JP2006056755A - Method for producing optical fiber preform - Google Patents

Method for producing optical fiber preform Download PDF

Info

Publication number
JP2006056755A
JP2006056755A JP2004241768A JP2004241768A JP2006056755A JP 2006056755 A JP2006056755 A JP 2006056755A JP 2004241768 A JP2004241768 A JP 2004241768A JP 2004241768 A JP2004241768 A JP 2004241768A JP 2006056755 A JP2006056755 A JP 2006056755A
Authority
JP
Japan
Prior art keywords
optical fiber
core tube
temperature
fiber preform
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004241768A
Other languages
Japanese (ja)
Other versions
JP4609839B2 (en
Inventor
Akihiro Kanao
昭博 金尾
Mitsuhiro Kawasaki
光広 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2004241768A priority Critical patent/JP4609839B2/en
Priority to CN 200510092768 priority patent/CN1740108B/en
Publication of JP2006056755A publication Critical patent/JP2006056755A/en
Application granted granted Critical
Publication of JP4609839B2 publication Critical patent/JP4609839B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01486Means for supporting, rotating or translating the preforms being formed, e.g. lathes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/0146Furnaces therefor, e.g. muffle tubes, furnace linings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an optical fiber preform where the deformation of a support rod or bar supporting a porous preform for an optical fiber is reduced when dehydrated and vitrified to be transparent, where the effective length of the optical fiber preform can be lengthened and where the optical fiber with small eccentricity of a core and small non-circularity of clad can be obtained. <P>SOLUTION: The optical fiber preform is produced by the method that the porous preform for the optical fiber whose upper edge is supported with a supporting bar 6 is inserted in a core tube 5 at a heating furnace, dehydrated and vitrified to be transparent. When the maximum temperature in the furnace is set to 1,500°C at the longitudinal center axis of the core tube 5, the temperature difference in a same face at a circumferential direction in the position of the core tube 5 where the temperature of the longitudinal center axis of the core tube 5 is 1,000-1,300°C is 10°C or lower. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光通信等に使用される光ファイバ、特にコア偏心量やクラッド非円率の小さい光ファイバを得るための光ファイバ母材の製造方法に関するものである。   The present invention relates to an optical fiber used for optical communication or the like, and more particularly to a method for manufacturing an optical fiber preform for obtaining an optical fiber having a small core eccentricity and a low cladding non-circularity.

従来から、透明ガラス化した光ファイバ母材を製造する場合、VAD法やOVD法によって合成された光ファイバ用多孔質母材を、炉心管を有する加熱炉内に徐々に挿入して脱水、透明ガラス化する方法が採用されている。
また、近年、特にコストダウンを図るべく、光ファイバ母材を大型化する傾向になってきている。
Conventionally, when manufacturing an optical fiber preform made of transparent glass, a porous preform for optical fiber synthesized by the VAD method or the OVD method is gradually inserted into a heating furnace having a furnace core tube and dehydrated and transparent. A vitrification method is employed.
Further, in recent years, the optical fiber preform is becoming larger in order to reduce the cost.

ところが光ファイバ母材の大型化にともない、光ファイバ用多孔質母材の上端を支持している石英ガラス製のサポート棒や、このサポート棒をさらに支持している石英ガラス製の支持棒の下端が、吊り下げている光ファイバ母材の重さで細る等熱変形してしまう問題がある。   However, as the size of the optical fiber preform increases, the quartz glass support rod supporting the upper end of the optical fiber porous preform and the lower end of the quartz glass support rod further supporting the support rod However, there is a problem that it is thermally deformed such as being thinned by the weight of the suspended optical fiber preform.

以下に、加熱炉、すなわち光ファイバ母材の製造装置を具体的に示す。
図12が示すように、コアを含むガラスロッド1(以下、コアロッド1と称す。)の周りにさらにクラッド用のスート2を堆積せしめてなる光ファイバ用多孔質母材を石英ガラス製のサポート棒4aを介して石英ガラス製の支持棒6の下端に支持し、これを支持棒6の軸の周りに回転させながら加熱ヒーター7を備えた炉心管5内に送り込み、加熱ヒーター7により加熱して脱水、透明ガラス化し、透明な光ファイバ母材8を得る。
尚、図12で符号3はスート2がガラス化された部分を、符号4bは光ファイバ用多孔質母材の他端に接続されたサポート棒を、そして符号9は加熱ヒーター7や炉心管5を覆う、例えば断熱材からなる加熱炉保護体を示している。
この図に示すように、加熱ヒーター7の上部において、炉心管5の全体が断熱材からなる加熱炉保護体9で覆われていると、概してその温度分布は、図12の加熱ヒーター7の右側に示すようにブロードな温度分布となり易い。
Hereinafter, a heating furnace, that is, an optical fiber preform manufacturing apparatus will be specifically shown.
As shown in FIG. 12, a porous base material for optical fiber in which a soot 2 for cladding is further deposited around a glass rod 1 including a core (hereinafter referred to as a core rod 1) is used as a support rod made of quartz glass. 4a is supported at the lower end of a support rod 6 made of quartz glass, and is rotated around the axis of the support rod 6 into the core tube 5 provided with the heater 7 and heated by the heater 7 Dehydration and transparent vitrification yield a transparent optical fiber preform 8.
In FIG. 12, reference numeral 3 denotes a vitrified portion of the soot 2, reference numeral 4b denotes a support rod connected to the other end of the optical fiber porous preform, and reference numeral 9 denotes a heater 7 or a core tube 5. A heating furnace protector made of, for example, a heat insulating material is shown.
As shown in this figure, when the entire furnace core tube 5 is covered with a heating furnace protector 9 made of a heat insulating material at the upper part of the heater 7, the temperature distribution is generally on the right side of the heater 7 in FIG. As shown in FIG.

このように高温領域が広い、すなわちブロードな温度分布の中に光ファイバ用多孔質母材を曝すと、光ファイバ用多孔質母材を支持棒6に連結している石英ガラス製のサポート棒4aも長時間高温に曝されることになって、前述したように光ファイバ母材8の重さで細ってしまう等々の問題がある。
通常、このサポート棒4aは繰り返し使用されるが、上記のように変形してしまうと以後使用することができなくなる。
When the optical fiber porous preform is exposed to such a wide temperature range, that is, a broad temperature distribution, a quartz glass support rod 4a connecting the optical fiber porous preform to the support rod 6 is provided. However, there are problems such as being exposed to high temperature for a long time and being thinned by the weight of the optical fiber preform 8 as described above.
Normally, the support bar 4a is used repeatedly, but if it is deformed as described above, it cannot be used thereafter.

さらに光ファイバ用多孔質母材を、前述したようなブロードな温度分布に曝すと、その表面と内部における透明ガラス化の進行速度の差が大きくなって、本来ならば図13(a)が示すように、透明ガラス化後の光ファイバ母材8の上部のテーパーの長さLが短くなってほしいところが、図13(b)が示すようにLより長いLになってしまって、光ファイバ母材8の有効長、すなわち実際に使用できる長さが短くなってしまう、という問題もあって、コストダウンが図り難い状況にある。
因みに光ファイバ母材8の有効長とは、母材の外径Dが所定の値の範囲で安定した部分、すなわち光ファイバ母材8の両端部分を除いた外径Dが一定となる部分であって、使用可能な光ファイバを線引きできる部分の長さをいう。
Further, when the porous preform for optical fiber is exposed to the broad temperature distribution as described above, the difference in the progress rate of transparent vitrification between the surface and the inside becomes large, and as shown in FIG. as such, where the wish for shorter length L 1 of the upper portion of tapered optical fiber preform 8 after the transparent vitrification, and ended up with longer L 2 than L 1 as shown in FIG. 13 (b), the There is a problem that the effective length of the optical fiber preform 8, that is, the length that can be actually used is shortened, and it is difficult to reduce the cost.
Incidentally, the effective length of the optical fiber preform 8 is a portion where the outer diameter D of the preform is stable within a predetermined range, that is, a portion where the outer diameter D excluding both end portions of the optical fiber preform 8 is constant. The length of the portion where the usable optical fiber can be drawn.

そこで、例えば前者のサポート棒の問題を解決すべく、特許文献1には、光ファイバ用多孔質母材の透明ガラス化工程中に、加熱ヒーターの長さを調整できる加熱炉を提案している。
この特許文献1に記載のものは、具体的には光ファイバ用多孔質母材の透明ガラス化が進行し、その上部の石英ガラス製のサポート棒との連結部が加熱ヒーターに近づいてきたら、加熱ヒーターの上部の一部を取り除いてサポート棒を加熱し過ぎないようにするものである。
Therefore, for example, in order to solve the problem of the former support rod, Patent Document 1 proposes a heating furnace capable of adjusting the length of the heater during the transparent vitrification process of the optical fiber porous preform. .
Specifically, as described in Patent Document 1, when the transparent vitrification of the optical fiber porous preform progresses, and the connecting portion with the quartz glass support rod on the upper part approaches the heater, The upper part of the heater is removed so that the support rod is not overheated.

特開平06−048760号公報Japanese Patent Application Laid-Open No. 06-048760

しかしながら特許文献1に記載のものでは、サポート棒が所定位置に来たらその都度加熱ヒーターの一部を取り外さねばならず、作業が煩雑になる。また仮にこれを自動的に行おうとすれば、装置が複雑になって、かつ高価なものになってしまう、という問題もあって、コストダウンに相反する。   However, in the thing of patent document 1, when a support rod comes to a predetermined position, a part of heater must be removed each time, and work becomes complicated. Also, if this is done automatically, there is a problem that the apparatus becomes complicated and expensive, which is in conflict with the cost reduction.

そこで単に、図12における加熱炉保護体9の一部、より具体的には加熱ヒーター7のすぐ上の部分をその周方向全体にわたって除去し、外気で炉心管5を冷却して、高温領域の立ち上がり部分を急峻にする方法が試みられた。
この方法によれば、炉内温度の立ち上がり部が急峻になったことから、サポート棒4aへの加熱時間が短縮され、サポート棒4aの熱変形問題もほぼ解決された。また光ファイバ用多孔質母材の内部、外部のガラス化速度の差も小さくなって、光ファイバ母材8の上部のテーパーもガラス化後図13(a)のような形状のものを確実に得ることができるようになった。すなわち有効長の長い光ファイバ母材8をより確実に得ることができるようになった。
しかもこの方法は、加熱炉保護体9の一部を単に除去するだけで済むため、極めて安価な方法であり、この点からもコストダウン上優れた方法である、と考えられていた。
Therefore, a part of the heating furnace protector 9 in FIG. 12, more specifically, a part immediately above the heater 7 is removed over the entire circumferential direction, the furnace core tube 5 is cooled with the outside air, and a high temperature region is obtained. Attempts have been made to sharpen the rising edge.
According to this method, since the rising portion of the furnace temperature becomes steep, the heating time to the support rod 4a is shortened, and the thermal deformation problem of the support rod 4a is almost solved. Also, the difference in vitrification speed inside and outside the porous preform for optical fiber is reduced, and the taper of the upper part of the optical fiber preform 8 is surely shaped as shown in FIG. 13 (a) after vitrification. Can now get. That is, the optical fiber preform 8 having a long effective length can be obtained more reliably.
Moreover, this method is considered to be an extremely inexpensive method because only a part of the heating furnace protector 9 needs to be removed, and it is considered that this method is also excellent in terms of cost reduction.

ところが得られた光ファイバ母材8から光ファイバを線引きすると、光ファイバのコア偏心量やクラッド非円率が、加熱炉保護体9の一部を取り除く前に得られた光ファイバ母材8を線引きして得られた光ファイバのそれより大きくなっていることがわかった。   However, when the optical fiber is drawn from the obtained optical fiber preform 8, the optical fiber preform 8 obtained before removing a part of the heating furnace protector 9 is obtained when the core eccentricity and the cladding non-circularity of the optical fiber are removed. It turned out to be larger than that of the optical fiber obtained by drawing.

上記問題に鑑み本発明の目的は、光ファイバ用多孔質母材を脱水、透明ガラス化する際に、この光ファイバ用多孔質母材を支持するサポート棒および支持棒の変形を少なくし、かつ光ファイバ母材の有効長も長く取ることができ、しかもコア偏心量やクラッド非円率の小さい光ファイバを得ることのできる光ファイバ母材の製造方法を提供することにある。   In view of the above problems, the object of the present invention is to reduce the deformation of the support rod and the support rod that support the optical fiber porous preform when the porous preform for optical fiber is dehydrated and made into a transparent glass, and It is an object of the present invention to provide a method for manufacturing an optical fiber preform that can obtain an optical fiber that can take a long effective length of the optical fiber preform and that has a small core eccentricity and a small cladding non-circularity.

前記目的を達成すべく請求項1記載の光ファイバ母材の製造方法は、炉心管を有する加熱炉の前記炉心管内に上端が支持棒で支持された光ファイバ用多孔質母材を挿入して脱水、透明ガラス化する光ファイバ母材の製造方法において、前記炉心管の長手中心軸での最高温度が1500℃となるように加熱炉の温度を設定したとき、炉心管の長手中心軸の温度が1300℃となる位置が、炉心管の長手中心軸の温度が1400℃である位置から炉心管の軸方向上方に300mm以内にあって、かつ炉心管の長手中心軸の温度が1000〜1300℃の位置での炉心管内の周方向同一面内における温度差が10℃以下であることを特徴とするものである。   In order to achieve the above-mentioned object, the method for manufacturing an optical fiber preform according to claim 1, wherein a porous preform for an optical fiber having an upper end supported by a support rod is inserted into the furnace core tube of a heating furnace having a furnace core tube. In the method of manufacturing an optical fiber preform to be dehydrated and made into transparent glass, when the temperature of the heating furnace is set so that the maximum temperature at the longitudinal central axis of the furnace core tube is 1500 ° C., the temperature of the longitudinal central axis of the core tube Is 1300 ° C., the temperature of the longitudinal central axis of the core tube is within 300 mm above the axial direction of the core tube from the position where the temperature is 1400 ° C., and the temperature of the longitudinal central axis of the core tube is 1000-1300 ° C. The temperature difference in the same circumferential direction in the core tube at the position is 10 ° C. or less.

このようにしてなる請求項1記載の光ファイバ母材の製造方法によれば、前記炉心管の長手中心軸での最高温度が1500℃となるように加熱炉の温度を設定したとき、炉心管の長手中心軸の温度が1300℃となる位置が、炉心管の長手中心軸の温度が1400℃である位置から炉心管の軸方向上方に300mm以内にあるため、すなわち高温部への立ち上がり部分の温度分布が急峻になっていることから、より確実に光ファイバ用多孔質母材を支持するサポート棒および支持棒の変形を少なくし、かつ光ファイバ母材の有効長も長く取ることができ、光ファイバのコストダウンを図ることもできる。
同時に炉心管の長手中心軸の温度が1000〜1300℃の位置での炉心管内の周方向同一面内における温度差を10℃以下にしているため、光ファイバ用多孔質母材はその周方向からほぼ均一な温度で加熱され、その結果、コア偏心量やクラッド非円率の小さい光ファイバ母材を容易に製造できる。それ故、この光ファイバ母材を線引きすればコア偏心量やクラッド非円率の小さい光ファイバを得ることができる。
According to the method of manufacturing an optical fiber preform according to claim 1, the furnace tube is set when the temperature of the heating furnace is set so that the maximum temperature at the longitudinal central axis of the furnace tube is 1500 ° C. The position where the temperature of the longitudinal central axis of the core tube is 1300 ° C. is within 300 mm above the axial direction of the core tube from the position where the temperature of the longitudinal central axis of the core tube is 1400 ° C. Since the temperature distribution is steep, the deformation of the support rod and the support rod for supporting the optical fiber porous preform can be reduced more reliably, and the effective length of the optical fiber preform can be increased. It is also possible to reduce the cost of the optical fiber.
At the same time, the temperature difference in the same plane in the circumferential direction in the core tube at a position where the temperature of the longitudinal central axis of the core tube is 1000 to 1300 ° C. is set to 10 ° C. or less. As a result, it is possible to easily manufacture an optical fiber preform having a small core eccentricity and a low cladding non-circularity. Therefore, if this optical fiber preform is drawn, an optical fiber having a small core eccentricity and a low cladding non-circularity can be obtained.

また請求項2記載の光ファイバ母材の製造方法は、請求項1記載の光ファイバ母材の製造方法において、前記炉心管の長手中心軸での温度が1000〜1300℃の領域における炉心管の外周には、放熱性遮蔽物が設けられていることを特徴とするものである。   A method for manufacturing an optical fiber preform according to claim 2 is the method for manufacturing an optical fiber preform according to claim 1, wherein the temperature of the core tube in the longitudinal center axis of the reactor core tube is in the region of 1000 to 1300 ° C. A heat-radiating shield is provided on the outer periphery.

このようにしてなる請求項2記載の光ファイバ母材の製造方法によれば、炉心管の長手中心軸での温度が1000〜1300℃の領域における炉心管の外周には、放熱性遮蔽物が設けられているので、より確実に炉心管における1000〜1300℃領域の温度分布を急峻に、かつ外部の影響を排除し、炉心管周方向の温度分布をより均一に、具体的には10℃以下の温度差に保持することができる。
それ故、サポート棒や支持棒の変形を少なくでき、また光ファイバ母材の有効長を長くできるのはもちろん、製造した光ファイバ母材を線引きすればコア偏心量やクラッド非円率の極めて小さい光ファイバを得ることもできる。
According to the method for manufacturing an optical fiber preform according to claim 2, the heat shield is provided on the outer periphery of the core tube in the region where the temperature at the longitudinal central axis of the core tube is 1000 to 1300 ° C. Since it is provided, the temperature distribution in the 1000-1300 ° C. region of the reactor core tube is more steep and more reliably excluded, and the temperature distribution in the circumferential direction of the reactor core tube is more uniform, specifically 10 ° C. The following temperature difference can be maintained.
Therefore, the deformation of the support rod and the support rod can be reduced, the effective length of the optical fiber preform can be increased, and if the manufactured optical fiber preform is drawn, the core eccentricity and the cladding non-circularity are extremely small. An optical fiber can also be obtained.

以上のように本発明によれば、光ファイバ用多孔質母材を脱水、透明ガラス化する際に、この光ファイバ用多孔質母材を支持するサポート棒および支持棒の変形を少なくし、かつ光ファイバ母材の有効長も長く取ることができ、しかもコア偏心量やクラッド非円率の小さい光ファイバを得ることのできる光ファイバ母材の製造方法を提供することができる。   As described above, according to the present invention, when the optical fiber porous preform is dehydrated and made into a transparent glass, the support rod and the support rod that support the optical fiber porous preform are reduced in deformation, and It is possible to provide a method for manufacturing an optical fiber preform that can increase the effective length of the optical fiber preform and obtain an optical fiber having a small core eccentricity and a low cladding non-circularity.

以下に本発明の光ファイバ母材の製造方法を図を用いて詳細に説明する。尚、図12に示す従来の光ファイバ母材の製造装置と同じ部分には同一の符号を付し、詳細な説明は省略する。
図1は本発明の光ファイバ母材の製造方法の一実施例に使用される光ファイバ母材の製造装置の概略図、図5はさらに別の実施例に用いられる製造装置の概略図である。
尚、本明細書中の実施例および比較例における製造品種は、最も一般的なシングルモード光ファイバとしている。
Hereinafter, a method for producing an optical fiber preform of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same part as the manufacturing apparatus of the conventional optical fiber preform shown in FIG. 12, and detailed description is abbreviate | omitted.
FIG. 1 is a schematic view of an optical fiber preform manufacturing apparatus used in an embodiment of the optical fiber preform manufacturing method of the present invention, and FIG. 5 is a schematic view of a manufacturing apparatus used in still another embodiment. .
The production types in the examples and comparative examples in this specification are the most common single mode optical fibers.

図1が示すように、コアロッド1の周りにクラッド用スート2を堆積せしめてなる光ファイバ用多孔質母材の両端には、石英ガラス製のサポート棒4a、4bがそれぞれ接続されており、光ファイバ用多孔質母材は、このサポート棒4aを介して石英ガラス製の支持棒6に接続される。ところでサポート棒4aと支持棒6とは、例えばピン止されて連結される。   As shown in FIG. 1, quartz glass support rods 4a and 4b are respectively connected to both ends of a porous optical fiber preform formed by depositing a soot 2 for cladding around a core rod 1. The fiber preform is connected to the support rod 6 made of quartz glass through the support rod 4a. By the way, the support bar 4a and the support bar 6 are connected by being pinned, for example.

前述のようにサポート棒4aを介して支持棒6の先端に光ファイバ用多孔質母材を装着したら、これを支持棒6の軸の周りに回転させながら加熱ヒーター7を備えた炉心管5内に所定の速度で送り込み、加熱して脱水し、さらに透明ガラス化して透明な光ファイバ母材8を得る。尚、前記支持棒6の軸中心は、前記炉心管5の長手中心軸と一致している。   When the porous optical fiber preform is attached to the tip of the support rod 6 via the support rod 4a as described above, the core tube 5 provided with the heater 7 is rotated while rotating the support base 6 around the axis of the support rod 6. The glass fiber is fed at a predetermined speed, dehydrated by heating, and further formed into a transparent glass to obtain a transparent optical fiber preform 8. Note that the axial center of the support rod 6 coincides with the longitudinal central axis of the core tube 5.

この実施例1において用いられる光ファイバ母材の製造装置、すなわち加熱炉の特徴は、図1が示すように、炉心管5や加熱ヒーター7を覆っていた加熱炉保護体9を取り払って、加熱ヒーター7のすぐ上の部分に放熱性遮蔽物10を炉心管5の長手中心軸と同軸状に設けた点にある。
この放熱性遮蔽物10は、内側にはアルミニウム板を放熱板として装着し、その外側に作業者の安全を考慮して断熱材を設けた環状のもので、これを炉心管5の外側に炉心管5と同軸状に、かつこの例では炉心管5と150mmの隙間を設けた状態で設置してある。
The feature of the optical fiber preform manufacturing apparatus, that is, the heating furnace used in the first embodiment is that, as shown in FIG. 1, the heating furnace protector 9 covering the furnace core tube 5 and the heater 7 is removed and the heating furnace is heated. The heat-dissipating shield 10 is provided coaxially with the longitudinal central axis of the core tube 5 at a portion immediately above the heater 7.
This heat radiating shield 10 is an annular one in which an aluminum plate is mounted on the inside as a heat radiating plate and a heat insulating material is provided on the outside in consideration of the safety of the operator. It is installed coaxially with the tube 5 and in this example with a space of 150 mm from the core tube 5.

ここで前述のように加熱ヒーター7の直ぐ上の部分に放熱性遮蔽物10を設けた理由は、放熱性遮蔽物10を設けることで加熱ヒーター7のすぐ上の炉心管5を覆って外部環境の影響を排除すると共に、この放熱性遮蔽物10の放熱性により炉心管5の温度を一部外部に放熱して、加熱ヒーター7により作り出されている温度分布において、高温部への立ち上がりを急峻にするためである。
図1において、その右側に記載した温度分布曲線が示すように、図中点線で示す図12の加熱炉における炉心管5の長手中心軸に沿った温度分布と比較すると、図1の加熱炉における温度分布(実線が示すもの)は高温部への立ち上がりが急峻になっている。
Here, the reason why the heat-radiating shield 10 is provided immediately above the heater 7 as described above is that the core tube 5 immediately above the heater 7 is covered by the heat-dissipating shield 10 so as to cover the external environment. The temperature of the core tube 5 is partially dissipated to the outside due to the heat dissipation of the heat-shielding shield 10, and the temperature distribution created by the heater 7 steeply rises to the high-temperature part. It is to make it.
As shown in the temperature distribution curve on the right side in FIG. 1, when compared with the temperature distribution along the longitudinal central axis of the furnace core tube 5 in the heating furnace of FIG. 12 indicated by the dotted line in the drawing, in the heating furnace of FIG. The temperature distribution (shown by the solid line) has a steep rise to the high temperature part.

すなわち、本発明の発明者は、前述したように図12において加熱ヒーター7のすぐ上の加熱炉保護体9をその周方向全体にわたって除去し、外気で炉心管5を冷却して、高温領域への立ち上がり部分を急峻する試みを行った結果、光ファイバのコア偏心量やクラッド非円率が加熱炉保護体9を取り除く前に得られた光ファイバのそれより大きくなっていたのは、加熱炉保護体9を除去したことで外気に剥き出しになった炉心管5が、外気の影響でその周方向に不均一に冷却されたからである、と推測した。そこで外気の遮蔽と炉心管5の冷却という2つの目的により、この放熱性遮蔽物10を設けたものである。   That is, as described above, the inventor of the present invention removes the heating furnace protector 9 immediately above the heater 7 in FIG. 12 over the entire circumferential direction, cools the furnace core tube 5 with the outside air, and moves to the high temperature region. As a result of making an attempt to sharpen the rising portion of the optical fiber, the core eccentricity and the cladding non-circularity of the optical fiber were larger than that of the optical fiber obtained before removing the heating furnace protector 9. It was speculated that the core tube 5 exposed to the outside air by removing the protective body 9 was cooled unevenly in the circumferential direction due to the influence of the outside air. Therefore, the heat-shielding shield 10 is provided for the two purposes of shielding the outside air and cooling the core tube 5.

具体的にこれを立証するために、加熱ヒーター7のすぐ上の部分の炉心管5において、炉心管5の周方向の外部環境を、風を吹きつける等して不均一に変化させ、炉心管の長手中心軸における温度が約1250℃となる位置における炉心管5の周方向の温度を変化させて周方向の最大温度差と光ファイバのコア偏心量の平均値との関係を調べた。
この結果を図2に示す。図2が示すように、炉心管5の周方向の温度差に比例してコア偏心量の平均値も大きくなっており、本発明者の推測が正しいことがわかる。特に、周方向の最大温度差が10℃を越えるとコア偏心量の平均値は急に大きくなる傾向があり、周方向の最大温度差を10℃以下とする必要があることがわかる。
また、周方向の最大温度差を10℃以下とする必要がある位置は、炉心管の長手中心軸での温度が1000〜1300℃の領域である。スートの収縮が開始する温度は1000〜1300℃であることが一般的に知られている。この温度領域において炉心管の周方向の最大温度差が大きいとスートが非対称に収縮してしまい、結果としてコア偏心量やクラッド非円率の大きい光ファイバ母材が製造されてしまうためである。
ここで光ファイバのコア偏心量およびクラッド非円率の定義は、IEC60793−1−20に準ずるものとする。
Specifically, in order to prove this, in the core tube 5 immediately above the heater 7, the outer environment in the circumferential direction of the core tube 5 is changed non-uniformly by blowing wind, etc. The relationship between the maximum temperature difference in the circumferential direction and the average value of the core eccentricity of the optical fiber was examined by changing the circumferential temperature of the core tube 5 at a position where the temperature at the longitudinal central axis of the tube was about 1250 ° C.
The result is shown in FIG. As shown in FIG. 2, the average value of the core eccentricity is also increased in proportion to the temperature difference in the circumferential direction of the core tube 5, and it is understood that the inventor's guess is correct. In particular, when the maximum temperature difference in the circumferential direction exceeds 10 ° C., the average value of the core eccentricity tends to suddenly increase, and it is understood that the maximum temperature difference in the circumferential direction needs to be 10 ° C. or less.
The position where the maximum temperature difference in the circumferential direction needs to be 10 ° C. or less is a region where the temperature at the longitudinal central axis of the core tube is 1000 to 1300 ° C. It is generally known that the temperature at which soot contraction begins is 1000-1300 ° C. This is because if the maximum temperature difference in the circumferential direction of the core tube is large in this temperature region, the soot contracts asymmetrically, and as a result, an optical fiber preform having a large core eccentricity and a large cladding non-circularity is produced.
Here, the definition of the core eccentricity and the cladding non-circularity of the optical fiber shall conform to IEC 60793-1-20.

ところで、放熱性遮蔽物10を加熱ヒーター7のすぐ上の位置に設置した理由のうち、この部分の温度分布の観点からみた理由は、炉心管5の長手中心軸における最高温度を1500℃となるように加熱炉の温度を設定したとき、炉心管5の中心の温度が1300℃となる位置が、炉心管5の長手中心軸の温度が1400℃である位置から炉心管の長手中心軸方向上方に300mm以内になるようにしたいためである。すなわち、加熱ヒーター7により作り出される温度分布において、高温部への立ち上がり部に相当する1300℃から1400℃の温度域をより急峻にし、サポート棒4aやこのサポート棒4aに接続されている支持棒6の下端を長く加熱しないように、またスート2のガラス化が内部と外部とでほぼ同時に進行し、光ファイバ母材8の上部を図13(a)のように仕上げ、光ファイバ母材8の有効長を長くとれるようにするためである。   By the way, among the reasons for installing the heat-radiating shield 10 at a position immediately above the heater 7, the reason from the viewpoint of the temperature distribution of this portion is that the maximum temperature at the longitudinal central axis of the core tube 5 is 1500 ° C. When the temperature of the heating furnace is set as described above, the position where the center temperature of the core tube 5 is 1300 ° C. is higher than the position where the temperature of the longitudinal center axis of the core tube 5 is 1400 ° C. This is because it is desired to be within 300 mm. That is, in the temperature distribution created by the heater 7, the temperature range from 1300 ° C. to 1400 ° C. corresponding to the rising portion to the high temperature portion is made steeper, and the support rod 4a and the support rod 6 connected to the support rod 4a are used. The soot 2 is vitrified almost simultaneously with the inside and outside so that the lower end of the optical fiber is not heated for a long time, and the upper portion of the optical fiber preform 8 is finished as shown in FIG. This is because the effective length can be increased.

このように放熱性遮蔽物10を設置した状態で、加熱炉の温度を炉心管5の中心における最高温度がスート2の透明ガラス化に必要な1500℃となるように設定し、かつスート2の透明ガラス化の条件に合わせ炉心管5内にHeを10リットル/分流した。この状態で炉心管5の長手中心軸に沿って上部から熱電対を挿入し、炉内温度の測定を行った。
測定に際しては、まず熱電対を炉心管5の長手中心軸に沿って挿入し、炉心管5の長手方向に50mmずつ移動し、測定される温度が約1000℃〜1300℃の領域を探し、しかる後この領域において、炉心管5内の周方向の温度差を測定した。具体的には、測定位置を炉心管5の内壁から20mm離れた位置とし、各位置で熱電対を周方向に45°ずつずらして、すなわち周方向同一平面上で8点の測定を行った。この結果、実施例1の炉心管5内にあっては最大温度差は8℃であった。
With the heat-dissipating shield 10 installed in this manner, the temperature of the heating furnace is set so that the maximum temperature at the center of the furnace core tube 5 is 1500 ° C. required for the transparent vitrification of the soot 2, and the soot 2 He was flowed 10 liters / minute into the core tube 5 in accordance with the conditions for transparent vitrification. In this state, a thermocouple was inserted from above along the longitudinal central axis of the furnace core tube 5, and the temperature in the furnace was measured.
In the measurement, first, a thermocouple is inserted along the longitudinal central axis of the core tube 5 and moved by 50 mm in the longitudinal direction of the core tube 5 to find a region where the measured temperature is about 1000 ° C. to 1300 ° C. Thereafter, in this region, the temperature difference in the circumferential direction in the core tube 5 was measured. Specifically, the measurement position was set at a position 20 mm away from the inner wall of the core tube 5, and the thermocouple was shifted 45 degrees in the circumferential direction at each position, that is, eight points were measured on the same plane in the circumferential direction. As a result, in the core tube 5 of Example 1, the maximum temperature difference was 8 ° C.

このようにしてなる製造装置を用いて、実際に光ファイバ用多孔質母材の脱水、透明ガラス化を行った。この光ファイバ用多孔質母材としては、予め脱水、透明ガラス化済みのコアロッド1に公知のOVD法によりクラッド用として外径280mmのスート2を外付けしたものを使用した。この光ファイバ用多孔質母材を、内径320mmの炉心管5に回転させながら一定速度で送り込んで、脱水、透明ガラス化して光ファイバ母材8を製造した。   Using the manufacturing apparatus thus formed, the porous preform for optical fiber was actually dehydrated and made into a transparent glass. As the porous base material for optical fiber, a core rod 1 that has been dehydrated and transparently vitrified and externally provided with a soot 2 having an outer diameter of 280 mm for cladding is used by a known OVD method. The optical fiber preform 8 was manufactured by feeding the porous preform for optical fiber at a constant speed while rotating it into the core tube 5 having an inner diameter of 320 mm, and dehydrating and forming transparent glass.

得られた光ファイバ母材8の上端は図13(a)のようになっており、有効長を長く取ることのできる光ファイバ母材に仕上がっていた。
この光ファイバ母材8を線引きして得た光ファイバのコア偏心量、及びクラッド非円率を測定したところ、コア偏心量の平均値は0.11μm、クラッド非円率の平均値は0.09%、各々の標準偏差はそれぞれ0.01μm、0.01%であった。
またサポート棒4aや支持棒6の下端にはなんら変形や損傷は見られなかった。
The upper end of the obtained optical fiber preform 8 is as shown in FIG. 13A, and the optical fiber preform has a long effective length.
When the core eccentricity and the cladding non-circularity of the optical fiber obtained by drawing the optical fiber preform 8 were measured, the average value of the core eccentricity was 0.11 μm, and the average value of the cladding non-circularity was 0.00. The standard deviation of 09% was 0.01 μm and 0.01%, respectively.
Further, no deformation or damage was observed at the lower ends of the support bar 4a and the support bar 6.

尚、この実施例1において、炉心管5の中心の最高温度を1500℃としたとき、炉心管5の中心の温度が1300℃となる位置は1400℃となる位置から190mm上方の位置であった。
またこの光ファイバの長手方向のコア偏心量及びクラッド非円率の各変動を図3及び図4に示す。これらの図から得られた光ファイバは品質上なんら問題のないことがわかる。ここで両図において横軸は光ファイバ長を示しており、左がサポート棒4a側、右がサポート棒4b側である。
In Example 1, when the maximum temperature at the center of the core tube 5 is 1500 ° C., the position at which the center temperature of the core tube 5 is 1300 ° C. is a position 190 mm above the position at 1400 ° C. .
Moreover, each fluctuation | variation of the core eccentricity of a longitudinal direction of this optical fiber and a cladding non-circularity is shown in FIG.3 and FIG.4. It can be seen from these figures that the optical fiber obtained has no problem in quality. Here, in both figures, the horizontal axis indicates the optical fiber length, the left is the support bar 4a side, and the right is the support bar 4b side.

図5を用いて本発明の別の実施例を示す。この放熱性遮蔽物10は、図1と同様に、炉心管5の長手中心軸の最高温度を1500℃としたとき、炉心管5の長手中心軸の温度が1000℃〜1300℃の領域において炉心管5を取り囲むように設置されており、その形状は図5に示すように炉心管5側が開放されているバームクーヘン型の箱状をしている。この放熱性遮蔽物10は断熱材製の箱の内側に放熱性に優れたアルミニウム材を貼り付けたものである。   5 shows another embodiment of the present invention. As in FIG. 1, the heat shield 10 has a core in the region where the temperature of the longitudinal center axis of the core tube 5 is 1000 ° C. to 1300 ° C. when the maximum temperature of the longitudinal center axis of the core tube 5 is 1500 ° C. The tube 5 is installed so as to surround the tube 5, and the shape thereof is a Baumkuchen type box shape in which the core tube 5 side is opened as shown in FIG. 5. This heat-radiating shield 10 is obtained by attaching an aluminum material excellent in heat-dissipating properties to the inside of a box made of heat insulating material.

具体的には、この放熱性遮蔽物10は炉心管5の外径のおよそ3倍の外径を有していて、その内径は炉心管5の外径より若干大きめになっているが、両者の隙間はごくわずかである。
このように、加熱ヒーター7のすぐ上で炉心管5の外側を覆うと共に、炉心管5との間に空間を形成することにより、1000℃〜1300℃の領域において適度な放熱が図られ、かつ炉心管5の周方向の温度を均一にすることができる。
尚、放熱性遮蔽物10の上方の炉内温度が1000℃以下となる領域は、開放状態のままでもよいし、従来のように加熱炉保護体9を施してもよい。
Specifically, the heat-dissipating shield 10 has an outer diameter that is approximately three times the outer diameter of the core tube 5, and its inner diameter is slightly larger than the outer diameter of the core tube 5. There is very little gap.
As described above, by covering the outside of the core tube 5 just above the heater 7 and forming a space between the core tube 5 and the core tube 5, moderate heat dissipation can be achieved in the region of 1000 ° C. to 1300 ° C., and The temperature in the circumferential direction of the core tube 5 can be made uniform.
In addition, the area | region where the furnace temperature above the heat-radiating shielding object 10 becomes 1000 degrees C or less may remain open, and you may give the heating furnace protector 9 conventionally.

この実施例2でも、実施例1同様に1000℃〜1300℃の領域での周方向の温度を測定したところ最大温度差は6℃であることが確認された。
また、図5において、その右側に記載した温度分布曲線が示すように、図中点線で示す図12の加熱炉における温度分布と比較すると、図5の加熱炉における温度分布(実線で示すもの)は高温部への立ち上がりが急峻になっている。また炉心管5内の長手中心軸の温度が1300℃となる位置は1400℃となる点から210mm上方の位置であった。
Also in Example 2, when the temperature in the circumferential direction in the region of 1000 ° C. to 1300 ° C. was measured as in Example 1, it was confirmed that the maximum temperature difference was 6 ° C.
In addition, as shown in the temperature distribution curve on the right side of FIG. 5, the temperature distribution in the heating furnace in FIG. 5 (shown by the solid line) is compared with the temperature distribution in the heating furnace in FIG. Has a steep rise to the high temperature part. Further, the position where the temperature of the longitudinal central axis in the furnace core tube 1 was 1300 ° C. was a position 210 mm above the point where it became 1400 ° C.

図5が示す光ファイバ母材の製造装置により、実施例1と同サイズの光ファイバ用多孔質母材を脱水、透明ガラス化し、光ファイバ母材8を得た。この光ファイバ母材8の上部は、実施例1と同じように図13(a)のように仕上がっていた。
得られたこの光ファイバ母材8を線引きして得た光ファイバのコア偏心量及びクラッド非円率を測定したところ、コア偏心量の平均値は0.08μm、クラッド非円率の平均値は0.07%、標準偏差はそれぞれ0.01μm、0.01%であった。
またこの実施例2においても、サポート棒4aや支持棒6の下端に変形等は見られなかった。
図6及び図7にこの光ファイバの長手方向のコア偏心量及びクラッド非円率の変動を示す。これらの図からわかるように、コア偏心量及びクラッド非円率とも光ファイバの品質上なんら問題はない。因みに、これらの図において横軸は光ファイバ長を示しており、左がサポート棒4a側、右がサポート棒4b側である。
With the optical fiber preform manufacturing apparatus shown in FIG. 5, the optical fiber porous preform having the same size as in Example 1 was dehydrated and made into transparent glass to obtain an optical fiber preform 8. The upper part of the optical fiber preform 8 was finished as shown in FIG.
When the core eccentricity and the cladding non-circularity of the optical fiber obtained by drawing this optical fiber preform 8 were measured, the average value of the core eccentricity was 0.08 μm, and the average value of the cladding non-circularity was The standard deviation was 0.07% and 0.01 μm and 0.01%, respectively.
Also in Example 2, no deformation or the like was found at the lower ends of the support bar 4a and the support bar 6.
6 and 7 show the fluctuation of the core eccentricity and the cladding non-circularity in the longitudinal direction of the optical fiber. As can be seen from these figures, there is no problem with respect to the quality of the optical fiber in terms of the core eccentricity and the cladding non-circularity. In these figures, the horizontal axis indicates the optical fiber length, the left is the support bar 4a side, and the right is the support bar 4b side.

比較例1Comparative Example 1

以下に比較例1を示す。図8に示す光ファイバ母材の製造装置は、図1に示す製造装置から放熱性遮蔽物10を除いた点以外は全く同じ装置である。この光ファイバ母材の製造装置の炉心管5内に実施例1で使用したものと同じ光ファイバ用多孔質母材を実施例1と同じ条件で送り込んで脱水、透明ガラス化して、その上端が図13(a)に示すような光ファイバ母材8を得た。
この光ファイバ母材8を線引きし、得られた光ファイバのコア偏心量、クラッド非円率を測定したところ、コア偏心量の平均値は0.20μm、クラッド非円率の平均値は0.13%、各々の標準偏差はそれぞれ0.03μm、0.02%であった。
Comparative Example 1 is shown below. The optical fiber preform manufacturing apparatus shown in FIG. 8 is the same as that of the manufacturing apparatus shown in FIG. The same optical fiber porous preform as that used in the first embodiment is fed into the core tube 5 of the optical fiber preform manufacturing apparatus under the same conditions as in the first embodiment, dehydrated and made into a transparent glass, and its upper end is An optical fiber preform 8 as shown in FIG.
The optical fiber preform 8 was drawn and the core eccentricity and the cladding noncircularity of the obtained optical fiber were measured. The average value of the core eccentricity was 0.20 μm, and the average value of the cladding noncircularity was 0. The standard deviation of 13% was 0.03 μm and 0.02%, respectively.

因みに、この光ファイバの長手方向のコア偏心量及びクラッド非円率の変動を図9及び図10に示す。
尚、両図において横軸は光ファイバ長を示しており、左がサポート棒4a側、右がサポート棒4b側である。図9及び図10が示すように、コア偏心量もクラッド非円率も光ファイバの長手方向にサポート棒4b側にいくに従ってその値が大きくなっている。
Incidentally, the fluctuation of the core eccentricity and the cladding non-circularity in the longitudinal direction of the optical fiber are shown in FIGS.
In both figures, the horizontal axis indicates the optical fiber length, the left is the support bar 4a side, and the right is the support bar 4b side. As shown in FIGS. 9 and 10, the values of the core eccentricity and the cladding non-circularity increase as they go to the support rod 4 b side in the longitudinal direction of the optical fiber.

尚、この比較例1において、図8の右側に記載した温度分布曲線が示すように、図中点線で示す図12の加熱炉における温度分布と比較すると図8の加熱炉における温度分布(実線で示すもの)は高温部への立ち上がりが急峻になっており、炉心管5の長手中心軸の最高温度を1500℃としたとき、炉心管5の長手中心軸の温度が1300℃となる位置は1400℃となる位置から150mm上方の位置であった。
また前記各実施例同様に、炉心管5の長手中心軸の温度が1000℃〜1300℃の温度領域で、炉心管5の内壁から20mm離れた位置で、同一平面上で熱電対を周方向に45°ずつ移動して8箇所の温度測定を行ったところ、最大温度差は炉心管の長手中心軸の温度が約1250℃となる位置で観測され、15℃であった。
結局、この比較例1では放熱性遮蔽物10が存在しないため、炉心管5の長手中心軸の温度が1000℃〜1300℃の温度領域内での炉心管5の周方向の温度差が大きくなって、コア偏心量やクラッド非円率が大きくなったものと考えられる。
In the comparative example 1, as shown by the temperature distribution curve described on the right side of FIG. 8, the temperature distribution in the heating furnace of FIG. (Shown) has a steep rise to the high temperature portion, and when the maximum temperature of the longitudinal central axis of the core tube 5 is 1500 ° C., the position where the temperature of the longitudinal central axis of the core tube 5 is 1300 ° C. is 1400 The position was 150 mm above the position at which the temperature was changed.
In the same manner as in the above embodiments, the temperature of the longitudinal central axis of the core tube 5 is in the temperature range of 1000 ° C. to 1300 ° C., and the thermocouple is arranged in the circumferential direction on the same plane at a position 20 mm away from the inner wall of the core tube 5. When the temperature was measured at 8 locations by moving 45 ° at a time, the maximum temperature difference was observed at a position where the temperature of the longitudinal central axis of the core tube was about 1250 ° C. and was 15 ° C.
After all, in this comparative example 1, since the heat-radiating shield 10 does not exist, the temperature difference in the circumferential direction of the core tube 5 in the temperature region where the temperature of the longitudinal central axis of the core tube 5 is 1000 ° C. to 1300 ° C. becomes large. Therefore, it is considered that the core eccentricity and the cladding non-circularity have increased.

比較例2Comparative Example 2

次に別の比較例を示す。図11は比較例2で用いる光ファイバ母材の製造装置、すなわち加熱炉を示しており、この加熱炉の特徴は、炉心管5の長手中心軸の最高温度を1500℃としたとき、炉心管5の長手中心軸の温度が1000℃〜1300℃の領域において炉心管5を取り囲むようにセラミックファイバー製の断熱材のみからなる遮蔽物11を、加熱ヒーター7のすぐ上の部分に設置したものである。
因みに、この製造装置の炉心管5内の長手中心軸の温度が1000℃〜1300℃の領域で、炉心管5の周方向の温度を実施例1、2及び比較例1同様に測定したところ最大で2℃の温度差が確認された。
また、図11の右側に記載した温度分布曲線が示すように、図11の加熱炉における温度分布(実線で示すもの)は、点線で示す図12の加熱炉における温度分布とほぼ同じであり、炉心管内の長手中心軸の温度が1300℃となる位置は1400℃となる点から330mm上方の位置であった。
Next, another comparative example is shown. FIG. 11 shows an apparatus for manufacturing an optical fiber preform used in Comparative Example 2, that is, a heating furnace. This heating furnace is characterized in that when the maximum temperature of the longitudinal central axis of the core tube 5 is 1500 ° C., the core tube In the region where the temperature of the longitudinal central axis of 5 is in the range of 1000 ° C. to 1300 ° C., a shield 11 made only of a ceramic fiber heat insulating material is installed immediately above the heater 7 so as to surround the core tube 5. is there.
Incidentally, when the temperature of the longitudinal central axis in the core tube 5 of this manufacturing apparatus is in the region of 1000 ° C. to 1300 ° C., the temperature in the circumferential direction of the core tube 5 is measured in the same manner as in Examples 1, 2 and Comparative Example 1. A temperature difference of 2 ° C. was confirmed.
Further, as shown by the temperature distribution curve described on the right side of FIG. 11, the temperature distribution in the heating furnace of FIG. 11 (shown by the solid line) is substantially the same as the temperature distribution in the heating furnace of FIG. The position where the temperature of the longitudinal central axis in the furnace core tube was 1300 ° C. was 330 mm above the point where it became 1400 ° C.

この加熱炉を用いて、実施例1、2及び比較例1と同様の光ファイバ用多孔質母材を炉心管5内に同じように送り込んで光ファイバ母材8を得た。この光ファイバ母材8の上部のテーパーは図13(b)のLに示すように長いものになっていた。
また、得られた光ファイバ母材8を線引きして得た光ファイバのコア偏心量の平均値は0.08μm、クラッド非円率の平均値は0.07%、標準偏差はそれぞれ0.01μm、0.01%であった。
因みに、この光ファイバの長手方向のコア偏心量及びクラッド非円率の変動を測定したが、図6、図7とほぼ同様の結果であり、コアの偏心量及びクラッドの非円率とも光ファイバの品質上なんら問題がない結果であった。
Using this heating furnace, the same optical fiber porous preform as in Examples 1 and 2 and Comparative Example 1 was fed into the furnace core tube 5 in the same manner to obtain an optical fiber preform 8. The top of the taper of the optical fiber preform 8 had become one long, as shown in L 2 in FIG. 13 (b).
Further, the average value of the core eccentricity of the optical fiber obtained by drawing the obtained optical fiber preform 8 is 0.08 μm, the average value of the cladding non-circularity is 0.07%, and the standard deviation is 0.01 μm, respectively. 0.01%.
Incidentally, the fluctuation of the core eccentricity and the cladding non-circularity in the longitudinal direction of this optical fiber were measured. The results are almost the same as those in FIGS. 6 and 7, and both the core eccentricity and the non-circularity of the cladding are optical fibers. There was no problem in quality.

但し、この比較例2においては、サポート棒4aに伸びが発生し、また支持棒6の下端にも一部変形が見られた。これは炉心管5内の長手中心軸において、高温部がブロードな温度分布となり、具体的には、炉心管5内の長手中心軸の温度が1300℃となる位置が1400℃となる点から330mm上方の位置になった、これにより、サポート棒4aや支持棒6の下端が加熱され過ぎたためと思われる。また光ファイバ母材8の上部も図13(b)のようになっていて、有効長が短く、コストダウンには不向きであった。
このように比較例2のものは、光ファイバのコア偏心量の平均値やクラッド非円率の平均値は光ファイバの品質上満足のいくものであったが、光ファイバ母材8の有効長は短く、コストダウンには不向きで、またサポート棒4aや支持棒6に熱変形が見られ、特にサポート棒4aについては再利用できなかった。
However, in Comparative Example 2, the support rod 4a was elongated, and the lower end of the support rod 6 was also partially deformed. This is a broad temperature distribution in the high temperature portion in the longitudinal central axis in the core tube 5, specifically, 330 mm from the point where the temperature of the longitudinal central axis in the core tube 5 becomes 1400 ° C. This is probably because the lower end of the support bar 4a and the support bar 6 has been heated too much. Further, the upper part of the optical fiber preform 8 is also as shown in FIG. 13B, and the effective length is short, which is not suitable for cost reduction.
Thus, in Comparative Example 2, the average value of the core eccentricity of the optical fiber and the average value of the cladding non-circularity were satisfactory in terms of the quality of the optical fiber, but the effective length of the optical fiber preform 8 Is not suitable for cost reduction, and the support rod 4a and the support rod 6 are thermally deformed. In particular, the support rod 4a cannot be reused.

ところで、前述した各実施例では放熱性遮蔽物10として、断熱材の内側にアルミニウムを装着したものを使用しているが、放熱性材料としてアルミニウム以外の、例えば銅板、銅箔等、放熱性に優れた、換言すると熱伝導性に優れた不燃性材料であれば使用可能である。また断熱材としてはカーボンが使用できるが、この放熱性遮蔽物10の目的が主として断熱ではなく放熱であることに鑑みて、断熱材の厚さは作業者の取り扱い性や安全性等に必要な厚さにして、それ以上に厚くしないようにすることが肝心である。   By the way, in each Example mentioned above, although the thing which mounted | wore aluminum inside the heat insulating material is used as the heat-radiating shielding object 10, other than aluminum as a heat-radiating material, for example, copper plate, copper foil, etc. Any nonflammable material that is excellent, in other words, excellent in thermal conductivity can be used. Carbon can be used as the heat insulating material. However, in view of the purpose of the heat-dissipating shield 10 is not heat insulation but heat radiation, the thickness of the heat insulating material is necessary for the handling and safety of the operator. It is important to make it thicker and not thicker than that.

また加熱ヒーター7のすぐ上に放熱性遮蔽物10を設置しているが、この放熱性遮蔽物10のさらに上の部分、すなわち炉心管5の長手中心軸の温度が1000℃以下の部分では、炉心管5を露出したままにしておいてもよいし、従来のように加熱炉保護体9で覆っても問題ない。必要なのは炉心管5の長手中心軸の温度が1000℃〜1300℃になっている部分の炉心管5の外側を実施例1、2が示すように放熱性遮蔽物10で覆い、炉心管5の長手中心軸の温度が1300℃になる位置が1400℃である位置から上方に300mm以内となるように、かつ長手中心軸の温度が1000℃〜1300℃になっている部分の炉心管5の周方向の最大温度差を10℃以内にすることにある。   Moreover, although the heat-radiating shield 10 is installed immediately above the heater 7, the portion further above the heat-shielding shield 10, that is, the portion where the temperature of the longitudinal central axis of the core tube 5 is 1000 ° C. or less, The furnace core tube 5 may be left exposed or may be covered with the heating furnace protector 9 as in the prior art. What is required is to cover the outside of the core tube 5 where the temperature of the longitudinal central axis of the core tube 5 is 1000 ° C. to 1300 ° C. with the heat-radiating shield 10 as shown in the first and second embodiments. The periphery of the core tube 5 in the part where the temperature of the longitudinal central axis is within 300 mm upward from the position where the temperature of the longitudinal central axis is 1400 ° C. is within 300 mm. The maximum temperature difference in the direction is within 10 ° C.

以上述べたように本発明の光ファイバ母材の製造方法によれば、光ファイバ用多孔質母材を脱水、透明ガラス化する際に、この光ファイバ用多孔質母材を支持するサポート棒や支持棒の変形を少なくし、かつ光ファイバ母材の有効長も長く取ることができ、しかもコア偏心量やクラッド非円率の小さい光ファイバを得ることのできる光ファイバ母材の製造方法を提供することができる。   As described above, according to the method for manufacturing an optical fiber preform of the present invention, when the optical fiber porous preform is dehydrated and made into transparent glass, the support rod for supporting the optical fiber porous preform, Provided is a method of manufacturing an optical fiber preform that can reduce the deformation of the support rod and increase the effective length of the optical fiber preform, and that can obtain an optical fiber with a small amount of core eccentricity and cladding non-circularity. can do.

本発明の実施例1に用いた光ファイバ母材の製造装置を示す概略図である。It is the schematic which shows the manufacturing apparatus of the optical fiber preform | base_material used for Example 1 of this invention. 炉心管周方向の最大温度差と光ファイバのコア偏心量の平均値の関係を示すグラフである。It is a graph which shows the relationship between the maximum temperature difference of a core tube circumferential direction, and the average value of the core eccentricity of an optical fiber. 実施例1において得られた光ファイバ長手方向のコア偏心量の変動を示すグラフである。6 is a graph showing fluctuations in the amount of core eccentricity in the longitudinal direction of the optical fiber obtained in Example 1. 実施例1において得られた光ファイバ長手方向のクラッド非円率の変動を示すグラフである。6 is a graph showing fluctuations in the cladding non-circularity in the longitudinal direction of the optical fiber obtained in Example 1. 本発明の実施例2に使用した光ファイバ母材の製造装置を示す概略図である。It is the schematic which shows the manufacturing apparatus of the optical fiber preform used for Example 2 of this invention. 実施例2において得られた光ファイバ長手方向のコア偏心量の変動を示すグラフである。It is a graph which shows the fluctuation | variation of the amount of core eccentricity of the optical fiber longitudinal direction obtained in Example 2. FIG. 実施例2において得られた光ファイバ長手方向のクラッド非円率の変動を示すグラフである。It is a graph which shows the fluctuation | variation of the clad non-circularity of the optical fiber longitudinal direction obtained in Example 2. FIG. 比較例1に用いた光ファイバ母材の製造装置を示す概略図である。3 is a schematic view showing an optical fiber preform manufacturing apparatus used in Comparative Example 1. FIG. 比較例1において得られた光ファイバ長手方向のコア偏心量の変動を示すグラフである。6 is a graph showing fluctuations in the amount of core eccentricity in the optical fiber longitudinal direction obtained in Comparative Example 1; 比較例1において得られた光ファイバ長手方向のクラッド非円率の変動を示すグラフである。6 is a graph showing the fluctuation of the cladding non-circularity in the longitudinal direction of the optical fiber obtained in Comparative Example 1. 比較例2に使用した光ファイバ母材の製造装置を示す概略図である。6 is a schematic view showing an optical fiber preform manufacturing apparatus used in Comparative Example 2. FIG. 従来の光ファイバ母材の製造装置の概略図である。It is the schematic of the manufacturing apparatus of the conventional optical fiber preform. 光ファイバ母材の先端部の形状を示す拡大縦断面図で、(a)は有効長の長い光ファイバ母材の拡大断面図、(b)は有効長の短い光ファイバ母材の拡大断面図である。It is an enlarged vertical sectional view showing the shape of the tip part of an optical fiber preform, (a) is an enlarged sectional view of an optical fiber preform with a long effective length, and (b) is an enlarged sectional view of an optical fiber preform with a short effective length. It is.

符号の説明Explanation of symbols

1 コアロッド
2 スート
4a、4b サポート棒
5 炉心管
6 支持棒
7 加熱ヒーター
9 加熱炉保護体
10 放熱性遮蔽物
11 遮蔽物
DESCRIPTION OF SYMBOLS 1 Core rod 2 Soot 4a, 4b Support rod 5 Reactor core tube 6 Support rod 7 Heater 9 Heating furnace protector 10 Heat radiation shield 11 Shield

Claims (2)

炉心管を有する加熱炉の前記炉心管内に上端が支持棒で支持された光ファイバ用多孔質母材を挿入して脱水、透明ガラス化する光ファイバ母材の製造方法において、前記炉心管の長手中心軸での最高温度が1500℃となるように加熱炉の温度を設定したとき、炉心管の長手中心軸の温度が1300℃となる位置が、炉心管の長手中心軸の温度が1400℃である位置から炉心管の軸方向上方に300mm以内にあって、かつ炉心管の長手中心軸の温度が1000〜1300℃の位置での炉心管内の周方向同一面内における温度差が10℃以下であることを特徴とする光ファイバ母材の製造方法。   In a manufacturing method of an optical fiber preform in which a porous preform for an optical fiber, the upper end of which is supported by a support rod, is inserted into the furnace core tube of a heating furnace having a furnace core tube to be dehydrated and made into a transparent glass, the length of the furnace core tube is When the temperature of the heating furnace is set so that the maximum temperature at the central axis is 1500 ° C., the position where the temperature of the longitudinal central axis of the core tube is 1300 ° C. is the temperature of the longitudinal central axis of the core tube is 1400 ° C. The temperature difference in the same plane in the circumferential direction in the core tube at a position within 300 mm above the axial direction of the core tube from a certain position and the temperature of the longitudinal central axis of the core tube is 1000 to 1300 ° C. is 10 ° C. or less. A method for manufacturing an optical fiber preform, characterized in that: 前記炉心管の長手中心軸での温度が1000〜1300℃の領域における炉心管の外周には、放熱性遮蔽物が設けられていることを特徴とする請求項1記載の光ファイバ母材の製造方法。   2. The optical fiber preform according to claim 1, wherein a heat-radiating shield is provided on an outer periphery of the core tube in a region where the temperature at the longitudinal central axis of the core tube is 1000 to 1300 ° C. 3. Method.
JP2004241768A 2004-08-23 2004-08-23 Optical fiber preform manufacturing method Active JP4609839B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004241768A JP4609839B2 (en) 2004-08-23 2004-08-23 Optical fiber preform manufacturing method
CN 200510092768 CN1740108B (en) 2004-08-23 2005-08-23 Method for producing optical fiber substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004241768A JP4609839B2 (en) 2004-08-23 2004-08-23 Optical fiber preform manufacturing method

Publications (2)

Publication Number Publication Date
JP2006056755A true JP2006056755A (en) 2006-03-02
JP4609839B2 JP4609839B2 (en) 2011-01-12

Family

ID=36092664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004241768A Active JP4609839B2 (en) 2004-08-23 2004-08-23 Optical fiber preform manufacturing method

Country Status (2)

Country Link
JP (1) JP4609839B2 (en)
CN (1) CN1740108B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012076965A (en) * 2010-10-01 2012-04-19 Sumitomo Electric Ind Ltd Method for producing glass preform

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105271697A (en) * 2015-11-03 2016-01-27 江苏亨通光电股份有限公司 Sintering furnace

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160636A (en) * 1988-12-15 1990-06-20 Sumitomo Electric Ind Ltd Method and structure for supporting glass matrix
JPH0648760A (en) * 1992-07-30 1994-02-22 Fujikura Ltd Production of performed material for optical fiber
JPH0656452A (en) * 1992-08-06 1994-03-01 Nippon Glass Fiber Co Ltd Frake-like glass producing apparatus
JPH06235828A (en) * 1993-02-10 1994-08-23 Sumitomo Electric Ind Ltd Heating furnace for drawing optical fiber preform
JPH06241669A (en) * 1993-02-10 1994-09-02 Fujikura Ltd Heating furnace
JPH0925136A (en) * 1995-07-14 1997-01-28 Sumitomo Electric Ind Ltd Optical fiber drawing furnace and drawing method
JP2004091295A (en) * 2002-09-03 2004-03-25 Furukawa Electric Co Ltd:The Method of manufacturing optical fiber preform
JP2004115289A (en) * 2002-09-24 2004-04-15 Shin Etsu Chem Co Ltd Manufacturing process of ingot for optical fiber preform and hanging member used in the process

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2562561B2 (en) * 1993-12-15 1996-12-11 古河電気工業株式会社 Equipment for manufacturing porous preforms for optical fibers
ID26017A (en) * 1998-04-03 2000-11-16 Sumitomo Electric Industries TANK AND METHOD FOR WITHDRAWAL OF OPTICAL FIBER CABLE
JP2002338259A (en) * 2001-05-15 2002-11-27 Sumitomo Electric Ind Ltd Device for heating glass preform and method for controlling the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160636A (en) * 1988-12-15 1990-06-20 Sumitomo Electric Ind Ltd Method and structure for supporting glass matrix
JPH0648760A (en) * 1992-07-30 1994-02-22 Fujikura Ltd Production of performed material for optical fiber
JPH0656452A (en) * 1992-08-06 1994-03-01 Nippon Glass Fiber Co Ltd Frake-like glass producing apparatus
JPH06235828A (en) * 1993-02-10 1994-08-23 Sumitomo Electric Ind Ltd Heating furnace for drawing optical fiber preform
JPH06241669A (en) * 1993-02-10 1994-09-02 Fujikura Ltd Heating furnace
JPH0925136A (en) * 1995-07-14 1997-01-28 Sumitomo Electric Ind Ltd Optical fiber drawing furnace and drawing method
JP2004091295A (en) * 2002-09-03 2004-03-25 Furukawa Electric Co Ltd:The Method of manufacturing optical fiber preform
JP2004115289A (en) * 2002-09-24 2004-04-15 Shin Etsu Chem Co Ltd Manufacturing process of ingot for optical fiber preform and hanging member used in the process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012076965A (en) * 2010-10-01 2012-04-19 Sumitomo Electric Ind Ltd Method for producing glass preform

Also Published As

Publication number Publication date
CN1740108B (en) 2011-03-23
JP4609839B2 (en) 2011-01-12
CN1740108A (en) 2006-03-01

Similar Documents

Publication Publication Date Title
FI82030C (en) Apparatus and method for reinforcing a porous glass preform
JP5459977B2 (en) Apparatus for performing plasma enhanced chemical vapor deposition and method for producing optical preforms
EP2351714B1 (en) Method for manufacturing optical fiber preform
JPH0948629A (en) Optical fiber and its production
JP4609839B2 (en) Optical fiber preform manufacturing method
JP6295234B2 (en) Optical fiber manufacturing method
JP2007269527A (en) Method for manufacturing optical fiber perform and method for determining dehydration condition of porous glass preform
US20110132039A1 (en) Glass preform drawing apparatus
RU2407710C1 (en) Optical fibre workpiece, method of making optical fibre workpiece and glass bar for making optical fibre workpiece
EP4105185A1 (en) Method for manufacturing a preform for a multi-core optical fiber and a multi-core optical fibers
JP2020045272A (en) Manufacturing method of optical fiber and manufacturing apparatus of optical fiber
GB2148874A (en) Optical fibre fabrication by the rod-in-tube method
US20200308043A1 (en) Optical fiber drawing furnace heating element, optical fiber drawing furnace, and method for manufacturing optical fiber
JPH05339024A (en) Heating device for glass preform
US20050016219A1 (en) Insulation of a heating element in a furnace for drawing optical fibers
JP2003321235A (en) Method for dehydrating and sintering porous preform for optical fiber
CN110526571B (en) Apparatus, system, and method for forming a core rod for an optical fiber
JP2000128558A (en) Production of quartz glass preform for optical fiber
JP7024489B2 (en) Manufacturing method of base material for optical fiber
JP6623146B2 (en) Method for manufacturing base material for multi-core fiber, and method for manufacturing multi-core fiber using the same
JP2006045020A (en) Heating furnace and method for manufacturing optical fiber preform
CA2340002A1 (en) Method making a fiber preform using cooled spindle
JPH06247733A (en) Production of constant-polarization optical fiber preform
JP2006027991A (en) Method for heating glass body
JP2013230978A (en) Method for manufacturing optical fiber preform

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100126

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101005

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4609839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350