JP2004115289A - Manufacturing process of ingot for optical fiber preform and hanging member used in the process - Google Patents

Manufacturing process of ingot for optical fiber preform and hanging member used in the process Download PDF

Info

Publication number
JP2004115289A
JP2004115289A JP2002277108A JP2002277108A JP2004115289A JP 2004115289 A JP2004115289 A JP 2004115289A JP 2002277108 A JP2002277108 A JP 2002277108A JP 2002277108 A JP2002277108 A JP 2002277108A JP 2004115289 A JP2004115289 A JP 2004115289A
Authority
JP
Japan
Prior art keywords
shaft
ingot
hanging
preform
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002277108A
Other languages
Japanese (ja)
Inventor
Hirobumi Kase
加瀬 博文
Tadakatsu Shimada
島田 忠克
Shigenori Saisu
斎須 重徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2002277108A priority Critical patent/JP2004115289A/en
Publication of JP2004115289A publication Critical patent/JP2004115289A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01486Means for supporting, rotating or translating the preforms being formed, e.g. lathes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing process of an ingot for an optical fiber preform with which a large-sized porous preform is sintered even in an atmosphere containing high temperature carbon and a hanging member used in the process. <P>SOLUTION: The manufacturing process of the ingot for the preform comprises forming a porous preform 3 by depositing soot around the starting material, hanging down the porous preform in a sintering furnace, dehydrating and sintering it for vitrification to obtain a transparent glass. A hanging member made of silicon nitride covered with silicon carbide is used for hanging the porous preform 3. The hanging member consists of a hanging fixture 2 and a shaft 1. They are screwed together. The porous preform 3 is fixed to the fixture 2 with a pin 6 via its quartz shaft 4 or a dummy 5 mounted on the shaft. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、多孔質母材を焼結して透明ガラス化する光ファイバ母材インゴット(以下、単に母材インゴットと称する)の製造方法及びこれに用いる吊り下げ部材に関する。
【0002】
【従来の技術】
光ファイバの製造に用いられる母材インゴットは、出発コア部材の表面にOVD(外付け)法によりクラッド部を堆積して多孔質母材を形成し、これを脱水炉で脱水処理した後、次の焼結工程において、多孔質母材をシャフトに取り付けて焼結炉内に吊り下げ、ヒーターで加熱して、1350℃乃至1500℃の温度で透明ガラス化処理が行われる。
【0003】
この多孔質母材の吊り下げに使用される支持部材には、多孔質母材の負荷に耐える強度と耐熱性が要求され、これには、黒鉛化した炭素材(グラファイトカーボン)からなる円柱状又は円筒状の部材を直列に接合したものが挙げられる(特許文献1参照)。
しかしながら、母材インゴットの大型化にともない、より強度の高いものが求められ、グラファイトカーボンよりも強度が高く、支持部材の重量を軽くできる、セラミックスからなるものが提案されている(特許文献2参照)。
【0004】
【特許文献1】
特開2002−114533号公報(第2頁)
【特許文献2】
特開平5−24876号公報(第2頁、図1)
【0005】
【発明が解決しようとする課題】
グラファイトカーボン材は、比較的安価で耐熱性と加工性に優れ、またハンドリング性能にも優れているが、このグラファイトカーボン製ロッドを多孔質母材の支持部材として、取り付け治具やシャフトに用いて焼結すると、強度が不足し、大型の多孔質母材を製造する際や、その脱水・透明ガラス化の際に、荷重に耐えられないという欠点がある。
このため、強度不足をシャフト径を太くして対応してきたが、1つ1つの部材が大きくなり、組み付けに支障をきたしている。
【0006】
また、セラミックス材、例えば窒化珪素は、グラファイトカーボン材より強度が高く、その分部材を小さくできるが、高温の炭素を含む雰囲気中では、窒化珪素を焼結する際に焼結助剤として使用されたアルミナが、プロセス雰囲気中に飛散し、母材インゴットの表面に付着して失透を生じる等の悪影響がでることがあった。
一方、炭化珪素は、高温でも高強度で安定しているが、その脆さから、部材同士をネジ構造を用いて接続するのが極めて困難であった。
【0007】
本発明は、高温の炭素を含む雰囲気中でも、大型の多孔質母材を焼結することができる、母材インゴットの製造方法及びこれに用いる吊り下げ部材を提供することを目的とする。
【0008】
【課題を解決するための手段】
上述の問題を解決するため鋭意検討した結果、窒化珪素が炭素を含む雰囲気に直接曝されないように、炭化珪素の表面に保護層となる被覆層を形成すると、高温の炭素を含む雰囲気中にあっても、窒化珪素に含まれるアルミナが、プロセス雰囲気中に飛び出すのを抑制できることを見出し、本発明を達成した。
【0009】
すなわち、本発明の母材インゴットの製造方法は、出発部材の周囲にスートを堆積して多孔質母材を形成し、焼結炉内に吊り下げ脱水・焼結して透明ガラス化するに際し、該多孔質母材の吊り下げに、窒化珪素に炭化珪素を被覆した吊り下げ部材を用いることを特徴としている。
【0010】
さらに、本発明の光ファイバ母材インゴット用吊り下げ部材(以下、単に吊り下げ部材と称する)は、出発部材の周囲にスートを堆積して多孔質母材を形成し、焼結炉内に吊り下げ脱水・焼結して透明ガラス化するに際し、該多孔質母材の吊り下げに用いる吊り下げ部材が、窒化珪素に炭化珪素を被覆してなることを特徴とし、該吊り下げ部材は、吊り下げ治具及びシャフトからなり、ネジ接続されている。また、吊り下げ治具に、多孔質母材がその石英シャフト又はこれに設けられたダミー部を介して、ピンで固定されている。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態について図面を用いて説明するが、本発明はこれらに限定されるものではなく、様々な態様が可能である。
【0012】
図1は、焼結炉内に本発明の吊り下げ部材を用いて、多孔質母材の吊り下げ状態を示す概略部分断面図である。
吊り下げ部材は、いずれも窒化珪素材に炭化珪素被覆したシャフト1と吊り下げ治具2とからなり、回転把持機構(図示を省略)によって把持されたシャフト1と吊り下げ治具2とがネジ接続、すなわち、一方に雄ねじ、他方に雌ねじを形成して螺合されている。ネジ穴は、ネジ部が雰囲気に露出するのを防ぐために、貫通しない構造としている。
【0013】
焼結される多孔質母材3は、その上部から突出している石英シャフト4のダミー部5が吊り下げ治具2の受け部に挿入され、セラミック製のピン6で固定されている。なお、ダミー部5には、予めピン6を挿通するための穴が開けられている。このピン6には、炭化珪素等も使用できるが、熱膨張率が同じ窒化珪素に炭化珪素をコーティングしたピンが適している。
【0014】
図2は、炭化珪素被覆された窒化珪素製のシャフトの接続構造を示す概略部分断面図であり、複数のシャフト1をネジ接続して長尺化した例を示している。このとき、ネジ部が雰囲気に露出するのを防ぐために、雌ネジ側は貫通しない構造としている。
【0015】
本発明の吊り下げ部材は、窒化珪素材に炭化珪素を被覆したものであるが、炭化珪素のコーティング方法には、CVD法とプラズマ法があるが、プラズマ法の方がCVD法と比較して剥離しにくく、適している。
またネジ部にコーティングするのは困難であるが、ネジ部が雰囲気に露出しないようネジ接続する。ネジが雰囲気に露出しているとその部分からアルミナが雰囲気中に飛び出すので、注意が必要である。
【0016】
【実施例】
以下、本発明を、実施例及び比較例を挙げて詳細に説明する。
(実施例1)
焼結炉内に配設されたグラファイトカーボン製の炉芯管内に、回転把持機構によって把持された吊り下げ部材に、直径299mmφ、全長1800mmの脱水済みスート(多孔質母材)を取り付けた。吊り下げ部材は、直径35mmφのシャフトの下端に、吊り下げ治具をネジ接続して構成し、この吊り下げ治具の受け部にスートのダミー部を差し込み、直径10mmφのピンを挿通して、吊り下げ部材とスートとを固定した。なお、使用したシャフト、吊り下げ治具及びピンは、いずれも窒化珪素材に炭化珪素コーティングを施したものである。
炉芯管内に吊り下げられたスートは、1475℃の真空中(20Pa)で、12時間焼結した。焼結後、母材インゴットの直径は149mmφに縮径され、十分に透明ガラス化されていた。シャフトや吊り下げ治具の表面に剥離などの変化は観察できなかった。
【0017】
(実施例2)
実施例1で使用したものと同じ吊り下げ部材を用いて、グラファイトカーボン製の炉芯管内に、直径307mmφ、全長1750mmの脱水済みスートを吊り下げ、1490℃の大気圧で10時間焼結した。焼結後、直径は155mmφに縮径され、十分に透明ガラス化されていた。シャフトや吊り下げ治具の表面に剥離などの変化は観察できなかった。
【0018】
(比較例1)
実施例1で使用したものと、形状及びサイズが同じ窒化珪素製ではあるが、炭化珪素のコーティングが施されていない吊り下げ部材を用いて、直径300mmφ、全長1780mmの脱水済みのスートを1475℃のグラファイトカーボン製の炉芯管内で、真空(20Pa) 中で12時間焼結した。
焼結後、直径は149mmφになり、窒化珪素製のシャフト表面が緑色に変色し、焼結した母材インゴットの表面に失透が見られた。失透部分を分析したところ、アルミナが検出された。
【0019】
【発明の効果】
本発明によれば、炭化珪素コーティングしたことにより、窒化珪素製の吊り下げ部材を高温の炭素が含まれた雰囲気中でも安定した状態で使用でき、炭化珪素コーティングをしていない窒化珪素製の吊り下げ部材の場合に生じる、窒化珪素表面の変質や母材インゴット表面の失透は起こらない。母材インゴットが大型化しても、十分な強度を有する治具やシャフトを製作することができる。
【図面の簡単な説明】
【図1】本発明の吊り下げ部材を用いて、多孔質母材の吊り下げ状態を示す概略部分断面図である。
【図2】シャフトの接続構造を示す概略部分断面図である。
【符号の説明】
1……シャフト、
2……吊り下げ治具、
3……多孔質母材、
4……石英シャフト、
5……ダミー部、
6……ピン。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an optical fiber preform ingot (hereinafter, simply referred to as a preform ingot) for sintering a porous preform and turning it into a transparent glass, and a suspension member used for the method.
[0002]
[Prior art]
In a preform ingot used for manufacturing an optical fiber, a cladding portion is deposited on the surface of a starting core member by an OVD (external attachment) method to form a porous preform, which is then dehydrated in a dehydration furnace and then dehydrated. In the sintering step, a porous preform is attached to a shaft, suspended in a sintering furnace, heated by a heater, and a transparent vitrification treatment is performed at a temperature of 1350 ° C to 1500 ° C.
[0003]
The supporting member used for suspending the porous base material is required to have strength and heat resistance to withstand the load of the porous base material, including a columnar shape made of a graphitized carbon material (graphite carbon). Alternatively, a member obtained by joining cylindrical members in series can be cited (see Patent Document 1).
However, with the increase in the size of the base material ingot, a material having higher strength has been demanded, and a material made of ceramics that has higher strength than graphite carbon and can reduce the weight of the supporting member has been proposed (see Patent Document 2). ).
[0004]
[Patent Document 1]
JP-A-2002-114533 (page 2)
[Patent Document 2]
JP-A-5-24876 (page 2, FIG. 1)
[0005]
[Problems to be solved by the invention]
Graphite carbon materials are relatively inexpensive, have excellent heat resistance and workability, and are also excellent in handling performance.However, this graphite carbon rod is used as a support member for a porous base material, and is used for mounting jigs and shafts. When sintering, the strength is insufficient, and there is a drawback that it cannot withstand a load when producing a large-sized porous base material or when dehydrating and vitrifying the same.
For this reason, the lack of strength has been dealt with by increasing the diameter of the shaft, but the size of each member increases, which hinders assembly.
[0006]
In addition, ceramic materials, for example, silicon nitride have higher strength than graphite carbon materials and can reduce the size of the members.However, in an atmosphere containing high-temperature carbon, they are used as a sintering aid when sintering silicon nitride. Alumina may be scattered in the process atmosphere and adhere to the surface of the base material ingot, causing adverse effects such as devitrification.
On the other hand, silicon carbide has high strength and stability even at high temperatures, but because of its brittleness, it was extremely difficult to connect members using a screw structure.
[0007]
An object of the present invention is to provide a method for manufacturing a base material ingot, which can sinter a large-sized porous base material even in an atmosphere containing high-temperature carbon, and a suspension member used for the method.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-described problems, a coating layer serving as a protective layer is formed on the surface of silicon carbide so that silicon nitride is not directly exposed to an atmosphere containing carbon. However, the present inventors have found that alumina contained in silicon nitride can be prevented from jumping into the process atmosphere, and have achieved the present invention.
[0009]
That is, the manufacturing method of the base material ingot of the present invention is to form a porous base material by depositing soot around the starting member, suspending in a sintering furnace, dehydrating and sintering to form a transparent vitrified glass, For suspending the porous base material, a suspending member in which silicon nitride is coated with silicon carbide is used.
[0010]
Further, the suspension member for an optical fiber preform ingot of the present invention (hereinafter simply referred to as a suspension member) forms soot around a starting member to form a porous preform, and is suspended in a sintering furnace. The hanging member used for hanging the porous base material is formed by coating silicon nitride on silicon carbide when the glass material is lowered by dehydration and sintering to form a transparent glass. It consists of a lowering jig and a shaft, and is screw-connected. In addition, a porous base material is fixed to the hanging jig with a pin via the quartz shaft or a dummy portion provided on the quartz shaft.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto, and various modes are possible.
[0012]
FIG. 1 is a schematic partial cross-sectional view showing a suspended state of a porous base material using a suspension member of the present invention in a sintering furnace.
Each of the suspension members comprises a shaft 1 and a suspension jig 2 coated with silicon carbide on silicon nitride material, and the shaft 1 and the suspension jig 2 gripped by a rotary gripping mechanism (not shown) are screwed. The connection, that is, a male screw is formed on one side and a female screw is formed on the other side and screwed together. The screw hole has a structure that does not penetrate to prevent the screw portion from being exposed to the atmosphere.
[0013]
The porous base material 3 to be sintered has a dummy part 5 of a quartz shaft 4 protruding from an upper part thereof inserted into a receiving part of a hanging jig 2 and fixed by a ceramic pin 6. The dummy portion 5 has a hole for inserting the pin 6 in advance. Although silicon carbide or the like can be used for the pin 6, a pin obtained by coating silicon nitride on silicon nitride having the same coefficient of thermal expansion is suitable.
[0014]
FIG. 2 is a schematic partial cross-sectional view showing a connection structure of a shaft made of silicon nitride coated with silicon carbide, and shows an example in which a plurality of shafts 1 are connected to each other by screws to make them longer. At this time, in order to prevent the screw portion from being exposed to the atmosphere, the female screw side does not penetrate.
[0015]
The hanging member of the present invention is a silicon nitride material coated with silicon carbide, and the silicon carbide coating method includes a CVD method and a plasma method, and the plasma method is compared with the CVD method. Suitable for easy peeling.
Although it is difficult to coat the screw portion, screw connection is performed so that the screw portion is not exposed to the atmosphere. Care must be taken because if the screw is exposed to the atmosphere, the alumina will jump out into the atmosphere from that part.
[0016]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples.
(Example 1)
A dehydrated soot (porous base material) having a diameter of 299 mmφ and a total length of 1800 mm was attached to a hanging member gripped by a rotary gripping mechanism in a graphite core furnace tube provided in a sintering furnace. The suspending member is configured by screwing a suspending jig to the lower end of a shaft having a diameter of 35 mmφ, inserting a dummy part of a soot into a receiving portion of the suspending jig, and inserting a pin having a diameter of 10 mmφ, The hanging member and the soot were fixed. The shaft, the hanging jig, and the pin used were all obtained by applying silicon carbide coating to a silicon nitride material.
The soot suspended in the furnace tube was sintered in a vacuum (20 Pa) at 1475 ° C. for 12 hours. After sintering, the diameter of the base material ingot was reduced to 149 mmφ, and the base material ingot was sufficiently vitrified. No change such as peeling was observed on the surface of the shaft or the hanging jig.
[0017]
(Example 2)
Using the same suspending member used in Example 1, a dehydrated soot having a diameter of 307 mm and a total length of 1750 mm was suspended in a graphite core furnace tube, and sintered at 1490 ° C. and atmospheric pressure for 10 hours. After sintering, the diameter was reduced to 155 mmφ, and the glass was sufficiently vitrified. No change such as peeling was observed on the surface of the shaft or the hanging jig.
[0018]
(Comparative Example 1)
Dewatered soot having a diameter of 300 mm and a total length of 1780 mm was used at 1475 ° C. by using a hanging member made of silicon nitride having the same shape and size as those used in Example 1, but not coated with silicon carbide. Was sintered in a vacuum core (20 Pa) for 12 hours in a graphite core furnace tube.
After sintering, the diameter became 149 mmφ, the surface of the silicon nitride shaft turned green, and devitrification was observed on the surface of the sintered base ingot. When the devitrified portion was analyzed, alumina was detected.
[0019]
【The invention's effect】
According to the present invention, the silicon carbide coating allows a silicon nitride suspension member to be used in a stable state even in an atmosphere containing high-temperature carbon, and a silicon nitride suspension not coated with silicon carbide. No alteration of the surface of the silicon nitride or devitrification of the surface of the base material ingot occurs in the case of the member. Even if the base material ingot becomes large, a jig or a shaft having sufficient strength can be manufactured.
[Brief description of the drawings]
FIG. 1 is a schematic partial cross-sectional view showing a suspended state of a porous base material using a hanging member of the present invention.
FIG. 2 is a schematic partial sectional view showing a connection structure of a shaft.
[Explanation of symbols]
1 ... shaft,
2 ... hanging jig,
3 ... porous base material,
4 ... Quartz shaft,
5 ... Dummy part,
6 ... Pin.

Claims (4)

出発部材の周囲にスートを堆積して多孔質母材を形成し、焼結炉内に吊り下げ脱水・焼結して透明ガラス化するに際し、該多孔質母材の吊り下げに、窒化珪素に炭化珪素を被覆した吊り下げ部材を用いることを特徴とする光ファイバ母材インゴットの製造方法。Soot is deposited around the starting member to form a porous base material, suspended in a sintering furnace, dehydrated and sintered to form a transparent glass. A method for producing an optical fiber preform ingot, comprising using a suspension member coated with silicon carbide. 出発部材の周囲にスートを堆積して多孔質母材を形成し、焼結炉内に吊り下げ脱水・焼結して透明ガラス化するに際し、該多孔質母材の吊り下げに用いる吊り下げ部材が、窒化珪素に炭化珪素を被覆してなることを特徴とする光ファイバ母材インゴット用吊り下げ部材。A soot is deposited around a starting member to form a porous base material, and is suspended in a sintering furnace, and is used for suspending the porous base material when dehydrating and sintering to form a transparent glass. Wherein the silicon nitride is coated with silicon carbide. 前記吊り下げ部材が、吊り下げ治具及びシャフトからなり、ネジ接続されている請求項2に記載の光ファイバ母材インゴット用吊り下げ部材。The suspension member for an optical fiber preform ingot according to claim 2, wherein the suspension member comprises a suspension jig and a shaft, and is screw-connected. 前記吊り下げ治具に、多孔質母材がその石英シャフト又はこれに設けられたダミー部を介して、ピンで固定されている請求項2又は3に記載の光ファイバ母材インゴット用吊り下げ部材。The suspension member for an optical fiber preform ingot according to claim 2 or 3, wherein a porous preform is fixed to the suspension jig via a quartz shaft or a dummy portion provided on the quartz preform. .
JP2002277108A 2002-09-24 2002-09-24 Manufacturing process of ingot for optical fiber preform and hanging member used in the process Pending JP2004115289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002277108A JP2004115289A (en) 2002-09-24 2002-09-24 Manufacturing process of ingot for optical fiber preform and hanging member used in the process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002277108A JP2004115289A (en) 2002-09-24 2002-09-24 Manufacturing process of ingot for optical fiber preform and hanging member used in the process

Publications (1)

Publication Number Publication Date
JP2004115289A true JP2004115289A (en) 2004-04-15

Family

ID=32272800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002277108A Pending JP2004115289A (en) 2002-09-24 2002-09-24 Manufacturing process of ingot for optical fiber preform and hanging member used in the process

Country Status (1)

Country Link
JP (1) JP2004115289A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006056755A (en) * 2004-08-23 2006-03-02 Furukawa Electric Co Ltd:The Method for producing optical fiber preform
US8590131B2 (en) 2010-03-08 2013-11-26 Fujikura Ltd. Method of attaching and detaching preform and method of manufacturing optical fiber
JP2021127257A (en) * 2020-02-10 2021-09-02 古河電気工業株式会社 Bearing bar for optical fiber preform and manufacturing method of optical fiber preform
CN115151513A (en) * 2020-02-28 2022-10-04 京瓷株式会社 Member for optical glass manufacturing apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006056755A (en) * 2004-08-23 2006-03-02 Furukawa Electric Co Ltd:The Method for producing optical fiber preform
JP4609839B2 (en) * 2004-08-23 2011-01-12 古河電気工業株式会社 Optical fiber preform manufacturing method
US8590131B2 (en) 2010-03-08 2013-11-26 Fujikura Ltd. Method of attaching and detaching preform and method of manufacturing optical fiber
JP2021127257A (en) * 2020-02-10 2021-09-02 古河電気工業株式会社 Bearing bar for optical fiber preform and manufacturing method of optical fiber preform
JP7370890B2 (en) 2020-02-10 2023-10-30 古河電気工業株式会社 Support rod for optical fiber base material and method for manufacturing optical fiber base material
CN115151513A (en) * 2020-02-28 2022-10-04 京瓷株式会社 Member for optical glass manufacturing apparatus

Similar Documents

Publication Publication Date Title
CN1121051A (en) Method for sinterring hollow cylinder of silicon dioxide-carbon ink and fastening device of hollow cylinder
EP2186139B1 (en) String with reduced wetting for ribbon crystals
JP2004115289A (en) Manufacturing process of ingot for optical fiber preform and hanging member used in the process
JP5055113B2 (en) Method for producing hollow cylinder made of synthetic quartz glass using holding device
CN1420851A (en) Mandrel for producing quartz glass and optical fibre matrix using said mandrel, optical fibre, production method for quartz glass element
EP3529216A1 (en) Suspending device for optical fibre preforms
CN105753458B (en) A kind of vertical pure sintering prepares alumina ceramic tube technique
JP2003171137A (en) Method for manufacturing optical fiber preform
JP2006124235A (en) Quartz glass crucible, method of manufacturing the same and application thereof
CN114777474A (en) Titanium carbonitride cermet material heat preservation device for microwave sintering
JP3508877B2 (en) Silicon melting equipment
JPS59232994A (en) Device for vapor phase crystal growth
JPS63166790A (en) Pulling up device for silicon single crystal
JP4104134B2 (en) Hanging connection structure of glass preform for optical fiber
CN1765005A (en) Wafer carrier having improved processing characteristics
EP3354627B1 (en) Method of producing porous quartz glass preform
JP4441649B2 (en) Manufacturing method of large quartz glass body
JPH10245275A (en) Production of carbon fiber-reinforced raw material using graphite mold
JPS6283326A (en) Production of synthetic quartz tube
JPH04198036A (en) Heating furnace for wire drawing of optical fiber
JP4451527B2 (en) Method for producing quartz glass preform for optical fiber
JP3069216B2 (en) Semiconductor components
JP2001199733A (en) Method for producing synthetic quartz glass member
CN108342771A (en) A kind of combined type side heat protection screen
JPS632421Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070115