JP2006057132A - Plasma cvd system, and method for manufacturing hard carbon film - Google Patents

Plasma cvd system, and method for manufacturing hard carbon film Download PDF

Info

Publication number
JP2006057132A
JP2006057132A JP2004239669A JP2004239669A JP2006057132A JP 2006057132 A JP2006057132 A JP 2006057132A JP 2004239669 A JP2004239669 A JP 2004239669A JP 2004239669 A JP2004239669 A JP 2004239669A JP 2006057132 A JP2006057132 A JP 2006057132A
Authority
JP
Japan
Prior art keywords
plasma
carbon film
processed
treated
hard carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004239669A
Other languages
Japanese (ja)
Other versions
JP4649605B2 (en
Inventor
Osamu Takai
治 高井
Nagahiro Saito
永宏 齋藤
Viorel Anita
バイオレル アニータ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Original Assignee
Nagoya University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC filed Critical Nagoya University NUC
Priority to JP2004239669A priority Critical patent/JP4649605B2/en
Publication of JP2006057132A publication Critical patent/JP2006057132A/en
Application granted granted Critical
Publication of JP4649605B2 publication Critical patent/JP4649605B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently manufacturing a hard carbon film on a substrate such as a silicon substrate. <P>SOLUTION: The hard carbon film manufacturing method comprises: a step of arranging a work 3 in a reaction container 2, a step of arranging magnets 15a, 15b on a back side of the work 3 arranged in the reaction container, and of locally forming the magnetic field on the face side of the work 3 and in a vicinity thereof; and a step of introducing raw material gas in the reaction container 2 and generating plasma in the reaction container 2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、プラズマCVD法に基づいて硬質炭素膜を製造する方法と、その製造に使用され得るプラズマCVD装置に関する。   The present invention relates to a method for producing a hard carbon film based on a plasma CVD method, and a plasma CVD apparatus that can be used for the production.

いわゆるダイヤモンド・ライク・カーボン等の硬質炭素膜は、例えば高硬度、低摩擦係数、平滑性、化学的に不活性といった優れた膜特性を有する。このことから、基材の耐摩耗性、摺動性、耐腐食性等を向上させる目的で種々の用途に使用される。
硬質炭素膜を基材(被処理材)表面に製造(成膜)する方法としては、スパッタリング法、イオンプレーティング法、プラズマCVD法などが実用化されている。特にプラズマCVD法は比較的広い面積に成膜することが可能であり、樹脂成形体のような絶縁体から成る基材にも硬質炭素膜のコーティングが可能である。かかるプラズマCVD法を使用した硬質炭素膜の製造に、種々のプラズマCVD装置が利用されている。
例えば、特許文献1には、プラズマCVD法の一種である電子サイクロトロン共鳴を利用したECRプラズマCVD法によって硬質炭素膜を製造する方法が記載されている。
A hard carbon film such as so-called diamond-like carbon has excellent film characteristics such as high hardness, low friction coefficient, smoothness, and chemically inactive. For this reason, it is used in various applications for the purpose of improving the wear resistance, slidability, corrosion resistance and the like of the substrate.
As a method for producing (depositing) a hard carbon film on the surface of a substrate (material to be treated), a sputtering method, an ion plating method, a plasma CVD method, and the like have been put into practical use. In particular, the plasma CVD method can form a film over a relatively wide area, and a hard carbon film can be coated on a base material made of an insulator such as a resin molded body. Various plasma CVD apparatuses are used for manufacturing a hard carbon film using such a plasma CVD method.
For example, Patent Document 1 describes a method of manufacturing a hard carbon film by an ECR plasma CVD method using electron cyclotron resonance, which is a kind of plasma CVD method.

特開2002−20870号公報JP 2002-20870 A

しかしながら、プラズマCVD法による硬質炭素膜の成膜は、他の方法に比べて成膜速度が遅い。このため、より効率よく基材上に硬質炭素膜を形成し得るプラズマCVD法に基づく成膜方法の開発が求められている。
本発明は、かかる要求に応えるべく創出されたものであり、基材上に効率よく硬質炭素膜を形成(製造)する方法と該方法を好適に実施し得るプラズマCVD装置を提供することを目的とする。
However, the film formation rate of the hard carbon film by the plasma CVD method is slower than other methods. For this reason, development of the film-forming method based on the plasma CVD method which can form a hard carbon film on a base material more efficiently is calculated | required.
The present invention was created to meet such demands, and an object of the present invention is to provide a method for efficiently forming (manufacturing) a hard carbon film on a substrate and a plasma CVD apparatus capable of suitably carrying out the method. And

上記課題を解決するため、本発明者は鋭意検討の結果、プラズマが磁場により収束する性質に着目し、この特性を従来とは異なるアプローチで利用し、以下に説明する種々の発明を完成するに至った。
本発明は、プラズマCVD法に基づいて被処理材(基材)の表面に硬質炭素膜を製造する方法を提供する。この方法は、反応容器内に被処理材を配置する工程と、前記反応容器内に配置された被処理材の裏面側(すなわち炭素膜形成面とは反対の面側)に磁石を配置し、該被処理材の表面側とその近傍に局部的に磁場を形成する工程と、前記反応容器内に原料ガスを導入すると共に該容器内においてプラズマを発生させる工程とを包含する。
In order to solve the above-mentioned problems, the present inventor has intensively studied to pay attention to the property that plasma is converged by a magnetic field, and to use these characteristics in an approach different from the conventional one to complete various inventions described below. It came.
The present invention provides a method for producing a hard carbon film on the surface of a material to be treated (base material) based on a plasma CVD method. In this method, a step of disposing a material to be processed in a reaction container, a magnet is disposed on the back surface side of the material to be processed disposed in the reaction container (that is, the surface side opposite to the carbon film forming surface), The method includes a step of locally forming a magnetic field on and near the surface of the material to be treated, and a step of introducing a raw material gas into the reaction vessel and generating plasma in the vessel.

ここで「硬質炭素膜」とは、プラズマCVD法によって作製可能な硬さを有する炭素膜をいい、特定の硬さのものに限定されない。典型的には天然ダイヤモンドと同様に炭素のsp結合を有し、部分的にグラファイトと同様に炭素のsp結合を有する。一般にダイヤモンド・ライク・カーボン(DLC)と呼ばれる炭素質の膜はここでいう硬質炭素膜に包含される典型例である。
ここで開示される方法では、被処理材の裏面側(炭素膜形成面の反対側)に磁石を配置し、該磁石を構成要素とする磁気回路の形成によって被処理材の表面側とその近傍に局部的に強い磁場が形成される。これに伴い被処理材表面近傍において原料ガス由来のプラズマ密度を局部的に上昇させ得、結果、硬質炭素膜の成膜速度を向上させることができる。
Here, the “hard carbon film” refers to a carbon film having a hardness that can be produced by a plasma CVD method, and is not limited to a specific hardness. Typically, it has a carbon sp 3 bond like natural diamond, and partially has a carbon sp 2 bond like graphite. A carbonaceous film generally called diamond-like carbon (DLC) is a typical example included in the hard carbon film here.
In the method disclosed herein, a magnet is arranged on the back side of the material to be treated (opposite the carbon film forming surface), and the surface side of the material to be treated and its vicinity are formed by forming a magnetic circuit having the magnet as a component. A strong magnetic field is formed locally. Accordingly, the plasma density derived from the source gas can be locally increased in the vicinity of the surface of the material to be processed, and as a result, the deposition rate of the hard carbon film can be improved.

好ましくは、前記反応容器に高周波電力を供給することによって該反応容器内にプラズマを発生させる。そして、該高周波電力が印可される電極上に前記被処理材を配置する。
ここで「高周波電力」とは、高周波電源によって供給される電力であってプラズマを発生させ得る典型的には周波数:1〜100MHzの電力をいう。例えば13.56MHz、27.12MHz、或いは40.68MHzの高周波電力が挙げられる。
かかる構成の方法によると、高周波電力の利用によって効率よく被処理材の表面近傍に高密度にプラズマを発生させることができる。
Preferably, plasma is generated in the reaction vessel by supplying high-frequency power to the reaction vessel. And the said to-be-processed material is arrange | positioned on the electrode to which this high frequency electric power is applied.
Here, “high-frequency power” refers to power that is supplied from a high-frequency power source and that can generate plasma, typically at a frequency of 1 to 100 MHz. For example, high frequency power of 13.56 MHz, 27.12 MHz, or 40.68 MHz can be given.
According to such a method, plasma can be efficiently generated at high density near the surface of the material to be processed by using high-frequency power.

また、ここで開示される方法として特に好ましくは、前記反応容器内に配置された被処理材の表面上に磁力線ループが形成されるように、前記磁石を配置する。これにより、被処理材の表面近傍にプラズマを閉じこめ、効率よく硬質炭素膜を形成することができる。例えば、好ましい一態様として、前記磁石は、前記被処理材に少なくとも一つのS極と少なくとも一つのN極とが向けられた状態で該被処理材の裏面側に配置されることを特徴とする方法が挙げられる。   Further, as the method disclosed herein, the magnet is particularly preferably arranged such that a magnetic field line loop is formed on the surface of the material to be processed arranged in the reaction vessel. Thereby, the plasma can be confined in the vicinity of the surface of the material to be processed, and the hard carbon film can be efficiently formed. For example, as a preferred embodiment, the magnet is arranged on the back surface side of the material to be processed with at least one S pole and at least one N pole directed to the material to be processed. A method is mentioned.

また、本発明はここで開示される方法を好適に実施し得るプラズマCVD装置を提供する。この装置は、原料ガスを導入し得る反応容器と、前記容器内においてプラズマを発生させるプラズマ発生手段と、前記容器内において被処理材の表面に原料ガス由来の生成物が蒸着され得るように該被処理材を配置する配置部と、該配置部に配置された被処理材の裏面側に設けられた一又は二以上の磁石であって、該被処理材の表面側とその近傍に局部的に磁場を形成する磁石とを備える。
かかる構成のプラズマCVD装置によると、ここで開示される硬質炭素膜の製造方法を好適に実施し得る。
好ましくは、前記プラズマ発生手段は、前記反応容器内に高周波電力を供給するように構成されており、前記配置部は、高周波電力が印可される電極を備える。かかる構成によって効率よく被処理材の表面に硬質炭素膜を形成(製造)することができる。
The present invention also provides a plasma CVD apparatus that can suitably carry out the method disclosed herein. This apparatus includes a reaction vessel into which a source gas can be introduced, a plasma generating means for generating plasma in the vessel, and a product derived from the source gas on the surface of the material to be processed in the vessel. A placement part for placing the material to be treated, and one or more magnets provided on the back side of the material to be treated placed in the placement part, wherein the magnet is locally disposed on the surface side of the material to be treated and in the vicinity thereof And a magnet for forming a magnetic field.
According to the plasma CVD apparatus having such a configuration, the method for producing a hard carbon film disclosed herein can be suitably implemented.
Preferably, the plasma generating means is configured to supply high-frequency power into the reaction vessel, and the arrangement unit includes an electrode to which high-frequency power is applied. With this configuration, a hard carbon film can be efficiently formed (manufactured) on the surface of the material to be processed.

以下、本発明の好適な実施形態について詳細に説明する。なお、本明細書において特に言及している内容以外の技術的事項であって本発明の実施に必要な事項は、従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書によって開示されている技術内容と当該分野における技術常識とに基づいて実施することができる。   Hereinafter, preferred embodiments of the present invention will be described in detail. It should be noted that technical matters other than the contents particularly mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters of those skilled in the art based on the prior art. The present invention can be carried out based on the technical contents disclosed in the present specification and the common general technical knowledge in the field.

本発明の硬質炭素膜製造方法は、プラズマCVDを実施する反応容器内に被処理材を配置し、更には該被処理材の裏面側に磁石を配置して該被処理材の表面側とその近傍に局部的に磁場を形成し、かかる状態で反応容器内に原料ガスを導入すると共に該容器内においてプラズマを発生させて硬質炭素膜を効率よく製造する方法である。これらのことが実現される限りにおいて、プラズマCVD法を行うに必要な種々のプロセスを種々の公知の材料、装置等を用いて行うことができる。   In the method for producing a hard carbon film of the present invention, a material to be treated is disposed in a reaction vessel for performing plasma CVD, and a magnet is disposed on the back side of the material to be treated, and the surface side of the material to be treated and its surface In this method, a magnetic field is locally formed in the vicinity, a raw material gas is introduced into the reaction vessel in such a state, and plasma is generated in the vessel to efficiently produce a hard carbon film. As long as these are realized, various processes necessary for performing the plasma CVD method can be performed using various known materials and apparatuses.

本発明の硬質炭素膜製造方法に適用できる被処理材は、プラズマCVDによって炭素膜が形成可能な被処理材であって裏面側に磁石を配置した際に表面側に好適な磁場が形成され得る材質・形状のものであれば特に制限なく用いることができる。例えば、シリコン基板その他の金属製基材、或いはアルミナ基板その他のセラミック製基材が被処理材として好ましく用いることができる。非磁性材料や軟磁性材料(例えばアモルファス金属から成る基材)が被処理材として好適に使用し得る。   The material to be processed that can be applied to the method for producing a hard carbon film of the present invention is a material that can form a carbon film by plasma CVD, and a suitable magnetic field can be formed on the front surface side when a magnet is disposed on the back surface side. Any material and shape can be used without particular limitation. For example, a silicon substrate or other metal substrate, or an alumina substrate or other ceramic substrate can be preferably used as the material to be processed. A nonmagnetic material or a soft magnetic material (for example, a base material made of amorphous metal) can be suitably used as the material to be treated.

本発明の硬質炭素膜製造方法に使用する原料ガスとしては、グロー放電等によってプラズマ励起され、種々の被処理材の表面に炭素膜を形成(蒸着)させ得る組成のガスを特に制限なく使用することができる。例えば、メタン、エタン、プロパン等の飽和脂肪族炭化水素、或いはエチレン、アセチレン、プロピレン等の不飽和脂肪族炭化水素、或いはベンゼン、トルエン、ナフタレン等の芳香族炭化水素から成る単体ガス、又はそれらを構成要素とする混合ガスを使用することができる。或いは、これら炭素源ガスに、水素、窒素、酸素若しくはアルゴンの単体又はこれらの混合ガスを添加したものであってもよい。
これら原料ガスの容器内への供給方法(手段)は、従来のプラズマCVD法と同様でよく、典型的には真空ポンプ等で減圧状態となった反応容器内に所定のガス圧で原料ガスを供給する。例えば、好ましくは、原料ガス供給前に容器内を1.0×10−2Pa以下(例えば5〜6×10−3Pa)程度になるまで減圧した後に、容器内が1〜100Pa、好ましくは5〜50Pa(例えば15〜25Pa)程度の低圧条件となるように原料ガスを容器内に供給する。
As a raw material gas used in the method for producing a hard carbon film of the present invention, a gas having a composition that can be plasma-excited by glow discharge or the like to form (evaporate) a carbon film on the surface of various materials to be used is used without particular limitation. be able to. For example, a simple gas composed of a saturated aliphatic hydrocarbon such as methane, ethane or propane, an unsaturated aliphatic hydrocarbon such as ethylene, acetylene or propylene, or an aromatic hydrocarbon such as benzene, toluene or naphthalene, or the like A gas mixture as a component can be used. Alternatively, hydrogen, nitrogen, oxygen or argon alone or a mixed gas thereof may be added to these carbon source gases.
The method (means) for supplying these source gases into the vessel may be the same as in the conventional plasma CVD method. Typically, the source gas is supplied at a predetermined gas pressure into the reaction vessel that has been depressurized by a vacuum pump or the like. Supply. For example, preferably, after reducing the pressure in the container to about 1.0 × 10 −2 Pa or less (for example, 5 to 6 × 10 −3 Pa) before supplying the source gas, the inside of the container is 1 to 100 Pa, preferably The source gas is supplied into the container so as to achieve a low pressure condition of about 5 to 50 Pa (for example, 15 to 25 Pa).

そして原料ガスよりプラズマを発生させ、容器内に配置した被処理材(例えばシリコン基板)の表面に原料ガス分解物(炭素イオン等)を蒸着させることによって、DLC等の硬質炭素膜を製造(成膜)することができる。
プラズマ発生手段としては高周波電力やマイクロ波の付与が挙げられるが、特に高周波電力の利用が好ましい。高周波電力を利用することによって比較的低い温度条件下(典型的には200℃以下)で効率よく硬質炭素膜を成膜することができる。典型的には、反応容器に装備した二つの電極(アノード、カソード)間に高周波電力を供給することによって容器内にグロー放電を生じさせ、該グロー放電によって原料ガスを分解し、プラズマを発生させることができる。例えばアノード及びカソード間に1〜100MHz程度の高周波(例えば13.56MHz)を典型的には10W〜50kW(例えば10W〜1000W、好ましくは100W〜500W)程度の電力で印加するとよい。
Then, plasma is generated from the raw material gas, and a raw material gas decomposition product (carbon ion, etc.) is vapor-deposited on the surface of a material to be processed (for example, a silicon substrate) disposed in the container, thereby producing a hard carbon film such as DLC. Membrane).
Examples of the plasma generating means include application of high-frequency power and microwave, but it is particularly preferable to use high-frequency power. By using high-frequency power, a hard carbon film can be efficiently formed under relatively low temperature conditions (typically 200 ° C. or less). Typically, by supplying high-frequency power between two electrodes (anode and cathode) equipped in the reaction vessel, a glow discharge is generated in the vessel, the source gas is decomposed by the glow discharge, and plasma is generated. be able to. For example, a high frequency of about 1 to 100 MHz (for example, 13.56 MHz) is typically applied between the anode and the cathode with a power of about 10 W to 50 kW (for example, 10 W to 1000 W, preferably 100 W to 500 W).

本発明の硬質炭素膜製造方法では、容器内に配置した被処理材の裏面側に磁石を配置して適当な磁気回路を形成し、それによって被処理材表面側に局部的な磁場を形成する。この目的を実現し得る限り、使用する磁石の種類や形状に限定はなく、CVD用反応容器の形状(特に被処理材の配置部の形状)や大きさによって異なり得る。電磁石又は永久磁石の使用が挙げられるが、永久磁石の使用が好ましい。
また、被処理材の表面側に磁力線ループが形成されるように磁気回路を構成することが好ましい。例えば、被処理材に向けられたN極とS極を相互に適当な間隔を設けて該被処理材近くに配置することによって、被処理材表面側に磁力線ループが形成され、プラズマ閉じこめに好適なクローズドな磁場領域を形成することができる。
この場合において形成する磁場の強さ(磁束密度)は特に限定されないが、被処理材と平行(パラレル)な関係にある磁束密度(Bparallel)として少なくとも0.005T(テスラ)又はそれ以上あることが望ましく、例えば0.01〜0.2T程度が好ましい。特に0.03〜0.1T程度の磁束密度(Bparallel)が硬質炭素膜を製造するのに好ましい。
In the method for producing a hard carbon film of the present invention, a magnet is arranged on the back side of the material to be treated arranged in the container to form an appropriate magnetic circuit, thereby forming a local magnetic field on the surface of the material to be treated. . As long as this purpose can be realized, the type and shape of the magnet to be used are not limited, and may vary depending on the shape (particularly the shape of the arrangement portion of the material to be processed) and the size of the CVD reaction vessel. Although use of an electromagnet or a permanent magnet is mentioned, use of a permanent magnet is preferable.
Further, it is preferable to configure the magnetic circuit so that a magnetic field loop is formed on the surface side of the material to be processed. For example, a magnetic field line loop is formed on the surface of the material to be processed by arranging the N pole and the S pole directed to the material to be processed close to each other with a suitable distance therebetween, which is suitable for plasma confinement. A closed magnetic field region can be formed.
In this case, the strength (magnetic flux density) of the magnetic field to be formed is not particularly limited, but the magnetic flux density (B parallel ) in parallel with the material to be processed is at least 0.005 T (Tesla) or more. For example, about 0.01 to 0.2 T is preferable. In particular, a magnetic flux density (B parallel ) of about 0.03 to 0.1 T is preferable for manufacturing a hard carbon film.

本発明の実施にあたっては、被処理材の裏面側に設ける磁気回路(すなわち磁石)は移動可能に構成することが好ましい。これによって、被処理材表面側の所定の部分の磁場の強さを変動させることができる。或いは、所定の強さの磁場が形成されている領域を被処理材の面方向に移動させることができる。
例えば、固定式の支持台(典型的にはカソード電極)上に被処理材を配置する一方で、該支持台の下側に上下方向及び/又は水平方向に移動可能に磁気回路(磁石)を設けることによって、上記磁場の強さの変動(典型的には被処理材と磁石との距離を異ならせ得る磁気回路(磁石)の上下方向への移動により実現し得る。)、及び/又は、被処理材の面方向への磁場領域の移動(典型的には被処理材裏面側における磁石の相対位置を異ならせ得る磁気回路(磁石)の水平方向への移動により実現し得る。)を行うことができる。
或いは、磁気回路を固定して設ける一方で、被処理材の支持台を移動可能に設けてもよい。例えば、X軸Y軸方向或いは更にZ軸方向に移動する従来公知のステージシステムを利用することができる。
In carrying out the present invention, it is preferable that the magnetic circuit (that is, the magnet) provided on the back side of the material to be processed is configured to be movable. Thereby, the strength of the magnetic field in a predetermined portion on the surface side of the material to be processed can be changed. Alternatively, a region where a magnetic field having a predetermined strength is formed can be moved in the surface direction of the material to be processed.
For example, a magnetic circuit (magnet) can be moved in a vertical direction and / or a horizontal direction on the lower side of the support base while the workpiece is disposed on a fixed support base (typically a cathode electrode). By providing, fluctuations in the strength of the magnetic field (typically can be realized by moving the magnetic circuit (magnet) in the vertical direction that can vary the distance between the workpiece and the magnet), and / or Movement of the magnetic field region in the surface direction of the material to be processed (typically can be realized by horizontal movement of a magnetic circuit (magnet) that can change the relative position of the magnet on the back surface side of the material to be processed). be able to.
Alternatively, while the magnetic circuit is fixedly provided, the support base for the material to be processed may be provided movably. For example, a conventionally known stage system that moves in the X-axis Y-axis direction or further in the Z-axis direction can be used.

次に、ここで開示されるプラズマCVD法に基づく硬質炭素膜の製造方法を実施し得るプラズマCVD装置の好適な一実施形態について図面を参照しつつ説明する。但し、本発明の硬質炭素膜製造方法及びプラズマCVD装置を以下の形態に限定することを意図したものではない。   Next, a preferred embodiment of a plasma CVD apparatus capable of implementing the method for producing a hard carbon film based on the plasma CVD method disclosed herein will be described with reference to the drawings. However, it is not intended to limit the hard carbon film manufacturing method and the plasma CVD apparatus of the present invention to the following forms.

図1に本実施形態に係るプラズマCVD装置1の構成を模式的に示す。この装置1は、大まかにいって、反応容器2と、該反応容器2の内部において被処理材3を支持する配置部5と、反応容器2内に高周波電力を供給する電源部10とから構成されている。
反応容器2は減圧可能な筒状に構成されており、その側壁8の一部には、図示しない種々のガス供給手段(典型的には真空ポンプ)及び原料ガス供給源に接続するガス供給管7が設けられている。さらに側壁8の他の一部には、図示しない種々のガス排出手段(典型的には真空ポンプ)に接続するガス排出管9が設けられている。
また、容器2の側壁8は、上記電源部10と電気的に接続した構成となっており、本装置1におけるアノードを構成している。かかる側壁8を利用することによってアノードの面積を比較的広く確保することができる。本実施形態におけるアノード(側壁)8の面積は約6000cmである。
FIG. 1 schematically shows a configuration of a plasma CVD apparatus 1 according to the present embodiment. The apparatus 1 is roughly composed of a reaction vessel 2, an arrangement unit 5 that supports the material 3 to be processed inside the reaction vessel 2, and a power supply unit 10 that supplies high-frequency power into the reaction vessel 2. Has been.
The reaction vessel 2 has a cylindrical shape that can be depressurized, and a gas supply pipe connected to various gas supply means (typically a vacuum pump) (not shown) and a raw material gas supply source is provided on a part of the side wall 8 thereof. 7 is provided. Further, another part of the side wall 8 is provided with a gas discharge pipe 9 connected to various gas discharge means (typically a vacuum pump) (not shown).
The side wall 8 of the container 2 is electrically connected to the power supply unit 10 and constitutes an anode in the apparatus 1. By utilizing such a side wall 8, a relatively large area of the anode can be secured. The area of the anode (side wall) 8 in this embodiment is about 6000 cm 2 .

配置部5は、プレート状の被処理材3を配置し得る直径約10cmの円盤状の天板14と、該天板14の下面に設けられたケーシング13とから構成されている。天板14は上記電源部10と電気的に接続した構成となっており、本装置1におけるカソードを構成している。かかるカソード(天板)14の面積は約78.5cmである。すなわち、本実施形態に係る装置1では、CVDに利用するカソード14とアノード8のサイズ及び形成位置がいずれも非対称である。このような非対称系の電極(例えば比較的大きな面積のアノードに対してより小さい面積のカソードを使用)を配置することによって、被処理材3の表面近傍への局所的なプラズマ密度の上昇を容易に実現することができる。 The placement unit 5 includes a disk-shaped top plate 14 having a diameter of about 10 cm on which the plate-shaped workpiece 3 can be placed, and a casing 13 provided on the lower surface of the top plate 14. The top plate 14 is configured to be electrically connected to the power supply unit 10 and constitutes a cathode in the apparatus 1. The area of the cathode (top plate) 14 is about 78.5 cm 2 . That is, in the apparatus 1 according to the present embodiment, the sizes and positions of the cathode 14 and the anode 8 used for CVD are asymmetric. By arranging such an asymmetric electrode (for example, using a cathode having a smaller area with respect to an anode having a relatively large area), it is easy to increase the local plasma density near the surface of the workpiece 3. Can be realized.

一方、ケーシング13の内部には、永久磁石15a,15bを備えた磁気回路が形成されている。これによって天板(カソード)14上に配置された被処理材3の表面側とその近傍に局部的な磁場を形成することができる。また、図示されるように、本実施形態では、ケーシング13内の永久磁石15a,15bのN極とS極の配置を工夫しており、具体的には、円盤状天板14の中心部分には、被処理材3の配置される方向にN極が向けられた磁石15bが配置されている。他方、被処理材3の配置される方向にS極が向けられた環状磁石15aが円盤状天板(カソード)14の円周(外縁)に沿って配置されている。この結果、模式的に図示するように、S極近傍部分(天板14の円周部分)からN極近傍部分(天板14の中心部分)への磁力線ループ23が形成される。このような磁力線ループ23を伴う磁場の形成によって、高密度の状態でプラズマを閉じこめる空間を被処理材3の表面近傍に形成することができる。図1において符号25を付して示す部分は、高密度にプラズマが閉じこめられ得る部分(プラズマリング)を模式的に描いたものである。
なお、図2に模式的に示すように、天板14はケーシング13からみて垂直方向に可逆的に移動されるように設けられている。これにより、被処理材3の表面側に形成される磁場の強度を調整することができる。すなわち、ケーシング13(すなわち磁石15a,15b)に天板(カソード)14を近づけることによって上記磁場の強度を大きくすることができる一方、ケーシング13から天板14を離すことによって上記磁場の強度を小さくすることができる。本装置1では、図示しない一般的なZ軸ステージ機構が設けられており、磁石15a,15bと被処理材3との距離(D)を3mm〜18mmの範囲内で変動させることができる。
On the other hand, a magnetic circuit including permanent magnets 15 a and 15 b is formed inside the casing 13. As a result, a local magnetic field can be formed on the surface side of the workpiece 3 disposed on the top plate (cathode) 14 and in the vicinity thereof. Further, as shown in the figure, in the present embodiment, the arrangement of the N poles and S poles of the permanent magnets 15 a and 15 b in the casing 13 is devised, and specifically, in the central portion of the disk-shaped top plate 14. Are arranged with a magnet 15b having an N pole directed in the direction in which the material 3 is disposed. On the other hand, an annular magnet 15 a having an S pole directed in the direction in which the workpiece 3 is disposed is disposed along the circumference (outer edge) of the disk-shaped top plate (cathode) 14. As a result, as schematically shown, a magnetic field line loop 23 is formed from a portion near the S pole (circumferential portion of the top plate 14) to a portion near the N pole (the center portion of the top plate 14). By forming a magnetic field with such a magnetic force line loop 23, a space for confining plasma in a high density state can be formed in the vicinity of the surface of the material 3 to be processed. In FIG. 1, a portion denoted by reference numeral 25 schematically depicts a portion (plasma ring) where plasma can be confined at high density.
As schematically shown in FIG. 2, the top plate 14 is provided so as to be reversibly moved in the vertical direction when viewed from the casing 13. Thereby, the intensity | strength of the magnetic field formed in the surface side of the to-be-processed material 3 can be adjusted. That is, the strength of the magnetic field can be increased by bringing the top plate (cathode) 14 closer to the casing 13 (that is, the magnets 15 a and 15 b), while the strength of the magnetic field is decreased by moving the top plate 14 away from the casing 13. can do. In the present apparatus 1, a general Z-axis stage mechanism (not shown) is provided, and the distance (D) between the magnets 15a and 15b and the workpiece 3 can be varied within a range of 3 mm to 18 mm.

次に、本実施形態に係るプラズマCVD装置1におけるプラズマ発生手段を構成する電源部10を説明する。図1に示すように、この電源部10は、上記カソード(天板14)及びアノード(容器側壁8)と電気的に接続する高周波電源(RF)11を主体に種々の素子類を用いて構成されており、電源部11の出力インピーダンス(ここでは50Ω)と反応容器2内のプラズマインピーダンスを整合するためのマッチング回路19及びコンデンサ18を備えている。高周波電源(RF)11は、13.56MHzの周波数の電力を出力し得る。出力値は10W〜500Wの範囲で設定することができる。
また、電源部10は、上記カソード(天板14)と電気的に接続するインダクタンス22及び電圧計21を含む自己バイアス回路20を備えている。
かかる構成の結果、上記カソード(天板14)とアノード(容器側壁8)との間(すなわち反応容器2の内部空間)に、所定の値の高周波電力を供給することができる。同時に、所定の値の高周波電力を供給した際の自己バイアス電圧を測定することができる。なお、電源部を構成する高周波電源(RF)11、マッチング回路19、自己バイアス回路20等の詳細な回路構成(使用素子類)は一般的なプラズマCVD装置と同様でよく、特に本発明を特徴付けるものではないため、詳細な説明は省略する。
Next, the power supply part 10 which comprises the plasma generation means in the plasma CVD apparatus 1 which concerns on this embodiment is demonstrated. As shown in FIG. 1, the power supply unit 10 is composed of a high-frequency power supply (RF) 11 that is electrically connected to the cathode (top plate 14) and the anode (container side wall 8) using various elements. A matching circuit 19 and a capacitor 18 are provided for matching the output impedance of the power supply unit 11 (here, 50Ω) with the plasma impedance in the reaction vessel 2. The high frequency power supply (RF) 11 can output power having a frequency of 13.56 MHz. The output value can be set in the range of 10W to 500W.
The power supply unit 10 also includes a self-bias circuit 20 including an inductance 22 and a voltmeter 21 that are electrically connected to the cathode (top plate 14).
As a result of this configuration, high-frequency power having a predetermined value can be supplied between the cathode (top plate 14) and the anode (container side wall 8) (that is, the internal space of the reaction vessel 2). At the same time, it is possible to measure the self-bias voltage when a predetermined value of high-frequency power is supplied. The detailed circuit configuration (used elements) such as the high-frequency power source (RF) 11, the matching circuit 19, and the self-bias circuit 20 constituting the power supply unit may be the same as that of a general plasma CVD apparatus, and particularly characterizes the present invention. Since it is not a thing, detailed description is abbreviate | omitted.

以上の構成のプラズマCVD装置1を典型的には以下のような条件で使用することによって所定の被処理材表面に硬質炭素膜を製造することができる。
すなわち、先ずカソード(天板)14上に被処理材3を配置する。そして、減圧条件下の反応容器2内に、外部のガス供給源よりガス供給管7を介して原料ガスを供給する。一方、高周波電源11からカソード14に所定の出力で高周波電力を印加する。同時にカソード14上に配置した被処理材3の表面には自己バイアス電圧が印加される。
而して、反応容器2内の空間にグロー放電が生じ、それによって原料ガス由来のプラズマが発生する。このとき、被処理材3の表面近傍には磁石15a,15bによって局部的に磁場が形成され、容器2内で発生したプラズマを高密度に閉じこめることができる。ところで、本装置1では、図1の磁力線ループ23に示すような被処理材3(すなわちカソード14)とパラレルな磁場の影響を受け、自己バイアス電圧値が変化する。具体的には、平行磁場の強度(磁束密度:Bparallel)がより強い部分は自己バイアス電圧がより低くなる。これにより、被処理材3表面に印加された自己バイアス電圧が低い部分はプラズマインピーダンスが低下し、プラズマが当該部分において収束し得る。その結果、被処理材3表面の磁場の強い部分の成膜速度は加速され、高い成膜速度で硬質炭素膜を得ることができる。
また、磁石15a,15bと被処理材3との距離(D)を変更することにより磁束密度(Bparallel)を異ならせることによって成膜速度を調整することができる。
By using the plasma CVD apparatus 1 having the above configuration typically under the following conditions, a hard carbon film can be produced on the surface of a predetermined material to be processed.
That is, first, the material 3 to be processed is disposed on the cathode (top plate) 14. Then, the raw material gas is supplied from the external gas supply source through the gas supply pipe 7 into the reaction vessel 2 under the reduced pressure condition. On the other hand, high frequency power is applied from the high frequency power supply 11 to the cathode 14 with a predetermined output. At the same time, a self-bias voltage is applied to the surface of the workpiece 3 disposed on the cathode 14.
Thus, glow discharge is generated in the space in the reaction vessel 2, thereby generating plasma derived from the source gas. At this time, a magnetic field is locally formed in the vicinity of the surface of the material 3 to be processed by the magnets 15a and 15b, and the plasma generated in the container 2 can be confined with high density. By the way, in the present apparatus 1, the self-bias voltage value changes under the influence of a magnetic field parallel to the material 3 (that is, the cathode 14) as shown by the magnetic field line loop 23 in FIG. Specifically, the self-bias voltage is lower in a portion where the intensity of the parallel magnetic field (magnetic flux density: B parallel ) is higher. As a result, the plasma impedance is lowered in the portion where the self-bias voltage applied to the surface of the workpiece 3 is low, and the plasma can converge in the portion. As a result, the film forming speed of the strong magnetic field portion on the surface of the material to be processed 3 is accelerated, and a hard carbon film can be obtained at a high film forming speed.
Moreover, the film-forming speed | rate can be adjusted by changing the magnetic flux density (B parallel ) by changing the distance (D) of the magnets 15a and 15b and the to-be-processed material 3. FIG.

<試験例1>
被処理材3としてシリコン製の薄い基板(直径約10cm)を用いて本プラズマCVD装置1を利用し、上記磁石15a,15bと被処理材3との距離(D)を3mm、6mm、9mm、12mm、15mm及び18mmに変化させ、各距離のときの被処理材3の表面上に形成される磁場の強さを、平行磁場の強度(磁束密度:Bparallel)を指標にして一般的な磁束密度計(テスラメータ)を用いて測定した。
すなわち、被処理材3をカソード14上に配置した後、テスラメータのホールプローブで被処理材3の表面を走査し、被処理材3の各部分における磁束密度(Bparallel)を測定した。結果を図3に示す。図3の横軸は円盤状天板(カソード)14の中心を0としたときの該中心位置からの半径距離(radial distance:mm)を示す。図3の縦軸は磁束密度(Bparallel:T)を示す。
図3に示す結果から明らかなように、被処理材3の表面における平行磁束密度(Bparallel)の大きさは、図1に模式的に示したN極15bからS極15aに亘る磁力線ループ23に同調する。すなわち、平行磁束密度(Bparallel:T)の大きさは同心円状に変化し、磁気回路を構成するN極15bとS極15aの間のほぼ中間に位置する部分で最大の磁束密度を示す。このことは、本プラズマCVD装置1において、被処理材の裏面側における磁気回路の構成、具体的には、N極15bとS極15aの配置を適宜異ならせることによって、平行磁束密度(Bparallel:T)が最大となる位置を被処理材3の表面側(すなわちカソード14の表面側)の任意の位置に設定できることを意味する。例えば、N極とS極を適当に配置することによって、円盤状天板(カソード)14の中心部分を平行磁束密度(Bparallel:T)の最大値を示す部分とすることができる。
また、図3に示す結果から明らかなように、磁石15a,15bと被処理材3との距離(D)を変更することによって、磁束密度の大きさを適当に調節することができる。ここでは、距離(D)を3mm〜18mm間で変動させることによって、平行磁束密度(Bparallel:T)の最大値を概ね0.02〜0.07Tの間で調節することができた。
<Test Example 1>
Using this plasma CVD apparatus 1 using a silicon thin substrate (diameter of about 10 cm) as the material 3 to be processed, the distance (D) between the magnets 15a, 15b and the material 3 to be processed is 3 mm, 6 mm, 9 mm, It is changed to 12 mm, 15 mm and 18 mm, and the strength of the magnetic field formed on the surface of the material 3 to be processed at each distance is used as a general magnetic flux with the parallel magnetic field strength (magnetic flux density: B parallel ) as an index. It measured using the density meter (Tesla meter).
That is, after the material to be treated 3 was placed on the cathode 14, the surface of the material to be treated 3 was scanned with a hole probe of a Teslameter, and the magnetic flux density (B parallel ) in each part of the material to be treated 3 was measured. The results are shown in FIG. The horizontal axis of FIG. 3 shows the radial distance (mm) from the center position when the center of the disk-shaped top plate (cathode) 14 is zero. The vertical axis | shaft of FIG. 3 shows magnetic flux density (B parallel : T).
As is clear from the results shown in FIG. 3, the magnitude of the parallel magnetic flux density (B parallel ) on the surface of the material 3 to be processed is the magnetic field line loop 23 extending from the N pole 15b to the S pole 15a schematically shown in FIG. Tune in. That is, the magnitude of the parallel magnetic flux density (B parallel : T) changes concentrically, and shows the maximum magnetic flux density in a portion located approximately in the middle between the N pole 15b and the S pole 15a constituting the magnetic circuit. This is because, in the present plasma CVD apparatus 1, the configuration of the magnetic circuit on the back surface side of the material to be processed, specifically, the arrangement of the N pole 15b and the S pole 15a is appropriately changed, so that the parallel magnetic flux density (B parallel : T) means that the position where T) is maximized can be set to an arbitrary position on the surface side of the workpiece 3 (that is, the surface side of the cathode 14). For example, by appropriately arranging the N pole and the S pole, the central portion of the disk-shaped top plate (cathode) 14 can be a portion showing the maximum value of the parallel magnetic flux density (B parallel : T).
Further, as is apparent from the results shown in FIG. 3, the magnitude of the magnetic flux density can be appropriately adjusted by changing the distance (D) between the magnets 15a and 15b and the material 3 to be processed. Here, by varying the distance (D) between 3 mm and 18 mm, the maximum value of the parallel magnetic flux density (B parallel : T) could be adjusted between approximately 0.02 and 0.07 T.

<試験例2>
次に、上記試験例1(図3)に示す条件のうち、磁石15a,15bと被処理材3との距離(D)を3mmに設定して被処理材3の表面に磁場を形成した状態で、実際に被処理材3上に硬質炭素膜(DLC膜)を製造した。
すなわち、予め反応容器2内を約6×10−3Paとなるまで減圧した後、容器内圧が20Paとなるように原料ガスとしてメタンガスを容器2内に供給した。この状態で、高周波電源(周波数13.56MHz)11から出力400W又は80Wで高周波電力をカソード14に印可し、プラズマCVDを行った。所定時間後、この処理を終了し、被処理材3の表面に形成された硬質炭素膜の性状を調べた。なお、比較試験として、磁気回路(すなわち磁石15a,15b)を取り外した状態で同様のプラズマCVD(高周波出力:400W)を行った。結果を図4に示す。図4は、被処理材3の各表面部分における成膜速度を示している。横軸は、カソード14の中心を0とし、該中心位置からの半径距離(mm)を示す。縦軸は炭素膜の成膜(蒸着)速度(deposition rate:nm/min)を示す。図中の丸プロットは出力400Wの場合の成膜速度を表し、三角プロットは出力80Wでの成膜速度を表し、四角プロットは比較試験すなわち磁場が形成されていない場合(出力400W)の成膜速度を表している。
<Test Example 2>
Next, among the conditions shown in Test Example 1 (FIG. 3), a state in which the distance (D) between the magnets 15a and 15b and the material to be processed 3 is set to 3 mm and a magnetic field is formed on the surface of the material 3 to be processed. Thus, a hard carbon film (DLC film) was actually manufactured on the workpiece 3.
That is, after reducing the pressure in the reaction vessel 2 to about 6 × 10 −3 Pa in advance, methane gas was supplied into the vessel 2 as a raw material gas so that the internal pressure of the vessel became 20 Pa. In this state, high-frequency power was applied to the cathode 14 with an output of 400 W or 80 W from the high-frequency power source (frequency 13.56 MHz) 11, and plasma CVD was performed. After a predetermined time, this treatment was terminated, and the properties of the hard carbon film formed on the surface of the material to be treated 3 were examined. As a comparative test, the same plasma CVD (high frequency output: 400 W) was performed with the magnetic circuit (that is, the magnets 15a and 15b) removed. The results are shown in FIG. FIG. 4 shows the film forming speed at each surface portion of the material 3 to be processed. The horizontal axis indicates the radial distance (mm) from the center position where the center of the cathode 14 is zero. The vertical axis represents the deposition rate (deposition rate: nm / min) of the carbon film. In the figure, the circle plot represents the film formation rate at an output of 400 W, the triangle plot represents the film formation rate at an output of 80 W, and the square plot represents the film formation in a comparative test, that is, when no magnetic field is formed (output 400 W). Expresses speed.

図4から明らかなように、本発明の製造方法によって、磁場をかけない比較試験に比べて著しく高い速度で硬質炭素膜を製造(成膜)することができた。また、高周波出力が高いほど成膜速度をより向上させ得ることが認められた。具体的には、印加高周波電力400Wの場合において、磁場をかけない比較試験での成膜速度が47nm/minであったのに対して、磁場をかけた試験例での成膜速度は最大1029nm/minであった。
また、一般的傾向として、平行磁束密度(Bparallel:T)の高い部分において、より高い成膜速度を実現し得た。このことを確認するべく以下の試験を行った。印加高周波電力を50Wに設定して、上記試験と同様の成膜を行い、平行磁束密度(Bparallel:T)が0.015T、0.025T、0.035T、0.045T、0.055T及び0.065Tである部位の成膜速度を測定した。結果を図5に示す。横軸に磁束密度、縦軸に成膜速度を示す。図5から明らかなように、一般に平行磁束密度(Bparallel:T)が高いほど硬質炭素膜の成膜速度も高くなることが確認された。
As can be seen from FIG. 4, the production method of the present invention made it possible to produce (deposit) a hard carbon film at a significantly higher rate than the comparative test in which no magnetic field was applied. Moreover, it was recognized that the higher the high frequency output, the more the film formation rate can be improved. Specifically, when the applied high frequency power is 400 W, the film formation rate in the comparative test without applying a magnetic field was 47 nm / min, whereas the film formation rate in the test example with a magnetic field applied was 1029 nm at maximum. / Min.
Further, as a general tendency, a higher film formation rate can be realized in a portion where the parallel magnetic flux density (B parallel : T) is high. The following tests were conducted to confirm this. The applied high frequency power was set to 50 W, and film formation was performed in the same manner as in the above test, and the parallel magnetic flux density (B parallel : T) was 0.015T, 0.025T, 0.035T, 0.045T, 0.055T, and The film formation rate at a site of 0.065T was measured. The results are shown in FIG. The horizontal axis represents the magnetic flux density, and the vertical axis represents the film formation rate. As is apparent from FIG. 5, it was confirmed that generally the higher the parallel magnetic flux density (B parallel : T), the higher the deposition rate of the hard carbon film.

<試験例3>
次に、得られた硬質炭素膜の硬度(hardness:GPa)及び弾性率(elastic modulus:GPa)を測定した。この試験では、印可する高周波出力を50W、100W、150W、200W、250W、300W、350W及び400Wの8通りとした。
すなわち、磁石15a,15bと被処理材3との距離(D)を3mmに設定して上記試験例と同様のプラズマCVDを行った。被処理材表面の平行磁束密度が0.065Tである部位の硬度及び弾性率をナノインデンテーション法により測定した。結果を図6に示す。横軸に高周波出力値(W)を示し、左縦軸に硬度(GPa)、右縦軸に弾性率(GPa)を示す。図中の四角プロットは硬度を表し、三角プロットは弾性率を表している。
図6に示すように、高周波電力値に拘わらず、得られた炭素膜の硬度及び弾性率はいずれも高い値を示した。特に電力が50〜300Wの場合に高い硬度及び弾性率を示した。電力値が150〜250Wである場合が更に好ましく、特に200Wでは、硬度が16.2GPa、弾性率が121.6GPaであった。一方、入力高周波電力値が400Wの場合、成膜速度は最速であり、単位時間あたりでもっとも厚い硬質炭素膜が得られたが、応力特性はわずかに低下した。これは、高エネルギー付与によるイオン衝突の増大によって、炭素膜中のsp結合が増大したことが影響していると考えられる。従って、応力特性(硬度、弾性率)に優れる硬質炭素膜(典型的にはDLC膜)を製造するには、50〜300Wの入力高周波電力が好ましく、100〜250Wが特に好ましい。
<Test Example 3>
Next, the hardness (hardness: GPa) and elastic modulus (GPa) of the obtained hard carbon film were measured. In this test, the high frequency output to be applied was eight types of 50 W, 100 W, 150 W, 200 W, 250 W, 300 W, 350 W, and 400 W.
That is, the distance (D) between the magnets 15a and 15b and the material 3 to be processed was set to 3 mm, and plasma CVD similar to the above test example was performed. The hardness and elastic modulus of the part where the parallel magnetic flux density on the surface of the material to be processed was 0.065T were measured by the nanoindentation method. The results are shown in FIG. The horizontal axis represents the high-frequency output value (W), the left vertical axis represents hardness (GPa), and the right vertical axis represents elastic modulus (GPa). The square plot in the figure represents the hardness, and the triangular plot represents the elastic modulus.
As shown in FIG. 6, the hardness and elastic modulus of the obtained carbon film showed high values regardless of the high frequency power value. In particular, when the power was 50 to 300 W, high hardness and elastic modulus were exhibited. The case where the power value is 150 to 250 W is more preferable, and particularly at 200 W, the hardness was 16.2 GPa and the elastic modulus was 121.6 GPa. On the other hand, when the input high-frequency power value was 400 W, the film formation rate was the fastest, and the thickest hard carbon film per unit time was obtained, but the stress characteristics slightly decreased. This is considered to be due to the increase in sp 2 bonds in the carbon film due to the increase in ion collision due to the application of high energy. Therefore, in order to produce a hard carbon film (typically a DLC film) excellent in stress characteristics (hardness and elastic modulus), an input high-frequency power of 50 to 300 W is preferable, and 100 to 250 W is particularly preferable.

<試験例4>
上記試験例3において印可高周波電力が50W、200W、400Wで製造した硬質炭素膜表面を原子間力顕微鏡で観察し、表面粗さを示す指標値である二乗平均平方根偏差(RMS値)を計算した。その結果、該個所におけるRMS値は50Wが8.41nm、200Wが3.34nm、400Wが1.69nmであった。これらRMS値から、印可高周波電力が高いほど硬質炭素膜の平滑性が向上することがわかる。
本開示による方法で平滑性が良好な硬質炭素膜を製造するには、より高い印可高周波電力で実施するのが好ましく、例えばここに示した例では、300〜400Wで実施したものが好ましい。
<Test Example 4>
The surface of the hard carbon film manufactured with the applied high frequency power of 50 W, 200 W, and 400 W in Test Example 3 was observed with an atomic force microscope, and the root mean square deviation (RMS value), which is an index value indicating the surface roughness, was calculated. . As a result, the RMS value at the location was 8.41 nm for 50 W, 3.34 nm for 200 W, and 1.69 nm for 400 W. From these RMS values, it is understood that the smoothness of the hard carbon film improves as the applied high frequency power increases.
In order to produce a hard carbon film with good smoothness by the method according to the present disclosure, it is preferable to carry out at a higher applied high frequency power. For example, in the example shown here, one carried out at 300 to 400 W is preferred.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
また、本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
In addition, the technical elements described in the present specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology illustrated in the present specification or the drawings achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.

本発明のプラズマCVD装置の一例を示す模式図である。It is a schematic diagram which shows an example of the plasma CVD apparatus of this invention. 図1の要部を拡大して示す模式図である。It is a schematic diagram which expands and shows the principal part of FIG. カソード(被処理材)表面の半径距離と平行磁束密度との関係を示すグラフである。It is a graph which shows the relationship between the radial distance of a cathode (to-be-processed material) surface, and a parallel magnetic flux density. カソード(被処理材)表面の半径距離と被処理材表面における硬質炭素膜の成膜速度との関係を示すグラフである。It is a graph which shows the relationship between the radial distance of a cathode (to-be-processed material) surface, and the film-forming speed | rate of the hard carbon film in the to-be-processed material surface. 平行磁束密度と被処理材表面における硬質炭素膜の成膜速度との関係を示すグラフである。It is a graph which shows the relationship between a parallel magnetic flux density and the film-forming speed | rate of the hard carbon film in the to-be-processed material surface. 平行磁束密度が0.065Tの部位における印加高周波電力と硬度及び弾性率との関係を示すグラフである。It is a graph which shows the relationship between the applied high frequency electric power in a site | part whose parallel magnetic flux density is 0.065T, hardness, and an elasticity modulus.

符号の説明Explanation of symbols

1 プラズマCVD装置
2 反応容器
3 被処理材(シリコン基板)
5 配置部
8 側壁(アノード)
10 電源部
11 高周波電源
14 カソード
15a,15b 磁石
23 磁力線ループ
25 プラズマの高密度領域(プラズマリング)
DESCRIPTION OF SYMBOLS 1 Plasma CVD apparatus 2 Reaction container 3 Material to be processed (silicon substrate)
5 Arrangement 8 Side Wall (Anode)
DESCRIPTION OF SYMBOLS 10 Power supply part 11 High frequency power supply 14 Cathode 15a, 15b Magnet 23 Magnetic field line loop 25 High-density area | region (plasma ring) of plasma

Claims (5)

プラズマCVD法に基づいて被処理材の表面に硬質炭素膜を製造する方法であって、以下の工程:
反応容器内に被処理材を配置する工程;
前記反応容器内に配置された被処理材の裏面側に磁石を配置し、該被処理材の表面側とその近傍に局部的に磁場を形成する工程;および
前記反応容器内に原料ガスを導入すると共に、該容器内においてプラズマを発生させる工程;
を包含する方法。
A method for producing a hard carbon film on the surface of a material to be treated based on a plasma CVD method, comprising the following steps:
Placing the material to be treated in the reaction vessel;
A step of arranging a magnet on the back surface side of the material to be treated disposed in the reaction vessel and locally forming a magnetic field on the surface side of the material to be treated and its vicinity; and introducing a raw material gas into the reaction vessel And generating plasma in the container;
Including the method.
前記反応容器に高周波電力を供給することによって該容器内にプラズマを発生させるとともに、該高周波電力が印可される電極上に前記被処理材を配置する、請求項1に記載の方法。   The method according to claim 1, wherein plasma is generated in the container by supplying high-frequency power to the reaction container, and the material to be treated is disposed on an electrode to which the high-frequency power is applied. 前記反応容器内に配置された被処理材の表面上に磁力線ループが形成されるように、前記磁石を配置する、請求項1又は2に記載の方法。   The method of Claim 1 or 2 which arrange | positions the said magnet so that a magnetic force line loop may be formed on the surface of the to-be-processed material arrange | positioned in the said reaction container. 原料ガスを導入し得る反応容器と、
前記容器内においてプラズマを発生させるプラズマ発生手段と、
前記容器内において被処理材の表面に原料ガス由来の生成物が蒸着され得るように該被処理材を配置する配置部と、
該配置部に配置された被処理材の裏面側に設けられた一又は二以上の磁石であって、該被処理材の表面側とその近傍に局部的に磁場を形成する磁石と、
を備えるプラズマCVD装置。
A reaction vessel capable of introducing a raw material gas;
Plasma generating means for generating plasma in the container;
An arrangement part for arranging the material to be treated so that a product derived from the raw material gas can be deposited on the surface of the material to be treated in the container;
One or two or more magnets provided on the back side of the material to be processed arranged in the arrangement part, and a magnet that locally forms a magnetic field on the surface side of the material to be processed and in the vicinity thereof;
A plasma CVD apparatus comprising:
前記プラズマ発生手段は、前記反応容器内に高周波電力を供給するように構成されており、前記配置部は、高周波電力が印可される電極を備える、請求項4に記載の装置。   The apparatus according to claim 4, wherein the plasma generating unit is configured to supply high-frequency power into the reaction vessel, and the arrangement unit includes an electrode to which high-frequency power is applied.
JP2004239669A 2004-08-19 2004-08-19 Plasma CVD apparatus and method of manufacturing hard carbon film Active JP4649605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004239669A JP4649605B2 (en) 2004-08-19 2004-08-19 Plasma CVD apparatus and method of manufacturing hard carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004239669A JP4649605B2 (en) 2004-08-19 2004-08-19 Plasma CVD apparatus and method of manufacturing hard carbon film

Publications (2)

Publication Number Publication Date
JP2006057132A true JP2006057132A (en) 2006-03-02
JP4649605B2 JP4649605B2 (en) 2011-03-16

Family

ID=36104856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004239669A Active JP4649605B2 (en) 2004-08-19 2004-08-19 Plasma CVD apparatus and method of manufacturing hard carbon film

Country Status (1)

Country Link
JP (1) JP4649605B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329583B2 (en) * 1980-09-20 1988-06-14 Mitsubishi Electric Corp
JPH01294867A (en) * 1988-02-26 1989-11-28 Semiconductor Energy Lab Co Ltd Formation of coating film of carbon or consisting essentially of carbon
JPH06252071A (en) * 1992-12-28 1994-09-09 Semiconductor Energy Lab Co Ltd Plasma processing method and plasma processing device
JPH1174099A (en) * 1997-05-01 1999-03-16 Applied Materials Inc Self-cleaning focus ring

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329583B2 (en) * 1980-09-20 1988-06-14 Mitsubishi Electric Corp
JPH01294867A (en) * 1988-02-26 1989-11-28 Semiconductor Energy Lab Co Ltd Formation of coating film of carbon or consisting essentially of carbon
JPH06252071A (en) * 1992-12-28 1994-09-09 Semiconductor Energy Lab Co Ltd Plasma processing method and plasma processing device
JPH1174099A (en) * 1997-05-01 1999-03-16 Applied Materials Inc Self-cleaning focus ring

Also Published As

Publication number Publication date
JP4649605B2 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
KR900008505B1 (en) Microwave enhanced cvd method for depositing carbon
JPH0623430B2 (en) Carbon production method
JP4755262B2 (en) Method for producing diamond-like carbon film
JPH01191780A (en) Thin film-forming equipment
WO1998058097A9 (en) A method of coating edges with diamond-like carbon
JP2004270022A (en) Method for manufacturing thin film and thin film
JPH0827576A (en) Formation of diamond film
JP4649605B2 (en) Plasma CVD apparatus and method of manufacturing hard carbon film
JP2006249539A (en) Compound surface reforming treatment method and apparatus, and surface reforming treated material
JP2011060944A (en) Heat conductor including carbon nanotube and method of manufacturing the same, and heat treatment apparatus including the heat conductor
JPH101305A (en) Carbon film and production of carbon film
JP2808922B2 (en) Method for forming diamond-like carbon film
JP3016748B2 (en) Method for depositing carbon-based high-performance material thin film by electron beam excited plasma CVD
JPH07278822A (en) Plasma cvd method for formation of carbon film and device therefor
JP4813040B2 (en) Diamond layer forming method and multilayer hard carbon film forming method using the same
JP2004238649A (en) Method and apparatus for manufacturing member coated with carbon-based film
JPS63210010A (en) Production of carbon
JPH0665744A (en) Production of diamond-like carbon thin film
Ohtsu et al. Production of High‐Density Capacitively Coupled Plasma with RF Multi‐Hollow Cathode and/or High Secondary Electron Emission for DLC Film Preparation
JP2002038268A (en) Carbon coating and manufacturing method
JPS6265997A (en) Method and apparatus for synthesizing diamond
Ivanov et al. Electron emission amplification of cold cathode by two‐layer diamond coating
JP2799414B2 (en) Plasma CVD apparatus and film forming method
JP2004339561A (en) Film manufacturing method and film manufacturing apparatus
JP2000026193A (en) Thin film

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4649605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350