JP4779090B2 - Manufacturing method of hard carbon film covering member - Google Patents

Manufacturing method of hard carbon film covering member Download PDF

Info

Publication number
JP4779090B2
JP4779090B2 JP2001188637A JP2001188637A JP4779090B2 JP 4779090 B2 JP4779090 B2 JP 4779090B2 JP 2001188637 A JP2001188637 A JP 2001188637A JP 2001188637 A JP2001188637 A JP 2001188637A JP 4779090 B2 JP4779090 B2 JP 4779090B2
Authority
JP
Japan
Prior art keywords
carbon film
hard carbon
film
voltage
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001188637A
Other languages
Japanese (ja)
Other versions
JP2003003262A (en
Inventor
俊哉 渡辺
和弘 山本
義紀 古賀
章浩 田中
信樹 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001188637A priority Critical patent/JP4779090B2/en
Publication of JP2003003262A publication Critical patent/JP2003003262A/en
Application granted granted Critical
Publication of JP4779090B2 publication Critical patent/JP4779090B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、各種回転機器の軸受けやスライド等の摺動部材や情報機器記憶装置等、耐摩耗性の要求される部材に適用される硬質炭素膜被覆部材の製造方法に関する。
【0002】
【従来の技術】
イオンビームを利用した成膜技術は、イオンビームの持つエネルギーにより常温常圧では不安定な非平衡物質の合成に有効な手法である。例えば、ダイヤモンドの次に硬く、ダイヤモンドより熱的安定な立方晶窒化ホウ素(cBN;cubic Boron Nitride)やアモルファス構造であるものの硬質で摩擦特性に優れたダイヤモンド状炭素(DLC;Diamond like Carbon)等が挙げられる。
【0003】
しかしながら、イオンビームを用いた成膜技術を用い、立体形状、複雑形状の部材表面を処理する場合、イオンビームの指向性から処理部材へのイオンビームの照射角度により、成膜速度やエッチング速度が異なるため、曲率を有する箇所に均一に成膜することは非常に困難である。現状では、処理部材に対して均一成膜条件が維持できるようなマスク、ワークの回転、揺動運動が不可欠となり、処理時間、処理コストが高く生産性が低いという問題があった。
【0004】
イオンビームを用いた成膜技術に関し、前記課題を克服する成膜方法として、プラズマイオン注入法(PBII;Plasma Based Ion Implantation )が注目されている。これは、1986年にアメリカから提唱された成膜方法であり、プラズマ中に曝した処理部材に対し、負のパルス電圧を印加し、処理部材の周囲に存在するプラズマ中のイオンを均一に処理部材に照射する方法であり、窒化処理等の表面改質(表面硬化)への研究が盛んに行われている。
【0005】
【発明が解決しょうとする課題】
前述したプラズマイオン注入法は、希ガス等のイオン注入を行なう場合にはパルス電圧が印加されていない間は、処理部材表面はプラズマに曝された状態でも何も変化がないために問題は生じない。しかしながら、反応性プラズマ中の処理により処理部材上に膜を堆積する場合には、パルス電圧が印加されていない間に膜が堆積し、その膜の性質が全体の膜の特性に大きな影響を与える。一般的に、パルス電圧が印加されていない間に生成する膜は機械的に脆弱であり、より摩擦特性等、機械的特性の優れた硬質膜を得ようとする場合、大きな問題となる。
【0006】
本発明は、立体形状、複雑形状の処理部材に対する密着性、膜の特性(硬さ、摩擦特性)、成膜速度を向上した硬質炭素膜被覆部材の製造方法を提供しようとするものである。
【0007】
【課題を解決するための手段】
本発明に係る硬質炭素膜被覆部材の製造方法は、炭化水素系ガスプラズマ中に曝された処理部材に対し、負の直流電圧を印加すると同時に、パルス状の負の電圧を印加することを特徴とするものである。
【0008】
本発明によれば、プラズマイオン注入法で成膜する際、処理部材への負のパルス電圧印加と同時に、負の直流電圧を印加することにより、パルス電圧印加のみと比較し、密着性、膜の特性(硬さ、摩擦特性)、成膜速度等を向上した硬質炭素膜被覆部材を製造することができる。
【0009】
すなわち、パルス電圧が印加されていない間、処理部材表面に機械的に脆弱な膜が成膜されるため、パルス電圧を印加していない間、常に一定の負の直流電圧を印加し、前記処理部材表面に炭化水素系ガスプラズマ中のイオンを積極的に引き込むことによって、前記処理部材表面の硬質炭素膜の膜質およびその成膜速度を向上することが可能になる。
【0010】
本発明に係る硬質炭素膜被覆部材の製造方法において、前記処理部材に印加する直流電圧は−0.2kV〜−2kVであることが好ましい。
【0011】
本発明に係る硬質炭素膜被覆部材の製造方法において、前記処理部材に印加するパルス電圧は−1kV〜−10kVであることが好ましい。
【0012】
本発明に係る硬質炭素膜被覆部材の製造方法において、前記処理部材に印加するパルス電圧の効率比を1〜50%にすることが好ましい。
【0013】
【発明の実施の形態】
以下に、本発明を図1を参照して詳細に説明する。
【0014】
図1は、本発明に係る硬質炭素膜被覆部材を製造するための成膜装置の概略図である。
【0015】
真空容器11は、図示しない真空排気装置により真空排気される。処理部材である基材12を設置するホルダ13は、高絶縁フィードスルー14を介して、負の直流電圧及びパルス電圧を印加できるバイアス電源15に接続されている。プラズマ16は、前記真空容器11内に発生されている。このプラズマ16は、炭化水素系ガスをガス導入管17から前記真空容器11内に導入し、かつマイクロ波をマイクロ波を電源19から導波管18を介して真空容器11に導入し、前記真空容器11の中心に対して左右に対向して設置した一対の電磁コイル20a,20bにより前記基材12付近に導入された前記マイクロ波を最も効率的に吸収する磁場を形成することによって発生させる。
【0016】
なお、このような構造によるプラズマの発生以外に、高周波プラズマやヘリコンプラズマ、誘導結合プラズマ等種々のプラズマ源を用いてもよい。
【0017】
次に、硬質炭素膜被覆部材の製造方法を前述した図1の成膜装置を用いて説明する。
【0018】
まず、ホルダ13に基材12を設置し、真空容器11を所定の真空度まで真空排気する。所望の炭化水素系の原料ガスをガス導入管17を通して前記真空容器11内に導入し、所望の圧力に設定する。一対の電磁コイル20a,20bに所望の電流を流すことにより、前記真空容器11内の所望の箇所においてマイクロ波を効率的に吸収可能な磁場を形成する。この状態で、所望の出力のマイクロ波をマイクロ波電源19から導波管18を介して前記真空容器11内に導入することによりプラズマ16を発生させる。
【0019】
前記プラズマ発生と同時に、高絶縁フィードスルー14を介してバイアス電源15から前記基材12に所望の電圧の直流電圧と所望の電圧および効率比のパルス電圧をそれぞれ印加する。
【0020】
以上の工程により前記基材12表面に硬質炭素膜を成膜して硬質炭素膜被覆部材を製造する。
【0021】
前記基材に印加する直流電圧は、−0.2kV〜−2kVにすることが好ましい。この基材に印加する直流電圧を−0.2kV未満にすると、イオンのエネルギーが低く直流電圧を印加しない場合と差がなく、直流電圧の印加効果を十分に達成することが困難になる虞がある。一方、前記基材に印加する直流電圧が−2kVを超えると、照射するイオンのエッチング効果により成膜速度が著しく減少する虞がある。
【0022】
前記基材に印加するパルス電圧は、−1kV〜−10kVとすることが好ましい。この基材に印加するパルス電圧を−1kV未満にすると、イオンが膜に注入されず表面に堆積することにより、パルス電圧が印加されていない間に堆積する炭素膜の改質を行うことが困難になる。一方、前記基材に印加するパルス電圧が−10kVを超えると、パルス電圧が印加されていない間に堆積する炭素膜を注入されるイオンが突き抜けてしまうため、効果的に炭素膜の改質を行うことが困難になる。
【0023】
前記基材に印加するパルス電圧の効率比を1〜50%にすることが好ましい。この基材に印加するパルス電圧の効率比を1%未満にすると、パルス電圧が印加されていない間に堆積する炭素膜を改質するために必要なイオンが不足して、十分に硬質な膜を前記基材表面に成膜することが困難になる。一方、前記基材に印加するパルス電圧の効率比が50%を超えると、パルス電圧が印加されていない間に堆積する炭素膜のエッチングにより成膜速度が著しく減少したり、イオン照射過多により得られる膜が多孔質化して硬質な膜が得られなくなったり、さらに基材と真空容器間で異常放電が起こり安定した動作が保証されなくなる虞がある。
【0024】
【実施例】
以下に、本発明の実施例を前述した図1に示す成膜装置を用いて詳細に説明する。
【0025】
(実施例1)
まず、真空容器11内のホルダ13にステンレス鋼(JIS:SUS304)からなる基材12を設置し、真空容器11を1×10-3Pa以下の真空度まで真空排気した。原料ガスとしてメタンをガス導入管17を通して前記真空容器11内に導入し、その容器11内の圧力を5×10-2Paに制御した。その後、一対の電磁コイル20a,20bに300Aの電流を流すことにより、前記真空容器11内の中心部から100mm離れた箇所においてマイクロ波を効率的に吸収可能な磁場(875ガウス)を形成した。この状態で、1kWの出力のマイクロ波(周波数2.45GHz)をマイクロ波電源19から導波管18を介して真空容器11内に導入することによりプラズマ16を発生させた。プラズマ発生と同時に、電圧−0.2kVの直流電圧と電圧−2kV、効率比1%のパルス電圧をバイアス電源15から高絶縁フィードスルー14を通して前記基材12にそれぞれ印加し、前記基材12に硬質炭素膜を成膜することにより硬質炭素膜被覆部材を製造した。この時の成膜速度は、20μm/分であった。
【0026】
得られた硬質炭素膜の構造をラマンスペクトル分析により調べた。その結果、1520cm-1付近のメインピークと1380cm-1付近のショルダーバンドからなるブロードなピークが検出され、硬質炭素膜であるダイヤモンドライクカーボン膜の合成が確認された。
【0027】
また、ボールオンディスク型摩擦試験機により前記硬質膜の摩擦特性を調べた。摩擦試験の条件としては、相手材をSiCボール、荷重を1N、速度を0.1m/sec、雰囲気を乾燥空気中、温度を室温とした。その結果、この硬質炭素膜の摩擦係数は0.02であった。なお、直流電圧およびバイアス電圧を印加しない以外、前述したのと同様な条件で成膜した炭素膜の摩擦係数は0.4であった。電圧−2kV、効率比1%のパルス電圧のみを印加した以外、前述したのと同様な条件で成膜した炭素膜の摩擦係数は0.08であった。
【0028】
したがって、実施例1で成膜された硬質炭素膜はより小さな摩擦係数を有し、摩擦特性が大幅に改善されることがわかる。
【0029】
さらに、実施例1で成膜された硬質炭素膜はボールオンディスク型摩擦試験機による荷重20Nでの摩擦試験にも剥離することなく摩擦係数0.02を示し、密着性、耐久性も大幅に向上されていることが確認された。
【0030】
(実施例2)
まず、ホルダ13に高速度工具鋼(JIS:SKH51)からなる基材12を設置し、真空容器を1×10-3Pa以下の真空度まで真空排気した。原料ガスとしてアセチレンをガス導入管17を通して前記真空容器11内に導入し、その容器11内の圧力を5×10-2Paに制御した。その後、一対の電磁コイル20a,20bに250Aの電流を流すことにより、前記真空容器11内の中心部から150mm離れた箇所においてマイクロ波を効率的に吸収可能な磁場(875ガウス)を形成した。この状態で、700Wの出力のマイクロ波(周波数2.45GHz)をマイクロ波電源19から導波管18を介して真空容器11内に導入することによりプラズマ16を発生させた。プラズマ発生と同時に、電圧−0.5kVの直流電圧と電圧−5kV、効率比10%のパルス電圧をバイアス電源15から高絶縁フィードスルー14を通して前記基材12にそれぞれ印加し、前記基材12に硬質炭素膜を成膜することにより硬質炭素膜被覆部材を製造した。この時の成膜速度は、30μm/分であった。
【0031】
得られた硬質炭素膜の構造をラマンスペクトル分析により調べた。その結果、1520cm-1付近のメインピークと1380cm-1付近のショルダーバンドからなるブロードなピークが検出され、硬質炭素膜であるダイヤモンドライクカーボン膜の合成が確認された。
【0032】
また、ボールオンディスク型摩擦試験機により前記硬質膜の摩擦特性を調べた。摩擦試験の条件としては、相手材をSiCボール、荷重を1N、速度を0.1m/sec、雰囲気を乾燥空気中、温度を室温とした。その結果、この硬質炭素膜の摩擦係数は0.03であった。なお、直流電圧およびバイアス電圧を印加しない以外、前述したのと同様な条件で成膜した炭素膜の摩擦係数は0.5であった。電圧−5kV、効率比10%のパルス電圧のみを印加した以外、前述したのと同様な条件で成膜した炭素膜の摩擦係数は0.09であった。
【0033】
したがって、実施例2で成膜された硬質炭素膜はより小さな摩擦係数を有し、摩擦特性が大幅に改善されることがわかる。
【0034】
さらに、実施例2で成膜された硬質炭素膜はボールオンディスク型摩擦試験機による荷重20Nでの摩擦試験にも剥離することなく摩擦係数0.03を示し、密着性、耐久性も大幅に向上されていることが確認された。
【0035】
【発明の効果】
以上説明したように、本発明によれば硬質で摩擦特性の優れた硬質炭素膜を基材に対して良好に密着させることができる。また、イオンビームを用いた成膜方法の中で複雑形状の部材へ処理可能な方法で、かつ成膜速度を向上できるため、従来の製造方法と比較し短時間に低コストで製造することができる。
【0036】
したがって、本発明によれば工具、軸受け等の産業機械、エンジン、宇宙機器等への性能、寿命向上に寄与する硬質炭素膜被覆部材の製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る硬質炭素膜被覆部材を製造するための成膜装置の概略図
【符号の説明】
11…真空容器、
12…基材、
13…ホルダ、
15…バイアス電源、
16…プラズマ、
19…マイクロ波電源、
20a,20b…電磁コイル、
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a manufacturing method of a hard carbon film covering member applied to a member requiring wear resistance, such as a sliding member such as a bearing or a slide of various rotating devices, an information device storage device, and the like.
[0002]
[Prior art]
Film formation technology using an ion beam is an effective technique for synthesizing non-equilibrium materials that are unstable at room temperature and normal pressure due to the energy of the ion beam. For example, cubic boron nitride (cBN) that is harder than diamond and thermally stable than diamond, or diamond-like carbon (DLC) that has an amorphous structure but is hard and has excellent frictional properties. Can be mentioned.
[0003]
However, when processing the surface of a three-dimensional or complex shaped member using a film forming technique using an ion beam, the film forming speed or the etching speed depends on the ion beam irradiation angle from the directivity of the ion beam. Because of the difference, it is very difficult to form a film uniformly in a portion having a curvature. Under the present circumstances, it is indispensable to rotate and swing the mask and workpiece so that uniform film forming conditions can be maintained on the processing member, and there is a problem that processing time and processing cost are high and productivity is low.
[0004]
With respect to a film forming technique using an ion beam, a plasma ion implantation (PBII; Plasma Based Ion Implantation) has attracted attention as a film forming method for overcoming the above-mentioned problems. This is a film formation method proposed by the United States in 1986. A negative pulse voltage is applied to a processing member exposed to plasma to uniformly process ions in the plasma around the processing member. This is a method of irradiating a member, and research on surface modification (surface hardening) such as nitriding has been actively conducted.
[0005]
[Problems to be solved by the invention]
The above-described plasma ion implantation method has a problem in that when a pulse voltage is not applied when ion implantation of a rare gas or the like is performed, the surface of the processing member does not change even when exposed to plasma. Absent. However, when a film is deposited on a processing member by a treatment in reactive plasma, the film is deposited while no pulse voltage is applied, and the properties of the film greatly affect the characteristics of the entire film. . In general, a film formed while no pulse voltage is applied is mechanically fragile, which is a serious problem when a hard film having excellent mechanical characteristics such as friction characteristics is obtained.
[0006]
The present invention is intended to provide a method for producing a hard carbon film-coated member having improved solidity, adhesion to a processing member having a complicated shape, film characteristics (hardness, friction characteristics), and film formation speed.
[0007]
[Means for Solving the Problems]
The method for producing a hard carbon film-coated member according to the present invention is characterized in that a negative DC voltage is applied simultaneously to a processing member exposed to a hydrocarbon gas plasma, and a pulsed negative voltage is applied. It is what.
[0008]
According to the present invention, when a film is formed by the plasma ion implantation method, a negative DC voltage is applied to the processing member at the same time as applying a negative DC voltage. It is possible to produce a hard carbon film-coated member with improved characteristics (hardness, friction characteristics), film formation speed, and the like.
[0009]
That is, since a mechanically fragile film is formed on the surface of the processing member while the pulse voltage is not applied, a constant negative DC voltage is always applied while the pulse voltage is not applied. By actively attracting ions in the hydrocarbon-based gas plasma to the surface of the member, it is possible to improve the film quality of the hard carbon film on the surface of the processing member and the film formation speed.
[0010]
In the method for manufacturing a hard carbon film-coated member according to the present invention, the DC voltage applied to the processing member is preferably −0.2 kV to −2 kV.
[0011]
In the method for manufacturing a hard carbon film-coated member according to the present invention, the pulse voltage applied to the processing member is preferably −1 kV to −10 kV.
[0012]
In the manufacturing method of the hard carbon film coating | coated member which concerns on this invention, it is preferable to make the efficiency ratio of the pulse voltage applied to the said processing member into 1 to 50%.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to FIG.
[0014]
FIG. 1 is a schematic view of a film forming apparatus for producing a hard carbon film covering member according to the present invention.
[0015]
The vacuum vessel 11 is evacuated by an unillustrated evacuation device. The holder 13 on which the base member 12 as a processing member is installed is connected to a bias power source 15 that can apply a negative DC voltage and a pulse voltage via a highly insulated feedthrough 14. Plasma 16 is generated in the vacuum vessel 11. The plasma 16 introduces a hydrocarbon-based gas into the vacuum vessel 11 through a gas introduction tube 17 and introduces microwaves into the vacuum vessel 11 through a waveguide 18 from a power source 19. It is generated by forming a magnetic field that absorbs the microwaves introduced in the vicinity of the base material 12 most efficiently by a pair of electromagnetic coils 20a and 20b installed facing the left and right with respect to the center of the container 11.
[0016]
In addition to the generation of plasma with such a structure, various plasma sources such as high-frequency plasma, helicon plasma, and inductively coupled plasma may be used.
[0017]
Next, a manufacturing method of the hard carbon film covering member will be described using the film forming apparatus shown in FIG.
[0018]
First, the base material 12 is installed in the holder 13, and the vacuum vessel 11 is evacuated to a predetermined degree of vacuum. A desired hydrocarbon-based source gas is introduced into the vacuum vessel 11 through the gas introduction pipe 17 and set to a desired pressure. By flowing a desired current through the pair of electromagnetic coils 20a and 20b, a magnetic field capable of efficiently absorbing microwaves is formed at a desired location in the vacuum vessel 11. In this state, a microwave having a desired output is introduced from the microwave power source 19 into the vacuum vessel 11 through the waveguide 18 to generate plasma 16.
[0019]
Simultaneously with the generation of the plasma, a DC voltage having a desired voltage and a pulse voltage having a desired voltage and an efficiency ratio are applied from the bias power source 15 to the substrate 12 through the highly insulated feedthrough 14.
[0020]
Through the above steps, a hard carbon film is formed on the surface of the substrate 12 to manufacture a hard carbon film covering member.
[0021]
The DC voltage applied to the substrate is preferably -0.2 kV to -2 kV. If the DC voltage applied to the substrate is less than -0.2 kV, there is no difference from the case where the ion energy is low and no DC voltage is applied, and it may be difficult to sufficiently achieve the DC voltage application effect. is there. On the other hand, when the DC voltage applied to the substrate exceeds −2 kV, the film formation rate may be significantly reduced due to the etching effect of the irradiated ions.
[0022]
The pulse voltage applied to the substrate is preferably -1 kV to -10 kV. When the pulse voltage applied to the substrate is less than −1 kV, it is difficult to modify the carbon film deposited while the pulse voltage is not applied, because ions are deposited on the surface without being injected into the film. become. On the other hand, when the pulse voltage applied to the substrate exceeds −10 kV, ions implanted into the carbon film deposited while the pulse voltage is not applied penetrates, so that the carbon film is effectively modified. It becomes difficult to do.
[0023]
It is preferable that the efficiency ratio of the pulse voltage applied to the substrate is 1 to 50%. If the efficiency ratio of the pulse voltage applied to the substrate is less than 1%, the ions required for modifying the carbon film deposited while the pulse voltage is not applied are insufficient, and the film is sufficiently hard. It becomes difficult to form a film on the surface of the substrate. On the other hand, when the efficiency ratio of the pulse voltage applied to the substrate exceeds 50%, the deposition rate is remarkably reduced by etching of the carbon film deposited while the pulse voltage is not applied, or it is obtained by excessive ion irradiation. The resulting film may become porous and a hard film may not be obtained, or an abnormal discharge may occur between the substrate and the vacuum vessel, and stable operation may not be guaranteed.
[0024]
【Example】
Hereinafter, embodiments of the present invention will be described in detail using the film forming apparatus shown in FIG.
[0025]
Example 1
First, the base material 12 made of stainless steel (JIS: SUS304) was placed on the holder 13 in the vacuum vessel 11, and the vacuum vessel 11 was evacuated to a vacuum degree of 1 × 10 −3 Pa or less. Methane as a raw material gas was introduced into the vacuum vessel 11 through the gas introduction pipe 17 and the pressure in the vessel 11 was controlled to 5 × 10 −2 Pa. Thereafter, a current of 300 A was passed through the pair of electromagnetic coils 20 a and 20 b to form a magnetic field (875 gauss) capable of efficiently absorbing microwaves at a location 100 mm away from the central portion in the vacuum vessel 11. In this state, a plasma 16 was generated by introducing a microwave (frequency: 2.45 GHz) having an output of 1 kW into the vacuum vessel 11 from the microwave power source 19 via the waveguide 18. Simultaneously with the generation of plasma, a DC voltage of -0.2 kV, a voltage of -2 kV, and a pulse voltage of 1% efficiency ratio are applied from the bias power source 15 to the substrate 12 through the high-insulation feedthrough 14, respectively. A hard carbon film covering member was manufactured by forming a hard carbon film. The film formation speed at this time was 20 μm / min.
[0026]
The structure of the obtained hard carbon film was examined by Raman spectrum analysis. As a result, the detected broad peak consisting of the main peak and 1380 cm -1 vicinity of the shoulder band near 1520 cm -1, the synthesis of diamond-like carbon film is a hard carbon film was confirmed.
[0027]
Further, the friction characteristics of the hard film were examined by a ball-on-disk friction tester. The conditions for the friction test were a SiC ball as the counterpart material, a load of 1 N, a speed of 0.1 m / sec, an atmosphere in dry air, and a temperature of room temperature. As a result, the friction coefficient of this hard carbon film was 0.02. The friction coefficient of the carbon film formed under the same conditions as described above except that no DC voltage and bias voltage were applied was 0.4. The friction coefficient of the carbon film formed under the same conditions as described above was 0.08 except that only a pulse voltage having a voltage of −2 kV and an efficiency ratio of 1% was applied.
[0028]
Therefore, it can be seen that the hard carbon film formed in Example 1 has a smaller friction coefficient, and the friction characteristics are greatly improved.
[0029]
Furthermore, the hard carbon film formed in Example 1 shows a coefficient of friction of 0.02 without peeling even in a friction test at a load of 20 N by a ball-on-disk friction tester, and the adhesion and durability are greatly improved. It was confirmed that it was improved.
[0030]
(Example 2)
First, the base material 12 made of high-speed tool steel (JIS: SKH51) was installed in the holder 13, and the vacuum vessel was evacuated to a vacuum degree of 1 × 10 −3 Pa or less. Acetylene as a source gas was introduced into the vacuum vessel 11 through the gas introduction pipe 17 and the pressure in the vessel 11 was controlled to 5 × 10 −2 Pa. Thereafter, a current of 250 A was passed through the pair of electromagnetic coils 20 a and 20 b to form a magnetic field (875 gauss) capable of efficiently absorbing microwaves at a location 150 mm away from the center in the vacuum vessel 11. In this state, a plasma 16 was generated by introducing a microwave (frequency: 2.45 GHz) with an output of 700 W from the microwave power source 19 into the vacuum vessel 11 through the waveguide 18. Simultaneously with the generation of the plasma, a DC voltage of −0.5 kV, a voltage of −5 kV, and a pulse voltage with an efficiency ratio of 10% are applied to the substrate 12 from the bias power supply 15 through the high-insulation feedthrough 14, respectively. A hard carbon film covering member was manufactured by forming a hard carbon film. The film formation speed at this time was 30 μm / min.
[0031]
The structure of the obtained hard carbon film was examined by Raman spectrum analysis. As a result, the detected broad peak consisting of the main peak and 1380 cm -1 vicinity of the shoulder band near 1520 cm -1, the synthesis of diamond-like carbon film is a hard carbon film was confirmed.
[0032]
Further, the friction characteristics of the hard film were examined by a ball-on-disk friction tester. The conditions for the friction test were a SiC ball as the counterpart material, a load of 1 N, a speed of 0.1 m / sec, an atmosphere in dry air, and a temperature of room temperature. As a result, the coefficient of friction of this hard carbon film was 0.03. The friction coefficient of the carbon film formed under the same conditions as described above except that no DC voltage and bias voltage were applied was 0.5. The friction coefficient of the carbon film formed under the same conditions as described above was 0.09 except that only a pulse voltage having a voltage of −5 kV and an efficiency ratio of 10% was applied.
[0033]
Therefore, it can be seen that the hard carbon film formed in Example 2 has a smaller friction coefficient, and the friction characteristics are greatly improved.
[0034]
Furthermore, the hard carbon film formed in Example 2 shows a coefficient of friction of 0.03 without peeling even in a friction test at a load of 20 N using a ball-on-disk friction tester, and the adhesion and durability are greatly improved. It was confirmed that it was improved.
[0035]
【The invention's effect】
As described above, according to the present invention, a hard carbon film that is hard and has excellent frictional properties can be satisfactorily adhered to the substrate. In addition, it is a method that can be processed into a member having a complicated shape in the film formation method using an ion beam, and the film formation speed can be improved. it can.
[0036]
Therefore, according to the present invention, it is possible to provide a method of manufacturing a hard carbon film-coated member that contributes to the improvement of performance and life for industrial machines such as tools and bearings, engines, and space equipment.
[Brief description of the drawings]
FIG. 1 is a schematic view of a film forming apparatus for producing a hard carbon film covering member according to the present invention.
11 ... Vacuum container,
12 ... base material,
13 ... Holder,
15 ... Bias power supply,
16 ... Plasma,
19 ... Microwave power supply,
20a, 20b ... electromagnetic coils,

Claims (4)

炭化水素系ガスプラズマ中に曝された処理部材に対し、負の直流電圧を印加すると同時に、パルス状の負の電圧を印加することを特徴とする硬質炭素膜被覆部材の製造方法。A method for producing a hard carbon film-covered member, comprising applying a negative DC voltage to a processing member exposed to a hydrocarbon-based gas plasma at the same time as applying a pulsed negative voltage. 前記処理部材に印加する直流電圧は、−0.2kV〜−2kVであることを特徴とする請求項1記載の硬質炭素膜被覆部材の製造方法。2. The method of manufacturing a hard carbon film-coated member according to claim 1, wherein a DC voltage applied to the processing member is -0.2 kV to -2 kV. 前記処理部材に印加するパルス電圧は、−1kV〜−10kVであることを特徴とする請求項1記載の硬質炭素膜被覆部材の製造方法。The method of manufacturing a hard carbon film-coated member according to claim 1, wherein a pulse voltage applied to the processing member is -1 kV to -10 kV. 前記処理部材に印加するパルス電圧の効率比を1〜50%にすることを特徴とする請求項1記載の硬質炭素膜被覆部材の製造方法。The method for producing a hard carbon film-coated member according to claim 1, wherein an efficiency ratio of a pulse voltage applied to the processing member is 1 to 50%.
JP2001188637A 2001-06-21 2001-06-21 Manufacturing method of hard carbon film covering member Expired - Lifetime JP4779090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001188637A JP4779090B2 (en) 2001-06-21 2001-06-21 Manufacturing method of hard carbon film covering member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001188637A JP4779090B2 (en) 2001-06-21 2001-06-21 Manufacturing method of hard carbon film covering member

Publications (2)

Publication Number Publication Date
JP2003003262A JP2003003262A (en) 2003-01-08
JP4779090B2 true JP4779090B2 (en) 2011-09-21

Family

ID=19027708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001188637A Expired - Lifetime JP4779090B2 (en) 2001-06-21 2001-06-21 Manufacturing method of hard carbon film covering member

Country Status (1)

Country Link
JP (1) JP4779090B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009519379A (en) * 2005-12-13 2009-05-14 ユナイテッド テクノロジーズ コーポレイション Method for depositing amorphous carbon
JP6260980B2 (en) * 2012-09-07 2018-01-17 国立大学法人名古屋大学 Film forming apparatus, film forming method, and film forming program
JP6060016B2 (en) 2013-03-28 2017-01-11 ブラザー工業株式会社 Film forming apparatus, film forming method, and film forming program

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172140A (en) * 1996-12-10 1998-06-26 Fuji Electric Co Ltd Production of magnetic recording medium and apparatus for production thereof
JP4202489B2 (en) * 1998-11-10 2008-12-24 秀樹 中森 Pulse discharge type DLC deposition system

Also Published As

Publication number Publication date
JP2003003262A (en) 2003-01-08

Similar Documents

Publication Publication Date Title
EP0797688B1 (en) Method for deposition of diamondlike carbon films
JPH10121254A (en) Method for depositing barrier film on three-dimensional article
JP2004535037A (en) Surface treatment method and apparatus using glow discharge plasma
JP2008038217A (en) Plasma processing apparatus and surface treatment method for base material
CN108118308A (en) A kind of preparation method of DLC film
JP4779090B2 (en) Manufacturing method of hard carbon film covering member
JP2794289B2 (en) Mold for molding and manufacturing method thereof
JP2004238649A (en) Method and apparatus for manufacturing member coated with carbon-based film
JP3649873B2 (en) Thin film formation method by CVD and thin film and sliding parts
JP3378758B2 (en) Method of forming amorphous carbon-based coating
JP3695953B2 (en) Film-forming substrate and method for forming the substrate
JP3205363B2 (en) Mold with diamond-like protective film
JP2017218624A (en) Film deposition method of hard film
JP2001072986A (en) Sliding member having thin carbon film coating and preparation thereof
Watanabe et al. Formation of aC thin films by plasma-based ion implantation
Watanabe et al. Development of plasma based ion implantation system using an electron cyclotron resonance plasma source with a mirror field and synthesis of carbon thin films
WO2013042355A1 (en) Thin-film formation method, thin-film formation device, object to be treated having coating film formed thereon, die and tool
KR20020078618A (en) Inductively Coupled Plasma Assisted Sputtering System with Multiple Coils And Method Thereby
JPH03215671A (en) Cvd method and device by sheet plasma
JPH029787A (en) Plasma processing device
JPH06280000A (en) Plasma surface treatment method and device
JPS62254419A (en) Plasma deposition device
WO2024009357A1 (en) Plasma processing device
KR102382779B1 (en) Thin film depostion apparatus and DLC thin film coating methos using the appartus
JP5692497B2 (en) Surface processing method and surface processing apparatus

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060309

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080604

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4779090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term