JP2019172562A - Manufacturing method of quartz glass - Google Patents

Manufacturing method of quartz glass Download PDF

Info

Publication number
JP2019172562A
JP2019172562A JP2019048373A JP2019048373A JP2019172562A JP 2019172562 A JP2019172562 A JP 2019172562A JP 2019048373 A JP2019048373 A JP 2019048373A JP 2019048373 A JP2019048373 A JP 2019048373A JP 2019172562 A JP2019172562 A JP 2019172562A
Authority
JP
Japan
Prior art keywords
quartz glass
silica powder
temperature
mixing
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019048373A
Other languages
Japanese (ja)
Other versions
JP7213110B2 (en
Inventor
裕正 古田
Hiromasa Furuta
裕正 古田
浩貴 浅田
Hirotaka Asada
浩貴 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Industrial Devices SUNX Co Ltd
Original Assignee
Panasonic Industrial Devices SUNX Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Industrial Devices SUNX Co Ltd filed Critical Panasonic Industrial Devices SUNX Co Ltd
Publication of JP2019172562A publication Critical patent/JP2019172562A/en
Application granted granted Critical
Publication of JP7213110B2 publication Critical patent/JP7213110B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glass Melting And Manufacturing (AREA)

Abstract

To provide a manufacturing method of quartz glass capable of obtaining quartz glass by a simple process.SOLUTION: A manufacturing method of quartz glass includes a mixing step for obtaining a mixture by mixing only silica powder and water, a molding step for obtaining a compact by molding the mixture, and a heat treatment step for obtaining quartz glass by subjecting the compact to a heat treatment. According to such a method, a step for removing a binder component by subjecting the compact to a defatting treatment becomes unnecessary, to thereby simplify the manufacturing process.SELECTED DRAWING: None

Description

本明細書によって開示される技術は、石英ガラスの製造方法に関する。   The technique disclosed by this specification is related with the manufacturing method of quartz glass.

シリカ粉とバインダーとを混練し、成形して得られた成形体に脱脂処理、純化処理を施した後、ガラス化して石英ガラスを製造する方法が知られている(特許文献1参照)。   A method is known in which silica powder and a binder are kneaded and formed into a molded product obtained by degreasing and purification, and then vitrified to produce quartz glass (see Patent Document 1).

特開2018−2548号公報Japanese Patent Application Laid-Open No. 2018-2548

上記のような製造方法は、成形体に脱脂処理を施してバインダー成分を除去する工程が必要になるなど、工程数が多く複雑になりがちであった。   The manufacturing method as described above tends to be complicated due to a large number of steps, such as a step of degreasing the molded body to remove the binder component.

本明細書によって開示される石英ガラスの製造方法は、シリカ粉末と水のみを混合して混合物を得る混合工程と、前記混合物を成形して成形体を得る成形工程と、前記成形体を加熱処理して石英ガラスを得る加熱処理工程とを含む。このような方法によれば、成形体に脱脂処理を施してバインダー成分を除去する工程が不要となり、製造工程を簡素化することができる。   The method for producing quartz glass disclosed in the present specification includes a mixing step of mixing only silica powder and water to obtain a mixture, a forming step of forming the mixture to obtain a formed body, and heat-treating the formed body. And a heat treatment step for obtaining quartz glass. According to such a method, the process which removes a binder component by performing a degreasing process to a molded object becomes unnecessary, and a manufacturing process can be simplified.

本明細書によって開示される石英ガラスの製造方法によれば、簡易な工程で石英ガラスを得ることができる。   According to the method for producing quartz glass disclosed in the present specification, quartz glass can be obtained by a simple process.

加熱処理工程における加熱条件の温度プロファイルの一例を示すグラフThe graph which shows an example of the temperature profile of the heating conditions in the heat treatment process

実施形態の石英ガラスの製造方法は、シリカ粉末と水のみを混合して混合物を得る混合工程と、前記混合物を成形して成形体を得る成形工程と、前記成形体を加熱処理して石英ガラスを得る加熱処理工程とを含む。   The method for producing quartz glass according to the embodiment includes a mixing step of mixing only silica powder and water to obtain a mixture, a forming step of forming the mixture to obtain a formed body, and a heat treatment of the formed body to produce quartz glass. And a heat treatment step to obtain

混合工程においては、シリカ粉末と水のみを混合し、バインダーを混合しない。バインダーを用いないことによって、成形体からバインダー成分を除去する脱脂工程を省略することができ、製造工程が簡素化される。用いられるシリカ粉末の平均一次粒子径は、7nm以上100nm以下であることが好ましく、7nm以上50nm以下であることがより好ましく、22nm以上50nm以下であることがさらに好ましく、50nmであることが最も好ましい。さらに、シリカ粉末の平均一次粒子径が50nmである場合に、水を、シリカ粉末10質量部に対して6.09質量部以上6.21質量部以下の割合で混合することが好ましい。   In the mixing step, only silica powder and water are mixed, and the binder is not mixed. By not using a binder, the degreasing process which removes a binder component from a molded object can be skipped, and a manufacturing process is simplified. The average primary particle diameter of the silica powder used is preferably 7 nm or more and 100 nm or less, more preferably 7 nm or more and 50 nm or less, further preferably 22 nm or more and 50 nm or less, and most preferably 50 nm. . Furthermore, when the average primary particle diameter of the silica powder is 50 nm, it is preferable to mix water at a ratio of 6.09 parts by mass to 6.21 parts by mass with respect to 10 parts by mass of the silica powder.

また、混合工程は、シリカ粉末と水とを減圧下で混合する工程を含むことが好ましく、シリカ粉末と水とを真空状態で混合する工程を含むことがさらに好ましい。減圧下または真空状態での混合は、例えば、シリカ粉末と水とを、真空撹拌機を用いて攪拌することにより行うことができる。これにより、脱泡しつつ混合を行うことができるので、気泡が入らない良好な成形体を得ることができる。この場合には、混合工程完了後の混合物が、水を、シリカ粉末10質量部に対して5.32質量部以上5.67質量部以下の割合で含有することが好ましい。   The mixing step preferably includes a step of mixing silica powder and water under reduced pressure, and more preferably includes a step of mixing silica powder and water in a vacuum state. Mixing under reduced pressure or in a vacuum state can be performed, for example, by stirring silica powder and water using a vacuum stirrer. Thereby, since it can mix while defoaming, the favorable molded object which a bubble does not enter can be obtained. In this case, it is preferable that the mixture after the completion of the mixing step contains water at a ratio of 5.32 parts by mass to 5.67 parts by mass with respect to 10 parts by mass of the silica powder.

成形工程においては、例えばシリコーン型または金型を使用した注型成形を行うことができる。あるいは、金型を用いてプレス成形を行っても良い。
また、石英ガラスが光学部材である場合には、光学部材の形状に対応する形状を有する型を用いて成形を行うことが好ましい。これにより、所望の光学部材の形状を有する成形体を得て、これを加熱処理するだけで光学部材を得ることができるので、石英ガラスの塊から削りや研磨でレンズ部材の形状を作りだす場合と比較して、製造工程が簡素となる。
In the molding process, cast molding using, for example, a silicone mold or a mold can be performed. Alternatively, press molding may be performed using a mold.
Further, when quartz glass is an optical member, it is preferable to perform molding using a mold having a shape corresponding to the shape of the optical member. This makes it possible to obtain a molded body having the shape of a desired optical member, and to obtain an optical member simply by heat-treating it, so that the shape of the lens member is created by shaving or polishing from a lump of quartz glass In comparison, the manufacturing process is simplified.

加熱処理工程は、ガラス化のために、例えば成形体を不活性ガス雰囲気中、または真空状態、更には大気中で、900℃〜1400℃の温度領域で加熱することにより行うことができる。特に、加熱処理を不活性ガス雰囲気下で行うことが好ましい。石英ガラスの表面が、大気中の不純物との反応によって変質することを回避できるためである。   For vitrification, the heat treatment step can be performed, for example, by heating the molded body in an inert gas atmosphere, in a vacuum state, or in the air in a temperature range of 900 ° C. to 1400 ° C. In particular, the heat treatment is preferably performed in an inert gas atmosphere. This is because the surface of the quartz glass can be prevented from being altered by reaction with impurities in the atmosphere.

加熱処理工程が、第1の昇温速度で所定温度まで昇温させる第1昇温工程と、第1昇温工程の後に、第1の昇温速度よりも緩やかな第2の昇温速度で昇温させる第2の昇温工程とを含むことが好ましい。第1昇温工程では、比較的早い昇温速度で昇温することで、成形体に含まれる水を加熱除去する。第2昇温工程では、比較的緩やかな昇温速度で昇温してシリカを徐々に収縮させることで、急激な加熱によるヒビや割れの発生を回避して、良好な石英ガラスを得ることができる。
より具体的には、上記の第1昇温工程における「所定温度」が900℃以上1000℃以下であり、第1の昇温速度が、10℃/min以上15℃/min以下であり、第2の昇温速度が3℃/minであることが好ましい。
なお、第1昇温工程と第2昇温工程との間に、上記所定温度で所定時間(例えば30分〜60分)保持する保持工程を設けてもよく、保持工程を設けなくても構わない。
The heat treatment step includes a first temperature raising step for raising the temperature to a predetermined temperature at a first temperature raising rate, and a second temperature raising rate that is slower than the first temperature raising rate after the first temperature raising step. It is preferable to include a second temperature raising step for raising the temperature. In the first temperature raising step, the water contained in the molded body is removed by heating by raising the temperature at a relatively high temperature raising rate. In the second temperature raising step, the silica is gradually shrunk by raising the temperature at a relatively slow temperature raising rate, thereby avoiding the occurrence of cracks and cracks due to abrupt heating and obtaining a good quartz glass. it can.
More specifically, the “predetermined temperature” in the first temperature raising step is 900 ° C. or higher and 1000 ° C. or lower, the first temperature rising rate is 10 ° C./min or higher and 15 ° C./min or lower, 2 is preferably 3 ° C./min.
In addition, between the 1st temperature rising process and the 2nd temperature rising process, the holding process hold | maintained for the predetermined time (for example, 30 minutes-60 minutes) at the said predetermined temperature may be provided, and it is not necessary to provide a holding process. Absent.

<試験例>
[使用材料]
シリカ粉末として、株式会社トクヤマ製 「シルフィル NSS−3N(平均一次粒子径 0.12μm)」、「レオロシール QS−09(平均一次粒子径 22nm)」、「レオロシール CP−102(平均一次粒子径 12nm)」、「レオロシール QS−30(平均一次粒子径 7nm)」を使用した。
<Test example>
[Materials used]
As silica powder, “Silfil NSS-3N (average primary particle size: 0.12 μm)”, “Leoroseal QS-09 (average primary particle size: 22 nm)”, “Lerosil CP-102 (average primary particle size: 12 nm)” manufactured by Tokuyama Corporation. ”,“ Leorosil QS-30 (average primary particle size 7 nm) ”.

[試験方法]
1.試験例1〜7
各シリカ粉末を純水と混合して混合物を得た。混合する際には、真空状態での攪拌を行って混合物を得た(混合工程)。より具体的には、スターラーのない自転・公転攪拌器(攪拌機)を用い、真空状態で攪拌を行った。この攪拌により得られた混合物を、すぐに、光学レンズに対応する形状を有するシリコーン型に注入する注型成形を行って、常温状態で3日以上放置して乾燥し、φ10mmの成形体を得た(成形工程)。
なお、各試験例において、シリカ粉末の平均一次粒子径、およびシリカ粉末と純水との混合比は、表1に示すとおりである。表1において、シリカ粉末と純水との混合比は、質量比(重量比)である。
[Test method]
1. Test Examples 1-7
Each silica powder was mixed with pure water to obtain a mixture. When mixing, stirring in a vacuum state was performed to obtain a mixture (mixing step). More specifically, stirring was performed in a vacuum state using a rotation / revolution stirrer (stirrer) without a stirrer. The mixture obtained by this stirring is immediately cast-molded by injecting it into a silicone mold having a shape corresponding to the optical lens, and allowed to stand at room temperature for 3 days or more to dry, thereby obtaining a molded product having a diameter of 10 mm. (Molding process).
In each test example, the average primary particle diameter of the silica powder and the mixing ratio of the silica powder and pure water are as shown in Table 1. In Table 1, the mixing ratio of silica powder and pure water is a mass ratio (weight ratio).

得られた成形体を加熱炉内にセットし、ヘリウム雰囲気中で、以下の昇温条件で加熱を行い、ガラス化を行った(加熱処理工程;図1参照)。
まず、室温から900℃まで、昇温速度10℃/minで昇温し(第1昇温工程)、900℃で60分保持した。次に、900℃から1300℃まで、昇温速度3℃/minで昇温し(第2昇温工程)、1300℃で30分保持した。この後、室温まで冷却して、石英ガラスを得た。
The obtained molded body was set in a heating furnace, and heated in the helium atmosphere under the following temperature raising conditions to perform vitrification (heat treatment step; see FIG. 1).
First, the temperature was raised from room temperature to 900 ° C. at a rate of temperature rise of 10 ° C./min (first temperature raising step) and held at 900 ° C. for 60 minutes. Next, the temperature was raised from 900 ° C. to 1300 ° C. at a rate of temperature rise of 3 ° C./min (second temperature raising step) and held at 1300 ° C. for 30 minutes. Then, it cooled to room temperature and obtained quartz glass.

2.試験例8
加熱を真空状態で行い、第2昇温工程において1400℃まで昇温した他は、試験例6と同様にして石英ガラスを得た。
2. Test Example 8
Quartz glass was obtained in the same manner as in Test Example 6 except that heating was performed in a vacuum state and the temperature was raised to 1400 ° C. in the second temperature raising step.

3.試験例9
加熱を大気中で行い、第2昇温工程において1315℃まで昇温した他は、試験例6と同様にして石英ガラスを得た。
3. Test Example 9
Quartz glass was obtained in the same manner as in Test Example 6 except that heating was performed in air and the temperature was raised to 1315 ° C. in the second temperature raising step.

Figure 2019172562
Figure 2019172562

[結果]
表1において、透明な石英ガラスを得られなかったものを×、透明な石英ガラスを得られたものを○、光学部材としても使用可能な品質の透明な石英ガラスを得られたものを◎として示した。なお、光学部材とは、光学レンズの他、保護ガラス(ウィンドウ)や屈折板等のレンズ以外の光学特性を有する部材を含む。
[result]
In Table 1, “X” indicates that transparent quartz glass was not obtained, “◯” indicates that transparent quartz glass was obtained, and “◎” indicates that transparent quartz glass of a quality that can be used as an optical member was obtained. Indicated. The optical member includes a member having optical characteristics other than the lens such as a protective glass (window) and a refracting plate in addition to the optical lens.

平均一次粒子径0.12μm(120nm)のシリカ粉末を用い、シリカ粉末:純水=1:1で混合した試験例7では、成形工程において混合物が固まらず、成形体を得ることができなかった。   In Test Example 7 in which silica powder having an average primary particle size of 0.12 μm (120 nm) was used and mixed with silica powder: pure water = 1: 1, the mixture did not solidify in the molding step, and a molded product could not be obtained. .

平均一次粒子径7nm〜22nmのシリカ粉末を用い、シリカ粉末:純水=2:3または1:2とした試験例1〜試験例6においては、石英ガラスを得ることができた。特に、平均一次粒子径22nmのシリカ粉末を用いた場合には、いずれの混合比でも光学部材としても使用可能な品質の石英ガラスを得ることができた。また、シリカ粉末:純水=1:2とした場合には、シリカ粉末の平均一次粒子径が7nmまたは12nmであっても、光学部材としても使用可能な品質の石英ガラスを得ることができた。さらに、平均一次粒子径22nmのシリカ粉末を用い、シリカ粉末:純水=2:3とした試験例6、8、9では、加熱条件を変えても、光学部材としても使用可能な品質の石英ガラスを得ることができた。   In Test Example 1 to Test Example 6 using silica powder having an average primary particle diameter of 7 nm to 22 nm and silica powder: pure water = 2: 3 or 1: 2, quartz glass could be obtained. In particular, when silica powder having an average primary particle diameter of 22 nm was used, it was possible to obtain quartz glass having a quality that can be used as an optical member at any mixing ratio. In addition, when silica powder: pure water = 1: 2, even if the average primary particle diameter of the silica powder is 7 nm or 12 nm, it is possible to obtain a quality quartz glass that can be used as an optical member. . Furthermore, in Test Examples 6, 8, and 9 using silica powder having an average primary particle diameter of 22 nm and silica powder: pure water = 2: 3, the quality quartz that can be used as an optical member even if the heating conditions are changed. Glass could be obtained.

<さらに詳細に検討する試験例>
上記の試験結果を踏まえ、シリカ粉末の好適な平均一次粒子径、および、シリカ粉末と水との好適な混合比をさらに詳細に検討する試験を行った。
<Examples to be examined in more detail>
Based on the above test results, a test was conducted in which the preferred average primary particle diameter of the silica powder and the preferred mixing ratio of the silica powder and water were examined in more detail.

[使用材料]
シリカ粉末として、以下のものを使用した。
・株式会社トクヤマ製「レオロシール」(平均一次粒子径:7nm、12nm、22nm)」
・株式会社トクヤマ製「シルフィル」(平均一次粒子径:125nm)
・堺化学工業株式会社製「Sciqas」(平均一次粒子径:50nm、100nm、400nm、700nm、1000nm)
[Materials used]
The following were used as the silica powder.
-"Leoro Seal" manufactured by Tokuyama Corporation (average primary particle size: 7 nm, 12 nm, 22 nm) "
-"Silfil" manufactured by Tokuyama Corporation (average primary particle size: 125 nm)
-“Sciqas” manufactured by Sakai Chemical Industry Co., Ltd. (average primary particle size: 50 nm, 100 nm, 400 nm, 700 nm, 1000 nm)

[試験方法]
4.試験例10
シリカ粉末の平均一次粒子径、およびシリカ粉末と純水との混合比を、下記表2に示すとおりとし、試験例1と同様の手順で石英ガラスを得た。表2において、シリカ粉末と純水との混合比は、質量比(重量比)である。
[Test method]
4). Test Example 10
The average primary particle diameter of the silica powder and the mixing ratio of the silica powder and pure water were as shown in Table 2 below, and quartz glass was obtained in the same procedure as in Test Example 1. In Table 2, the mixing ratio of silica powder and pure water is a mass ratio (weight ratio).

5.試験例11
平均一次粒子径50nmのシリカ粉末を用いた。表3に示す混合比でシリカ粉末と純水とを混合して混合物を得た。具体的には、試験例1と同様の攪拌機を用い、まず、常圧での攪拌を5分間行った。次に、3分間の常圧での攪拌と、3分間の真空状態での攪拌とを、連続して行った。攪拌により得られた混合物を、試験例1と同様の手順で成形および加熱処理し、石英ガラスを得た。表3において、シリカ粉末と純水との混合比は、質量比(重量比)である。
5. Test Example 11
Silica powder having an average primary particle diameter of 50 nm was used. Silica powder and pure water were mixed at a mixing ratio shown in Table 3 to obtain a mixture. Specifically, using the same stirrer as in Test Example 1, first, stirring at normal pressure was performed for 5 minutes. Next, stirring at normal pressure for 3 minutes and stirring in a vacuum state for 3 minutes were continuously performed. The mixture obtained by stirring was molded and heat-treated in the same procedure as in Test Example 1 to obtain quartz glass. In Table 3, the mixing ratio of silica powder and pure water is a mass ratio (weight ratio).

Figure 2019172562
Figure 2019172562

Figure 2019172562
Figure 2019172562

[結果]
試験例10の結果を、表2に示した。表2において、透明な石英ガラスを得られたものを○、成形や透明度に課題があるが石英ガラスが得られたものを△、成形に課題があり石英ガラスを得られなかったものを×として示した。
[result]
The results of Test Example 10 are shown in Table 2. In Table 2, “O” indicates that transparent quartz glass is obtained, “Δ” indicates that there is a problem in molding or transparency, but “Δ” indicates that quartz glass is obtained, and “x” indicates that there is a problem in molding and silica glass cannot be obtained. Indicated.

表2より、平均一次粒子径が7nm以上400nm以下の範囲内で、シリカ粉末と水との混合比を調整することにより、成形が可能な混合物を得ることができ、石英ガラスを製造できた。但し、平均粒子径が125nmおよび400nmのシリカ粉末を用いた場合には、シリカ粉末と水との混合が流動性の良い半透明なスラリーとならず、次の成形工程において注型が困難となったり、混合物が固まりにくく、成形体の表面に剥離が生じたりした。このため、シリカ粉末の平均一次粒子径が7nm以上100nm以下の範囲内であることが好ましいと考えられた。   From Table 2, by adjusting the mixing ratio of silica powder and water within the range of the average primary particle diameter of 7 nm or more and 400 nm or less, a moldable mixture could be obtained, and quartz glass could be produced. However, when silica powder having an average particle size of 125 nm and 400 nm is used, mixing of the silica powder and water does not form a semi-transparent slurry with good fluidity, and casting becomes difficult in the next molding step. Or the mixture was hard to harden, and peeling occurred on the surface of the molded body. For this reason, it was considered that the average primary particle diameter of the silica powder was preferably in the range of 7 nm to 100 nm.

また、平均一次粒子径が7nm以上50nm以下の範囲内で、シリカ粉末と水との混合比を調整することにより、光学部品として用いることのできる、透明な石英ガラスを得られた。   Moreover, transparent quartz glass which can be used as an optical component was obtained by adjusting the mixing ratio of the silica powder and water within the range of the average primary particle diameter of 7 nm or more and 50 nm or less.

また、平均一次粒子径が7nmの場合には、成形工程において混合物を型に注入し、乾燥している間に、亀裂が生じる場合があった。しかし、平均一次粒子径が22nm以上50nm以下の範囲内では、成形時に亀裂が生じることがなく、良好な成形体を得ることができた。特に、平均一次粒子径が50nmである場合に、シリカ粉末と水との混合比を適切に調整することで、加熱処理工程における成形体の収縮率を小さくし、所望の形状の石英ガラス(光学部材を含む)を得ることができた。   Further, when the average primary particle diameter is 7 nm, cracks may occur while the mixture is poured into the mold and dried in the molding step. However, when the average primary particle diameter was in the range of 22 nm or more and 50 nm or less, cracks did not occur during molding, and a good molded product could be obtained. In particular, when the average primary particle diameter is 50 nm, by appropriately adjusting the mixing ratio of silica powder and water, the shrinkage ratio of the molded body in the heat treatment step is reduced, and quartz glass (optical Member).

シリカ粉末の平均一次粒子径を50nmとし、シリカ粉末と水との割合を詳細に検討した試験例11の結果を、表3に示した。表3において、成形工程における成形性が良好であり、加熱処理工程における収縮率(加熱処理工程により得られた石英ガラス(光学部材)の収縮率)が小さかったものをA、成形性や収縮率が中間程度であったものをB、成形性や収縮率に難があったものをCとして示した。   Table 3 shows the results of Test Example 11 in which the average primary particle diameter of the silica powder was 50 nm and the ratio of the silica powder and water was examined in detail. In Table 3, the moldability in the molding process is good, and the shrinkage ratio in the heat treatment process (the shrinkage ratio of the quartz glass (optical member) obtained in the heat treatment process) is A, the moldability and the shrinkage ratio. Was shown as B, and C had difficulty in moldability and shrinkage.

シリカ粉末10質量部に対する水の混合比が6.16質量部であった場合に、得られた混合物が、成形工程における型への注入に最も適した粘度となっていた。また、加熱処理工程において収縮率が小さく、成形体の変形が小さかった。シリカ粉末10質量部に対する水の混合比が6.21質量部であった場合には、6.16質量部の場合と比較して、得られた混合物の粘度がやや低く、加熱処理工程において収縮率がやや大きくなった。シリカ粉末10質量部に対する水の混合比が混合工程完了後6.4質量部であった場合には、得られた混合物の粘度がさらに低く、加熱処理工程において収縮率がさらに大きくなった。シリカ粉末10質量部に対する水の混合比が6.15質量部および6.09であった場合には、6.16質量部の場合と比較して、得られた混合物の粘度がやや高く、成形工程における型への注入がやや難しくなった。シリカ粉末10質量部に対する水の混合比が6.05質量部であった場合には、混合物の粘度が高く、成形工程における型への注入が困難であった。以上より、シリカ粉末の平均一次粒子径を50nmとした場合に、シリカ粉末10質量部に対する水の混合比が6.09質量部以上6.21質量部以下であることがより好ましく、6.16質量部であることが最も好ましいと考えられた。   When the mixing ratio of water to 10 parts by mass of silica powder was 6.16 parts by mass, the obtained mixture had a viscosity most suitable for injection into a mold in the molding process. Further, the shrinkage rate was small in the heat treatment step, and the deformation of the molded body was small. When the mixing ratio of water to 10 parts by mass of silica powder is 6.21 parts by mass, the viscosity of the obtained mixture is slightly lower than that of 6.16 parts by mass, and shrinkage occurs in the heat treatment process. The rate has increased slightly. When the mixing ratio of water with respect to 10 parts by mass of silica powder was 6.4 parts by mass after completion of the mixing process, the viscosity of the obtained mixture was further lowered, and the shrinkage rate was further increased in the heat treatment process. When the mixing ratio of water to 10 parts by mass of silica powder was 6.15 parts by mass and 6.09 parts, the viscosity of the obtained mixture was slightly higher than that of 6.16 parts by mass, and molding was performed. Injection into the mold in the process became somewhat difficult. When the mixing ratio of water with respect to 10 parts by mass of silica powder was 6.05 parts by mass, the viscosity of the mixture was high and it was difficult to inject it into the mold in the molding process. From the above, when the average primary particle diameter of the silica powder is 50 nm, the mixing ratio of water to 10 parts by mass of the silica powder is more preferably from 6.09 parts by mass to 6.21 parts by mass, and 6.16. It was thought that it was the most preferable that it was a mass part.

なお、シリカ粉末10質量部に対する水の混合比が6.05質量部以上6.4質量部以下の範囲内で、加熱処理工程におけるガラス化には問題がなく、透明な石英ガラスを得ることができた。   In addition, when the mixing ratio of water to 10 parts by mass of silica powder is in the range of 6.05 parts by mass to 6.4 parts by mass, there is no problem in vitrification in the heat treatment step, and transparent quartz glass can be obtained. did it.

真空状態でシリカ粉末と水とを攪拌する工程において、水が蒸発するため、得られた混合物において、シリカ粉末に対する水の含有比は、混合開始時のシリカ粉末に対する水の混合比に比べて小さくなっていた。このため、混合物中のシリカ粉末に対する水の割合を、混合工程完了後の割合で管理することが、より好ましいと考えられた。試験例11において、混合工程完了後の、混合物中のシリカ粉末に対する水の含有比を表3に示した。表3より、シリカ粉末の平均一次粒子径を50nmとした場合に、混合工程完了後の、混合物中のシリカ粉末10重量部に対する水の含有比が5.32質量部以上5.67質量部以下であることがより好ましく、5.41質量部であることが最も好ましいと考えられた。   In the step of stirring the silica powder and water in a vacuum state, water evaporates. Therefore, in the obtained mixture, the content ratio of water to the silica powder is smaller than the mixing ratio of water to the silica powder at the start of mixing. It was. For this reason, it was thought that it was more preferable to manage the ratio of the water with respect to the silica powder in a mixture by the ratio after completion of a mixing process. In Test Example 11, the content ratio of water to the silica powder in the mixture after completion of the mixing step is shown in Table 3. From Table 3, when the average primary particle diameter of the silica powder is 50 nm, the content ratio of water to 10 parts by weight of the silica powder in the mixture after completion of the mixing step is 5.32 parts by mass or more and 5.67 parts by mass or less. It was more preferable, and it was thought that it was the most preferable that it was 5.41 mass parts.

なお、試験例11では、混合工程が真空状態でシリカ粉末と水とを攪拌する工程を含んでいたが、ある程度減圧された状態でシリカ粉末と水とを混合する工程を含んでいれば、水が蒸発するため、混合物中のシリカ粉末に対する水の割合を、混合工程完了後の割合で管理することが好ましいといえる。   In Test Example 11, the mixing step included a step of stirring the silica powder and water in a vacuum state. However, if the step of mixing the silica powder and water in a state where the pressure was reduced to some extent, Therefore, it can be said that it is preferable to manage the ratio of water to silica powder in the mixture by the ratio after completion of the mixing step.

Claims (12)

シリカ粉末と水のみを混合して混合物を得る混合工程と、
前記混合物を成形して成形体を得る成形工程と、
前記成形体を加熱処理して石英ガラスを得る加熱処理工程とを含む、石英ガラスの製造方法。
A mixing step of mixing only silica powder and water to obtain a mixture;
A molding step of molding the mixture to obtain a molded body;
A heat treatment step of heat-treating the molded body to obtain quartz glass.
前記シリカ粉末が平均一次粒子径7nm以上100nm以下である、請求項1に記載の石英ガラスの製造方法。   The method for producing quartz glass according to claim 1, wherein the silica powder has an average primary particle diameter of 7 nm or more and 100 nm or less. 前記シリカ粉末が平均一次粒子径7nm以上50nm以下である、請求項1に記載の石英ガラスの製造方法。   The method for producing quartz glass according to claim 1, wherein the silica powder has an average primary particle diameter of 7 nm or more and 50 nm or less. 前記シリカ粉末が平均一次粒子径22nm以上50nm以下である、請求項1に記載の石英ガラスの製造方法。   The method for producing quartz glass according to claim 1, wherein the silica powder has an average primary particle diameter of 22 nm or more and 50 nm or less. 前記シリカ粉末が平均一次粒子径50nmであり、前記水を、前記シリカ粉末10質量部に対して6.09質量部以上6.21質量部以下の割合で混合する、請求項1に記載の石英ガラスの製造方法。   2. The quartz according to claim 1, wherein the silica powder has an average primary particle diameter of 50 nm, and the water is mixed at a ratio of 6.09 parts by mass to 6.21 parts by mass with respect to 10 parts by mass of the silica powder. Glass manufacturing method. 前記混合工程が、前記シリカ粉末と前記水とを減圧下で混合する工程を含む、請求項1から請求項5のいずれか1項に記載の石英ガラスの製造方法。   The method for producing quartz glass according to any one of claims 1 to 5, wherein the mixing step includes a step of mixing the silica powder and the water under reduced pressure. 前記混合工程が、前記シリカ粉末と前記水とを真空状態で混合する工程を含む、請求項1から請求項5のいずれか1項に記載の石英ガラスの製造方法。   The method for producing quartz glass according to any one of claims 1 to 5, wherein the mixing step includes a step of mixing the silica powder and the water in a vacuum state. 前記シリカ粉末が平均一次粒子径50nmであり、
前記混合工程完了後の前記混合物が、前記水を、前記シリカ粉末10質量部に対して5.32質量部以上5.67質量部以下の割合で含有する、請求項6または請求項7に記載の石英ガラスの製造方法。
The silica powder has an average primary particle size of 50 nm,
The said mixture after completion of the said mixing process contains the said water in the ratio of 5.32 mass parts or more and 5.67 mass parts or less with respect to 10 mass parts of said silica powder. Method for producing quartz glass.
前記加熱処理工程が、第1の昇温速度で所定温度まで昇温させる第1昇温工程と、前記第1昇温工程の後に、前記第1の昇温速度よりも緩やかな第2の昇温速度で昇温させる第2の昇温工程とを含む、請求項1から請求項8のいずれか1項に記載の石英ガラスの製造方法。   The heat treatment step includes a first temperature raising step for raising the temperature to a predetermined temperature at a first temperature raising rate, and a second temperature rise that is slower than the first temperature raising rate after the first temperature raising step. The manufacturing method of the quartz glass of any one of Claim 1-8 including the 2nd temperature rising process heated up at a temperature rate. 前記所定温度が900℃以上1000℃以下であり、
前記第1の昇温速度が、10℃/min以上15℃/min以下であり、
前記第2の昇温速度が3℃/minである、請求項9に記載の石英ガラスの製造方法。
The predetermined temperature is 900 ° C. or higher and 1000 ° C. or lower,
The first temperature rising rate is 10 ° C./min or more and 15 ° C./min or less,
The manufacturing method of the quartz glass of Claim 9 whose said 2nd temperature increase rate is 3 degrees C / min.
前記加熱処理工程において、加熱処理を不活性ガス雰囲気下で行う、請求項1から請求項10のいずれか1項に記載の石英ガラスの製造方法。   The method for producing quartz glass according to any one of claims 1 to 10, wherein in the heat treatment step, the heat treatment is performed in an inert gas atmosphere. 前記石英ガラスが光学部材であって、
前記成形工程において、前記光学部材の形状に対応する形状を有する型を用いて成形を行う、請求項1から請求項11のいずれか1項に記載の石英ガラスの製造方法。
The quartz glass is an optical member,
The method for producing quartz glass according to any one of claims 1 to 11, wherein in the molding step, molding is performed using a mold having a shape corresponding to the shape of the optical member.
JP2019048373A 2018-03-29 2019-03-15 Quartz glass manufacturing method Active JP7213110B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018064310 2018-03-29
JP2018064310 2018-03-29

Publications (2)

Publication Number Publication Date
JP2019172562A true JP2019172562A (en) 2019-10-10
JP7213110B2 JP7213110B2 (en) 2023-01-26

Family

ID=68170465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019048373A Active JP7213110B2 (en) 2018-03-29 2019-03-15 Quartz glass manufacturing method

Country Status (1)

Country Link
JP (1) JP7213110B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232239A (en) * 1985-04-05 1986-10-16 Seiko Epson Corp Production of porous glass
JPH042625A (en) * 1990-04-19 1992-01-07 Tosoh Corp Production of highly homogeneous silica glass
JPH04219333A (en) * 1990-03-15 1992-08-10 Tosoh Corp Production of quartz glass
JP2001199733A (en) * 2000-01-12 2001-07-24 Shin Etsu Chem Co Ltd Method for producing synthetic quartz glass member
JP2002145633A (en) * 2000-11-08 2002-05-22 Tokuyama Corp Quartz glass precursor and method of manufacturing for the same
JP2003252634A (en) * 2002-02-27 2003-09-10 Degussa Ag Dispersion liquid containing silicon - titanium mixed oxide powder, its manufacturing method, molded form manufactured from it, its manufacturing method, glass molded form, its manufacturing method and its use
JP2018035018A (en) * 2016-08-30 2018-03-08 住友化学株式会社 Dried compact and production method of silica glass

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232239A (en) * 1985-04-05 1986-10-16 Seiko Epson Corp Production of porous glass
JPH04219333A (en) * 1990-03-15 1992-08-10 Tosoh Corp Production of quartz glass
JPH042625A (en) * 1990-04-19 1992-01-07 Tosoh Corp Production of highly homogeneous silica glass
JP2001199733A (en) * 2000-01-12 2001-07-24 Shin Etsu Chem Co Ltd Method for producing synthetic quartz glass member
JP2002145633A (en) * 2000-11-08 2002-05-22 Tokuyama Corp Quartz glass precursor and method of manufacturing for the same
JP2003252634A (en) * 2002-02-27 2003-09-10 Degussa Ag Dispersion liquid containing silicon - titanium mixed oxide powder, its manufacturing method, molded form manufactured from it, its manufacturing method, glass molded form, its manufacturing method and its use
JP2018035018A (en) * 2016-08-30 2018-03-08 住友化学株式会社 Dried compact and production method of silica glass

Also Published As

Publication number Publication date
JP7213110B2 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
CN105198449B (en) A kind of preparation method of the high ceramic of compact of Stereolithography
JPWO2008069194A1 (en) Synthetic opaque quartz glass and method for producing the same
JP2858637B2 (en) Method for producing fused silica glass product
JP2014015389A (en) Method for producing transparent silica glass product
CN108996998A (en) A kind of composition and the method for preparing crystalline ceramics
JP2009530217A (en) Production of large articles with synthetic vitreous silica
CN109626967A (en) A kind of vacuum degreasing method of photocuring 3D printing aluminium oxide ceramics biscuit
JP4341277B2 (en) Method of forming quartz glass
JP2019172562A (en) Manufacturing method of quartz glass
KR20180025719A (en) Method For Preparing Fused Silica Sintered Material Using Gel-Casting Process
US6698054B2 (en) Method for fabricating high-purity silica glass using sol-gel processing
JP4452059B2 (en) Method for producing opaque silica glass molded body
JP2010070432A (en) Method for processing highly homogenous material
US20010003910A1 (en) Method for fabricating high-purity silica glass using sol-gel processing
JP2010265124A (en) Heat-treatment method of glass optical member and method for manufacturing glass optical element
CN109970450A (en) A kind of light sensitive ceramics liquid and its ceramic member for 3D printing
JP5185213B2 (en) Method for producing plasma-resistant fluoride sintered body
JP2018090440A (en) Method for manufacturing optical component having acute part
JPS63268536A (en) Core molding composition
JPH042625A (en) Production of highly homogeneous silica glass
JP5963345B2 (en) Method for manufacturing sintered body
JP2004123439A (en) Process for manufacturing optical glass
JP6913405B1 (en) Manufacturing method of molded product
JP4655761B2 (en) Pretreatment method of quartz glass and molding method of quartz glass
KR100643348B1 (en) Cold mold solution, and a molding method using thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230116

R150 Certificate of patent or registration of utility model

Ref document number: 7213110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150