JP2004123439A - Process for manufacturing optical glass - Google Patents

Process for manufacturing optical glass Download PDF

Info

Publication number
JP2004123439A
JP2004123439A JP2002289113A JP2002289113A JP2004123439A JP 2004123439 A JP2004123439 A JP 2004123439A JP 2002289113 A JP2002289113 A JP 2002289113A JP 2002289113 A JP2002289113 A JP 2002289113A JP 2004123439 A JP2004123439 A JP 2004123439A
Authority
JP
Japan
Prior art keywords
glass
glass body
mold
porous
porous glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002289113A
Other languages
Japanese (ja)
Inventor
Shuichi Toko
都甲 秀一
Takafumi Kajima
鹿嶋 孝文
Koichi Harada
原田 光一
Takashi Moriyama
森山 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2002289113A priority Critical patent/JP2004123439A/en
Publication of JP2004123439A publication Critical patent/JP2004123439A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1469Means for changing or stabilising the shape or form of the shaped article or deposit
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/049Re-forming tubes or rods by pressing
    • C03B23/0493Re-forming tubes or rods by pressing in a longitudinal direction, e.g. for upsetting or extrusion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/051Re-forming tubes or rods by gravity, e.g. sagging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process for efficiently manufacturing an optical glass with few defects. <P>SOLUTION: In the manufacturing process of the optical glass, a porous glass body 1 prepared by depositing glass fine particles is heated, and the resulting transparent glass body is introduced into a mold 11 and molded. During or after conversion of the porous glass body 1 into the transparent glass, the porous glass body 1 and/or the transparent glass body is heated while being pressure-welded to the mold 11 and molded. This enables introduction of the porous glass body 1 and/or the transparent glass body into the mold 11 only by pressure welding without decreasing their viscosity to cause their melting and therefore suppresses formation of defects or defective precursors to improve ultraviolet transmittance of the obtained optical glass. Moreover, a high productivity is achieved by conducting the conversion of the porous glass body 1 into the transparent glass and its introduction into the mold in a single step. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は紫外域(UV)や真空紫外域(VUV)の光の伝送系に使用される石英系光学ガラスの製造方法に関する。
【0002】
【従来の技術】
レンズやプリズム等に利用される光学ガラスは、バーナにより合成されたガラス微粒子を、支持体となる出発部材上に堆積させ、直接法やVAD法を用いてガラスインゴットを製造し、このガラスインゴットを、溶融法、ホットプレス法、延伸法などの成型手法を用いて所望の形状に成型することにより、製造されている。
ここで、直接法とは、出発部材上にガラス微粒子を堆積させながらこれを直接溶融して透明ガラス化てガラスインゴットを製造する方法であり、また、VAD法とは、ガラス微粒子を出発部材上に堆積させることにより、一旦、白色不透明の多孔質ガラス体を製造し、この多孔質ガラス体を加熱して透明ガラス化てガラスインゴットを製造する方法である。
【0003】
エキシマレーザ装置の光学系等に用いられるようなUV、VUV用の光学ガラスにおいては、紫外透過率が高いことが必要である。製造時の加熱や、透明ガラス化の際の収縮力により、ガラスネットワーク構造の一部の結合が完全に切断されて、常磁性の欠陥が生じたり、ネットワーク構造の一部に歪が加わって、極めて切断されやすい状態(欠陥前駆体)になったりすることがあり、このような欠陥や欠陥前駆体は、紫外透過率を低下させるので、従来、フッ素の添加(ドープ)により、ガラスの一部を活性化エネルギーが高く、切断されにくいSi−F結合で置き換え、欠陥や欠陥前駆体の発生を抑制することも行われている。
【0004】
ところで、ガラスインゴットの製造後、室温まで徐冷し、再度加熱して溶融させて成型する従来の製造方法では、工数が多く、ガラスの溶融回数が増えることで消費エネルギーも増大しやすい。このため、多孔質ガラス体を透明ガラス化した後、1750〜1850℃の温度に加熱して溶融させ、得られた溶融ガラスを型に流し込んで成型する方法が提案されている(例えば、特許文献1、特許文献2参照)。
【0005】
【特許文献1】
特開平05−270848号公報
【特許文献2】
特開2001−199733号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記特許文献1、2に記載の製造方法では、ガラスを型に流し込める粘度まで溶融温度を挙げると、昇華が激しく、ガラスの損失量が多くなる。また、成型後の徐冷条件をうまく制御しないと、欠陥や欠陥前駆体が残留したまま固化し、得られる光学ガラスの紫外透過性が劣化するおそれがある。このため、実施が困難であり、改善が求められていた。
【0007】
本発明は、上記事情に鑑みてなされたものであり、欠陥の少ない光学ガラスを効率よく製造可能な光学ガラスの製造方法を提供することを課題とする。
【0008】
【課題を解決するための手段】
前記課題を解決するため、本発明は、多孔質ガラス体を型に圧接させながら加熱して、透明ガラス化することを特徴とする光学ガラスの製造方法を提供する。これにより、透明ガラス化の際、多孔質ガラス体に表面張力や収縮力が働きにくくなり、ガラス内部の応力を低下させて、欠陥や欠陥前駆体の生成を抑制することができる。
【0009】
また、本発明は、多孔質ガラス体を加熱して透明ガラス体とし、得られた透明ガラス体を型に圧接させながら加熱して成型することを特徴とする光学ガラスの製造方法を提供する。これにより、ガラスを溶融させることなく、透明ガラス化と成型とを一工程にて行うことができ、欠陥の少ない光学ガラスを効率よく製造することができる。
【0010】
さらに本発明は、多孔質ガラス体を型に圧接させながら加熱して透明ガラス化し、得られた透明ガラス体を型に圧接させながら加熱して成型することを特徴とする光学ガラスの製造方法を提供する。これにより、多孔質ガラス体内部の応力を低下させて、欠陥や欠陥前駆体の生成を抑制するとともに、ガラスを溶融させることなく、透明ガラス化に引き続いて成型を一工程にて行うことができ、極めて欠陥の少ない光学ガラスを効率よく製造することができる。
【0011】
【発明の実施の形態】
以下、実施の形態に基づいて、本発明を詳しく説明する。
図1は、多孔質ガラス体を製造する装置の一例を示す概略図である。この装置は、VAD法により多孔質ガラス体1を製造する装置であり、バーナ2と、該バーナ2により合成されたガラス微粒子を堆積させるための略円柱状の出発部材3を具備するものである。
【0012】
バーナ2は、SiCl等のガラス原料ガスを、酸水素火炎等の火炎中で燃焼させ、ガラス微粒子を合成するものである。また、出発部材3は、カーボン、炭化ケイ素(SiC)、石英ガラスなどの耐熱性材料からなり、不図示の駆動装置により、軸回転および上下動可能になっている。
このような装置を用い、出発部材3を軸回転させるとともに徐々に引き上げながら、バーナ2により合成されたガラス微粒子を出発部材3上に堆積させることにより、多孔質ガラス体1を形成することができる。
【0013】
図2は、多孔質ガラス体1から光学ガラスを製造する装置の一例を示す図である。この装置は、少なくとも、多孔質ガラス体1を加熱するための加熱炉10と、耐熱性カーボンなどからなる型11と、型11を昇降させる昇降台12とを具備している。図示はしないが、さらに、多孔質ガラス体1を出発部材3ごと把持する把持手段と、加熱炉10内にHe、Ar等の不活性ガスや、SiF、SF、CF等のフッ素系ガスを供給するガス供給手段を備えている。
【0014】
加熱炉10としては、傾斜炉を用いることも可能であるが、多孔質ガラス体1を全長に亘って均一に加熱することができる均熱炉を用いることが好ましい。
また、昇降台12は、把持手段の下方に配置され、これにより、把持手段に把持された多孔質ガラス体1の下部を、昇降台12上に設置された型11の底面に押し付けて加圧することができるようになっている。
【0015】
この装置を用いることにより、光学ガラスは、例えば、以下の手順により製造することができる。
まず、把持手段に多孔質ガラス体1を把持させ、昇降台12上に型11を設置する。型11と多孔質ガラス体1との間に不均等な力が働くと、多孔質ガラス体1が出発部材3から外れる等の不都合を来たすおそれがあるので、型11の中心は、出発部材3の軸の延長線にごく近い位置に配置することが好ましい。
【0016】
次いで、加熱炉10内にフッ素系ガスを流し、多孔質ガラス体1内にSiF、SF、CF等のフッ素系ガスを十分飽和させ、加熱してフッ素をドープする。フッ素のドープに要する加熱温度は、多孔質ガラス体1の透明ガラス化が起こると、ドープ効率が低下するので、透明ガラス化の温度より低くすることが好ましく、例えば、700〜1200℃とすることが好ましい。
【0017】
次いで、昇降台12を上昇させて、多孔質ガラス体1の下部に型11の内底面を当接させ、圧力を掛けた状態で、加熱炉10により多孔質ガラス体1を加熱して透明ガラス化する。
透明ガラス化の際の加熱炉10内の雰囲気は、HeやArなどの不活性ガスに置換してフッ素系ガスをパージしてもよく、あるいは、フッ素系ガスを含むものを用いてもよい。フッ素系ガスを含む雰囲気ガスを用いた場合、ガラスからフッ素が離脱することを抑制することができる。
【0018】
透明ガラス化の加熱温度は、1200〜1800℃の範囲内とすることが好ましく、多孔質ガラス体1に加えられる圧力は、約2000Pa〜約10MPaの範囲内とすることが好ましい。
加熱温度が1200℃未満であると、ガラスが十分に軟化せず、加圧しても変形しにくい。また、1800℃を超えると、ガラスの昇華が進み、ワークが減ってしまう。また、冷却条件を上手く制御しないと紫外透過性の低下のおそれがあるのでので好ましくない。
圧力が約2000Pa未満だと、軟化したガラスを変形させる効率が悪く、約10MPaを超えると、多孔質ガラス体1や出発部材3等に過剰な負荷が掛かり、破損するおそれがあるので好ましくない。
また、この圧力は、多孔質ガラス体1の透明ガラス化の進行に伴って、徐々に高くすることが好ましい。透明ガラス化があまり進行していないうちに高い圧力を加えると、多孔質ガラス体1が破損したり、出発部材3から剥がれたりすることがあり、好ましくない。
【0019】
さらに、透明ガラス化後も、得られた透明ガラス体を加熱しながら昇降台12を徐々に上昇させてさらに高い圧力を加え、軟化させて変形させ、型11に収める。この際、昇降台12を用いて型11を上下動させ、ガラスに気泡が入らない程度に穏やかにこねるようにすると、ガラスの均質化が促され、好ましい。
軟化して型11に入ったガラスの上面がほぼなだらかになったら加熱を停止し、徐冷することにより光学ガラスを得ることができる。
【0020】
透明ガラス化後の変形の際の加熱温度は、1200〜1800℃の範囲が好ましい。ガラスが十分に軟化せず、加圧しても変形しにくい。また、1800℃を超えると、ガラスの昇華が進み、ワークが減ってしまう。また、欠陥や欠陥前駆体が発生しやすくなり、冷却条件を上手く制御しないと紫外透過性の低下のおそれがあるので好ましくない。
また、透明ガラス体に加える圧力は、約2000Pa〜約10MPaの範囲内とすることが好ましい。圧力が約2000Pa未満だと、軟化したガラスを変形させる効率が悪く、約10MPaを超えると、透明ガラス体や出発部材3等に過剰な負荷が掛かり、破損するおそれがあるので好ましくない。
【0021】
本実施の形態の光学ガラスの製造方法によれば、多孔質ガラスや透明ガラス体が溶融するほど低粘度にしなくても、型に接しさせて圧縮することにより、型入れすることができる。また、透明ガラス化の際、多孔質ガラス体1の径方向の収縮が抑制される。これにより、ガラスの内部構造に無理な力が働きにくくなり、欠陥や欠陥前駆体の生成が抑制され、得られる光学ガラスの紫外透過性が向上する。しかも、多孔質ガラス体の透明化と型入れとを一工程で行うことができるので、工数を削減し、製造効率を向上し、高い生産性を達成することができる。
【0022】
次に、本発明の第2の実施の形態を説明する。この実施の形態においては、図3、図4に示すように、出発部材3にフランジ3aが形成されている。
多孔質ガラス体1を形成する際には、図3に示すように、ガラス微粒子がフランジ3aの下面から堆積するようにする。
これにより、多孔質ガラス体1の透明化の際には、図4に示すように、多孔質ガラス体1は、型11とフランジ3aとに挟まれて押圧されるようになるので、効果的に加圧することができる。しかも、多孔質ガラス体1と出発部材3との境界面で破壊が起こって、多孔質ガラス体1が外れることが抑制される。
【0023】
以上、本発明を好適な実施の形態に基づいて説明してきたが、本発明はこの実施の形態のみに限定されるものではなく本発明の要旨を逸脱しない範囲で種々の改変が可能である。
例えば、上記実施の形態においては、多孔質ガラス体1を透明ガラス化するときから型11への圧接を行ったが、特にこれに限定されるものではなく、まず、型11に圧接することなく透明ガラス化を行い、さらに透明ガラス体を加熱して型11に圧接して成型することも可能である。これにより、透明ガラス化と成型を一工程にて行い、生産性を向上できるのは勿論のこと、型11への圧接を透明ガラス化後のみに行うことにより、圧力の制御が容易になる。
【0024】
次に、実施例を用いて本発明をより具体的に説明する。
VAD法により製造された多孔質ガラス体1を把持手段により把持し、加熱炉10を1100℃に昇温した。そして、1100℃で5時間維持したあと、加熱炉10内をSiFとHeの混合ガス雰囲気(モル比10:90)とし、1100℃で10時間保ってフッ素をドープした。
【0025】
雰囲気をHeに置換したのち、型11を上昇させて多孔質ガラス体1の下部に当接させ、10000Paの圧力を加えた。ここで、型11は、内底面が直径200mmのものである。
5時間かけて1300℃に温度を上昇させ、この間に圧力を上昇させて0.1MPaまで上げた。温度1300℃、当接圧0.1MPaにて約2時間保ち、透明ガラス化した。
【0026】
一時間かけて温度を1600℃まで上昇させ、さらに1600℃にて40分間保った。この間、当接圧は0.2MPaであった。
この後、加圧を停止し、型11内の軟化ガラスの上表面がなだらかに落ち着いたところで加熱を停止し、加熱炉10内で室温まで自然冷却により徐冷して、固化後、型11から分離することにより、光学ガラスを製造した。
得られた光学ガラスの紫外線透過率を測定したところ、波長180〜200nmにおいて、99.5%以上であり、紫外線透過率が極めて高いものであった。
【0027】
【発明の効果】
以上説明したように、本発明の光学ガラスの製造方法は、ガラス微粒子の堆積により製造された多孔質ガラス体の透明ガラス化の際および/または透明ガラス化後、多孔質ガラス体および/または透明ガラス体を加熱しながら、前記型に圧接することにより成型するものであるので、多孔質ガラス体および/または透明ガラス体が溶融するほど低粘度にしなくても、型に接しさせて圧縮することにより、型入れすることができる。このため、欠陥や欠陥前駆体の生成が抑制され、得られる光学ガラスの紫外透過性が向上する。しかも、多孔質ガラス体の透明化と型入れとを一工程で行うことができるので、製造効率を向上し、高い生産性を達成することができる。
【図面の簡単な説明】
【図1】第1の実施の形態において、多孔質ガラス体を製造する装置の概略を示す正面図である。
【図2】第1の実施の形態において、多孔質ガラス体を透明ガラス化する装置の概略を示す縦断面図である。
【図3】第2の実施の形態において、多孔質ガラス体を製造する装置の概略を示す正面図である。
【図4】第2の実施の形態において、多孔質ガラス体を透明ガラス化する装置の概略を示す縦断面図である。
【符号の説明】
1…多孔質ガラス体、10…加熱炉、11…型。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a silica-based optical glass used in a transmission system of light in an ultraviolet region (UV) or a vacuum ultraviolet region (VUV).
[0002]
[Prior art]
Optical glass used for lenses, prisms, etc. is obtained by depositing glass fine particles synthesized by a burner on a starting member serving as a support, manufacturing a glass ingot using a direct method or a VAD method, and manufacturing the glass ingot. It is manufactured by molding into a desired shape using a molding method such as a melting method, a hot press method, and a stretching method.
Here, the direct method is a method of manufacturing a glass ingot by directly melting glass particles while depositing the glass particles on a starting member to produce a glass ingot, and the VAD method is a method of depositing glass particles on the starting member. In this method, a white and opaque porous glass body is once produced by depositing the porous glass body, and the porous glass body is heated to be transparently vitrified to produce a glass ingot.
[0003]
UV and VUV optical glasses used in optical systems of excimer laser devices need to have high ultraviolet transmittance. Due to heating during manufacturing and shrinkage force during transparent vitrification, some bonds in the glass network structure are completely cut, causing paramagnetic defects or straining the network structure, In some cases, the glass may be extremely easily cut (defect precursor), and such defects and defect precursors reduce the ultraviolet transmittance. Is replaced by a Si—F bond that has a high activation energy and is not easily broken, thereby suppressing the generation of defects and defect precursors.
[0004]
By the way, in the conventional manufacturing method in which the glass ingot is gradually cooled to room temperature after being manufactured, heated again, melted, and molded, the number of steps is increased, and the number of times of melting of the glass is increased. For this reason, a method has been proposed in which a porous glass body is turned into a transparent glass, then heated to a temperature of 1750 to 1850 ° C. and melted, and the obtained molten glass is poured into a mold and molded. 1, see Patent Document 2).
[0005]
[Patent Document 1]
JP 05-270848 A [Patent Document 2]
JP 2001-199733 A
[Problems to be solved by the invention]
However, in the production methods described in Patent Documents 1 and 2, if the melting temperature is raised to a level at which the glass can be poured into a mold, sublimation is severe, and the amount of glass loss increases. In addition, if the slow cooling conditions after molding are not properly controlled, defects and defect precursors may remain and solidify, and the ultraviolet transmittance of the obtained optical glass may be deteriorated. For this reason, implementation was difficult and improvement was required.
[0007]
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method for manufacturing an optical glass capable of efficiently manufacturing an optical glass having few defects.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a method for producing an optical glass, which comprises heating a porous glass body while pressing the porous glass body against a mold to form a transparent glass. This makes it difficult for the surface tension and shrinkage force to act on the porous glass body during the formation of the transparent glass, thereby reducing the stress inside the glass and suppressing the generation of defects and defect precursors.
[0009]
The present invention also provides a method for producing an optical glass, comprising heating a porous glass body to form a transparent glass body, and heating and molding the obtained transparent glass body while pressing the transparent glass body against a mold. Thereby, the transparent vitrification and molding can be performed in one step without melting the glass, and the optical glass with few defects can be efficiently manufactured.
[0010]
Further, the present invention provides a method for producing an optical glass, which comprises heating a porous glass body while pressing it against a mold to form a transparent glass, and heating and molding the resulting transparent glass body while pressing it against the mold. provide. As a result, the stress in the porous glass body is reduced, the generation of defects and defect precursors is suppressed, and the molding can be performed in one step following the vitrification without melting the glass. An optical glass with very few defects can be efficiently manufactured.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail based on embodiments.
FIG. 1 is a schematic view showing an example of an apparatus for producing a porous glass body. This apparatus is an apparatus for producing a porous glass body 1 by a VAD method, and includes a burner 2 and a substantially cylindrical starting member 3 for depositing glass fine particles synthesized by the burner 2. .
[0012]
The burner 2 synthesizes glass fine particles by burning a glass raw material gas such as SiCl 4 in a flame such as an oxyhydrogen flame. The starting member 3 is made of a heat-resistant material such as carbon, silicon carbide (SiC), and quartz glass, and is rotatable about a shaft and vertically movable by a driving device (not shown).
Using such an apparatus, the porous glass body 1 can be formed by depositing the glass fine particles synthesized by the burner 2 on the starting member 3 while rotating the starting member 3 while gradually rotating the shaft. .
[0013]
FIG. 2 is a view showing an example of an apparatus for producing optical glass from the porous glass body 1. As shown in FIG. The apparatus includes at least a heating furnace 10 for heating the porous glass body 1, a mold 11 made of heat-resistant carbon or the like, and a lift 12 for moving the mold 11 up and down. Although not shown, a holding means for holding the porous glass body 1 together with the starting member 3 and an inert gas such as He, Ar, or a fluorine-based material such as SiF 4 , SF 6 , CF 4 in the heating furnace 10. Gas supply means for supplying gas is provided.
[0014]
As the heating furnace 10, an inclined furnace can be used, but it is preferable to use a soaking furnace capable of uniformly heating the porous glass body 1 over its entire length.
Further, the elevator 12 is disposed below the gripping means, whereby the lower part of the porous glass body 1 gripped by the gripper is pressed against the bottom surface of the mold 11 installed on the elevator 12 to pressurize. You can do it.
[0015]
By using this apparatus, the optical glass can be manufactured, for example, by the following procedure.
First, the porous glass body 1 is gripped by the gripping means, and the mold 11 is placed on the lift 12. When an uneven force acts between the mold 11 and the porous glass body 1, there is a possibility that the porous glass body 1 may come off the starting member 3 or the like. It is preferable to dispose it at a position very close to the extension of the axis.
[0016]
Next, a fluorine-based gas is flowed into the heating furnace 10, and the fluorine-based gas such as SiF 4 , SF 6 , and CF 4 is sufficiently saturated in the porous glass body 1, and heated to dope fluorine. The heating temperature required for the doping of fluorine is preferably lower than the temperature of the vitrification, for example, 700 to 1200 ° C., because when the vitrification of the porous glass body 1 occurs, the doping efficiency decreases. Is preferred.
[0017]
Next, the lifting table 12 is raised to bring the inner bottom surface of the mold 11 into contact with the lower portion of the porous glass body 1, and the porous glass body 1 is heated by the heating furnace 10 while applying pressure to the transparent glass body 1. Become
The atmosphere in the heating furnace 10 during the vitrification may be replaced with an inert gas such as He or Ar and purged with a fluorine-based gas, or a gas containing a fluorine-based gas may be used. When an atmosphere gas containing a fluorine-based gas is used, the release of fluorine from the glass can be suppressed.
[0018]
The heating temperature for the vitrification is preferably in the range of 1200 to 1800 ° C., and the pressure applied to the porous glass body 1 is preferably in the range of about 2000 Pa to about 10 MPa.
When the heating temperature is lower than 1200 ° C., the glass does not sufficiently soften and is not easily deformed even when pressed. On the other hand, when the temperature exceeds 1800 ° C., the sublimation of the glass proceeds, and the number of works decreases. Further, if the cooling conditions are not properly controlled, there is a possibility that the ultraviolet transmittance may decrease, which is not preferable.
If the pressure is less than about 2000 Pa, the efficiency of deforming the softened glass is poor, and if it exceeds about 10 MPa, an excessive load is applied to the porous glass body 1 and the starting member 3 and the like, which is not preferable because the glass may be broken.
Further, it is preferable that the pressure is gradually increased as the vitrification of the porous glass body 1 proceeds. If a high pressure is applied while the vitrification is not progressing very much, the porous glass body 1 may be damaged or peeled off from the starting member 3, which is not preferable.
[0019]
Further, even after the vitrification, the elevating table 12 is gradually raised while heating the obtained transparent glass body, and a higher pressure is applied to soften and deform the glass body. At this time, it is preferable to move the mold 11 up and down by using the elevating table 12 so as to gently knead the glass so that air bubbles do not enter the glass, because homogenization of the glass is promoted.
When the upper surface of the glass that has softened and entered the mold 11 becomes substantially gentle, the heating is stopped, and the glass is gradually cooled to obtain an optical glass.
[0020]
The heating temperature at the time of deformation after transparent vitrification is preferably in the range of 1200 to 1800 ° C. The glass does not soften sufficiently and does not easily deform even when pressed. On the other hand, when the temperature exceeds 1800 ° C., the sublimation of the glass proceeds, and the number of works decreases. In addition, defects and defect precursors are likely to be generated, and if the cooling conditions are not properly controlled, the ultraviolet transmittance may decrease, which is not preferable.
Further, the pressure applied to the transparent glass body is preferably in the range of about 2000 Pa to about 10 MPa. If the pressure is less than about 2000 Pa, the efficiency of deforming the softened glass is poor, and if it exceeds about 10 MPa, an excessive load is applied to the transparent glass body and the starting member 3 and the like, which is not preferable because the glass may be broken.
[0021]
According to the method for producing an optical glass of the present embodiment, even if the porous glass or the transparent glass body does not have such a low viscosity as to be melted, it can be molded by being brought into contact with a mold and compressed. Further, during the vitrification, the shrinkage of the porous glass body 1 in the radial direction is suppressed. This makes it difficult for excessive force to act on the internal structure of the glass, suppresses generation of defects and defect precursors, and improves the ultraviolet transmittance of the obtained optical glass. Moreover, since the transparent glass body can be made transparent and molded in one step, the number of steps can be reduced, the production efficiency can be improved, and high productivity can be achieved.
[0022]
Next, a second embodiment of the present invention will be described. In this embodiment, as shown in FIGS. 3 and 4, the starting member 3 is formed with a flange 3a.
When forming the porous glass body 1, as shown in FIG. 3, glass fine particles are deposited from the lower surface of the flange 3a.
Thereby, when the porous glass body 1 is made transparent, the porous glass body 1 is pressed between the mold 11 and the flange 3a as shown in FIG. Can be pressurized. In addition, breakage at the interface between the porous glass body 1 and the starting member 3 and detachment of the porous glass body 1 are suppressed.
[0023]
As described above, the present invention has been described based on the preferred embodiments. However, the present invention is not limited to only the embodiments, and various modifications can be made without departing from the gist of the present invention.
For example, in the above-described embodiment, the pressure contact with the mold 11 was performed when the porous glass body 1 was turned into a transparent glass. However, the present invention is not particularly limited to this. It is also possible to carry out transparent vitrification, further heat the transparent glass body and press it against the mold 11 for molding. Thereby, the vitrification and molding can be performed in one step to improve the productivity, and the pressure can be easily controlled by pressing the mold 11 only after the vitrification.
[0024]
Next, the present invention will be described more specifically with reference to examples.
The porous glass body 1 produced by the VAD method was gripped by the gripping means, and the temperature of the heating furnace 10 was raised to 1100 ° C. Then, after maintaining at 1100 ° C. for 5 hours, the inside of the heating furnace 10 was set to a mixed gas atmosphere of SiF 4 and He (molar ratio: 10:90), and kept at 1100 ° C. for 10 hours to dope with fluorine.
[0025]
After replacing the atmosphere with He, the mold 11 was raised to abut against the lower portion of the porous glass body 1, and a pressure of 10,000 Pa was applied. Here, the mold 11 has an inner bottom surface having a diameter of 200 mm.
The temperature was increased to 1300 ° C. over 5 hours, during which time the pressure was increased to 0.1 MPa. It was kept at a temperature of 1300 ° C. and a contact pressure of 0.1 MPa for about 2 hours to form a transparent glass.
[0026]
The temperature was raised to 1600 ° C. over one hour and kept at 1600 ° C. for 40 minutes. During this time, the contact pressure was 0.2 MPa.
Thereafter, the pressurization was stopped, and when the upper surface of the softened glass in the mold 11 was settled down gently, the heating was stopped. The mixture was gradually cooled to room temperature in the heating furnace 10 and solidified. By separating, an optical glass was manufactured.
When the ultraviolet transmittance of the obtained optical glass was measured, it was 99.5% or more at a wavelength of 180 to 200 nm, and the ultraviolet transmittance was extremely high.
[0027]
【The invention's effect】
As described above, the method for producing an optical glass according to the present invention provides a method for producing a porous glass body and / or a transparent glass body at the time of and / or after the vitrification of a porous glass body produced by depositing glass fine particles. Since the glass body is molded by being pressed against the mold while being heated, the porous body and / or the transparent glass body need not be so low in viscosity as to be melted, and should be brought into contact with the mold and compressed. With this, it is possible to mold. For this reason, generation of defects and defect precursors is suppressed, and the ultraviolet transmittance of the obtained optical glass is improved. Moreover, since the transparent glass body can be made transparent and molded in one step, the production efficiency can be improved, and high productivity can be achieved.
[Brief description of the drawings]
FIG. 1 is a front view schematically showing an apparatus for producing a porous glass body in a first embodiment.
FIG. 2 is a longitudinal sectional view schematically showing an apparatus for turning a porous glass body into a transparent glass in the first embodiment.
FIG. 3 is a front view schematically showing an apparatus for producing a porous glass body in a second embodiment.
FIG. 4 is a longitudinal sectional view schematically showing an apparatus for turning a porous glass body into a transparent glass in the second embodiment.
[Explanation of symbols]
1 ... porous glass body, 10 ... heating furnace, 11 ... mold.

Claims (3)

多孔質ガラス体を型に圧接させながら加熱して透明ガラス化することを特徴とする光学ガラスの製造方法。A method for producing an optical glass, comprising heating a porous glass body while pressing it against a mold to form a transparent glass. 多孔質ガラス体を加熱して透明ガラス化し、さらに、型に圧接させながら加熱して成型することを特徴とする光学ガラスの製造方法。A method for producing an optical glass, comprising heating a porous glass body to form a transparent glass, and further heating and molding while pressing against a mold. 多孔質ガラス体を型に圧接させながら加熱して透明ガラス化し、さらに、型に圧接させながら加熱して成型することを特徴とする光学ガラスの製造方法。A method for producing an optical glass, comprising heating a porous glass body while pressing it against a mold to form a transparent glass, and further heating and molding while pressing the porous glass body against the mold.
JP2002289113A 2002-10-01 2002-10-01 Process for manufacturing optical glass Withdrawn JP2004123439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002289113A JP2004123439A (en) 2002-10-01 2002-10-01 Process for manufacturing optical glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002289113A JP2004123439A (en) 2002-10-01 2002-10-01 Process for manufacturing optical glass

Publications (1)

Publication Number Publication Date
JP2004123439A true JP2004123439A (en) 2004-04-22

Family

ID=32281419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002289113A Withdrawn JP2004123439A (en) 2002-10-01 2002-10-01 Process for manufacturing optical glass

Country Status (1)

Country Link
JP (1) JP2004123439A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193369A (en) * 2005-01-13 2006-07-27 Shin Etsu Chem Co Ltd Method and apparatus for processing quartz glass bar and carbon tool used for the same
JP2006256952A (en) * 2005-02-18 2006-09-28 Asahi Glass Co Ltd Method for producing synthetic quartz glass, jig for synthetic quartz glass production, and synthetic quartz glass for optical member
EP3299345A1 (en) * 2016-09-22 2018-03-28 Heraeus Quarzglas GmbH & Co. KG Method for producing an optical blank from synthetic quartz glass
CN114804614A (en) * 2022-05-31 2022-07-29 武汉烽火锐拓科技有限公司 Manufacturing method of optical glass material and melting homogenization equipment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193369A (en) * 2005-01-13 2006-07-27 Shin Etsu Chem Co Ltd Method and apparatus for processing quartz glass bar and carbon tool used for the same
JP4583938B2 (en) * 2005-01-13 2010-11-17 信越化学工業株式会社 Method and apparatus for processing quartz glass rod
JP2006256952A (en) * 2005-02-18 2006-09-28 Asahi Glass Co Ltd Method for producing synthetic quartz glass, jig for synthetic quartz glass production, and synthetic quartz glass for optical member
EP3299345A1 (en) * 2016-09-22 2018-03-28 Heraeus Quarzglas GmbH & Co. KG Method for producing an optical blank from synthetic quartz glass
CN107867798A (en) * 2016-09-22 2018-04-03 贺利氏石英玻璃有限两合公司 The method that optical blank is produced from synthetic quartz glass
US10807901B2 (en) 2016-09-22 2020-10-20 Heraeus Quarzglas Gmbh & Co. Kg Method for producing an optical blank from synthetic quartz glass
CN107867798B (en) * 2016-09-22 2021-09-21 贺利氏石英玻璃有限两合公司 Method for producing an optical blank from synthetic quartz glass
CN114804614A (en) * 2022-05-31 2022-07-29 武汉烽火锐拓科技有限公司 Manufacturing method of optical glass material and melting homogenization equipment

Similar Documents

Publication Publication Date Title
JP5340921B2 (en) Method for producing semi-finished products from synthetic quartz glass
CN107867798B (en) Method for producing an optical blank from synthetic quartz glass
JP4341277B2 (en) Method of forming quartz glass
JP2009530217A (en) Production of large articles with synthetic vitreous silica
JPH08151220A (en) Method for molding quartz glass
JP2004123439A (en) Process for manufacturing optical glass
JP4835998B2 (en) Method of forming quartz glass
WO1987005286A1 (en) Process for manufacturing glass
JP2004307265A (en) Molding apparatus for quartz glass
JP2004307266A (en) Method and apparatus for forming quartz glass
JP3201708B2 (en) Method for producing highly homogeneous quartz glass molded body for optics
JP3672460B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal
KR101835412B1 (en) Quartz glass crucible, method for producing same, and method for producing silicon single crystal
KR101703691B1 (en) Quartz glass crucible, method for producing same, and method for producing monocrystalline silicon
JP4086293B2 (en) Method for producing silica plate
JP3188517B2 (en) Manufacturing method of quartz glass
JP6713382B2 (en) Quartz glass crucible manufacturing method and quartz glass crucible
JPS6272537A (en) Production of high-purity quartz glass
KR101347619B1 (en) Manufacturing method of aspheric lens using glass powder
JPS6153126A (en) Molding of pressed lenses with high accuracy
JP2003054958A (en) Method for manufacturing glass article
JP2004123440A (en) Manufacturing processes for glass preform and optical glass
JP5668717B2 (en) Method for producing silicon single crystal
JPH09202631A (en) Production of transparent quartz glass
WO2004101457A1 (en) Process for producing glass parent material of optical fiber

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110