が互 いに接触した状態で前記 2つの光ファイバを固定する固定工程を含む  A fixing step of fixing the two optical fibers in a state where the end faces of the two optical fibers are in contact with each other by pouring a resin material into the slit;
ことを特徴とする請求の範囲第 26項記載の連結方法。  27. The connection method according to claim 26, characterized by that.
PCT/JP2006/313016 2006-06-29 2006-06-29 Fine tube WO2008001449A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/313016 WO2008001449A1 (en) 2006-06-29 2006-06-29 Fine tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/313016 WO2008001449A1 (en) 2006-06-29 2006-06-29 Fine tube

Publications (1)

Publication Number Publication Date
WO2008001449A1 true WO2008001449A1 (en) 2008-01-03

Family

ID=38845224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313016 WO2008001449A1 (en) 2006-06-29 2006-06-29 Fine tube

Country Status (1)

Country Link
WO (1) WO2008001449A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51145329A (en) * 1975-06-10 1976-12-14 Furukawa Electric Co Ltd:The Connecting tube of light fiber with a protective layer
JPS5738883B2 (en) * 1975-06-30 1982-08-18
JPS6418104A (en) * 1987-07-13 1989-01-20 Fujitsu Ltd Production of optical device
JPH0221603U (en) * 1988-07-27 1990-02-14
JP2002116324A (en) * 2000-07-31 2002-04-19 Nippon Electric Glass Co Ltd Preliminary material with optical fiber
JP2004118142A (en) * 2002-09-30 2004-04-15 Yazaki Corp Caulking sleeve
JP2004126306A (en) * 2002-10-03 2004-04-22 Ntt Advanced Technology Corp Member and method for splicing optical fiber
JP2006063434A (en) * 2004-08-26 2006-03-09 Tetsuo Tanaka Production method for high precision metal fine tube by electroforming process
JP2006107272A (en) * 2004-10-07 2006-04-20 Sendai Bank Ltd Billing/payment support system, billing terminal for use in the system, paying terminal for use in the system, and computer program for billing/payment support

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51145329A (en) * 1975-06-10 1976-12-14 Furukawa Electric Co Ltd:The Connecting tube of light fiber with a protective layer
JPS5738883B2 (en) * 1975-06-30 1982-08-18
JPS6418104A (en) * 1987-07-13 1989-01-20 Fujitsu Ltd Production of optical device
JPH0221603U (en) * 1988-07-27 1990-02-14
JP2002116324A (en) * 2000-07-31 2002-04-19 Nippon Electric Glass Co Ltd Preliminary material with optical fiber
JP2004118142A (en) * 2002-09-30 2004-04-15 Yazaki Corp Caulking sleeve
JP2004126306A (en) * 2002-10-03 2004-04-22 Ntt Advanced Technology Corp Member and method for splicing optical fiber
JP2006063434A (en) * 2004-08-26 2006-03-09 Tetsuo Tanaka Production method for high precision metal fine tube by electroforming process
JP2006107272A (en) * 2004-10-07 2006-04-20 Sendai Bank Ltd Billing/payment support system, billing terminal for use in the system, paying terminal for use in the system, and computer program for billing/payment support

Similar Documents

Publication Publication Date Title
US6419810B1 (en) Method of manufacturing an optical fiber connector
EP1357411A1 (en) Connector component for multi-core optical fiber, ferrule, and method for manufacturing the same
US6447173B1 (en) Ferrule for optical connector, metal article having a through-hole and manufacturing method therefor
JP2004029225A (en) Multi-core ferrule and manufacturing method of the same
US6712522B2 (en) Perforated sleeve connector
WO2008001449A1 (en) Fine tube
JP2011070101A (en) Optical fiber fixture and optical connector
JP5289238B2 (en) Optical receptacle and optical module
US7241055B2 (en) Adaptor unit and optical plug
JP2004124216A (en) Method for producing ferrule
JP2006308907A (en) Optical receptacle, and optical module
JP2006308923A (en) Optical receptacle, and optical module
CN216338021U (en) Electroforming device for preparing multi-core metal nickel optical fiber core insert and multi-core metal nickel optical fiber core insert
JP2006227561A (en) Mechanical splice, circuit component for optical communication, repeating optical transmission line, and optical transmission line
JP2009058555A (en) Optical communication component and its manufacturing method, and optical receptacle and optical module using same
JPH09189827A (en) Optical connector
JP2007178980A (en) Ferrule holder and eccentricity measuring apparatus using the same
JP3121456U (en) Connecting pipe
WO2003050326A1 (en) Connector for optical fiber, method and apparatus for producing the same and product comprising connector for optical fiber
JP2004078134A (en) Method for positioning and connecting holes of circular multi-core ferrule with each other
JP2008158489A (en) Light receptacle and optical module using the same
JP2005181903A (en) Optical receptacle and optical module using the same
JP2004170671A (en) Apparatus for manufacturing multi-fiber ferrule and multi-fiber ferrule
JP3838912B2 (en) Optical fiber fixture, manufacturing method thereof, and optical fiber connector using the same
JP2009288635A (en) Optical fiber connector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06767633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, OUR COMMUNICATION OF 01.04.09(EPO FORM 1205A)

122 Ep: pct application non-entry in european phase

Ref document number: 06767633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP