JP2001199733A - Method for producing synthetic quartz glass member - Google Patents

Method for producing synthetic quartz glass member

Info

Publication number
JP2001199733A
JP2001199733A JP2000003194A JP2000003194A JP2001199733A JP 2001199733 A JP2001199733 A JP 2001199733A JP 2000003194 A JP2000003194 A JP 2000003194A JP 2000003194 A JP2000003194 A JP 2000003194A JP 2001199733 A JP2001199733 A JP 2001199733A
Authority
JP
Japan
Prior art keywords
porous silica
sintered body
quartz glass
synthetic quartz
glass member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000003194A
Other languages
Japanese (ja)
Inventor
Shinichi Takano
伸一 高野
Hisatoshi Otsuka
久利 大塚
Kazuo Shirota
和雄 代田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2000003194A priority Critical patent/JP2001199733A/en
Publication of JP2001199733A publication Critical patent/JP2001199733A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1469Means for changing or stabilising the shape or form of the shaped article or deposit
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/30For glass precursor of non-standard type, e.g. solid SiH3F
    • C03B2207/32Non-halide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a synthetic quartz glass member of fixed shape by a short process without damage by carelessness of handling, formed by a process for transparently vitrifying a porous silica sintered compact and carrying out a process for eliminating foams by one process. SOLUTION: In this method for producing the synthetic quartz glass member in which a silane compound is subjected to a flame hydrolysis by a multiple pipe burner, formed synthetic silica fine particles are adhered and deposited on a starting substrate which is rotated, the porous silica sintered compact is formed while being taken-off axially, then the sintered compact is heated, transparently vitrified and molded into a fixed shape, the method for producing the synthetic quartz glass member is characterized in that the porous silica sintered compact is placed on a mold material of fixed size having an open top part and heated at 1,750 to 1,800 deg.C so that the porous silica sintered compact is transparently vitrified, naturally penetrated into the mold material to give the synthetic quartz glass member of fixed shape corresponding to the mold material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、合成石英ガラス部
材の製造方法、特には多孔質シリカ焼結体を透明ガラス
化し、所望の大きさに成型する工程を有する合成石英ガ
ラス部材の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a synthetic quartz glass member, and more particularly to a method for producing a synthetic quartz glass member having a step of turning a porous silica sintered body into a transparent glass and molding it to a desired size. Things.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】合成石
英ガラス部材の製造が、四塩化珪素などの珪素化合物を
必要に応じ添加されるドーパントとしての四塩化ゲルマ
ニウムなどと共に多重管バーナーからの酸水素火炎中で
火炎加水分解し、ここで発生したシリカ微粒子を出発基
材上に付着、堆積させ、軸方向に引き取りながら多孔質
シリカ焼結体とし、これを加熱透明化し、次いでこれを
再度加熱延伸して所望の形状にするという方法で行われ
ることはよく知られているところであり、これは一般に
光ファイバープリフォームの製造方法として知られてい
るものである。また、大口径、高嵩密度を有する多孔質
シリカ焼結体を加熱透明化した後、冷却し、これを所望
サイズの型材に収納し、再度これを加熱溶融して得た高
温での耐熱性を有する間接法による合成石英ガラス部材
は、例えば電子材料用合成石英マスク基板、液晶分野に
おけるp−SiTFT用基板としても使用されている。
2. Description of the Related Art The production of synthetic quartz glass members is carried out by using a silicon compound such as silicon tetrachloride together with germanium tetrachloride as a dopant, which is optionally added as a dopant. The flame is hydrolyzed in a flame, and the silica fine particles generated here are adhered and deposited on the starting substrate, and while being drawn in the axial direction, formed into a porous silica sintered body, which is heated to be transparent, and then heated and drawn again. This is well known in the art, and is generally known as a method for manufacturing an optical fiber preform. Further, after heat-clearing a porous silica sintered body having a large diameter and a high bulk density, it is cooled, stored in a mold material of a desired size, and heated and melted again to obtain heat resistance at a high temperature. The synthetic quartz glass member by the indirect method having, for example, is also used as a synthetic quartz mask substrate for electronic materials and a substrate for p-SiTFT in the field of liquid crystal.

【0003】そして、これらの用途では、合成石英ガラ
スインゴットのサイズが200mmφ以上の大口径のも
のも必要とされることから、このような大口径の合成石
英ガラスインゴットの製造方法としては (1)大口径(例えば350mmφ程度)、高嵩密度の
多孔質シリカ焼結体を形成する方法、(2)多孔質シリ
カ焼結体を透明ガラス化した後、成型拡大する方法など
が行われている。
[0003] In these applications, a synthetic quartz glass ingot having a large diameter of 200 mmφ or more is required. Therefore, a method for producing such a synthetic quartz glass ingot having a large diameter is as follows. A method of forming a porous silica sintered body having a large diameter (for example, about 350 mmφ) and a high bulk density, and (2) a method of forming a porous silica sintered body into a transparent vitreous glass and then enlarging and molding the same are performed.

【0004】しかし、(1)の方法でサイズが200m
mφ以上の大口径の合成石英ガラスインゴットを製造す
るには、従来使用していたバーナーでは原料炎が拡がり
難いために、所望のサイズを得ることは非常に困難であ
り、たとえ所望のサイズを得たとしても、多孔質シリカ
焼結体の嵩密度が低ければ収縮率が大きくなってしま
い、所望のサイズの合成石英ガラスインゴットが得られ
ないことになるという欠点がある。
However, according to the method (1), the size is 200 m.
In order to produce a synthetic quartz glass ingot having a large diameter of mφ or more, it is very difficult to obtain a desired size because a raw material flame is difficult to spread with a conventionally used burner. Even so, if the bulk density of the porous silica sintered body is low, the shrinkage increases, and there is a disadvantage that a synthetic quartz glass ingot of a desired size cannot be obtained.

【0005】例えば、多孔質シリカ焼結体の外径が35
0mmφで、嵩密度が0.4g/cm3であれば、透明
ガラス化後の外径は195mmφとなるため、外径が2
00mmφ以上の合成石英ガラスインゴットを製造する
ためには、多孔質シリカ焼結体の外径を350mmφと
したとき、嵩密度が0.6g/cm3以上でなければな
らない。また、多孔質シリカ焼結体の嵩密度が0.4g
/cm3である場合、その外径は395mmφ以上でな
ければ200mmφ以上の合成石英ガラスインゴットを
製造することはできない。
For example, the outer diameter of a porous silica sintered body is 35
If it is 0 mmφ and the bulk density is 0.4 g / cm 3 , the outer diameter after vitrification becomes 195 mmφ,
In order to manufacture a synthetic quartz glass ingot having a diameter of at least 00 mmφ, the bulk density must be at least 0.6 g / cm 3 when the outer diameter of the porous silica sintered body is 350 mmφ. The porous silica sintered body has a bulk density of 0.4 g.
/ Cm 3 , a synthetic quartz glass ingot having a diameter of 200 mmφ or more cannot be manufactured unless its outer diameter is 395 mmφ or more.

【0006】また、(2)の方法については、一旦透明
ガラス化した後、室温まで冷却し、所望サイズの型材に
収納し、再度加熱し、合成石英ガラスインゴットを溶融
することで、所望サイズにすると共に、気泡を消去する
という3工程が必要とされるため工程が長く、また重量
物であるため各工程での取り扱いに注意が必要とされ、
繰り返しの加熱が必要とされるためにそのエネルギーの
消費も多いという欠点がある。
[0006] In the method (2), after the glass is once vitrified, cooled to room temperature, housed in a mold of a desired size, heated again, and the synthetic quartz glass ingot is melted to a desired size. At the same time, three steps of eliminating bubbles are required, so the steps are long, and since they are heavy, attention must be paid to handling in each step,
The disadvantage is that the energy consumption is high due to the need for repeated heating.

【0007】その改善方法として、特開平5−2708
48号公報のように多孔質シリカ焼結体を溶解炉内に吊
り下げた状態で透明ガラス化し、次いでこれを1750
〜1850℃で加熱してガラス粘度が低下して伸びてき
たところを炉内下部に設置してある型材で受け、そのま
ま型材形状に成型する方法も提案されているが、これは
多孔質シリカ焼結体と型材との間に隙間を設ける必要が
あり、その分、多孔質シリカ焼結体の長さを短いものに
する必要があるため、生産性を下げる原因の一つになっ
ていた。
[0007] As an improvement method, Japanese Patent Laid-Open Publication No.
No. 48, a porous silica sintered body is suspended in a melting furnace, and is vitrified in a transparent manner.
A method has also been proposed in which the glass is heated at 181850 ° C. and the viscosity of the glass has been reduced and the glass has grown, is received by a mold set in the lower part of the furnace, and is directly shaped into a mold. It is necessary to provide a gap between the sintered body and the mold, and accordingly, it is necessary to shorten the length of the porous silica sintered body, which has been one of the causes of lowering the productivity.

【0008】本発明は、このような不利、問題点を解決
するためになされたもので、所望形状の合成石英ガラス
部材を短い工程で簡単に効率よく製造することができる
合成石英ガラス部材の製造方法を提供することを目的と
する。
The present invention has been made to solve such disadvantages and problems, and is intended to produce a synthetic quartz glass member having a desired shape easily and efficiently in a short process. The aim is to provide a method.

【0009】[0009]

【課題を解決するための手段及び発明の実施の形態】本
発明者らは所望するサイズの合成石英ガラス部材の効率
的な製造方法を開発すべく種々検討した結果、多重管バ
ーナーによってシラン化合物を火炎加水分解して生成し
た合成シリカ微粒子を回転している出発基材上に付着、
堆積させ、軸方向に引き取りながら多孔質シリカ焼結体
を形成した後、該多孔質シリカ焼結体を上端部が開口す
る所望サイズの型材上に載置させ、真空下、不活性ガス
などの減圧下又は大気圧下にて1750〜1800℃の
高温で加熱し、上記多孔質シリカ焼結体を上記型材内に
自然侵入させることにより、該多孔質シリカ焼結体が透
明ガラス化され、所望の大きさになると共に、気泡が消
去されるということを見出した。該多孔質シリカ焼結体
を所望サイズの型材上に載置することについては、多孔
質シリカ焼結体の嵩密度を高くすることにより、多孔質
シリカ焼結体を型材の上に載置しても崩壊することはな
いこと、また上記多孔質シリカ焼結体の加熱について
は、1750℃より低温では泡の存在が完全には解消さ
れない場合があり、1800℃より高温では合成石英ガ
ラス自体が昇華するか、もしくは合成石英ガラスの粘度
が低下して出発基材が成型した合成石英ガラスの中に沈
んでしまう場合があり、出発基材を取り除くために成型
した合成石英ガラス部材の一部を除去するので歩留まり
が低下するばかりでなく、時間をも費やすので、この加
熱は1750〜1800℃の範囲とすることが必要であ
る。
The present inventors have conducted various studies to develop an efficient method for producing a synthetic quartz glass member having a desired size, and as a result, have found that a silane compound is produced by a multi-tube burner. Adhesion of synthetic silica fine particles produced by flame hydrolysis on a rotating starting substrate,
After the porous silica sintered body is formed while being deposited and taken up in the axial direction, the porous silica sintered body is placed on a mold material of a desired size having an open upper end, and is placed under vacuum, such as an inert gas. By heating at a high temperature of 1750 to 1800 ° C. under reduced pressure or atmospheric pressure and allowing the porous silica sintered body to naturally penetrate into the mold material, the porous silica sintered body is turned into a transparent glass, And the bubbles were eliminated. With respect to placing the porous silica sintered body on a mold having a desired size, the bulk density of the porous silica sintered body is increased to place the porous silica sintered body on the mold. Even if the porous silica sintered body is heated at a temperature lower than 1750 ° C., the presence of bubbles may not be completely eliminated at a temperature lower than 1750 ° C. In some cases, sublimation occurs or the viscosity of the synthetic quartz glass decreases and the starting base material sinks into the formed synthetic quartz glass. Since the removal not only lowers the yield but also consumes time, it is necessary that the heating be in the range of 1750 to 1800 ° C.

【0010】また、多孔質シリカ焼結体は所望サイズの
型材上に載置し、加熱することにより、多孔質シリカ焼
結体の体積が縮小されるため、所望サイズの型材より外
径が太い多孔質シリカ焼結体でも、所望サイズの型材と
同一なサイズになると共に、型材内に挿入され、透明ガ
ラス化し、その透明ガラス化した温度以上においてガラ
スの粘度が低下するので適当な時間が経過すると所望サ
イズの型材の形状に合致するため、最初から所望サイズ
の型材の中に入れておく必要がなく、製造可能であるこ
とを確認し、本発明をなすに至った。
Further, since the porous silica sintered body is placed on a mold having a desired size and heated to reduce the volume of the porous silica sintered body, the outer diameter is larger than that of the mold having the desired size. Even if the porous silica sintered body has the same size as the mold material of the desired size, it is inserted into the mold material, becomes vitrified, and the viscosity of the glass decreases at a temperature higher than the transparent vitrification. As a result, since the shape of the mold material matches the shape of the mold material of the desired size, it is not necessary to put the mold material into the mold material of the desired size from the beginning, and it has been confirmed that the mold can be manufactured.

【0011】従って、本発明は、多重管バーナーによっ
てシラン化合物を火炎加水分解して、生成した合成シリ
カ微粒子を回転している出発基材上に付着、堆積させ、
軸方向に引き取りながら多孔質シリカ焼結体を形成し、
次いでこれを加熱し透明ガラス化後、所望形状に成型し
て合成石英ガラス部材を製造する方法において、上記多
孔質シリカ焼結体を上端部が開口する所望サイズの型材
上に載置し、1750〜1800℃の温度に加熱するこ
とにより、上記多孔質シリカ焼結体を透明ガラス化する
と共に、上記型材内に自然侵入させて、この型材に応じ
た所望形状の合成石英ガラス部材を得ることを特徴とす
る合成石英ガラス部材の製造方法を提供する。
Accordingly, the present invention provides a method for flame-hydrolyzing a silane compound using a multi-tube burner, and depositing and depositing the produced synthetic silica fine particles on a rotating starting substrate,
Form a porous silica sintered body while taking it in the axial direction,
Next, in a method of producing a synthetic quartz glass member by heating and transforming it into a transparent glass after molding into a desired shape, the porous silica sintered body is placed on a mold material of a desired size having an open upper end, and 1750. By heating the porous silica sintered body to a transparent glass by heating to a temperature of about 1800 ° C., the porous silica sintered body is naturally penetrated into the mold material to obtain a synthetic quartz glass member having a desired shape corresponding to the mold material. A method for producing a synthetic quartz glass member is provided.

【0012】以下、本発明につき更に詳しく説明する。
本発明の合成石英ガラス部材の製造方法は、多重管バー
ナーによってシラン化合物を火炎加水分解して生成した
合成シリカ微粒子を回転している出発基材上に付着、堆
積させ、軸方向に引き取りながら多孔質シリカ焼結体を
形成する。
Hereinafter, the present invention will be described in more detail.
In the method for producing a synthetic quartz glass member of the present invention, a synthetic silica fine particle produced by flame hydrolysis of a silane compound by a multi-tube burner is attached and deposited on a rotating starting substrate, and is taken up in an axial direction while being porous. A porous silica sintered body is formed.

【0013】図1は本発明で使用される公知の多孔質シ
リカ焼結体製造装置の縦断面図を示したものであるが、
これは原料としてシラン化合物を原料ストックタンク1
に収納し、これを原料送液ポンプ2で原料蒸発器3に送
り、ここにキャリアガス5としてのアルゴンガス、窒素
ガス等の不活性ガスを送ってこれを酸水素火炎バーナー
4に供給すると共に、このバーナー4に酸素ガス6、水
素ガス7を供給し、上記シラン化合物を酸水素火炎8中
で燃焼、火炎加水分解させ、これによって生成したシリ
カ微粒子をカーボン、SiC、石英ガラスなどの耐熱性
の出発基材9に堆積、成長させて、ここに多孔質シリカ
焼結体10を製造する。
FIG. 1 is a longitudinal sectional view of a known apparatus for producing a porous silica sintered body used in the present invention.
This is a raw material stock tank 1
This is sent to the raw material evaporator 3 by the raw material feed pump 2, and an inert gas such as an argon gas or a nitrogen gas as the carrier gas 5 is fed to the raw material evaporator 3 and supplied to the oxyhydrogen flame burner 4. An oxygen gas 6 and a hydrogen gas 7 are supplied to the burner 4, the silane compound is burned in an oxyhydrogen flame 8 and flame-hydrolyzed, and the silica fine particles generated thereby are heat resistant to carbon, SiC, quartz glass or the like. Is deposited and grown on the starting base material 9 to produce a porous silica sintered body 10 here.

【0014】この場合、シラン化合物としては四塩化珪
素などの不燃性又は燃焼熱量の低い原料を使用すると、
原料の拡散が悪く、燃焼熱も低いために、嵩密度を0.
45g/cm3以上に上げることは難しく、嵩密度が低
いために透明ガラス化後のインゴットの収縮率の大きい
ものとなり、大口径のものを得ることが難しいので、こ
こで使用するシラン化合物は、化学式R1 nSi(O
24-n(但し、R1は水素原子、メチル基又はエチル
基、R2はメチル基又はエチル基、n=0〜4の正数)
で示されるアルコキシシランとすることが好ましく、こ
れによれば嵩密度が0.45〜0.80g/cm3の多
孔質シリカ焼結体を得ることができる。
In this case, when a nonflammable or low-combustion raw material such as silicon tetrachloride is used as the silane compound,
Since the diffusion of the raw material is poor and the heat of combustion is low, the bulk density is reduced to 0.1.
It is difficult to increase it to 45 g / cm 3 or more, and since the bulk density is low, the shrinkage of the ingot after vitrification becomes large, and it is difficult to obtain a large-diameter ingot. Chemical formula R 1 n Si (O
R 2 ) 4-n (where R 1 is a hydrogen atom, a methyl group or an ethyl group, R 2 is a methyl group or an ethyl group, and n is a positive number of 0 to 4)
Is preferred, and according to this, a porous silica sintered body having a bulk density of 0.45 to 0.80 g / cm 3 can be obtained.

【0015】このようにして作られた多孔質シリカ焼結
体は、加熱し、透明ガラス化した後、所望の形状になる
ように成型し、合成石英ガラス部材とされるものである
が、本発明においては、上記多孔質シリカ焼結体を上端
面が開口する所望サイズの型材上に載置し、真空下、不
活性ガスなどの減圧下又は大気圧下で1750〜180
0℃の高温で加熱することにより、該多孔質シリカ焼結
体を透明ガラス化すると共に、上記型材内に自然侵入さ
せ、所望の大きさにするものであるが、これによればガ
ラス化から成型まで1工程で所望形状の合成石英ガラス
部材を得ることができる。
The porous silica sintered body thus produced is heated, transparently vitrified, and then molded into a desired shape to obtain a synthetic quartz glass member. In the present invention, the porous silica sintered body is placed on a mold having a desired size having an open upper end surface, and is placed under vacuum, under a reduced pressure of an inert gas or the like, or at a pressure of 1750 to 180 under atmospheric pressure.
By heating the porous silica sintered body to a transparent glass by heating at a high temperature of 0 ° C., the porous silica sintered body naturally penetrates into the mold material to have a desired size. A synthetic quartz glass member having a desired shape can be obtained in one step up to molding.

【0016】即ち、図2は、上記方法を説明するもの
で、図中11は真空溶解炉であり、この内部に基台12
上に均熱管13が配置されると共に、この均熱管13を
取り囲んでカーボンヒーター14が配設されている。そ
して、上記均熱管13内に上端部が開口したガラス化成
型用型材15が配置され、この型材15上にその上端開
口部を覆った状態で上記で得られた多孔質シリカ焼結体
10が載置され、上記カーボンヒーター14を有する真
空溶解炉11中で真空下、減圧下又は大気圧下に175
0〜1800℃に加熱されて所望の形状に成型されると
共に、気泡を消去して合成石英ガラス部材とされる。な
お、炉体内は温度分布を有し、下部から上部にかけて温
度が低下する勾配を有することが好ましい。
FIG. 2 illustrates the above-mentioned method. In FIG. 2, reference numeral 11 denotes a vacuum melting furnace, in which a base 12 is provided.
A heat equalizing tube 13 is arranged on the upper side, and a carbon heater 14 is arranged so as to surround the heat equalizing tube 13. Then, a vitrification molding material 15 having an upper end opened in the heat equalizing tube 13 is disposed, and the porous silica sintered body 10 obtained above in a state where the upper end opening is covered is formed on the mold 15. Placed in a vacuum melting furnace 11 having the carbon heater 14 under vacuum, reduced pressure or atmospheric pressure.
It is heated to 0 to 1800 [deg.] C. to be molded into a desired shape, and the bubbles are eliminated to obtain a synthetic quartz glass member. In addition, it is preferable that the furnace has a temperature distribution and has a gradient in which the temperature decreases from the lower part to the upper part.

【0017】この場合、ガラス化成型用型材15の中心
軸と多孔質シリカ焼結体10の中心軸が大きく外れる
と、多孔質シリカ焼結体10はガラス化成型用型材15
に入らず、ガラス化成型用型材15から外れるため、成
型されずにガラス化することになる。
In this case, when the central axis of the vitrification molding die 15 and the central axis of the porous silica sintered body 10 are largely deviated, the porous silica sintered body 10 becomes vitrified and formed.
, And comes off from the vitrification-molding mold 15, so that it is vitrified without being molded.

【0018】従って、この多孔質シリカ焼結体10をガ
ラス化成型用型材15でガラス化成型するためには、多
孔質シリカ焼結体10をガラス化成型用型材15にセッ
トする際に、多孔質シリカ焼結体10の中心軸をガラス
化成型用型材15の中心軸から大きく外れないようにセ
ットすることが好ましい。
Therefore, in order to vitrify the porous silica sintered body 10 with the vitrification mold 15, when setting the porous silica sintered body 10 to the vitrification mold 15 It is preferable that the central axis of the porous silica sintered body 10 is set so as not to be largely deviated from the central axis of the vitrification molding die 15.

【0019】また、この多孔質シリカ焼結体を真空溶解
炉中で真空下、減圧下又は大気圧下に1750〜180
0℃に加熱したとしても、この時の加熱温度の保持時間
が短ければ、合成石英ガラス部材は所望の形状に成型さ
れず、多孔質シリカ焼結体の形状を収縮した形状の合成
石英ガラス部材となるおそれがあるが、この多孔質シリ
カ焼結体を所望の形状の合成石英ガラス部材にするため
には、多孔質シリカ焼結体がカーボンヒーターを有する
真空溶解炉中で真空下、減圧下又は大気圧下に1750
〜1800℃に加熱されるときの加熱温度の保持時間
は、合成石英ガラス部材が型材と合致するのに充分な範
囲時間、好ましくは0.3〜1時間とすることが必要と
される。即ち、多孔質シリカ焼結体の加熱時間について
は、0.3時間より短い場合、型材との合致が充分でな
く、1時間を超えると型材との接触面から数十ppbの
金属不純物が型材との接触面周辺に混入し、中心方向に
拡散するという問題が生ずるおそれがあるので、多孔質
シリカ焼結体の加熱時間は0.3〜1時間が好ましい。
The porous silica sintered body is placed in a vacuum melting furnace under vacuum, reduced pressure, or atmospheric pressure at 1750-180.
Even if it is heated to 0 ° C., if the holding time of the heating temperature at this time is short, the synthetic quartz glass member is not molded into a desired shape, and the synthetic quartz glass member has a shape obtained by shrinking the shape of the porous silica sintered body. However, in order to make the porous silica sintered body into a synthetic quartz glass member having a desired shape, the porous silica sintered body is placed under vacuum and reduced pressure in a vacuum melting furnace having a carbon heater. Or 1750 at atmospheric pressure
The holding time of the heating temperature when heated to 11800 ° C. is required to be a range time sufficient for the synthetic quartz glass member to match the mold material, preferably 0.3 to 1 hour. That is, when the heating time of the porous silica sintered body is shorter than 0.3 hours, the matching with the mold material is not sufficient, and when it exceeds 1 hour, several tens of ppb of metal impurities are removed from the contact surface with the mold material. The heating time of the porous silica sintered body is preferably 0.3 to 1 hour, since there is a possibility that a problem may occur in that the porous silica sintered body is mixed around the contact surface of the porous silica and diffuses toward the center.

【0020】而して、多孔質シリカ焼結体の中心軸をガ
ラス化成型用型材の中心軸から大きく外れないようにセ
ットし、1750〜1800℃で加熱し、好ましくは加
熱時間を0.3〜1時間とすることによって、多孔質シ
リカ焼結体が型材内に自然侵入し、所望形状の合成石英
ガラス部材を短い工程で得ることができるものである。
The central axis of the porous silica sintered body is set so as not to be largely deviated from the central axis of the vitrifying mold, and the porous silica sintered body is heated at 1750 to 1800 ° C., preferably for a heating time of 0.3. By setting the time to 1 hour, the porous silica sintered body naturally penetrates into the mold material, and a synthetic quartz glass member having a desired shape can be obtained in a short process.

【0021】本発明の合成石英ガラス部材の製造方法
は、特には電子材料用合成石英マスク基板、液晶分野に
おけるp−SiTFT用基板などに使用される大口径
(150mmφ以上)の石英インゴットの製造に好適で
ある。
The method for producing a synthetic quartz glass member of the present invention is particularly useful for producing a large-diameter (150 mmφ or more) quartz ingot used for a synthetic quartz mask substrate for electronic materials, a substrate for p-Si TFT in the liquid crystal field, and the like. It is suitable.

【0022】[0022]

【実施例】以下、実施例と比較例を示し、本発明を具体
的に説明するが、本発明は下記の実施例に制限されるも
のではない。
EXAMPLES The present invention will be described below in detail with reference to examples and comparative examples, but the present invention is not limited to the following examples.

【0023】[実施例]テトラメトキシシランを原料と
し、これを図1に示した方法で酸水素炎で火炎加水分解
し、生成したシリカ微粒子をカーボン製担体(出発基
材)上に堆積させ、サイズが300mmφ×350mm
Lで、嵩密度が0.60g/cm3である多孔質シリカ
焼結体を作製し、これを図2に示したように、真空溶解
炉中の内径220mmφ×500mmLのガラス化成型
用型材上にセットし、10Pa以下で、昇温速度10℃
/分で1200℃まで昇温し、10時間保持後、更に1
℃/分で1750℃で1時間加熱したところ、上記多孔
質シリカ焼結体が上記型材内に自然侵入し、サイズが2
20mmφ×177mmLの合成石英ガラス部材が得ら
れた。
[Example] Using tetramethoxysilane as a raw material, this was subjected to flame hydrolysis with an oxyhydrogen flame by the method shown in FIG. 1, and the resulting silica fine particles were deposited on a carbon carrier (starting substrate). Size is 300mmφ × 350mm
L, a porous silica sintered body having a bulk density of 0.60 g / cm 3 was prepared, and as shown in FIG. 2, was placed on a vitrification mold having an inner diameter of 220 mmφ × 500 mmL in a vacuum melting furnace. At 10 Pa or less, and the temperature rise rate is 10 ° C.
/ Min., And after holding for 10 hours,
When heated at 1750 ° C. for 1 hour at 1 ° C./min, the porous silica sintered body spontaneously penetrates into the mold and has a size of 2 μm.
A synthetic quartz glass member of 20 mmφ × 177 mmL was obtained.

【0024】[比較例]テトラメトキシシランを原料と
し、これを図1に示した方法で酸水素炎で火炎加水分解
し、生成したシリカ微粒子をカーボン製担体上に堆積さ
せ、サイズが300mmφ×350mmLで嵩密度が
0.60g/cm3である多孔質シリカ焼結体を作製
し、これを図3に示した真空溶解炉中にセットした。こ
こで、図3において、16はカーボン製治具であり、多
孔質シリカ焼結体10はこの治具16に吊下される。次
いで、10Pa以下で、昇温速度10℃/分で1200
℃まで昇温し、10時間保持後、更に1℃/分で昇温し
1400℃で2時間加熱した。8時間かけて室温まで冷
却し、真空溶解炉より取り出し、合成石英ガラスインゴ
ットを得た。カーボン製担体部分を取り除いてから、図
4に示した内径220mmφ×500mmLの型材17
の中に上記インゴット18を入れ、溶解炉19中の基台
20上にセットし、カーボンヒーター21により20℃
/分で昇温し、1750℃で1時間加熱したところ、サ
イズが220mmφ×177mmLの合成石英ガラス部
材が得られた。
COMPARATIVE EXAMPLE Tetramethoxysilane was used as a raw material, flame-hydrolyzed with an oxyhydrogen flame by the method shown in FIG. 1, and the resulting silica fine particles were deposited on a carbon support. To produce a porous silica sintered body having a bulk density of 0.60 g / cm 3 , which was set in the vacuum melting furnace shown in FIG. Here, in FIG. 3, reference numeral 16 denotes a carbon jig, and the porous silica sintered body 10 is suspended by the jig 16. Next, at 10 Pa or less, 1200 at a heating rate of 10 ° C./min.
After heating to ℃ for 10 hours, the temperature was further raised at 1 ° C./min and heated at 1400 ° C. for 2 hours. It was cooled to room temperature over 8 hours, taken out of the vacuum melting furnace, and a synthetic quartz glass ingot was obtained. After removing the carbon carrier part, the shape 17 of 220 mmφ × 500 mmL shown in FIG.
The ingot 18 is put in the furnace, and is set on a base 20 in a melting furnace 19.
After heating at 1750 ° C. for 1 hour, a synthetic quartz glass member having a size of 220 mmφ × 177 mmL was obtained.

【0025】[0025]

【発明の効果】本発明によれば、多孔質シリカ焼結体を
透明ガラス化する工程から成型すると共に、気泡を消去
する工程を1工程で行うことにより、所望形状の合成石
英ガラス部材を短い工程でかつ取り扱いの不注意による
破損もなく得ることができる。
According to the present invention, the synthetic silica glass member having the desired shape can be shortened by performing the molding from the step of turning the porous silica sintered body into a transparent glass and the step of eliminating bubbles in one step. It can be obtained in the process and without damage due to careless handling.

【図面の簡単な説明】[Brief description of the drawings]

【図1】シラン化合物の火炎加水分解で多孔質シリカ焼
結体を製造する装置の縦断面図である。
FIG. 1 is a longitudinal sectional view of an apparatus for producing a porous silica sintered body by flame hydrolysis of a silane compound.

【図2】本発明に係る合成石英ガラス部材を1750〜
1800℃に加熱処理する装置の縦断面図である。
FIG. 2 shows the synthetic quartz glass member according to the present invention,
It is a longitudinal cross-sectional view of the apparatus which heat-processes to 1800 degreeC.

【図3】公知の方法により多孔質シリカ焼結体を加熱
し、透明ガラス化して合成石英ガラス部材を製造する装
置の縦断面図である。
FIG. 3 is a vertical cross-sectional view of an apparatus for manufacturing a synthetic quartz glass member by heating a porous silica sintered body by a known method and turning the sintered body into a transparent glass.

【図4】公知の方法により合成石英ガラス部材を加熱
し、成型して所望の形状の合成石英ガラス部材を製造す
る装置の縦断面図である。
FIG. 4 is a longitudinal sectional view of an apparatus for manufacturing a synthetic quartz glass member having a desired shape by heating and molding a synthetic quartz glass member by a known method.

【符号の説明】[Explanation of symbols]

1 原料ストックタンク 2 原料送液ポンプ 3 原料蒸発器 4 酸水素火炎バーナー 5 キャリアガスライン 6 酸素ガスライン 7 水素ガスライン 8 酸水素火炎 9 出発基材 10 多孔質シリカ焼結体 11 真空溶解炉 12 基台 13 均熱管 14 カーボンヒーター 15 ガラス化成型用型材 Reference Signs List 1 raw material stock tank 2 raw material sending pump 3 raw material evaporator 4 oxyhydrogen flame burner 5 carrier gas line 6 oxygen gas line 7 hydrogen gas line 8 oxyhydrogen flame 9 starting base material 10 porous silica sintered body 11 vacuum melting furnace 12 Base 13 Heat equalizing tube 14 Carbon heater 15 Mold for vitrification molding

───────────────────────────────────────────────────── フロントページの続き (72)発明者 代田 和雄 新潟県中頸城郡頸城村大字西福島28−1 信越化学工業株式会社精密機能材料研究所 内 Fターム(参考) 4G014 AH21  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kazuo Shiroda 28-1 Nishifukushima, Kazagusuku-mura, Nakakubijo-gun, Niigata F-term (reference) 4G014 AH21

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 多重管バーナーによってシラン化合物を
火炎加水分解して、生成した合成シリカ微粒子を回転し
ている出発基材上に付着、堆積させ、軸方向に引き取り
ながら多孔質シリカ焼結体を形成し、次いでこれを加熱
し透明ガラス化後、所望形状に成型して合成石英ガラス
部材を製造する方法において、上記多孔質シリカ焼結体
を上端部が開口する所望サイズの型材上に載置し、17
50〜1800℃の温度に加熱することにより、上記多
孔質シリカ焼結体を透明ガラス化すると共に、上記型材
内に自然侵入させて、この型材に応じた所望形状の合成
石英ガラス部材を得ることを特徴とする合成石英ガラス
部材の製造方法。
1. A silane compound is flame-hydrolyzed by a multi-tube burner, and the generated synthetic silica fine particles are adhered and deposited on a rotating starting base material. In a method for producing a synthetic quartz glass member by forming it and then heating it to form a transparent glass after heating to form a transparent glass, the porous silica sintered body is placed on a mold material of a desired size having an open upper end. Then 17
By heating the porous silica sintered body to a transparent glass by heating to a temperature of 50 to 1800 ° C., the porous silica sintered body is naturally penetrated into the mold material to obtain a synthetic quartz glass member having a desired shape according to the mold material. A method for producing a synthetic quartz glass member.
【請求項2】 上記多孔質シリカ焼結体の嵩密度が0.
45〜0.80g/cm3である請求項1記載の製造方
法。
2. The porous silica sintered body has a bulk density of 0.
45~0.80g / cm 3 The manufacturing method of claim 1, wherein.
JP2000003194A 2000-01-12 2000-01-12 Method for producing synthetic quartz glass member Pending JP2001199733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000003194A JP2001199733A (en) 2000-01-12 2000-01-12 Method for producing synthetic quartz glass member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000003194A JP2001199733A (en) 2000-01-12 2000-01-12 Method for producing synthetic quartz glass member

Publications (1)

Publication Number Publication Date
JP2001199733A true JP2001199733A (en) 2001-07-24

Family

ID=18532178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000003194A Pending JP2001199733A (en) 2000-01-12 2000-01-12 Method for producing synthetic quartz glass member

Country Status (1)

Country Link
JP (1) JP2001199733A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1471038A3 (en) * 2003-04-26 2005-11-23 Schott Ag Process for producing glass articles of doped silica glass
WO2007135166A1 (en) * 2006-05-24 2007-11-29 Heraeus Quarzglas Gmbh & Co. Kg Method for producing a semifinished product from synthetic quartz glass
JP2016003162A (en) * 2014-06-17 2016-01-12 信越石英株式会社 Method for manufacturing hollow porous quartz glass preform, hollow porous quartz glass preform and quartz glass cylinder using the same
EP3299345A1 (en) * 2016-09-22 2018-03-28 Heraeus Quarzglas GmbH & Co. KG Method for producing an optical blank from synthetic quartz glass
JP2019172562A (en) * 2018-03-29 2019-10-10 パナソニック デバイスSunx株式会社 Manufacturing method of quartz glass
CN114804614A (en) * 2022-05-31 2022-07-29 武汉烽火锐拓科技有限公司 Manufacturing method of optical glass material and melting homogenization equipment

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1471038A3 (en) * 2003-04-26 2005-11-23 Schott Ag Process for producing glass articles of doped silica glass
WO2007135166A1 (en) * 2006-05-24 2007-11-29 Heraeus Quarzglas Gmbh & Co. Kg Method for producing a semifinished product from synthetic quartz glass
US8393179B2 (en) 2006-05-24 2013-03-12 Heraeus Quarzglas Gmbh & Co. Kg Method for producing a semifinished product from synthetic quartz glass
JP2016003162A (en) * 2014-06-17 2016-01-12 信越石英株式会社 Method for manufacturing hollow porous quartz glass preform, hollow porous quartz glass preform and quartz glass cylinder using the same
EP3299345A1 (en) * 2016-09-22 2018-03-28 Heraeus Quarzglas GmbH & Co. KG Method for producing an optical blank from synthetic quartz glass
JP2018048071A (en) * 2016-09-22 2018-03-29 ヘレウス・クアルツグラース・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンディット・ゲゼルシャフトHeraeus Quarzglas GmbH & Co. KG Process for manufacturing optical blank from synthetic quartz glass
CN107867798A (en) * 2016-09-22 2018-04-03 贺利氏石英玻璃有限两合公司 The method that optical blank is produced from synthetic quartz glass
US10807901B2 (en) 2016-09-22 2020-10-20 Heraeus Quarzglas Gmbh & Co. Kg Method for producing an optical blank from synthetic quartz glass
CN107867798B (en) * 2016-09-22 2021-09-21 贺利氏石英玻璃有限两合公司 Method for producing an optical blank from synthetic quartz glass
JP2019172562A (en) * 2018-03-29 2019-10-10 パナソニック デバイスSunx株式会社 Manufacturing method of quartz glass
JP7213110B2 (en) 2018-03-29 2023-01-26 パナソニック デバイスSunx株式会社 Quartz glass manufacturing method
CN114804614A (en) * 2022-05-31 2022-07-29 武汉烽火锐拓科技有限公司 Manufacturing method of optical glass material and melting homogenization equipment

Similar Documents

Publication Publication Date Title
JP4639274B2 (en) Method and apparatus for producing glass ingots from synthetic silica
JP3406107B2 (en) Manufacturing method of quartz glass
US8393179B2 (en) Method for producing a semifinished product from synthetic quartz glass
JP2022526062A (en) Low hydroxy group high purity quartz glass and its preparation method
JP2018048071A (en) Process for manufacturing optical blank from synthetic quartz glass
CN101426740A (en) Manufacture of large articles in synthetic vitreous silica
JP2001199733A (en) Method for producing synthetic quartz glass member
KR20150058211A (en) Production method for sio_2-tio_2 glass and production method for photomask substrate comprising said glass
JP2003171137A (en) Method for manufacturing optical fiber preform
JP2002097033A (en) Method for producing optical fiber accompanied by over- cladding during sintering
CN103459336B (en) The manufacture method of quartz glass crucibles and manufacture method and silicon single crystal
JP7428413B2 (en) Synthetic quartz manufacturing method
JP3770566B2 (en) Method for producing cylindrical quartz glass
JPH0710571A (en) Production of synthetic quartz glass member
JPH05270848A (en) Production of synthetic quartz glass molding
CN112830666B (en) Vacuum furnace and quartz glass preparation method
JP2818349B2 (en) Manufacturing method of quartz glass base material
JP2008239454A (en) Method for producing synthetic silica glass
JP2002249342A (en) Glass body and method for manufacturing it
JP4230073B2 (en) Method for producing aluminum-added glass base material
JPH03109224A (en) Quartz glass and production thereof
JPS6278124A (en) Production of high-purity quartz pipe
KR100257142B1 (en) Manufacturing method of optical fiber preform using high purity quartz powder
JPH0692648A (en) Production of synthetic quartz glass member
JP2003165736A (en) Method for manufacturing optical fiber preform and device and manufacturing optical fiber preform using it