JP2004238649A - Method and apparatus for manufacturing member coated with carbon-based film - Google Patents

Method and apparatus for manufacturing member coated with carbon-based film Download PDF

Info

Publication number
JP2004238649A
JP2004238649A JP2003026638A JP2003026638A JP2004238649A JP 2004238649 A JP2004238649 A JP 2004238649A JP 2003026638 A JP2003026638 A JP 2003026638A JP 2003026638 A JP2003026638 A JP 2003026638A JP 2004238649 A JP2004238649 A JP 2004238649A
Authority
JP
Japan
Prior art keywords
carbon
bias
coated member
plasma
pulsed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003026638A
Other languages
Japanese (ja)
Inventor
Toshiya Watanabe
俊哉 渡辺
Kazuhiro Yamamoto
和弘 山本
Yoshinori Koga
義紀 古賀
Akihiro Tanaka
章浩 田中
Nobuki Yamashita
信樹 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Mitsubishi Heavy Industries Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2003026638A priority Critical patent/JP2004238649A/en
Publication of JP2004238649A publication Critical patent/JP2004238649A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for manufacturing a member coated with a carbon-based film which realize supply of plasma of high density even to a surface of a recessed portion, and enable a condition for synthesizing a carbon film excellent in sliding characteristic to be adjusted. <P>SOLUTION: Plasma is generated by an external plasma source, and the pulse-shaped RF bias and the negative pulse-shaped DC bias voltage are simultaneously applied to a base material to be treated. The external plasma source is constituted of a plasma source capable of generating high density plasma and uniformly covering the periphery of the base material with the high density plasma. The power of the RF bias is adjusted so that its self bias voltage is from -0.05 kV to -1 kV, the duty ratio of the RF bias is set to be from 1% to 50%, the DC bias voltage is set to be from -1 kV to -10 kV, and the duty ratio of the DC bias voltage is set to be from 1% to 50%. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、各種摺動部材、回転機器の軸受け、情報機器記憶装置等、耐摩耗性の要求される部材に適用される炭素系膜被覆部材の製造方法及び装置に関する。
【0002】
【従来の技術】
イオンビームを利用した成膜技術は、イオンビームの持つエネルギーを用いることにより、常温常圧では不安定な非平衡物質の合成に有効な手法である。例えば、ダイヤモンドの次に硬く、ダイヤモンドより熱的安定な立方晶窒化ホウ素(cubic Boron Nitride :cBN)や、アモルファス構造ながら硬質で摩擦特性に優れたダイヤモンド状炭素(Diamond like Carbon :DLC)等が挙げられる。これらの材料は耐摩耗性、高硬度等の特徴を活かし、各種摺動部材や工具等への応用が期待されている。これらの部材は平板から構成されるものは非常に少なく、立体形状、3次元的に複雑な形状を有する。しかし、イオンビームを用いた成膜技術を用い、立体形状、複雑形状部材の表面への処理を行う場合、イオンビームの指向性から、処理部材へのイオンビームの照射角度により、成膜速度やエッチング速度が異なるため、曲率を有する箇所に均一に成膜することは非常に困難である。現状では、処理部材に対して均一性膜条件が維持できるようなマスク、ワークの回転、揺動運動が不可欠であるため、処理時間がかかり、処理コストが高く生産性が悪い。
【0003】
イオンビームを用いた成膜技術に関し、上記課題を克服可能な成膜方法として、プラズマイオン注入法(Plasma Based Ion Implantation :PBII)が注目されている。これは、1986年にアメリカから提唱された成膜方法であり、プラズマ中に浸漬した処理部材に対し、負のパルス電圧を印加し、処理部材の周囲に存在するプラズマ中のイオンを均一に処理部材に照射する方法である。本手法による複雑形状部材表面への均一処理(イオンビームの均一照射)に対しては、プラズマの高密度化、及びパルスバイアスの短パルス化が望まれる。
【0004】
また、炭素系膜被覆部材の製造方法に関する反応性プラズマ中の処理で、膜が処理部材上へ堆積する場合は、パルス電圧が印加されていない間に膜が堆積し、その膜の性質が全体の膜の特性に大きな影響を与える。一般的に、パルス電圧が印加されていない間に生成する膜は機械的に弱い膜であり、より摩擦特性等の機械的特性に優れた硬質膜を得ようとする場合、大きな問題となる。そこで、本発明者らは、プラズマ源に外部プラズマ源を用い、パルスバイアスと直流バイアスの同時印加により摩擦特性等の機械的特性の非常に優れた硬質炭素膜被覆部材の製造方法を提案している(特願2001−188637号)。
【0005】
プラズマ源に外部プラズマ源を用いる技術では、プラズマを特に凹面内に均一に供給することが難しく、現状技術では均一処理が困難である。
【0006】
一方で、産業技術総合研究所関西センター及び中部センサーでは、非処理部材にそれぞれ高周波又は正のパルスバイアスを印加するといった、非処理部材自身をプラズマ発生のためのアンテナとして用い処理基材周辺でプラズマを生成する工程により、従来から計算により必要とされる密度よりは低いものの凹面内にもプラズマを供給することができる手法を提案している(特許文献1,特許文献2参照)。
【0007】
【特許文献1】
特開2001−26887号公報 (図1,図2)
【特許文献2】
特開2001−207259号公報 (図1,図2)
【0008】
【発明が解決しようとする課題】
しかしながら、これらの手法では処理基材を覆うプラズマの密度が十分に高くなく、処理基材にバイアス電圧を印加する際にイオンの供給源となるプラズマシースエッジの形状が処理形状に沿わないため、一般にギアや工具の有する複雑な形状の処理基材を十分な均一性で処理することは困難である。
【0009】
本発明は、上記問課題に着眼してなされたものであり、凹面表面に対しても密度の高いプラズマを供給することが可能で、且つ摺動特性の優れた炭素系膜が合成可能な条件を調整可能な炭素系膜被覆部材の製造方法及び装置を提供するものである。
【0010】
【課題を解決するための手段】
上記課題を解決する第1発明の炭素系膜被覆部材の製造方法は、外部プラズマ源によりプラズマを生成するとともに、処理基材に対し、パルス状のRFバイアスと負のパルス状のDCバイアス電圧とを同時に印加することを特徴とする。
【0011】
また、第2発明の炭素系膜被覆部材の製造方法は、第1発明の炭素系膜被覆部材の製造方法において、
前記外部プラズマ源は高密度プラズマを生成可能で、且つ、この高密度プラズマにより前記処理基材の周囲を均一に覆うことができるプラズマ源から構成されることを特徴とする。例えば、外部プラズマ源はECRプラズマ源、RFプラズマ源、ICPプラズマ源、ヘリコン波プラズマ源等、RFプラズマより高密度プラズマを生成可能で、処理基材周囲を均一に覆うことができるプラズマ源から構成される。
【0012】
また、第3発明の炭素系膜被覆部材の製造方法は、第1又は第2発明の炭素系膜被覆部材の製造方法において、
前記処理基材に印加する前記パルス状のRFバイアスのパワーを、前記処理基材に印加される自己バイアス電圧が−0.05kVから−1kVとなるように調整することを特徴とする。
【0013】
また、第4発明の炭素系膜被覆部材の製造方法は、第1,第2又は第3発明の炭素系膜被覆部材の製造方法において、
前記処理部材に印加する前記パルス状のRFバイアスのデューティー比を、1%から50%とすることを特徴とする。
【0014】
また、第5発明の炭素系膜被覆部材の製造方法は、第1,第2,第3又は第4発明の炭素系膜被覆部材の製造方法において、
前記処理基材に印加する前記パルス状のDCバイアス電圧を、−1kVから−10kVとすることを特徴とする。
【0015】
また、第6発明の炭素系膜被覆部材の製造方法は、第1,第2,第3,第4又は第5発明の炭素系膜被覆部材の製造方法において、
前記処理部材に印加する前記パルス状のDCバイアス電圧のデューティー比を、1%から50%とすることを特徴とする。
【0016】
また、第7発明の炭素系膜被覆部材の製造装置は、外部プラズマ源と、パルス状のRFバイアスを印加するRFパルスバイアス印加手段と、パルス状のDCバイアス電圧を印加するDCパルスバイアス印加手段とを備え、前記外部プラズマ源によりプラズマを生成するとともに、前記RFパルスバイアス印加手段と前記DCパルスバイアス印加手段とにより、前記処理基材に対し、パルス状のRFバイアスと負のパルス状のDCバイアス電圧とを同時に印加するように構成したことを特徴とする。
【0017】
また、第8発明の炭素系膜被覆部材の製造装置は、第7発明の炭素系膜被覆部材の製造装置において、
前記外部プラズマ源は高密度プラズマを生成可能で、且つ、この高密度プラズマにより前記処理基材の周囲を均一に覆うことができるプラズマ源から構成されることを特徴とする。例えば、外部プラズマ源はECRプラズマ源、RFプラズマ源、ICPプラズマ源、ヘリコン波プラズマ源等、RFプラズマより高密度プラズマを生成可能で、処理基材周囲を均一に覆うことができるプラズマ源から構成される。
【0018】
また、第9発明の炭素系膜被覆部材の製造装置は、第7又は第8発明の炭素系膜被覆部材の製造装置において、
前記RFパルスバイアス印加手段によって前記処理基材に印加する前記パルス状のRFバイアスのパワーを、前記処理基材に印加される自己バイアス電圧が−0.05kVから−1kVとなるように調整することを特徴とする。
【0019】
また、第10発明の炭素系膜被覆部材の製造装置は、第7,第8又は第9発明の炭素系膜被覆部材の製造装置において、
前記RFパルスバイアス印加手段によって前記処理部材に印加する前記パルス状のRFバイアスのデューティー比を、1%から50%とすることを特徴とする。
【0020】
また、第11発明の炭素系膜被覆部材の製造装置は、第7,第8,第9又は第10発明の炭素系膜被覆部材の製造装置において、
前記DCパルスバイアス印加手段によって前記処理基材に印加する前記パルス状のDCバイアス電圧を、−1kVから−10kVとすることを特徴とする。
【0021】
また、第12発明の炭素系膜被覆部材の製造装置は、第7,第8,第9,第10又は第11発明の炭素系膜被覆部材の製造装置において、
前記DCパルスバイアス印加手段によって前記処理部材に印加する前記パルス状のDCバイアス電圧のデューティー比を、1%から50%とすることを特徴とする。
【0022】
【発明の実施の形態】
本発明に係わる炭素系膜被覆部材の製造方法及び装置は、凸面表面のみならず凹面表面に対しても密度の高いプラズマを供給することを可能とし、且つ摺動特性の優れた炭素系膜が合成可能な条件を調整可能な製造方法及び装置である。
これは、処理基材にRFバイアスを印加することにより処理基材の周囲にプラズマを生成するとともに、自己バイアスによりプラズマ中のイオンを積極的に引き込み、パルス電圧が印加されていない時間に成膜される機械的に弱い膜の成膜を防ぎ、且つ外部プラズマ源から密度の高いプラズマを処理基材に供給しながら、負のパルスバイアス印加によるイオン照射を行い、機械的特性の優れた炭素系膜を成膜する方法である。
【0023】
以下に、図1を用いて本発明の実施の形態について詳細に説明する。図1は本発明の実施の形態に係わる炭素系膜被覆部材を製造するための装置の概略図である。
【0024】
図1に示すように、真空容器11は排気孔23から図示しない真空排気装置により真空排気され、内部に処理基材12を設置する基材ホルダー13を有している。基材ホルダー13は、高絶縁フィードスルー14を介して、DCパルスバイアスを印加するDCパルスバイアス印加手段としてのDCパルスバイアス電源15、RFパルスバイアスを印加するRFパルスバイアス印加手段としてのRFパルスバイアス電源17、及びDCパルスバイアス電源15とRFパルスバイアス電源17の整合をとる整合器16に接続されている。
【0025】
プラズマ18は、ガス導入管19から真空容器11内へ反応ガスを導入し、導波管20を介してマイクロ波電源21から真空容器11へとマイクロ波を導入し、対向した電磁コイル22により処理基材12付近に導入したマイクロ波を最も効率的に吸収する磁場を形成することによりプラズマを発生させる外部プラズマ源と、RFパルスバイアス電源17によるRFパルスバイアス印加により形成される。外部プラズマ発生源は、上記以外にも、高周波プラズマや、ヘリコン波プラズマ、誘導結合プラズマ等の種々のプラズマ源を用いても同様な効果が得られる。
【0026】
次に、図1を用いて炭素系膜被覆部材の製造方法を説明する。
【0027】
まず、基材ホルダー13に処理基材12を設置し、真空容器11を所定の真空度まで真空排気する。その後、ガス導入管19から所望の炭化水素系の原料ガスを導入し所望の圧力に設定した後、電磁コイル22に所望の電流を流すことにより、真空容器11内の所望の箇所においてマイクロ波を効率的に吸収可能な磁場を形成する。この状態で、導波管20を介してマイクロ波電源21から所望の出力のマイクロ波を真空容器11内へ導入することで外部プラズマを発生させる。
【0028】
また、この外部プラズマの発生と同時に、高絶縁フィードスルー14を介してRFパルスバイアス電源17から処理基材12にパルス状のRFバイアス(RFパルスバイアス)を印加することによりさらにプラズマを生成するとともに、DCパルスバイアス電源15から処理基材12に、整合器16によりRFバイアスとの整合を取りながら、所望の電圧、デューティー比のDCパルスバイアス(パルス状のDCバイアス電圧)を印加する。以上の工程により処理基材12の表面に対し炭素系膜を製造する。
【0029】
ここで、RFパルスバイアス電源17から処理基材12に印加するRFパルスバイアスを、自己バイアス電圧が、−0.05kVから−1kVとなるように調整することが望ましい。処理基材12に印加するRF自己バイアス電圧が−0.05kV以下のときは、イオンのエネルギーが低くRFパルスバイアスを印加しない場合と差がなく、自己バイアス電圧の印加効果がない。また、RF自己バイアス電圧が−2kV以上では照射するイオンのエッチング効果により成膜速度が著しく減少する。
【0030】
その際、RFパルスバイアス電源17から処理基材12に印加するRFパルスバイアスのデューティー比を、処理基材の表面温度が400℃以下となるよう、1%から50%とすることが望ましい。処理基材12を水冷等により冷却していても高密度のプラズマに曝されること、及び過度のRFバイアスの印加により、処理基材12の表面は高温になる。このとき、処理基材12の表面の温度が400℃以上になると、合成される炭素系膜の構造が徐々に変化して機械的性質が悪化するため、RFバイアスをパルス化して処理基材12に印加することにより、処理基材12の表面温度の過度な上昇を防止可能なデューティー比でRFバイアスを印加することが望まれる。
【0031】
また、DCパルスバイアス電源15から処理部材に印加するDCパルスバイアス(パルス電圧)を、−1kVから−10kVとすることが望ましい。処理基材12に印加するDCパルスバイアスが−1kV以下のときは、イオンが膜に注入されず表面に堆積することにより、DCパルスバイアスが印加されていない間に堆積する炭素膜の改質を行うことが出来ない。また、DCパルスバイアスが−10kV以上では、DCパルスバイアスが印加されていない間に堆積する炭素膜を注入されるイオンが突き抜けてしまうため、効果的に炭素膜の改質を行うことができない。
【0032】
さらに、DCパルスバイアス電源15から処理基材12に印加するDCパルスバイアスのデューティー比を、1%から50%とすることが望ましい。処理基材12に印加するDCパルスバイアスのデューティー比が1%以下のときは、Dパルスバイアスが印加されていない間に堆積する炭素膜を改質するために必要なイオンが不足しているため、十分に硬質な膜が得られない。また、デューティー比が50%以上では、DCパルスバイアスが印加されていない間に堆積する炭素膜をエッチングしてしまい成膜速度が著しく減少する、イオン照射過多により得られる膜が多孔質化してしまい硬質な膜が得られない、といった問題が生じる。さらに、処理基材12と真空容器11間で異常放電が起こり安定した動作が保証されない。
【0033】
<実施例>
以下に、本発明の実施例を図1を用いて詳細に説明する。
【0034】
(実施例1)
まず、基材ホルダー13にステンレス鋼(JIS:SUS304)からなる処理基材12を設置し、真空容器11を1×10−3Pa以下の真空度まで真空排気した。その後、ガス導入管19から原料ガスとしてメタンを導入し、5×10−2Paの圧力に制御した。その後、電磁コイル22に300Aの電流を流すことにより、真空容器11内の中心部から100mm離れた箇所においてマイクロ波を効率的に吸収可能な磁場(875ガウス)を形成した。この状態で、導波管20を介してマイクロ波電源21から200Wの出力のマイクロ波(周波数2.45GHz)を真空容器11内へ導入することによりプラズマを発生させた。そして、このプラズマ発生と同時に、高絶縁フィードスルー14を介して、RFパルスバイアス電源15から処理基材12にRFパワー200W、デューティー比40%のRFパルスバイアスを印加するとともに、DCパルスバイアス電源17から処理基材12に電圧−2kV、デューティー比1%のDCパルスバイアス(パルス電圧)を同時に印加することにより、炭素膜被覆部材を製造した。このときのRFバイアス印加による自己バイアス電圧は−100Vで、試料表面温度は250℃であった。
【0035】
得られた炭素膜の構造をラマンスペクトル分析により調べたところ、1520cm−1付近のメインピークと1380cm−1付近のショルダーバンドからなるブロードなピークが検出され、硬質炭素膜であるダイヤモンドライクカーボン膜の合成が確認された。
【0036】
さらに、得られた炭素膜の摩擦特性をボールオンディスク型摩擦試験機により調べた。摩擦試験の条件としては、相手材をSiCボール、荷重を1N、速度を0.1m/sec、雰囲気を乾燥空気中、温度を室温とした。その結果、摩擦係数は、バイアスバイアスを印加せずに製造した炭素膜では0.4、電圧−2kV、デューティー比1%のDCパルスバイアスのみを印加して製造した炭素膜では0.08であったのに対し、前述のRF自己バイアス電圧−100Vと−2kV、デューティー比1%のDCパルスバイアスを同時に印加させることにより製造した炭素膜では0.02と大幅に向上した。また、前述のRF自己バイアス電圧−100Vと−2kV、デューティー比1%のDCパルスバイアスを同時に印加させることにより製造した炭素膜は、荷重20Nでの摩擦試験にも剥離することなく摩擦係数0.02を示し、密着性、耐久性も大幅に向上した。これらの特性は、複雑形状を模擬したトレンチ形状を含む凹凸面の各面上において均一に有することが確認された。
【0037】
(実施例2)
まず、基材ホルダー13に高速度工具鋼(JIS:SKH51)からなる基材12を設置し、真空容器11を1×10−3Pa以下の真空度まで真空排気した。その後、ガス導入管19から原料ガスとしてメタン及び窒素1:1の割合で導入し、5×10−2Paの圧力に制御した。その後、電磁コイル22に250Aの電流を流すことにより、真空容器11内の中心部から150mm離れた箇所においてマイクロ波を効率的に吸収可能な磁場(875ガウス)を形成した。この状態で、導波管20を介してマイクロ波電源21から700Wの出力のマイクロ波(周波数2.45GHz)を真空容器11内へ導入することによりプラズマを発生させた。そして、このプラズマ発生と同時に、高絶縁フィードスルー14を介してRFパルスバイアス電源15から処理基材12にRFパワー500W、デューティー比20%のRFパルスバイアスを印加するとともに、DCパルスバイアス電源17から処理基材12に電圧−5kV、デューティー比10%のDCパルスバイアスを同時に印加させることにより、炭素膜被覆部材を製造した。このときのRFバイアス印加による自己バイアス電圧は−200Vで、試料表面温度は350℃であった。
【0038】
得られた膜のラマンスペクトル分析を用い構造を調べた。その結果、1520cm−1付近のメインピークと1380cm−1付近のショルダーバンドからなるブロードなピークが検出され、硬質炭素膜であるダイヤモンドライクカーボン膜に類似した膜の合成が確認された。さらに、得られた膜の組成及び構造を光電子分光法により調べたところ、膜中での炭素と窒素の結合が確認され、窒素を20%含む窒化炭素膜であることが確認された。
【0039】
さらに、得られた膜の摩擦特性をボールオンディスク型摩擦試験機により調べた。摩擦試験の条件としては、相手材をSiCボール、荷重を1N、速度を0.1m/sec、雰囲気を乾燥空気中、温度を室温とした。その結果、摩擦係数は、バイアスバイアスを印加せずに製造した炭素膜では0.5、電圧−2kV、デューティー比1%のDCパルスバイアスのみを印加し製造した炭素膜では0.09であったのに対し、前述のRF自己バイアス電圧−200Vと−5kV、デューティー比10%のパルス電圧を同時に印加させることにより製造した炭素膜では0.03と大幅に向上した。また、前述のRF自己バイアス電圧−200Vと−5kV、デューティー比10%のDCパルスバイアスを同時に印加させることにより製造した炭素膜は、荷重20Nでの摩擦試験にも剥離することなく摩擦係数0.03を示し、密着性、耐久性も大幅に向上した。これらの特性は、複雑形状を模擬したトレンチ形状を含む凹凸面の各面上において均一に有することが確認された。
【0040】
【発明の効果】
以上の説明のように、第1〜第12発明の炭素系膜被覆部材の製造方法及び装置によれば、摩擦特性の優れた炭素系膜を、複雑形状を有する処理基材に対し、密着よく製造することができる。また、本発明に用いた手法は、イオンビームを用いた成膜方法の中で複雑形状の部材へ処理可能な方法であるため、従来の製造方法と比較し短時間に低コストで製造することができる。従って、工具、軸受け等の産業機械、エンジン、宇宙機器等への性能、寿命向上へと寄与する炭素系膜被覆部材の製造方法を提供することができる。
【0041】
また、第3又は第9発明の炭素系膜被覆部材の製造方法及び装置よれば、処理基材に印加するパルス状のRFバイアスのパワーを、処理基材に印加される自己バイアス電圧が−0.05kVから−1kVとなるように調整することにより、自己バイアス電圧の印加効果が確実に得られ、且つ、イオンのエッチング効果による成膜速度の著しい減少を防ぐことができる。
第4又は第10発明の炭素系膜被覆部材の製造方法及び装置によれば、処理部材に印加するパルス状のRFバイアスのデューティー比を、1%から50%とすることにより、処理基材の表面温度の過度な上昇を確実に防止することができる。
第5又は第11発明の炭素系膜被覆部材の製造方法及び装置によれば、処理基材に印加するパルス状のDCバイアス電圧を、−1kVから−10kVとすることにより、パルス電圧が印加されていない間に堆積する炭素系膜の改質を確実に行うことができる。
第6又は第12発明の炭素系膜被覆部材の製造方法及び装置によれば、処理部材に印加するパルス状のDCバイアス電圧のデューティー比を、1%から50%とすることにより、十分に硬質な膜が得られ、且つ、エッチングによる成膜速度の著しい減少を防ぐことができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係わる炭素系膜被覆部材を製造するための装置の概略図である。
【符号の説明】
11 真空容器
12 処理基材
13 基材ホルダー
14 高絶縁フィードスルー
15 DCパルスバイアス電源
16 整合器
17 RFパルスバイアス電源
18 プラズマ
19 ガス導入管
20 導波管
21 マイクロ波電源
22 電磁コイル
23 排気孔
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for manufacturing a carbon-based film-coated member applied to members requiring wear resistance, such as various sliding members, bearings of rotating devices, and information device storage devices.
[0002]
[Prior art]
A film forming technique using an ion beam is an effective method for synthesizing a non-equilibrium substance which is unstable at normal temperature and pressure by using energy of the ion beam. For example, cubic boron nitride (cBN), which is harder than diamond and more thermally stable than diamond, and diamond-like carbon (DLC), which has an amorphous structure but is hard and has excellent frictional properties, are exemplified. Can be These materials are expected to be applied to various sliding members, tools, and the like by utilizing characteristics such as wear resistance and high hardness. Very few of these members are composed of flat plates, and have a three-dimensional shape and a three-dimensionally complicated shape. However, when processing the surface of a three-dimensional or complex-shaped member by using a film forming technique using an ion beam, the film forming speed or the like is determined from the directivity of the ion beam and the irradiation angle of the ion beam on the processing member. Since the etching rates are different, it is very difficult to form a uniform film on a portion having a curvature. At present, rotation and oscillating motion of a mask and a work that can maintain a uniform film condition with respect to a processing member are indispensable. Therefore, processing time is long, processing cost is high, and productivity is poor.
[0003]
Regarding a film forming technique using an ion beam, a plasma based ion implantation (PBII) has been receiving attention as a film forming method capable of overcoming the above problems. This is a film formation method proposed by the United States in 1986. A negative pulse voltage is applied to a processing member immersed in plasma to uniformly process ions in the plasma existing around the processing member. This is a method of irradiating the member. For uniform processing (uniform irradiation of an ion beam) on the surface of a complex-shaped member by this method, it is desired to increase the density of the plasma and shorten the pulse bias.
[0004]
In addition, when a film is deposited on a processing member in a process in a reactive plasma related to a method of manufacturing a carbon-based film-coated member, the film is deposited while no pulse voltage is applied, and the properties of the film are entirely reduced. Has a great effect on the properties of the film. Generally, a film generated while no pulse voltage is applied is a mechanically weak film, and this is a serious problem when it is desired to obtain a hard film having more excellent mechanical characteristics such as friction characteristics. Therefore, the present inventors have proposed a method of manufacturing a hard carbon film-coated member having extremely excellent mechanical characteristics such as friction characteristics by simultaneously applying a pulse bias and a DC bias using an external plasma source as a plasma source. (Japanese Patent Application No. 2001-188637).
[0005]
In a technique using an external plasma source as a plasma source, it is difficult to uniformly supply plasma, particularly in a concave surface, and it is difficult to perform uniform processing with the current technology.
[0006]
On the other hand, the AIST Kansai Center and Chubu Sensor use the non-processed member itself as an antenna for generating plasma, such as applying a high frequency or positive pulse bias to the non-processed member, respectively. Has been proposed, which can supply plasma even in a concave surface, although the density is lower than the density required by calculation (see Patent Documents 1 and 2).
[0007]
[Patent Document 1]
JP 2001-26887 A (FIGS. 1 and 2)
[Patent Document 2]
JP 2001-207259A (FIGS. 1 and 2)
[0008]
[Problems to be solved by the invention]
However, in these methods, the density of the plasma covering the processing substrate is not sufficiently high, and the shape of the plasma sheath edge serving as an ion supply source when applying a bias voltage to the processing substrate does not conform to the processing shape. Generally, it is difficult to treat a substrate having a complicated shape possessed by a gear or a tool with sufficient uniformity.
[0009]
The present invention has been made in view of the above-mentioned problems, and is capable of supplying a high-density plasma even to a concave surface, and a condition under which a carbon-based film having excellent sliding characteristics can be synthesized. It is intended to provide a method and an apparatus for manufacturing a carbon-based film-coated member capable of adjusting the temperature.
[0010]
[Means for Solving the Problems]
A method of manufacturing a carbon-based film-coated member according to a first aspect of the present invention, which solves the above-described problems, generates plasma by an external plasma source, and applies a pulsed RF bias and a negative pulsed DC bias voltage to a processing substrate. Are simultaneously applied.
[0011]
The method for producing a carbon-based film-coated member of the second invention is the method for producing a carbon-based film-coated member of the first invention,
The external plasma source includes a plasma source capable of generating high-density plasma and capable of uniformly covering the periphery of the processing substrate with the high-density plasma. For example, the external plasma source includes an ECR plasma source, an RF plasma source, an ICP plasma source, a helicon wave plasma source, and a plasma source that can generate a higher density plasma than the RF plasma and can uniformly cover the periphery of the processing substrate. Is done.
[0012]
The method for producing a carbon-based membrane-coated member of the third invention is the method for producing a carbon-based membrane-coated member of the first or second invention,
The power of the pulsed RF bias applied to the processing substrate is adjusted such that the self-bias voltage applied to the processing substrate is from -0.05 kV to -1 kV.
[0013]
The method for producing a carbon-based film-coated member of the fourth invention is the method for producing a carbon-based film-coated member of the first, second or third invention,
A duty ratio of the pulsed RF bias applied to the processing member is set to 1% to 50%.
[0014]
The method for producing a carbon-based film-coated member of the fifth invention is the method for producing a carbon-based film-coated member of the first, second, third or fourth invention,
The pulse-like DC bias voltage applied to the processing substrate may be -1 kV to -10 kV.
[0015]
The method for producing a carbon-based membrane-coated member of the sixth invention is the method for producing a carbon-based membrane-coated member of the first, second, third, fourth or fifth invention,
A duty ratio of the pulsed DC bias voltage applied to the processing member is set to 1% to 50%.
[0016]
The apparatus for manufacturing a carbon-based film-coated member according to the seventh aspect of the present invention includes an external plasma source, RF pulse bias applying means for applying a pulsed RF bias, and DC pulse bias applying means for applying a pulsed DC bias voltage. A plasma is generated by the external plasma source, and a pulsed RF bias and a negative pulsed DC are applied to the processing substrate by the RF pulse bias applying means and the DC pulse bias applying means. The bias voltage and the bias voltage are applied simultaneously.
[0017]
An apparatus for manufacturing a carbon-based membrane-coated member according to an eighth aspect of the present invention is the apparatus for manufacturing a carbon-based membrane-coated member according to the seventh aspect,
The external plasma source includes a plasma source capable of generating high-density plasma and capable of uniformly covering the periphery of the processing substrate with the high-density plasma. For example, the external plasma source includes an ECR plasma source, an RF plasma source, an ICP plasma source, a helicon wave plasma source, and a plasma source that can generate a higher density plasma than the RF plasma and can uniformly cover the periphery of the processing substrate. Is done.
[0018]
Further, the manufacturing apparatus of the carbon-based film-coated member of the ninth invention is the manufacturing apparatus of the carbon-based film-coated member of the seventh or eighth invention,
Adjusting the power of the pulsed RF bias applied to the processing substrate by the RF pulse bias applying unit such that the self-bias voltage applied to the processing substrate is from -0.05 kV to -1 kV. It is characterized.
[0019]
Further, the apparatus for manufacturing a carbon-based membrane-coated member according to the tenth invention is the apparatus for manufacturing a carbon-based membrane-coated member according to the seventh, eighth, or ninth invention,
The duty ratio of the pulsed RF bias applied to the processing member by the RF pulse bias applying means is set to 1% to 50%.
[0020]
The manufacturing apparatus for a carbon-based membrane-coated member according to the eleventh invention is the manufacturing apparatus for a carbon-based membrane-coated member according to the seventh, eighth, ninth, or tenth aspect,
The pulsed DC bias voltage applied to the processing substrate by the DC pulse bias applying means is set to -1 kV to -10 kV.
[0021]
The apparatus for manufacturing a carbon-based membrane-coated member according to the twelfth invention is the apparatus for manufacturing a carbon-based membrane-coated member according to the seventh, eighth, ninth, tenth, or eleventh invention,
The duty ratio of the pulsed DC bias voltage applied to the processing member by the DC pulse bias applying means is set to 1% to 50%.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
The method and apparatus for producing a carbon-based film-coated member according to the present invention enable supply of high-density plasma not only to a convex surface but also to a concave surface, and provide a carbon-based film having excellent sliding characteristics. A manufacturing method and apparatus capable of adjusting conditions for synthesis.
In this method, a plasma is generated around the processing substrate by applying an RF bias to the processing substrate, and ions in the plasma are positively attracted by the self-bias, forming a film during a time when no pulse voltage is applied. While applying high-density plasma from an external plasma source to the substrate to be processed while preventing the formation of a mechanically weak film to be formed, ion irradiation is performed by applying a negative pulse bias to obtain a carbon-based material having excellent mechanical properties. This is a method for forming a film.
[0023]
Hereinafter, an embodiment of the present invention will be described in detail with reference to FIG. FIG. 1 is a schematic view of an apparatus for manufacturing a carbon-based film-coated member according to an embodiment of the present invention.
[0024]
As shown in FIG. 1, the vacuum container 11 is evacuated from an exhaust hole 23 by a vacuum exhaust device (not shown), and has a substrate holder 13 in which a processing substrate 12 is installed. The substrate holder 13 is provided with a DC pulse bias power supply 15 as a DC pulse bias applying unit for applying a DC pulse bias through an insulated feedthrough 14, and an RF pulse bias as an RF pulse bias applying unit for applying an RF pulse bias. The power supply 17 is connected to a matching unit 16 for matching the DC pulse bias power supply 15 and the RF pulse bias power supply 17.
[0025]
The plasma 18 is obtained by introducing a reaction gas into the vacuum vessel 11 from a gas introduction pipe 19, introducing microwaves from a microwave power supply 21 to the vacuum vessel 11 through a waveguide 20, and processing the plasma 18 by an opposed electromagnetic coil 22. It is formed by an external plasma source that generates plasma by forming a magnetic field that most efficiently absorbs the microwaves introduced near the base material 12 and by applying an RF pulse bias from an RF pulse bias power supply 17. Similar effects can be obtained by using various plasma sources, such as high-frequency plasma, helicon wave plasma, and inductively coupled plasma, as the external plasma generation source.
[0026]
Next, a method for manufacturing a carbon-based film-coated member will be described with reference to FIG.
[0027]
First, the processing substrate 12 is placed on the substrate holder 13, and the vacuum vessel 11 is evacuated to a predetermined vacuum. Thereafter, a desired hydrocarbon-based source gas is introduced from the gas introduction pipe 19 and set to a desired pressure, and then a desired current is passed through the electromagnetic coil 22 to apply microwaves at a desired location in the vacuum vessel 11. Creates a magnetic field that can be efficiently absorbed. In this state, a microwave having a desired output is introduced into the vacuum chamber 11 from the microwave power supply 21 through the waveguide 20 to generate external plasma.
[0028]
Simultaneously with the generation of the external plasma, a plasma is further generated by applying a pulsed RF bias (RF pulse bias) from the RF pulse bias power supply 17 to the processing substrate 12 via the high insulation feedthrough 14. A DC pulse bias (pulse-like DC bias voltage) having a desired voltage and a duty ratio is applied from the DC pulse bias power supply 15 to the processing substrate 12 while matching with the RF bias by the matching unit 16. Through the above steps, a carbon-based film is produced on the surface of the processing substrate 12.
[0029]
Here, it is desirable to adjust the RF pulse bias applied from the RF pulse bias power supply 17 to the processing base material 12 so that the self-bias voltage becomes −0.05 kV to −1 kV. When the RF self-bias voltage applied to the processing base material 12 is -0.05 kV or less, the ion energy is low and there is no difference from the case where no RF pulse bias is applied, and there is no effect of applying the self-bias voltage. When the RF self-bias voltage is -2 kV or more, the film formation rate is significantly reduced due to the etching effect of the irradiated ions.
[0030]
At this time, it is desirable that the duty ratio of the RF pulse bias applied from the RF pulse bias power supply 17 to the processing substrate 12 be 1% to 50% so that the surface temperature of the processing substrate is 400 ° C. or less. Even if the processing base material 12 is cooled by water cooling or the like, the surface of the processing base material 12 becomes high temperature due to exposure to high-density plasma and application of excessive RF bias. At this time, if the temperature of the surface of the processing base material 12 becomes 400 ° C. or higher, the structure of the synthesized carbon-based film gradually changes and the mechanical properties deteriorate, so that the RF bias is pulsed to , It is desired to apply an RF bias at a duty ratio that can prevent an excessive rise in the surface temperature of the processing substrate 12.
[0031]
Further, it is desirable that the DC pulse bias (pulse voltage) applied to the processing member from the DC pulse bias power supply 15 is -1 kV to -10 kV. When the DC pulse bias applied to the processing substrate 12 is -1 kV or less, ions are not implanted into the film and are deposited on the surface, thereby modifying the carbon film deposited while the DC pulse bias is not applied. I can't do it. If the DC pulse bias is -10 kV or more, ions implanted into the carbon film deposited while the DC pulse bias is not applied penetrate, and thus the carbon film cannot be reformed effectively.
[0032]
Further, it is desirable that the duty ratio of the DC pulse bias applied from the DC pulse bias power supply 15 to the processing base material 12 be 1% to 50%. When the duty ratio of the DC pulse bias applied to the processing substrate 12 is 1% or less, ions necessary for modifying the carbon film deposited while the D pulse bias is not applied are insufficient. However, a sufficiently hard film cannot be obtained. On the other hand, if the duty ratio is 50% or more, the carbon film deposited while no DC pulse bias is applied is etched and the deposition rate is significantly reduced, and the film obtained by excessive ion irradiation becomes porous. There is a problem that a hard film cannot be obtained. Furthermore, abnormal discharge occurs between the processing substrate 12 and the vacuum vessel 11, and stable operation cannot be guaranteed.
[0033]
<Example>
An embodiment of the present invention will be described below in detail with reference to FIG.
[0034]
(Example 1)
First, the processing substrate 12 made of stainless steel (JIS: SUS304) was placed in the substrate holder 13, and the vacuum vessel 11 was evacuated to a vacuum of 1 × 10 −3 Pa or less. Thereafter, methane was introduced as a source gas from the gas introduction pipe 19, and the pressure was controlled to 5 × 10 −2 Pa. Thereafter, a magnetic field (875 gauss) capable of efficiently absorbing microwaves was formed at a position 100 mm away from the center of the vacuum vessel 11 by passing a current of 300 A through the electromagnetic coil 22. In this state, a microwave (frequency: 2.45 GHz) having a power of 200 W was introduced from the microwave power supply 21 through the waveguide 20 into the vacuum chamber 11 to generate plasma. Simultaneously with the generation of the plasma, the RF pulse bias power supply 15 applies an RF pulse bias of 200 W and a duty ratio of 40% to the processing base material 12 via the high-insulation feedthrough 14, and the DC pulse bias power supply 17. A DC pulse bias (pulse voltage) having a voltage of −2 kV and a duty ratio of 1% was simultaneously applied to the treated base material 12 to produce a carbon film-coated member. At this time, the self-bias voltage due to the RF bias application was −100 V, and the sample surface temperature was 250 ° C.
[0035]
Structure of the resulting carbon film was examined by Raman spectrum analysis, and is detected broad peak consisting of the main peak and 1380 cm -1 vicinity of the shoulder band near 1520 cm -1, the diamond-like carbon film is a hard carbon film Synthesis was confirmed.
[0036]
Further, the friction characteristics of the obtained carbon film were examined using a ball-on-disk friction tester. The conditions of the friction test were a SiC ball as a mating material, a load of 1 N, a speed of 0.1 m / sec, an atmosphere in dry air, and a temperature of room temperature. As a result, the coefficient of friction was 0.4 for a carbon film manufactured without applying a bias bias, and 0.08 for a carbon film manufactured by applying only a DC pulse bias having a voltage of −2 kV and a duty ratio of 1%. On the other hand, the carbon film manufactured by simultaneously applying the above-described DC self-bias voltage of −100 V and −2 kV and a DC pulse bias having a duty ratio of 1% was greatly improved to 0.02. The carbon film produced by simultaneously applying the above-described DC pulse bias having the RF self-bias voltage of −100 V and −2 kV and the duty ratio of 1% does not peel off even in a friction test under a load of 20 N without a friction coefficient of 0.1. 02, and the adhesion and the durability were also significantly improved. It was confirmed that these characteristics were uniformly present on each of the uneven surfaces including the trench shape simulating a complicated shape.
[0037]
(Example 2)
First, the base material 12 made of high-speed tool steel (JIS: SKH51) was placed in the base material holder 13, and the vacuum vessel 11 was evacuated to a degree of vacuum of 1 × 10 −3 Pa or less. Thereafter, methane and nitrogen were introduced as a source gas at a ratio of 1: 1 from the gas introduction pipe 19, and the pressure was controlled to 5 × 10 −2 Pa. Thereafter, a current of 250 A was passed through the electromagnetic coil 22 to form a magnetic field (875 gauss) capable of efficiently absorbing microwaves at a position 150 mm away from the center of the vacuum vessel 11. In this state, a microwave (frequency: 2.45 GHz) with a power of 700 W was introduced from the microwave power supply 21 through the waveguide 20 into the vacuum chamber 11 to generate plasma. Simultaneously with the generation of the plasma, an RF pulse bias having a power of 500 W and a duty ratio of 20% is applied from the RF pulse bias power supply 15 to the processing substrate 12 via the high insulation feedthrough 14 and the DC pulse bias power supply 17 is applied. By simultaneously applying a DC pulse bias having a voltage of -5 kV and a duty ratio of 10% to the processing substrate 12, a carbon film-coated member was manufactured. At this time, the self-bias voltage due to the application of the RF bias was −200 V, and the sample surface temperature was 350 ° C.
[0038]
The structure of the obtained film was examined using Raman spectrum analysis. As a result, the detected broad peak consisting of the main peak and 1380 cm -1 vicinity of the shoulder band near 1520 cm -1, synthetic membranes similar to diamond-like carbon film is a hard carbon film was confirmed. Further, when the composition and structure of the obtained film were examined by photoelectron spectroscopy, a bond between carbon and nitrogen in the film was confirmed, and it was confirmed that the film was a carbon nitride film containing 20% of nitrogen.
[0039]
Further, the friction characteristics of the obtained film were examined with a ball-on-disk friction tester. The conditions of the friction test were a SiC ball as a mating material, a load of 1 N, a speed of 0.1 m / sec, an atmosphere in dry air, and a temperature of room temperature. As a result, the coefficient of friction was 0.5 for a carbon film manufactured without applying a bias bias, and 0.09 for a carbon film manufactured by applying only a DC pulse bias having a voltage of −2 kV and a duty ratio of 1%. On the other hand, in the carbon film manufactured by simultaneously applying the above-described pulse voltage of the RF self-bias voltage of -200 V and -5 kV and the duty ratio of 10%, the value was greatly improved to 0.03. The carbon film manufactured by simultaneously applying the DC self-bias voltage of -200 V and -5 kV and the DC pulse bias having a duty ratio of 10% as described above does not peel off even in a friction test under a load of 20 N without a friction coefficient of 0.1. 03, indicating that the adhesion and durability were also significantly improved. It was confirmed that these characteristics were uniformly present on each of the uneven surfaces including the trench shape simulating a complicated shape.
[0040]
【The invention's effect】
As described above, according to the method and the apparatus for manufacturing a carbon-based film-coated member of the first to twelfth inventions, a carbon-based film having excellent friction characteristics can be adhered to a processing substrate having a complicated shape with good adhesion. Can be manufactured. Further, the method used in the present invention is a method capable of processing a member having a complicated shape in a film forming method using an ion beam, and therefore, it can be manufactured in a short time and at low cost as compared with a conventional manufacturing method. Can be. Therefore, it is possible to provide a method for producing a carbon-based film-coated member that contributes to improving the performance and life of industrial tools such as tools and bearings, engines, and space devices.
[0041]
According to the method and apparatus for manufacturing a carbon-based film-coated member of the third or ninth aspect, the power of the pulsed RF bias applied to the processing substrate is reduced by the self-bias voltage applied to the processing substrate to −0. By adjusting the voltage from 0.05 kV to -1 kV, the effect of applying the self-bias voltage can be reliably obtained, and the remarkable decrease in the film forming speed due to the ion etching effect can be prevented.
According to the method and the apparatus for manufacturing a carbon-based film-coated member of the fourth or tenth aspect, the duty ratio of the pulsed RF bias applied to the processing member is set to 1% to 50%, so that the processing base material is processed. An excessive rise in surface temperature can be reliably prevented.
According to the method and apparatus for manufacturing a carbon-based film-coated member of the fifth or eleventh aspect, the pulse voltage is applied by setting the pulsed DC bias voltage applied to the processing base material to -1 kV to -10 kV. Thus, the carbon-based film that is deposited while not in use can be reliably modified.
According to the method and apparatus for manufacturing a carbon-based film-coated member according to the sixth or twelfth aspect, the duty ratio of the pulsed DC bias voltage applied to the processing member is set to 1% to 50%, so that the member is sufficiently hard. Thus, a significant film can be obtained, and a remarkable decrease in the film formation rate due to etching can be prevented.
[Brief description of the drawings]
FIG. 1 is a schematic view of an apparatus for manufacturing a carbon-based film-coated member according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Vacuum container 12 Processing base material 13 Substrate holder 14 High insulation feedthrough 15 DC pulse bias power supply 16 Matching device 17 RF pulse bias power supply 18 Plasma 19 Gas introduction pipe 20 Waveguide 21 Microwave power supply 22 Electromagnetic coil 23 Exhaust hole

Claims (12)

外部プラズマ源によりプラズマを生成するとともに、処理基材に対し、パルス状のRFバイアスと負のパルス状のDCバイアス電圧とを同時に印加することを特徴とする炭素系膜被覆部材の製造方法。A method for producing a carbon-based film-coated member, wherein plasma is generated by an external plasma source, and a pulsed RF bias and a negative pulsed DC bias voltage are simultaneously applied to a processing substrate. 請求項1に記載の炭素系膜被覆部材の製造方法において、
前記外部プラズマ源は高密度プラズマを生成可能で、且つ、この高密度プラズマにより前記処理基材の周囲を均一に覆うことができるプラズマ源から構成されることを特徴とする炭素系膜被覆部材の製造方法。
The method for producing a carbon-based membrane-coated member according to claim 1,
The external plasma source is capable of generating high-density plasma, and is constituted by a plasma source capable of uniformly covering the periphery of the processing substrate by the high-density plasma. Production method.
請求項1又は2に記載の炭素系膜被覆部材の製造方法において、
前記処理基材に印加する前記パルス状のRFバイアスのパワーを、前記処理基材に印加される自己バイアス電圧が−0.05kVから−1kVとなるように調整することを特徴とする炭素系膜被覆部材の製造方法。
The method for producing a carbon-based membrane-coated member according to claim 1 or 2,
Wherein the power of the pulsed RF bias applied to the processing substrate is adjusted such that a self-bias voltage applied to the processing substrate is from -0.05 kV to -1 kV. A method for manufacturing a covering member.
請求項1,2又は3に記載の炭素系膜被覆部材の製造方法において、
前記処理部材に印加する前記パルス状のRFバイアスのデューティー比を、1%から50%とすることを特徴とする炭素系膜被覆部材の製造方法。
The method for producing a carbon-based membrane-coated member according to claim 1, 2, or 3,
A method for manufacturing a carbon-based film-coated member, wherein a duty ratio of the pulsed RF bias applied to the processing member is 1% to 50%.
請求項1,2,3又は4に記載の炭素系膜被覆部材の製造方法において、
前記処理基材に印加する前記パルス状のDCバイアス電圧を、−1kVから−10kVとすることを特徴とする炭素系膜被覆部材の製造方法。
The method for producing a carbon-based membrane-coated member according to claim 1, 2, 3, or 4,
A method for producing a carbon-based film-coated member, wherein the pulse-like DC bias voltage applied to the treatment substrate is set to -1 kV to -10 kV.
請求項1,2,3,4又は5に記載の炭素系膜被覆部材の製造方法において、
前記処理部材に印加する前記パルス状のDCバイアス電圧のデューティー比を、1%から50%とすることを特徴とする炭素系膜被覆部材の製造方法。
The method for producing a carbon-based membrane-coated member according to claim 1, 2, 3, 4, or 5,
A method for manufacturing a carbon-based film-coated member, wherein a duty ratio of the pulsed DC bias voltage applied to the processing member is 1% to 50%.
外部プラズマ源と、パルス状のRFバイアスを印加するRFパルスバイアス印加手段と、パルス状のDCバイアス電圧を印加するDCパルスバイアス印加手段とを備え、前記外部プラズマ源によりプラズマを生成するとともに、前記RFパルスバイアス印加手段と前記DCパルスバイアス印加手段とにより、前記処理基材に対し、パルス状のRFバイアスと負のパルス状のDCバイアス電圧とを同時に印加するように構成したことを特徴とする炭素系膜被覆部材の製造装置。An external plasma source, an RF pulse bias applying unit for applying a pulsed RF bias, and a DC pulse bias applying unit for applying a pulsed DC bias voltage, wherein the plasma is generated by the external plasma source; A pulsed RF bias and a negative pulsed DC bias voltage are simultaneously applied to the substrate by the RF pulse bias applying means and the DC pulse bias applying means. Equipment for manufacturing carbon-based membrane-coated members. 請求項7に記載の炭素系膜被覆部材の製造装置において、
前記外部プラズマ源は高密度プラズマを生成可能で、且つ、この高密度プラズマにより前記処理基材の周囲を均一に覆うことができるプラズマ源から構成されることを特徴とする炭素系膜被覆部材の製造装置。
The apparatus for producing a carbon-based membrane-coated member according to claim 7,
The external plasma source is capable of generating high-density plasma, and is constituted by a plasma source capable of uniformly covering the periphery of the processing substrate by the high-density plasma. manufacturing device.
請求項7又は8に記載の炭素系膜被覆部材の製造装置において、
前記RFパルスバイアス印加手段によって前記処理基材に印加する前記パルス状のRFバイアスのパワーを、前記処理基材に印加される自己バイアス電圧が−0.05kVから−1kVとなるように調整することを特徴とする炭素系膜被覆部材の製造装置。
An apparatus for manufacturing a carbon-based membrane-coated member according to claim 7 or 8,
Adjusting the power of the pulsed RF bias applied to the processing substrate by the RF pulse bias applying unit such that the self-bias voltage applied to the processing substrate is from -0.05 kV to -1 kV. An apparatus for producing a carbon-based membrane-coated member, characterized by:
請求項7,8又は9に記載の炭素系膜被覆部材の製造装置において、
前記RFパルスバイアス印加手段によって前記処理部材に印加する前記パルス状のRFバイアスのデューティー比を、1%から50%とすることを特徴とする炭素系膜被覆部材の製造装置。
An apparatus for manufacturing a carbon-based membrane-coated member according to claim 7, 8, or 9,
An apparatus for manufacturing a carbon-based film-coated member, wherein a duty ratio of the pulsed RF bias applied to the processing member by the RF pulse bias applying unit is set to 1% to 50%.
請求項7,8,9又は10に記載の炭素系膜被覆部材の製造装置において、
前記DCパルスバイアス印加手段によって前記処理基材に印加する前記パルス状のDCバイアス電圧を、−1kVから−10kVとすることを特徴とする炭素系膜被覆部材の製造装置。
An apparatus for manufacturing a carbon-based membrane-coated member according to claim 7, 8, 9, or 10,
An apparatus for manufacturing a carbon-based film-coated member, wherein the pulsed DC bias voltage applied to the processing substrate by the DC pulse bias applying means is set to -1 kV to -10 kV.
請求項7,8,9,10又は11に記載の炭素系膜被覆部材の製造装置において、
前記DCパルスバイアス印加手段によって前記処理部材に印加する前記パルス状のDCバイアス電圧のデューティー比を、1%から50%とすることを特徴とする炭素系膜被覆部材の製造装置。
The apparatus for producing a carbon-based membrane-coated member according to claim 7, 8, 9, 10, or 11,
An apparatus for manufacturing a carbon-based film-coated member, wherein a duty ratio of the pulsed DC bias voltage applied to the processing member by the DC pulse bias applying means is set to 1% to 50%.
JP2003026638A 2003-02-04 2003-02-04 Method and apparatus for manufacturing member coated with carbon-based film Pending JP2004238649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003026638A JP2004238649A (en) 2003-02-04 2003-02-04 Method and apparatus for manufacturing member coated with carbon-based film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003026638A JP2004238649A (en) 2003-02-04 2003-02-04 Method and apparatus for manufacturing member coated with carbon-based film

Publications (1)

Publication Number Publication Date
JP2004238649A true JP2004238649A (en) 2004-08-26

Family

ID=32954577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003026638A Pending JP2004238649A (en) 2003-02-04 2003-02-04 Method and apparatus for manufacturing member coated with carbon-based film

Country Status (1)

Country Link
JP (1) JP2004238649A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281727A (en) * 2004-03-26 2005-10-13 Kurita Seisakusho:Kk Dlc film body manufacturing method and dlc film body
JP2009187975A (en) * 2008-02-01 2009-08-20 Toshiba Corp Plasma treatment apparatus of substrate and plasma treatment method thereof
WO2014038642A1 (en) * 2012-09-07 2014-03-13 ブラザー工業株式会社 Film forming device, film forming method, and film forming program
JP2015073096A (en) * 2013-09-30 2015-04-16 ラム リサーチ コーポレーションLam Research Corporation High-selectivity, low-stress carbon hardmask by pulsed low-frequency rf power
US9972476B2 (en) 2013-03-28 2018-05-15 Brother Kogyo Kabushiki Kaisha Film forming device, film forming method, and film forming program
US11837441B2 (en) 2019-05-29 2023-12-05 Lam Research Corporation Depositing a carbon hardmask by high power pulsed low frequency RF

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281727A (en) * 2004-03-26 2005-10-13 Kurita Seisakusho:Kk Dlc film body manufacturing method and dlc film body
JP2009187975A (en) * 2008-02-01 2009-08-20 Toshiba Corp Plasma treatment apparatus of substrate and plasma treatment method thereof
WO2014038642A1 (en) * 2012-09-07 2014-03-13 ブラザー工業株式会社 Film forming device, film forming method, and film forming program
JP2014051715A (en) * 2012-09-07 2014-03-20 Nagoya Univ Apparatus and method for forming film and film forming program
US9972476B2 (en) 2013-03-28 2018-05-15 Brother Kogyo Kabushiki Kaisha Film forming device, film forming method, and film forming program
JP2015073096A (en) * 2013-09-30 2015-04-16 ラム リサーチ コーポレーションLam Research Corporation High-selectivity, low-stress carbon hardmask by pulsed low-frequency rf power
US11837441B2 (en) 2019-05-29 2023-12-05 Lam Research Corporation Depositing a carbon hardmask by high power pulsed low frequency RF

Similar Documents

Publication Publication Date Title
EP1772901B1 (en) Wafer holding article and method for semiconductor processing
CA2290514C (en) A method of coating edges with diamond-like carbon
US20100243165A1 (en) Apparatus for surface-treating wafer using high-frequency inductively-coupled plasma
JPH01294867A (en) Formation of coating film of carbon or consisting essentially of carbon
CN108118308A (en) A kind of preparation method of DLC film
JP2004238649A (en) Method and apparatus for manufacturing member coated with carbon-based film
JP4779090B2 (en) Manufacturing method of hard carbon film covering member
Sohbatzadeh et al. Development of a radio frequency atmospheric pressure plasma jet for diamond-like carbon coatings on stainless steel substrates
JP4930918B2 (en) Diamond manufacturing method
KR20140110186A (en) Method for manufacturing cubic boron nitride thin film with reduced compressive residual stress and cubic boron nitride thin film manufactured using the same
JP7406775B1 (en) plasma processing equipment
JPH029787A (en) Plasma processing device
Watanabe et al. Development of plasma based ion implantation system using an electron cyclotron resonance plasma source with a mirror field and synthesis of carbon thin films
JP3378758B2 (en) Method of forming amorphous carbon-based coating
JP2975817B2 (en) Diamond-like film forming method
JP2002038268A (en) Carbon coating and manufacturing method
JPH04132684A (en) Method for forming diamond thin film
JPH02133573A (en) Hard-carbon film forming device
JPH02225671A (en) Production of hard carbon film
JP2005307284A (en) Surface treatment method for improving machinability of cemented carbide cutting tool and article thereby
JP3443381B2 (en) Method of forming hard carbon coating
Kei-ichi et al. Roles of Ions and Free Electrons in the Synthesis of Mechanically Hard Amorphous-CNx Films Using a Dissociative Excitation Reaction of BrCN with the Ar Electron Cyclotron Resonance Plasma
JP2001143254A (en) Apparatus for manufacturing magnetic recording medium
JPH07233478A (en) Plasma treatment
JPH09209146A (en) Combined ultrasonic, plasma and particle beam process apparatus and formation of thin film as well as method for smoothing surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060215

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20060215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060215

A977 Report on retrieval

Effective date: 20080807

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080812

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20090106

Free format text: JAPANESE INTERMEDIATE CODE: A02