JP2006054239A - Biaxially oriented polyester film for flexible printed circuit board - Google Patents

Biaxially oriented polyester film for flexible printed circuit board Download PDF

Info

Publication number
JP2006054239A
JP2006054239A JP2004233216A JP2004233216A JP2006054239A JP 2006054239 A JP2006054239 A JP 2006054239A JP 2004233216 A JP2004233216 A JP 2004233216A JP 2004233216 A JP2004233216 A JP 2004233216A JP 2006054239 A JP2006054239 A JP 2006054239A
Authority
JP
Japan
Prior art keywords
film
biaxially oriented
oriented polyester
flexible printed
printed circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004233216A
Other languages
Japanese (ja)
Other versions
JP4546786B2 (en
Inventor
Shinya Togano
真也 栂野
Makoto Tsuji
誠 辻
Tetsuo Yoshida
哲男 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Film Solutions Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2004233216A priority Critical patent/JP4546786B2/en
Publication of JP2006054239A publication Critical patent/JP2006054239A/en
Application granted granted Critical
Publication of JP4546786B2 publication Critical patent/JP4546786B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biaxially oriented polyester film for a flexible printed circuit board that has a highly flat circuit forming surface and is excellent in dimensional stability to heat and a traveling property. <P>SOLUTION: The biaxially oriented polyester film for the flexible printed circuit board formed with an applied layer on one surface of a base material layer composed of polyethylene-2, 6-naphthalene dicarboxylate satisfies all of the following characteristics:(1) The 10-point average height Rz on the surface of the base material layer of the film is 2-30 nm, (2) The 10-point average height Rz on the surface of the applied layer of the film is 50-150 nm, and (3) The heat shrinkage factor of the film in both lengthwise and widthwise directions when the film is heated to 200°C for 10 minutes is ≤1.5%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はフレキシブルプリント回路基板用二軸配向ポリエステルフィルムに関する。さらに詳しくは、回路を形成する面が高平坦性を有し、熱寸法安定性、走行性に優れたフレキシブルプリント回路基板用二軸配向ポリエステルフィルムに関する。   The present invention relates to a biaxially oriented polyester film for flexible printed circuit boards. More specifically, the present invention relates to a biaxially oriented polyester film for a flexible printed circuit board having a highly flat surface on which a circuit is formed and excellent thermal dimensional stability and runnability.

フレキシブル回路は、可とう性を有する基板上に配置された電気回路であり、基板となるフィルムに金属箔を貼りあわせた後に、あるいはメッキ等を施した後にエッチングを行うことにより形成される。回路が形成された基板は、更に加熱処理、回路部品の実装等が施されて電気、電子機器の部品として実用に供される。   A flexible circuit is an electric circuit disposed on a flexible substrate, and is formed by attaching a metal foil to a film to be a substrate or performing etching after plating or the like. The substrate on which the circuit is formed is further subjected to heat treatment, circuit component mounting, and the like, and is put to practical use as a component of an electric or electronic device.

従来、フレキシブル回路基板用フィルムとしては、回路との密着性、回路部品実装時のハンダ付けでの耐熱性等が良好であるとの理由からポリイミド(以下「PI」と略記することがある)フィルムが一般的に使用されている。一方、ポリエチレンテレフタレート(以下「PET」と略記することがある)フィルムは廉価であり、耐薬品性、絶縁性等が良好であるとの理由からフレキシブル回路基板用フィルムの一部で使用されている。   Conventionally, as a film for a flexible circuit board, a polyimide (hereinafter sometimes abbreviated as “PI”) film because of its good adhesion to a circuit and heat resistance when soldering when mounting circuit components. Is commonly used. On the other hand, polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”) films are inexpensive and are used in some flexible circuit board films because of their good chemical resistance and insulation properties. .

近年、ノート型パーソナルコンピューター、携帯電話等の携帯可能な電気、電子機器の普及が急速に進み、また、これら携帯機器の小型化も盛んに行われている。しかしながら、小型化されても従来の機種が備えていた機能と同等あるいはそれ以上の機能を持たせる要求があり、これに伴い回路の小型化、高密度化が要求されるようになった。   In recent years, portable electric and electronic devices such as notebook personal computers and mobile phones have been rapidly spread, and miniaturization of these portable devices has been actively performed. However, there is a demand to have functions equivalent to or higher than those provided by conventional models even if the size is reduced, and accordingly, miniaturization and higher density of circuits have been required.

このような高度な技術が要求される一方で、最近の携帯機器の普及による低価格化競争が激しさを増しているが、フレキシブル回路基板用フィルムとして従来使用されてきたPIフィルムは価格が高く、これを使用している限り携帯機器の低価格化には限界がある。   While such advanced technology is required, the price competition due to the recent popularization of portable devices is intensifying, but the price of PI films that have been used as flexible circuit board films is high. As long as this is used, there is a limit to reducing the price of portable devices.

また、PIフィルムは高価である以外に、吸湿性が高く、吸湿時の寸法変化が大きいことから、加工時にフィルムの調湿を怠ると金属との接着力低下の原因となるため、フィルムの調湿が不可欠となり生産効率向上の障害となっている。さらに、ポリエステルにポリイミド等の異種素材を含有させるとフィルムのリサイクルが煩雑になる可能性がある。加えて、PIフィルムを製造する時に使用したPI樹脂溶解用の溶媒がフィルム内に残留していると回路基板の品質に問題が生じることがある。   In addition to being expensive, PI film has high hygroscopicity and large dimensional change during moisture absorption, so neglecting moisture conditioning of the film during processing may cause a decrease in adhesive strength with metal. Humidity is essential and is an obstacle to improving production efficiency. Furthermore, if different materials such as polyimide are included in the polyester, the recycling of the film may become complicated. In addition, if the PI resin dissolving solvent used when manufacturing the PI film remains in the film, there may be a problem in the quality of the circuit board.

一方、PETフィルムはフレキシブル回路基板用フィルムとしては廉価であり低価格化には好適であるが、耐熱性の点で使途が限られてきた。例えば、メンブレンスイッチの加工工程での加熱処理ではフィルムの寸法変化が問題となり、回路部品実装でのハンダ付けは高温下で行われることからフィルムの表面平坦性が悪化することがあり、最近の高密度化した回路基板フィルムとしては使用に堪えないものとなる。   On the other hand, PET film is inexpensive as a flexible circuit board film and suitable for lowering the price, but its use has been limited in terms of heat resistance. For example, in the heat treatment in the membrane switch processing process, the dimensional change of the film becomes a problem, and soldering in circuit component mounting is performed at a high temperature, so the surface flatness of the film may deteriorate. As a densified circuit board film, it cannot be used.

また、回路部品実装時のハンダ付け技術の進歩により、最近のリフローハンダでは従来のフローハンダに比べてハンダ付け温度を低くすることが可能となっているが、PETフィルムでは依然として耐熱性が不足する。一方、PIフィルムではハンダ耐熱性が過剰品質となっているのが現状である。   Also, due to advances in soldering technology when mounting circuit components, it is possible to lower the soldering temperature in recent reflow solders compared to conventional flow solders, but PET films still lack heat resistance. . On the other hand, with PI films, solder heat resistance is an excessive quality.

このような理由からPIフィルムに代わるプラスチックフィルムの探索が行われるようになり、耐熱性を有するプラスチックフィルムの中では比較的安価なポリエチレン−2,6−ナフタレンジカルボキシレートフィルムが注目されるようになった。   For these reasons, a search for a plastic film that replaces the PI film has been conducted, and among the heat-resistant plastic films, a relatively inexpensive polyethylene-2,6-naphthalenedicarboxylate film is attracting attention. became.

ポリエチレン−2,6−ナフタレンジカルボキシレートフィルムをフレキシブル回路基板用フィルムに用いることは、例えば特開昭62−93991号公報、特開平11−168267号公報、特開2001−191405号公報で提案されている。しかしながら、従来から提案されているポリエチレン−2,6−ナフタレンジカルボキシレートフィルムでは、走行性の観点からフィルム中に滑剤が含有されているため、最近の回路に望まれている高密度化、特にライン/スペースの間隔が25μm/25μm以下であるような微細回路を形成するには表面平坦性が不足し、回路部品実装工程でフィルムの凹部に接する金属薄層がエッチングされず、配線間の絶縁不良となってしまう等の問題が生じることがあった。一方滑剤を含有しないフィルムは、フィルム走行性が十分でないため生産性が低下し実用的ではなかった。   The use of a polyethylene-2,6-naphthalene dicarboxylate film as a film for a flexible circuit board has been proposed in, for example, JP-A-62-293991, JP-A-11-168267, and JP-A-2001-191405. ing. However, in the conventionally proposed polyethylene-2,6-naphthalene dicarboxylate film, since a lubricant is contained in the film from the viewpoint of runnability, it is desired to increase the density desired for recent circuits, In order to form a fine circuit having a line / space spacing of 25 μm / 25 μm or less, the surface flatness is insufficient, and the thin metal layer in contact with the concave portion of the film is not etched in the circuit component mounting process. Problems such as failure may occur. On the other hand, a film containing no lubricant is not practical because the film running property is not sufficient and the productivity is lowered.

また、プリント配線板において、基板となる高分子フィルムと回路とを貼り合わせる場合の接着性を高める目的で、アンカー効果と呼ばれる高分子フィルム表面に凹凸を付与する場合もある。フィルム表面に凹凸を付与するには、フィルム表面を粗化する工程が設けられ、粗化された表面はRz値換算で3〜5μm程度である。従って、該表面粗さを有する高分子フィルム上に金属薄層が形成された基板は凹凸の表面を有するため、形成される回路のライン/スペースの値が30/30μmを超える場合にはかかる表面粗さは問題とならないが、30/30μm以下、特に25/25μm以下の線幅の回路を形成する場合には配線間の絶縁不良が生じ重大な問題となる。なぜならばこの様な高密度の細線である回路線をエッチングする際、より基板表面の凹凸の影響をうけやすくなるためである。従って、ライン/スペースの値が25/25μm以下の回路を形成し得るフレキシブル回路基板に好適な高分子フィルムが求められているのが現状である。   Moreover, in the printed wiring board, in order to improve the adhesiveness when the polymer film as a substrate and a circuit are bonded together, irregularities may be imparted to the surface of the polymer film called an anchor effect. In order to give unevenness to the film surface, a step of roughening the film surface is provided, and the roughened surface is about 3 to 5 μm in terms of Rz value. Therefore, since a substrate having a thin metal layer formed on a polymer film having the surface roughness has an uneven surface, the surface is formed when the line / space value of the formed circuit exceeds 30/30 μm. Roughness is not a problem, but when a circuit with a line width of 30/30 μm or less, particularly 25/25 μm or less is formed, insulation failure between wirings is a serious problem. This is because, when a circuit line, which is such a high-density thin line, is etched, it becomes easier to be affected by irregularities on the substrate surface. Therefore, at present, there is a demand for a polymer film suitable for a flexible circuit board capable of forming a circuit having a line / space value of 25/25 μm or less.

特開昭62−93991号公報JP-A-62-93991 特開平11−168267号公報JP-A-11-168267 特開2001−191405号公報JP 2001-191405 A

本発明は上述の従来技術の課題を解決するために、回路を形成する面が高い平坦性を有し、熱寸法安定性、走行性に優れたフレキシブルプリント回路基板用二軸配向ポリエステルフィルムを提供することを目的とする。   The present invention provides a biaxially oriented polyester film for a flexible printed circuit board having a high flatness on the surface on which a circuit is formed and excellent thermal dimensional stability and running property in order to solve the above-mentioned problems of the prior art. The purpose is to do.

本発明者らは、上記課題を解決すべく鋭意検討した結果、回路を形成する面が極めて高い平坦性を有し、200℃×10分における熱収縮率が特定範囲にあり、かつ塗布層面の表面の平均粗さが特定範囲にある二軸配向ポリエステルフィルムを用いることによって、該フィルムから形成されるFPC基板に、ライン/スペースの間隔が25μm/25μm以下であるファインピッチな回路を形成した際の電気抵抗特性に優れ、回路の高密度化に好適であることを見出し本発明に到達した。   As a result of intensive studies to solve the above problems, the inventors of the present invention have extremely high flatness on the surface on which the circuit is formed, the thermal contraction rate at 200 ° C. × 10 minutes is in a specific range, and the coating layer surface By using a biaxially oriented polyester film having an average surface roughness in a specific range, a fine pitch circuit having a line / space spacing of 25 μm / 25 μm or less is formed on an FPC board formed from the film. The present inventors have found that this is excellent in electrical resistance characteristics and is suitable for increasing the density of a circuit, and have reached the present invention.

かくして本発明によれば、ポリエチレン−2,6−ナフタレンジカルボキシレートからなる基材層の片面に塗布層が設けられた二軸配向ポリエステルフィルムにおいて、
(1)フィルムの基板層面における十点平均粗さRzが2〜30nm
(2)フィルムの塗布層面における十点平均粗さRzが50〜150nm
(3)200℃×10分における熱収縮率がフィルムの長手方向および幅方向のいずれも1.5%以下
で表される特性を同時に満たすフレキシブルプリント回路基板用二軸配向ポリエステルフィルムによって達成される。また、本発明のフレキシブルプリント回路基板用二軸配向ポリエステルフィルムは、その好ましい態様として、30〜100℃における温度膨張係数(αt)が20ppm/℃以下であること、全光線透過率が85%以上、ヘイズが1.5%以下であること、塗布層に高分子バインダーと高分子バインダーの屈折率と同一な屈折率を有する微粒子とを含むことの少なくともいずれか1つを具備するものも包含する。
Thus, according to the present invention, in the biaxially oriented polyester film in which the coating layer is provided on one side of the base material layer made of polyethylene-2,6-naphthalenedicarboxylate,
(1) Ten-point average roughness Rz on the substrate layer surface of the film is 2 to 30 nm.
(2) Ten-point average roughness Rz on the coating layer surface of the film is 50 to 150 nm.
(3) The heat shrinkage rate at 200 ° C. × 10 minutes is achieved by a biaxially oriented polyester film for a flexible printed circuit board that simultaneously satisfies the characteristics represented by 1.5% or less in both the longitudinal direction and the width direction of the film. . Moreover, the biaxially oriented polyester film for flexible printed circuit boards of this invention has a temperature expansion coefficient ((alpha) t) in 30-100 degreeC as 20 ppm / degrees C or less as a preferable aspect, and a total light transmittance is 85% or more. Also included are those having at least one of a haze of 1.5% or less and a coating layer containing a polymer binder and fine particles having the same refractive index as that of the polymer binder. .

また、本発明によれば、本発明のフレキシブルプリント回路基板用二軸配向ポリエステルフィルムが、基材層面にさらに銅箔または導電ペーストが積層されてなるフレキシブルプリント回路基板用銅張積層板、かかる銅張積層板からなるフレキシブルプリント回路基板を用いて形成された回路パターンに、85℃、85%RHの環境下でDC100Vを連続印加したときの該回路パターンの絶縁抵抗値が下記式(I)を満たすことを特徴とするフレキシブルプリント回路基板の少なくともいずれか1つを具備するものも包含する。
1000/R0≧0.7 ・・・(I)
(式中、R1000はDC100Vを1000時間連続印加後の絶縁抵抗値(単位:MΩ)を表わし、R0は絶縁抵抗初期値(単位:MΩ)を表わす。)
According to the present invention, the biaxially oriented polyester film for a flexible printed circuit board according to the present invention is a copper-clad laminate for a flexible printed circuit board, in which a copper foil or a conductive paste is further laminated on the base material layer surface, the copper The insulation resistance value of the circuit pattern when DC100V is continuously applied to the circuit pattern formed using a flexible printed circuit board made of a tension laminate in an environment of 85 ° C. and 85% RH is expressed by the following formula (I). Also included are those provided with at least one of flexible printed circuit boards characterized by satisfying.
R 1000 / R 0 ≧ 0.7 (I)
(In the formula, R 1000 represents an insulation resistance value (unit: MΩ) after continuous application of DC 100 V for 1000 hours, and R 0 represents an initial value of insulation resistance (unit: MΩ).)

本発明によれば、回路を形成する側のフィルム表面が極めて平滑であって、200℃×10分における熱収縮率が特定範囲にあり、かつ塗布層面の表面の平均粗さが特定範囲にある二軸配向ポリエステルフィルムから形成されるFPC基板に、ライン/スペースの間隔が25μm/25μm以下であるファインピッチな回路を形成した際の電気抵抗特性が優れることから、高密度FPC基板用フィルムとして有用であり、また該フィルムからなるフレキシブルプリント回路基板用銅張積層板およびフレキシブルプリント回路基板を提供することができ、その工業的価値は極めて高い。   According to the present invention, the film surface on the circuit forming side is extremely smooth, the thermal shrinkage at 200 ° C. × 10 minutes is in a specific range, and the average roughness of the surface of the coating layer is in the specific range. Useful as a film for high-density FPC boards because of its excellent electrical resistance characteristics when a fine pitch circuit with a line / space spacing of 25 μm / 25 μm or less is formed on an FPC board formed from a biaxially oriented polyester film Moreover, the copper-clad laminate for flexible printed circuit boards and a flexible printed circuit board which consist of this film can be provided, and the industrial value is very high.

以下、本発明を詳細に説明する。
<ポリエステル>
本発明において、二軸配向ポリエステルフィルムの基材層を構成するポリエステルは、ポリエチレン−2,6−ナフタレンジカルボキシレートからなる。
Hereinafter, the present invention will be described in detail.
<Polyester>
In the present invention, the polyester constituting the base layer of the biaxially oriented polyester film is made of polyethylene-2,6-naphthalenedicarboxylate.

かかるポリエチレン−2,6−ナフタレンジカルボキシレートは、主たるジカルボン酸成分として2,6−ナフタレンジカルボン酸が用いられ、主たるグリコール成分としてエチレングリコールが用いられる。ここで「主たる」とは、本発明の二軸配向ポリエステルフィルムの基材層を構成するポリマーにおいて、全繰返し単位の少なくとも90mol%、好ましくは少なくとも95mol%を意味する。   In such polyethylene-2,6-naphthalenedicarboxylate, 2,6-naphthalenedicarboxylic acid is used as the main dicarboxylic acid component, and ethylene glycol is used as the main glycol component. Here, “main” means at least 90 mol%, preferably at least 95 mol% of all repeating units in the polymer constituting the base layer of the biaxially oriented polyester film of the present invention.

本発明におけるポリエチレン−2,6−ナフタレンジカルボキシレートは、単独でも他のポリエステルとの共重合体、2種以上のポリエステル混合体のいずれであってもかまわない。共重合体または混合体における他の成分は、繰返し構造単位の全モル数を基準として10モル%以下、さらに5モル%以下であることが好ましい。   The polyethylene-2,6-naphthalenedicarboxylate in the present invention may be a single copolymer, a copolymer with other polyesters, or a mixture of two or more polyesters. The other component in the copolymer or mixture is preferably 10 mol% or less, more preferably 5 mol% or less, based on the total number of moles of the repeating structural unit.

共重合体である場合、共重合体を構成する共重合成分として、分子内に2つのエステル形成性官能基を有する化合物を用いることができ、例えば、蓚酸、アジピン酸、フタル酸、セバシン酸、ドデカンジカルボン酸、イソフタル酸、テレフタル酸、1,4−シクロヘキサンジカルボン酸、4,4’−ジフェニルジカルボン酸、フェニルインダンジカルボン酸、2,7−ナフタレンジカルボン酸、テトラリンジカルボン酸、デカリンジカルボン酸、ジフェニルエーテルジカルボン酸等の如きジカルボン酸、p−オキシ安息香酸、p−オキシエトキシ安息香酸の如きオキシカルボン酸、或いはトリメチレングリコール、テトラメチレングリコール、ヘキサメチレングリコール、シクロヘキサンメチレングリコール、ネオペンチルグリコール、ビスフェノールスルホンのエチレンオキサイド付加物、ビスフェノールAのエチレンオキサイド付加物、ジエチレングリコール、ポリエチレンオキシドグリコールの如き2価アルコールを好ましく用いることができる。   In the case of a copolymer, a compound having two ester-forming functional groups in the molecule can be used as a copolymer component constituting the copolymer. For example, oxalic acid, adipic acid, phthalic acid, sebacic acid, Dodecanedicarboxylic acid, isophthalic acid, terephthalic acid, 1,4-cyclohexanedicarboxylic acid, 4,4'-diphenyldicarboxylic acid, phenylindanedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, tetralindicarboxylic acid, decalindicarboxylic acid, diphenyletherdicarboxylic acid Dicarboxylic acid such as acid, oxycarboxylic acid such as p-oxybenzoic acid, p-oxyethoxybenzoic acid, or trimethylene glycol, tetramethylene glycol, hexamethylene glycol, cyclohexanemethylene glycol, neopentyl glycol, bis Ethylene oxide adducts of E Nord sulfone, ethylene oxide adduct of bisphenol A, diethylene glycol, can be preferably used dihydric alcohols such as polyethylene oxide glycol.

これらの化合物は1種のみ用いてもよく、2種以上を用いてもよい。またこれらの中で好ましくは酸成分としては、イソフタル酸、テレフタル酸、4,4’−ジフェニルジカルボン酸、2,7−ナフタレンジカルボン酸、p−オキシ安息香酸であり、グリコール成分としてはトリメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、ビスフェノールスルホンのエチレンオキサイド付加物である。   These compounds may be used alone or in combination of two or more. Of these, the acid component is preferably isophthalic acid, terephthalic acid, 4,4′-diphenyldicarboxylic acid, 2,7-naphthalenedicarboxylic acid, p-oxybenzoic acid, and the glycol component is trimethylene glycol. , An ethylene oxide adduct of hexamethylene glycol, neopentyl glycol, and bisphenol sulfone.

また、本発明におけるポリエチレン−2,6−ナフタレンジカルボキシレートは、例えば安息香酸、メトキシポリアルキレングリコールなどの一官能性化合物によって末端の水酸基および/またはカルボキシル基の一部または全部を封鎖したものであってよく、また極く少量の例えばグリセリン、ペンタエリスリトール等の如き三官能以上のエステル形成性化合物で実質的に線状のポリマーが得られる範囲内で共重合したものであってもよい。   Further, the polyethylene-2,6-naphthalene dicarboxylate in the present invention is obtained by blocking part or all of the terminal hydroxyl group and / or carboxyl group with a monofunctional compound such as benzoic acid or methoxypolyalkylene glycol. Alternatively, it may be one obtained by copolymerizing an extremely small amount of an ester-forming compound such as glycerin or pentaerythritol within a range in which a substantially linear polymer is obtained.

本発明におけるポリエチレン−2,6−ナフタレンジカルボキシレートは、従来公知の方法、例えばジカルボン酸とグリコールの反応で直接低重合度ポリエステルを得る方法や、ジカルボン酸の低級アルキルエステルとグリコールとを従来公知のエステル交換触媒である、例えばナトリウム、カリウム、マグネシウム、カルシウム、亜鉛、ストロンチウム、チタン、ジルコニウム、マンガン、コバルトを含む化合物の一種または二種以上を用いて反応させた後、重合触媒の存在下で重合反応を行う方法で得ることができる。重合触媒としては、三酸化アンチモン、五酸化アンチモンのようなアンチモン化合物、二酸化ゲルマニウムで代表されるようなゲルマニウム化合物、テトラエチルチタネート、テトラプロピルチタネート、テトラフェニルチタネートまたはこれらの部分加水分解物、蓚酸チタニルアンモニウム、蓚酸チタニルカリウム、チタントリスアセチルアセトネートのようなチタン化合物を用いることができる。   Polyethylene-2,6-naphthalenedicarboxylate in the present invention is a conventionally known method, for example, a method of directly obtaining a low polymerization degree polyester by reaction of dicarboxylic acid and glycol, or a lower alkyl ester of dicarboxylic acid and glycol. In the presence of a polymerization catalyst after reacting with one or more of the compounds including, for example, sodium, potassium, magnesium, calcium, zinc, strontium, titanium, zirconium, manganese, and cobalt. It can be obtained by a method of conducting a polymerization reaction. Polymerization catalysts include antimony compounds such as antimony trioxide and antimony pentoxide, germanium compounds represented by germanium dioxide, tetraethyl titanate, tetrapropyl titanate, tetraphenyl titanate or partial hydrolysates thereof, and titanyl ammonium oxalate. , Titanium compounds such as potassium titanyl oxalate and titanium trisacetylacetonate can be used.

エステル交換反応を経由して重合を行う場合は、重合反応前にエステル交換触媒を失活させる目的でトリメチルホスフェート、トリエチルホスフェート、トリ−n−ブチルホスフェート、正リン酸等のリン化合物が通常は添加される。リン化合物の好ましい含有量は、リン元素としてのポリエチレン−2,6−ナフタレンジカルボキシレート中の含有量が20〜100重量ppmである。リン化合物の含有量が20ppm未満では、エステル交換反応触媒が完全に失活せず熱安定性が悪く、機械強度が低下する場合がある。一方、リン化合物の含有量が100ppmを超えると熱安定性が悪く、機械強度が低下する場合がある。   When polymerization is performed via a transesterification reaction, a phosphorus compound such as trimethyl phosphate, triethyl phosphate, tri-n-butyl phosphate, or normal phosphoric acid is usually added for the purpose of deactivating the transesterification catalyst before the polymerization reaction. Is done. A preferable content of the phosphorus compound is 20 to 100 ppm by weight in polyethylene-2,6-naphthalenedicarboxylate as a phosphorus element. When the content of the phosphorus compound is less than 20 ppm, the transesterification reaction catalyst is not completely deactivated, the thermal stability is poor, and the mechanical strength may be lowered. On the other hand, when the content of the phosphorus compound exceeds 100 ppm, the thermal stability may be poor and the mechanical strength may be reduced.

なお、ポリエチレン−2,6−ナフタレンジカルボキシレートは、溶融重合後これをチップ化し、加熱減圧下または窒素などの不活性気流中において更に固相重合を施してもよい。   Polyethylene-2,6-naphthalenedicarboxylate may be chipped after melt polymerization, and further subjected to solid phase polymerization under heating under reduced pressure or in an inert gas stream such as nitrogen.

本発明におけるポリエチレン−2,6−ナフタレンジカルボキシレートの固有粘度は、o−クロロフェノール中、35℃において、0.40dl/g以上であることが好ましく、0.40〜0.90dl/gであることが更に好ましい。固有粘度が0.40dl/g未満では工程切断が多発することがある。また固有粘度が0.9dl/gより高いと溶融粘度が高いため溶融押出しが困難であるうえ、重合時間が長く不経済である。   The intrinsic viscosity of polyethylene-2,6-naphthalenedicarboxylate in the present invention is preferably 0.40 dl / g or more at 35 ° C. in o-chlorophenol, and is 0.40 to 0.90 dl / g. More preferably it is. If the intrinsic viscosity is less than 0.40 dl / g, process cutting may occur frequently. If the intrinsic viscosity is higher than 0.9 dl / g, melt extrusion is difficult because of high melt viscosity, and the polymerization time is long and uneconomical.

本発明のポリエチレン−2,6−ナフタレンジカルボキシレートには、本発明の目的を損なわない範囲内において、着色剤、帯電防止剤、酸化防止剤、触媒を含有してもよい。   The polyethylene-2,6-naphthalene dicarboxylate of the present invention may contain a colorant, an antistatic agent, an antioxidant, and a catalyst within the range not impairing the object of the present invention.

<二軸配向ポリエステルフィルム>
本発明の二軸配向ポリエステルフィルムは、上述のポリエチレン−2,6−ナフタレンジカルボキシレートからなる基材層の片面に塗布層が設けられた構成を有する。本発明のポリエチレン−2,6−ナフタレンジカルボキシレートからなる基材層は、極めて高い表面平坦性を得るために実質的に不活性粒子を含まない。
<Biaxially oriented polyester film>
The biaxially oriented polyester film of the present invention has a configuration in which a coating layer is provided on one side of a base material layer made of the above-described polyethylene-2,6-naphthalenedicarboxylate. The base material layer made of polyethylene-2,6-naphthalenedicarboxylate of the present invention is substantially free of inert particles in order to obtain extremely high surface flatness.

<塗布層>
本発明の塗布層は、高分子バインダー、微粒子および脂肪族ワックスを含有する。本発明の二軸配向ポリエステルフィルムは、回路を形成する面、すなわち基材層の表面平坦性が極めて高いことから、基材層単体ではフィルム走行性に乏しいため、本発明における塗膜層はフィルム走行性能を有する必要がある。また、本発明の二軸配向ポリエステルフィルムは、全光線透過率およびヘイズで表される光学特性が良好であることが好ましく、高分子バインダー、微粒子および脂肪族ワックスは、それぞれ以下の構成であることが好ましい。
<Coating layer>
The coating layer of the present invention contains a polymer binder, fine particles and an aliphatic wax. Since the biaxially oriented polyester film of the present invention has a circuit forming surface, that is, the surface flatness of the substrate layer is extremely high, the substrate layer alone has poor film running properties. It is necessary to have running performance. Further, the biaxially oriented polyester film of the present invention preferably has good optical properties expressed by total light transmittance and haze, and the polymer binder, fine particles and aliphatic wax have the following constitutions, respectively. Is preferred.

該高分子バインダーと微粒子は同一の屈折率を有することが好ましい。ここで本発明における「同一」とは、実質的に同一の屈折率を指し、高分子バインダーと微粒子の屈折率差が0.04以下であることをいう。両者の屈折率差は、より好ましくは0.02以下、さらに好ましくは0.01以下、特に好ましくは0.005以下である。屈折率の差が上限を超えると高分子バインダーと微粒子の境界での屈折率の差により光が大きく散乱し、塗布層のヘイズが高くなり、二軸配向ポリエステルフィルムとしての透明性が悪くなることがある。   The polymer binder and the fine particles preferably have the same refractive index. Here, “same” in the present invention refers to substantially the same refractive index, and means that the refractive index difference between the polymer binder and the fine particles is 0.04 or less. The difference in refractive index between the two is more preferably 0.02 or less, still more preferably 0.01 or less, and particularly preferably 0.005 or less. When the difference in refractive index exceeds the upper limit, light is greatly scattered due to the difference in refractive index at the boundary between the polymer binder and the fine particles, the haze of the coating layer is increased, and the transparency as a biaxially oriented polyester film is deteriorated. There is.

本発明の塗布層に用いられる高分子バインダーは、基材層との良好な接着性を付与する観点から、ポリエステル樹脂およびオキサゾリン基とポリアルキレンオキシド鎖とを有するアクリル樹脂の混合体である。高分子バインダーは、水に可溶性または分散性のものが好ましいが、多少の有機溶剤を含有する水に可溶なものも好ましく用いることができる。   The polymer binder used for the coating layer of the present invention is a polyester resin and an acrylic resin mixture having an oxazoline group and a polyalkylene oxide chain from the viewpoint of imparting good adhesion to the base material layer. The polymer binder is preferably soluble or dispersible in water, but water-soluble one containing some organic solvent can also be preferably used.

本発明の塗布層の厚みは、0.01〜0.2μmであることが好ましく、より好ましくは0.02〜0.1μmである。   The thickness of the coating layer of the present invention is preferably 0.01 to 0.2 μm, more preferably 0.02 to 0.1 μm.

<高分子バインダー>
高分子バインダーを構成するポリエステル樹脂として、下記の多塩基酸成分とジオール成分から得られるポリエステルを用いることができる。かかる多価塩基成分としては、テレフタル酸、イソフタル酸、フタル酸、無水フタル酸、2、6−ナフタレンジカルボン酸、1、4−シクロヘキサンジカルボン酸、アジピン酸、セバシン酸、トリメリット酸、ピロメリット酸、ダイマー酸、5−ナトリウムスルホイソフタル酸を例示することができる。高分子バインダーを構成するポリエステル樹脂としては、2種以上の多価塩基酸成分を用いた共重合ポリエステルを用いることが好ましい。また、ジオール成分としては、エチレングリコール、1、4−ブタンジオール、ジエチレングリコール、ジプロピレングリコール、1、6−ヘキサンジオール、1、4−シクロヘキサンジメタノール、キシレングリコール、ジメチロールプロパン等や、ポリ(エチレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコールを例示することができる。
<Polymer binder>
As the polyester resin constituting the polymer binder, a polyester obtained from the following polybasic acid component and diol component can be used. Such polyvalent base components include terephthalic acid, isophthalic acid, phthalic acid, phthalic anhydride, 2,6-naphthalenedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, adipic acid, sebacic acid, trimellitic acid, pyromellitic acid , Dimer acid, and 5-sodium sulfoisophthalic acid. As the polyester resin constituting the polymer binder, it is preferable to use a copolyester using two or more kinds of polybasic acid components. Examples of the diol component include ethylene glycol, 1,4-butanediol, diethylene glycol, dipropylene glycol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, xylene glycol, dimethylolpropane, and poly (ethylene oxide). ) Glycol and poly (tetramethylene oxide) glycol.

高分子バインダーのポリエステル樹脂のガラス転移点は、好ましくは40〜100℃、更に好ましくは60〜80℃である。この範囲であれば、優れた接着性と優れた耐傷性を得ることができる。ガラス転移温度が下限未満であるとフィルム同士でブロッキングが発生しやすくなり、他方上限を超えると塗膜が硬くて脆くなり、耐傷性が悪化することがある。   The glass transition point of the polyester resin of the polymer binder is preferably 40 to 100 ° C, more preferably 60 to 80 ° C. Within this range, excellent adhesion and excellent scratch resistance can be obtained. When the glass transition temperature is less than the lower limit, the films tend to be blocked with each other. When the glass transition temperature exceeds the upper limit, the coating film is hard and brittle, and the scratch resistance may be deteriorated.

高分子バインダーの構成成分として用いられるオキサゾリン基とポリアルキレンオキシド鎖とを有するアクリル樹脂として、例えば以下に示すようなオキサゾリン基を有するモノマーと、ポリアルキレンオキシド鎖を有するモノマーからなるアクリル樹脂を用いることができる。   As an acrylic resin having an oxazoline group and a polyalkylene oxide chain used as components of the polymer binder, for example, an acrylic resin comprising a monomer having an oxazoline group as shown below and a monomer having a polyalkylene oxide chain is used. Can do.

オキサゾリン基を有するモノマーとしては、2−ビニル−2−オキサゾリン、2−ビニル−4−メチル−2−オキサゾリン、2−ビニル−5−メチル−2−オキサゾリン、2−イソプロペニル−2−オキサゾリン、2−イソプロペニル−4−メチル−2−オキサゾリン、2−イソプロペニル−5−メチル−2−オキサゾリンを例示することができ、1種または2種以上の混合物を使用することができる。これらの中でも、2−イソプロペニル−2−オキサゾリンが工業的に入手しやすく好適である。オキサゾリン基を有するアクリル樹脂を用いることにより塗布層の凝集力が向上し、隣接する層との密着性がより強固になる。更に、フィルム製膜工程内の加工工程内の金属ロールに対する耐擦過性を付与することができる。   Examples of the monomer having an oxazoline group include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2 -Isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-methyl-2-oxazoline can be exemplified, and one or a mixture of two or more can be used. Among these, 2-isopropenyl-2-oxazoline is preferred because it is easily available industrially. By using an acrylic resin having an oxazoline group, the cohesive force of the coating layer is improved, and the adhesion with an adjacent layer is further strengthened. Furthermore, the abrasion resistance with respect to the metal roll in the processing process in a film forming process can be provided.

ポリアルキレンオキシド鎖を有するモノマーとしては、アクリル酸、メタクリル酸のエステル結合部にポリアルキレンオキシドを付加させたものを挙げることができる。ポリアルキレンオキシド鎖はポリメチレンオキシド、ポリエチレンオキシド、ポリプロピレンオキシド、ポリブチレンオキシドを挙げることができる。ポリアルキレンオキシド鎖の繰り返し単位は3〜100であることが好ましい。かかるポリアルキレンオキシド鎖を有するアクリル樹脂を用いることで、塗布層の高分子バインダーを形成するポリエステル樹脂とアクリル樹脂の相溶性が、ポリアルキレンオキシド連鎖を含有しないアクリル樹脂と較べて向上し、塗布層の透明性を向上させることができる。ポリアルキレンオキシド鎖の繰り返し単位が3未満であるとポリエステル樹脂とアクリル樹脂との相溶性が悪く塗布層の透明性が悪くなり、100を超えると塗布層の耐湿熱性が下がり、高湿度、高温下で隣接する層との密着性が悪化して好ましくない。   Examples of the monomer having a polyalkylene oxide chain include those obtained by adding polyalkylene oxide to an ester bond portion of acrylic acid or methacrylic acid. Examples of the polyalkylene oxide chain include polymethylene oxide, polyethylene oxide, polypropylene oxide, and polybutylene oxide. The repeating unit of the polyalkylene oxide chain is preferably 3 to 100. By using such an acrylic resin having a polyalkylene oxide chain, the compatibility between the acrylic resin and the polyester resin that forms the polymer binder of the coating layer is improved as compared with the acrylic resin not containing the polyalkylene oxide chain. Can improve transparency. If the repeating unit of the polyalkylene oxide chain is less than 3, the compatibility between the polyester resin and the acrylic resin is poor and the transparency of the coating layer is poor. If it exceeds 100, the moisture and heat resistance of the coating layer is lowered, and the humidity and temperature are high. This is not preferable because the adhesion with adjacent layers deteriorates.

アクリル樹脂には、その他の共重合成分として例えば以下に例示されるモノマーを共重合することができる。即ち、アルキルアクリレート、アルキルメタクリレート(アルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基、シクロヘキシル基等);2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、2−ヒドロキシプロピルメタクリレート等のヒドロキシ基含有モノマー;グリシジルアクリレート、グリシジルメタクリレート、アリルグリシジルエーテル等のエポキシ基含有モノマー;アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマール酸、クロトン酸、スチレンスルホン酸及びその塩(ナトリウム塩、カリウム塩、アンモニウム塩、第三級アミン塩等)等のカルボキシ基またはその塩を有するモノマー;アクリルアミド、メタクリルアミド、N−アルキルアクリルアミド、N−アルキルメタクリルアミド、N,N−ジアルキルアクリルアミド、N,N−ジアルキルメタクリルアミド(アルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基、シクロヘキシル基等)、N−アルコキシアクリルアミド、N−アルコキシメタクリルアミド、N,N−ジアルコキシアクリルアミド、N,N−ジアルコキシメタクリルアミド(アルコキシ基としては、メトキシ基、エトキシ基、ブトキシ基、イソブトキシ基等)、アクリロイルモルホリン、N−メチロールアクリルアミド、N−メチロールメタクリルアミド、N−フェニルアクリルアミド、N−フェニルメタクリルアミド等のアミド基を有するモノマー;無水マレイン酸、無水イタコン酸等の酸無水物のモノマー;ビニルイソシアネート、アリルイソシアネート、スチレン、α−メチルスチレン、ビニルメチルエーテル、ビニルエチルエーテル、ビニルトリアルコキシシラン、アルキルマレイン酸モノエステル、アルキルフマール酸モノエステル、アルキルイタコン酸モノエステル、アクリロニトリル、メタクリロニトリル、塩化ビニリデン、エチレン、プロピレン、塩化ビニル、酢酸ビニル、ブタジエンである。   As the other copolymerization component, for example, monomers exemplified below can be copolymerized with the acrylic resin. That is, alkyl acrylate, alkyl methacrylate (alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, 2-ethylhexyl, cyclohexyl, etc.); Hydroxy group-containing monomers such as 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate and 2-hydroxypropyl methacrylate; Epoxy group-containing monomers such as glycidyl acrylate, glycidyl methacrylate and allyl glycidyl ether; acrylic acid, methacrylic acid, itaconic acid, malein Monomers having a carboxy group or a salt thereof such as acid, fumaric acid, crotonic acid, styrenesulfonic acid and salts thereof (sodium salt, potassium salt, ammonium salt, tertiary amine salt, etc.); acrylic Amide, methacrylamide, N-alkyl acrylamide, N-alkyl methacrylamide, N, N-dialkyl acrylamide, N, N-dialkyl methacrylamide (alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group, etc.), N-alkoxyacrylamide, N-alkoxymethacrylamide, N, N-dialkoxyacrylamide, N, N-dialkoxymethacrylamide (As the alkoxy group, methoxy group, ethoxy group, butoxy group, isobutoxy group, etc.), acryloylmorpholine, N-methylolacrylamide, N-methylolmethacrylamide, N-phenylacrylamide, N-phenylmethacrylamide Monomers having an amide group such as; monomers of acid anhydrides such as maleic anhydride and itaconic anhydride; vinyl isocyanate, allyl isocyanate, styrene, α-methylstyrene, vinyl methyl ether, vinyl ethyl ether, vinyl trialkoxysilane, alkyl Maleic acid monoester, alkyl fumaric acid monoester, alkylitaconic acid monoester, acrylonitrile, methacrylonitrile, vinylidene chloride, ethylene, propylene, vinyl chloride, vinyl acetate and butadiene.

塗布層を形成する高分子バインダーが、ポリエステル樹脂とオキサゾリン基及びポリアルキレンオキシド鎖を有するアクリル樹脂とから形成される場合、ポリエステル樹脂の高分子バインダー中の含有割合は5〜95重量%であることが好ましく、特に50〜90重量%であることが好ましい。また塗布層を形成するオキサゾリン基及びポリアルキレンオキシド鎖を有するアクリル樹脂の高分子バインダー中の含有割合は5〜95重量%であることが好ましく、特に10〜50重量%であることが好ましい。ポリエステル樹脂が95重量%を超え、もしくはオキサゾリン基及びポリアルキレンオキシド鎖を有するアクリル樹脂が5重量%未満になると塗布層の凝集力が低下し、隣接する層との密着性が不十分となる場合がある。また、アクリル樹脂が95重量%を超え、もしくはポリエステル樹脂が5重量%未満の場合も同様に隣接する層との密着性が低下する場合がある。   When the polymer binder forming the coating layer is formed from a polyester resin and an acrylic resin having an oxazoline group and a polyalkylene oxide chain, the content of the polyester resin in the polymer binder is 5 to 95% by weight. It is preferable that it is 50 to 90 weight% especially. The content of the acrylic resin having an oxazoline group and a polyalkylene oxide chain forming the coating layer in the polymer binder is preferably 5 to 95% by weight, and particularly preferably 10 to 50% by weight. When the polyester resin exceeds 95% by weight, or the acrylic resin having an oxazoline group and a polyalkylene oxide chain is less than 5% by weight, the cohesive force of the coating layer decreases and the adhesion to the adjacent layer becomes insufficient. There is. Further, when the acrylic resin exceeds 95% by weight or the polyester resin is less than 5% by weight, the adhesion with the adjacent layer may be similarly lowered.

また高分子バインダーの含有量は、塗布層の40〜99.4重量%の範囲が好ましい。40重量%未満であると塗膜の凝集力が低くなりポリエステルフィルムへの接着性が不十分となることがあり、99.4重量%を超えると十分な滑り性、耐傷つき性が得られない場合がある。   The content of the polymer binder is preferably in the range of 40 to 99.4% by weight of the coating layer. If it is less than 40% by weight, the cohesive force of the coating film becomes low and the adhesion to the polyester film may be insufficient. If it exceeds 99.4% by weight, sufficient slipping and scratch resistance cannot be obtained. There is a case.

本発明における塗布層の高分子バインダーは、屈折率が通常は1.50〜1.60の範囲である。   The polymer binder of the coating layer in the present invention usually has a refractive index in the range of 1.50 to 1.60.

<微粒子>
本発明における塗布層を構成する微粒子としては、シリカとチタニアの複合無機粒子を用いることが好ましい。このシリカとチタニアの複合無機粒子は、任意に屈折率の調整が可能で、屈折率を容易に調整することができる。高分子バインダーの屈折率は1.50〜1.60の範囲であるため、微粒子の屈折率も、高分子バインダーと同じく1.50〜1.60の範囲であることが好ましい。
<Fine particles>
As fine particles constituting the coating layer in the present invention, it is preferable to use composite inorganic particles of silica and titania. The composite inorganic particles of silica and titania can be arbitrarily adjusted in refractive index, and the refractive index can be easily adjusted. Since the refractive index of the polymer binder is in the range of 1.50 to 1.60, the refractive index of the fine particles is also preferably in the range of 1.50 to 1.60, similar to the polymer binder.

微粒子の平均粒子径は40〜120nmの範囲が好ましい。平均粒子径が120nmより大きいと粒子の落脱が発生しやすくなり、40nmよりも小さいと十分な滑性、耐傷性が得られない場合がある。微粒子の含有量は、塗布層の0.1〜10重量%の範囲であることが好ましい。0.1重量%未満であると十分な滑性、耐傷性が得られず、10重量%を超えると塗膜の凝集力が低くなり接着性が悪化することがある。   The average particle diameter of the fine particles is preferably in the range of 40 to 120 nm. If the average particle size is larger than 120 nm, the particles are likely to fall off, and if it is smaller than 40 nm, sufficient lubricity and scratch resistance may not be obtained. The content of the fine particles is preferably in the range of 0.1 to 10% by weight of the coating layer. If it is less than 0.1% by weight, sufficient lubricity and scratch resistance cannot be obtained, and if it exceeds 10% by weight, the cohesive force of the coating film may be lowered and the adhesion may be deteriorated.

<脂肪族ワックス>
塗布層には脂肪族ワックスを含有させることがフィルム表面の滑性を得られるので好ましく、含有量は好ましくは塗布層の0.5〜30重量%、さらに好ましくは1重量%〜10重量%である。この含有量が0.5重量%未満ではフィルム表面の滑性が得られないことがある。一方、30重量%を超えるとポリエステルフィルム基材層への密着性が不足する場合がある。脂肪族ワックスの具体例としては、カルナバワックス、キャンデリラワックス、ライスワックス、木ロウ、ホホバ油、パームワックス、ロジン変性ワックス、オウリキュリーワックス、サトウキビワックス、エスパルトワックス、バークワックス等の植物系ワックス、ミツロウ、ラノリン、鯨ロウ、イボタロウ、セラックワックス等の動物系ワックス、モンタンワックス、オゾケライト、セレシンワックス等の鉱物系ワックス、パラフィンワックス、マイクロクリスタリンワックス、ペトロラクタム等の石油系ワックス、フィッシャートロプッシュワックス、ポリエチレンワックス、酸化ポリエチレンワックス、ポリプロピレンワックス、酸化ポリプロピレンワックス等の合成炭化水素系ワックスを挙げることができる。就中、隣接する層に対する易接着性と滑性が良好なことから、カルナバワックス、パラフィンワックス、ポリエチレンワックスが特に好ましい。これらは環境負荷の低減が可能であることおよび取扱のし易さから水分散体として用いることが好ましい。
<Aliphatic wax>
It is preferable that an aliphatic wax is contained in the coating layer since the film surface can be lubricated, and the content is preferably 0.5 to 30% by weight, more preferably 1 to 10% by weight of the coating layer. is there. If this content is less than 0.5% by weight, the slipperiness of the film surface may not be obtained. On the other hand, if it exceeds 30% by weight, the adhesion to the polyester film substrate layer may be insufficient. Specific examples of the aliphatic wax include plant waxes such as carnauba wax, candelilla wax, rice wax, wood wax, jojoba oil, palm wax, rosin-modified wax, olicuric wax, sugar cane wax, esparto wax, and bark wax. , Animal waxes such as beeswax, lanolin, whale wax, ibota wax, shellac wax, mineral waxes such as montan wax, ozokerite, ceresin wax, petroleum waxes such as paraffin wax, microcrystalline wax, petrolactam, Fischer Tropus wax And synthetic hydrocarbon waxes such as polyethylene wax, oxidized polyethylene wax, polypropylene wax, and oxidized polypropylene wax. In particular, carnauba wax, paraffin wax, and polyethylene wax are particularly preferable because of easy adhesion to adjacent layers and good lubricity. These are preferably used as water dispersions because they can reduce the environmental burden and are easy to handle.

<添加剤>
塗布層は、滑性、耐傷性を更に向上させるために、透明性に影響を与えない程度に他の微粒子を含有してもよい。他の微粒子としては、例えば炭酸カルシウム、炭酸マグネシウム、酸化カルシウム、酸化亜鉛、酸化マグネシウム、酸化ケイ素、ケイ酸ソーダ、水酸化アルミニウム、酸化鉄、酸化ジルコニウム、硫酸バリウム、酸化チタン、酸化錫、三酸化アンチモン、カーボンブラック、二硫化モリブデン等の無機微粒子やアクリル系架橋重合体、スチレン系架橋重合体、シリコーン樹脂、フッ素樹脂、ベンゾグアナミン樹脂、フェノール樹脂、ナイロン樹脂等の有機微粒子を挙げることができる。これらのうち、水不溶性の固体物質は、水分散液中で沈降するのを避けるため、比重が3を超えない微粒子を選ぶことが好ましい。
<Additives>
The coating layer may contain other fine particles to the extent that the transparency is not affected, in order to further improve the lubricity and scratch resistance. Examples of the other fine particles include calcium carbonate, magnesium carbonate, calcium oxide, zinc oxide, magnesium oxide, silicon oxide, sodium silicate, aluminum hydroxide, iron oxide, zirconium oxide, barium sulfate, titanium oxide, tin oxide, and trioxide. Examples thereof include inorganic fine particles such as antimony, carbon black, and molybdenum disulfide, and organic fine particles such as acrylic crosslinked polymer, styrene crosslinked polymer, silicone resin, fluororesin, benzoguanamine resin, phenol resin, and nylon resin. Among these, for the water-insoluble solid substance, it is preferable to select fine particles whose specific gravity does not exceed 3 in order to avoid sedimentation in the aqueous dispersion.

<金属層>
本発明は、二軸配向ポリエステルフィルムの基材層面にさらに金属層を積層することができ、得られた金属層積層板をフレキシブルプリント回路基板用に用いることができる。該金属層としては、銅箔やアルミニウム箔などの金属箔または導電ペーストが挙げられる。かかる金属箔としては、圧延されて作成されたものや電解によって作成されたものなど一般的な方法で得られるものである。また、導電ペーストとは、高粘度の樹脂製インクに銀、銅、カーボンなどの導電性微粉末を含有させて導電性を付与させたものである。該金属箔または導電ペーストの中でも特に銅箔が好ましく、銅箔が二軸配向ポリエステルフィルムに積層された銅張積層板とすることにより、フレキシブルプリント回路基板を製造する際の工程の生産性を上げることができる。
<Metal layer>
In the present invention, a metal layer can be further laminated on the base material layer surface of the biaxially oriented polyester film, and the obtained metal layer laminate can be used for a flexible printed circuit board. As this metal layer, metal foil, such as copper foil and aluminum foil, or electrically conductive paste is mentioned. Such a metal foil can be obtained by a general method such as one produced by rolling or one produced by electrolysis. In addition, the conductive paste is obtained by adding conductive fine powder such as silver, copper, carbon, etc., to a highly viscous resin ink. Among these metal foils or conductive pastes, copper foil is particularly preferable, and by using a copper-clad laminate in which the copper foil is laminated on a biaxially oriented polyester film, the productivity of the process when manufacturing a flexible printed circuit board is increased. be able to.

本発明における金属層の厚みは、5μm〜100μmであることが好ましい。
これら金属層の積層方法としては、接着剤を介する方法やポリエステルフィルム基材層の表層を溶融させ直接シールする方法などが挙げられる。接着剤については、特に言及するものではないが、耐熱性の観点から硬化性樹脂が好ましい。好適な硬化性樹脂としてはエポキシ樹脂、フェノール樹脂、アクリル樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリイソシアネート樹脂、ポリエステル樹脂、ポリフェニルエーテル樹脂、脂環式オレフィン重合体などが挙げられる。
The thickness of the metal layer in the present invention is preferably 5 μm to 100 μm.
Examples of a method for laminating these metal layers include a method using an adhesive and a method of directly melting and sealing the surface layer of the polyester film base layer. The adhesive is not particularly mentioned, but a curable resin is preferable from the viewpoint of heat resistance. Suitable curable resins include epoxy resins, phenol resins, acrylic resins, polyimide resins, polyamide resins, polyisocyanate resins, polyester resins, polyphenyl ether resins, alicyclic olefin polymers, and the like.

また、接着剤には所望に応じてその他の成分を配合することができる。配合剤としては、紫外線吸収剤、軟質重合体、フィラー、熱安定剤、耐候安定剤、老化防止剤、レベリング剤、帯電防止剤、スリップ剤、アンチブロッキング剤、防曇剤、染料、顔料、天然油、合成油、ワックス、乳剤、充填剤、硬化剤、難燃剤などが挙げられ、その配合割合は、本発明の目的を損なわない範囲で適宜選択される。   Moreover, other components can be mix | blended with an adhesive agent as needed. Compounding agents include UV absorbers, soft polymers, fillers, heat stabilizers, weathering stabilizers, anti-aging agents, leveling agents, antistatic agents, slip agents, antiblocking agents, antifogging agents, dyes, pigments, natural Examples thereof include oils, synthetic oils, waxes, emulsions, fillers, curing agents, flame retardants, and the like, and the blending ratio thereof is appropriately selected within a range not impairing the object of the present invention.

また、本発明の金属層の積層方法は、メッキやスパッタリングなどによって接着剤を介することなく直接基材フィルムに金属箔を形成させる方法であっても構わない。   In addition, the method for laminating the metal layer of the present invention may be a method in which a metal foil is directly formed on a base film without using an adhesive by plating or sputtering.

<基材層面の表面荒さ>
本発明の二軸配向ポリエステルフィルムは、基材層面における十点平均粗さRzが2〜30nmである。基材層面における十点平均粗さRzは、3〜29nmであることがより好ましく、4〜28nmであることが特に好ましい。Rzが下限に満たないと、フィルムの滑り性が悪く、フィルムをロールに巻き取ったとき、空気溜りによる転写や折れシワが発生し平面性が損なわれる。一方、Rzが上限を超えるとライン/スペースの間隔が25μm/25μm以下であるような微細回路を形成する際、エッチングされるべき部分においてフィルム凹部の金属層がエッチングされずに微小な金属屑として島状に残り、長期に渡って電圧が印加された場合に、配線間の絶縁不良(マイグレーション)を引き起こす原因となる。
<Surface roughness of substrate layer surface>
The biaxially oriented polyester film of the present invention has a 10-point average roughness Rz of 2 to 30 nm on the substrate layer surface. The ten-point average roughness Rz on the substrate layer surface is more preferably 3 to 29 nm, and particularly preferably 4 to 28 nm. If Rz is less than the lower limit, the slipperiness of the film is poor, and when the film is wound on a roll, transfer and folding wrinkles due to air accumulation occur and flatness is impaired. On the other hand, when forming a fine circuit in which the line / space spacing is 25 μm / 25 μm or less when Rz exceeds the upper limit, the metal layer of the film recess is not etched in the portion to be etched, and as a minute metal scrap When a voltage is applied for a long period of time, it remains in an island shape, causing an insulation failure (migration) between wirings.

上述の表面荒さを達成するには、ポリエチレン−2,6−ナフタレンジカルボキシレートからなる基材層が、1.0μm以上の粗大粒子を含む不活性粒子を含有しないことが必要であり0.50μm以上の不活性粒子を含有しないことがより好ましい。   In order to achieve the above-mentioned surface roughness, it is necessary that the base material layer made of polyethylene-2,6-naphthalenedicarboxylate does not contain inert particles including coarse particles of 1.0 μm or more, and 0.50 μm. It is more preferable not to contain the above inert particles.

本発明における基材層面の表面粗さは、十点平均粗さRzが2〜30nmであり、かつ三次元表面粗さSRaは10nm以下であることが好ましい。該三次元表面荒さSRaはさらに好ましくは8nm以下、特に好ましくは5nm以下である。一方、三次元表面荒さSRaの下限は小さければ小さいほど好ましいが、好ましくは0nmである。ここで、十点平均粗さRzは粗大粒子の平均粒子径に起因するものであり、一方三次元表面粗さSRaは粗大粒子および不活性粒子の平均粒子径および個数に起因するものである。三次元表面粗さSRaをかかる範囲内にするには、1.0μm以上の粗大粒子を含む不活性粒子を含有しないことが好ましい。   As for the surface roughness of the base material layer surface in the present invention, the ten-point average roughness Rz is preferably 2 to 30 nm, and the three-dimensional surface roughness SRa is preferably 10 nm or less. The three-dimensional surface roughness SRa is more preferably 8 nm or less, and particularly preferably 5 nm or less. On the other hand, the lower limit of the three-dimensional surface roughness SRa is preferably as small as possible, but is preferably 0 nm. Here, the ten-point average roughness Rz is attributed to the average particle diameter of coarse particles, while the three-dimensional surface roughness SRa is attributed to the average particle diameter and number of coarse particles and inert particles. In order to make the three-dimensional surface roughness SRa within such a range, it is preferable not to contain inert particles including coarse particles of 1.0 μm or more.

三次元表面粗さSRaは、非接触式3次元粗さ計(小坂研究所製の商品名「ET30HK」)を用い、波長780nmの半導体レーザーで測定長1mm、サンプリングピッチ2μm、カットオフ0.25mm、縦方向(フィルム連続製膜方向)拡大倍率10万倍、横方向(連続製膜方向と垂直方向)拡大倍率200倍、走査線数100本の測定条件によって測定される。   The three-dimensional surface roughness SRa is measured using a non-contact type three-dimensional roughness meter (trade name “ET30HK” manufactured by Kosaka Laboratory) with a semiconductor laser having a wavelength of 780 nm, a measurement length of 1 mm, a sampling pitch of 2 μm, and a cutoff of 0.25 mm The measurement is performed under the measurement conditions of the vertical direction (film continuous film forming direction) magnification of 100,000 times, the horizontal direction (continuous film forming direction and vertical direction) magnification of 200 times, and the number of scanning lines of 100.

<塗布層面の表面荒さ>
本発明の二軸配向フィルムは、塗布層面における十点平均粗さRzが50〜150nmである。塗布層面における十点平均粗さRzは、60〜140nmであることがより好ましい。Rzが下限に満たない場合、十分な易滑性が得られず巻取りが困難になり、またフィルムにしわが寄るため、フレキシブル回路に部分的にシワや凹凸が発生して平面性が悪化する。またRzが上限を超えると易滑性は優れているが透明性が低下し、また塗膜層中の微粒子が脱落する場合がある。なお本発明の塗膜層面の表面粗さは、塗膜層中の微粒子の平均粒子径および含有量によって達成されるものである。
<Surface roughness of coated layer>
The biaxially oriented film of the present invention has a ten-point average roughness Rz of 50 to 150 nm on the coating layer surface. The ten-point average roughness Rz on the coating layer surface is more preferably 60 to 140 nm. When Rz is less than the lower limit, sufficient slipperiness cannot be obtained, winding becomes difficult, and wrinkles are formed on the film, so that wrinkles and irregularities are partially generated in the flexible circuit, resulting in poor flatness. On the other hand, if Rz exceeds the upper limit, the slipperiness is excellent but the transparency is lowered, and the fine particles in the coating layer may fall off. The surface roughness of the coating layer surface of the present invention is achieved by the average particle size and content of fine particles in the coating layer.

<熱収縮率>
本発明の二軸配向ポリエステルフィルムは、200℃×10分における熱収縮率がフィルムの長手方向および幅方向のいずれも1.5%以下である。また、本発明の二軸配向ポリエステルフィルムは、200℃×10分における熱収縮率の下限は、フィルムの長手方向および幅方向のいずれも−1.5%以上であることが好ましい。該熱収縮率は、さらに好ましくは−1.0〜1.0%、特に好ましくは−0.5〜0.5%である。本発明では特に断りがない限り、長手方向とはフィルムが連続製膜されるときの進行方向であり、フィルムの製膜方向、縦方向、MD方向と称することがある。また本発明では幅方向とはフィルム面内方向における長手方向に直交する方向であり、横方向またはTD方向と称することもある。200℃×10の熱収縮率が上記記載の範囲を超えると、金属層を貼りあわせた後のキュアリング時のフィルムの寸法変化や印刷後の乾燥処理でのフィルムの寸法変化が大きく、回路基板に反りが発生したり、また、回路部品実装時のハンダ付け後のフレキシブル回路に部分的にシワや凹凸が発生して平面性が悪化することがある。
<Heat shrinkage>
The biaxially oriented polyester film of the present invention has a heat shrinkage rate at 200 ° C. for 10 minutes of 1.5% or less in both the longitudinal direction and the width direction of the film. In the biaxially oriented polyester film of the present invention, the lower limit of the heat shrinkage rate at 200 ° C. × 10 minutes is preferably −1.5% or more in both the longitudinal direction and the width direction of the film. The thermal shrinkage is more preferably -1.0 to 1.0%, particularly preferably -0.5 to 0.5%. In the present invention, unless otherwise specified, the longitudinal direction is a traveling direction when a film is continuously formed, and may be referred to as a film forming direction, a longitudinal direction, and an MD direction. In the present invention, the width direction is a direction orthogonal to the longitudinal direction in the film in-plane direction, and may be referred to as a transverse direction or a TD direction. If the thermal shrinkage at 200 ° C. × 10 exceeds the above-mentioned range, the dimensional change of the film at the time of curing after bonding the metal layers and the dimensional change of the film in the drying process after printing are large. In some cases, warping may occur, or wrinkles or irregularities may partially occur in the flexible circuit after soldering when mounting circuit components, resulting in poor flatness.

上述の熱収縮率を達成するためには、延伸倍率は低いほど良好であるものの一方で温度膨張係数が大きくなることから、延伸倍率は長手方向、幅方向ともに2.0〜5.0倍の範囲であることが好ましい。また延伸温度は120〜180℃であることが好ましい。熱固定温度は高いほど熱収縮率が良化するものの、高温過ぎるとフィルムの配向が緩み温度膨張係数が大きくなることから、170〜260℃であることが好ましい。さらに熱収縮率をより低減させる目的で熱処理弛緩処理を行うことが好ましく、160〜240℃の温度で行うことが好ましい。   In order to achieve the above-mentioned heat shrinkage rate, the lower the draw ratio, the better, but on the other hand the temperature expansion coefficient increases, so the draw ratio is 2.0 to 5.0 times in both the longitudinal direction and the width direction. A range is preferable. The stretching temperature is preferably 120 to 180 ° C. The higher the heat setting temperature, the better the heat shrinkage rate. However, when the temperature is too high, the film is loosened and the temperature expansion coefficient is increased. Furthermore, it is preferable to perform a heat treatment relaxation treatment for the purpose of further reducing the heat shrinkage rate, and it is preferable to carry out at a temperature of 160 to 240 ° C.

<温度膨張係数>
本発明の二軸配向ポリエステルフィルムは、30〜100℃の過程において温度膨張係数(αt)が、20ppm/℃以下であることが好ましい。本発明における温度膨張係数の下限は、好ましくは1ppm/℃である。また、本発明における温度膨張係数は、より好ましくは2〜19ppm/℃、更に好ましくは3〜18ppm/℃である。温度膨張係数が下限に満たない場合、あるいは上限を超える場合、FPC加工工程中にフィルムの熱変形が悪化し、FPC基板が反るなどの不具合が発生することがある。本発明における温度膨張係数は、熱機械分析装置(TMA)を用い、30℃から180℃まで10℃/分の昇温速度で測定して得られた温度寸法変化曲線において、30〜100℃の傾きより熱膨張係数を求めたものである。
<Temperature expansion coefficient>
The biaxially oriented polyester film of the present invention preferably has a temperature expansion coefficient (αt) of 20 ppm / ° C. or less in the process of 30 to 100 ° C. The lower limit of the temperature expansion coefficient in the present invention is preferably 1 ppm / ° C. Moreover, the temperature expansion coefficient in this invention becomes like this. More preferably, it is 2-19 ppm / degrees C, More preferably, it is 3-18 ppm / degrees C. When the temperature expansion coefficient is less than the lower limit or exceeds the upper limit, the thermal deformation of the film may be deteriorated during the FPC processing step, and problems such as warpage of the FPC substrate may occur. The temperature expansion coefficient in the present invention is 30 to 100 ° C. in a temperature dimensional change curve obtained by measuring at a rate of temperature increase of 10 ° C./min from 30 ° C. to 180 ° C. using a thermomechanical analyzer (TMA). The coefficient of thermal expansion is obtained from the slope.

上述の温度膨張係数を達成するためには、温度膨張係数と熱収縮率双方を達成するために、延伸倍率は長手方向、幅方向ともに2.0〜5.0倍の範囲であることが好ましい。また延伸温度は120〜180℃であることが好ましい。熱固定温度は高いほど熱収縮率が良化するものの、高温過ぎるとフィルムの配向が緩み温度膨張係数が大きくなることから、170〜260℃であることが好ましい。   In order to achieve the above-mentioned temperature expansion coefficient, the stretching ratio is preferably in the range of 2.0 to 5.0 times in both the longitudinal direction and the width direction in order to achieve both the thermal expansion coefficient and the thermal contraction rate. . The stretching temperature is preferably 120 to 180 ° C. The higher the heat setting temperature, the better the heat shrinkage rate. However, when the temperature is too high, the film is loosened and the temperature expansion coefficient is increased.

<全光線透過率>
本発明の二軸配向ポリエステルフィルムの全光線透過率は85%以上であることが好ましい。本発明における全光線透過率は、より好ましくは87%以上、特に好ましくは90%以上である。全光線透過率が下限に満たない場合、フィルムの透明性が悪くなりFPCの基板下部より、例えば発光ダイオードで照明し、基板上部に該照明を視認させるといった使用が困難となることがある。本発明の全光線透過率の範囲であれば、上限は高ければ高い程好ましいが、好ましくは100%未満である。かかる全光線透過率は、二軸配向ポリエステルフィルムの基材層中に不活性粒子を含まないこと、また塗布層中の高分子バインダーおよび微粒子を調整することによって達成される。
<Total light transmittance>
The total light transmittance of the biaxially oriented polyester film of the present invention is preferably 85% or more. The total light transmittance in the present invention is more preferably 87% or more, and particularly preferably 90% or more. When the total light transmittance is less than the lower limit, the transparency of the film is deteriorated, and it may be difficult to use such as illuminating with a light emitting diode from the lower part of the substrate of the FPC and making the illumination visible on the upper part of the substrate. Within the range of the total light transmittance of the present invention, the upper limit is preferably as high as possible, but is preferably less than 100%. Such total light transmittance is achieved by not containing inert particles in the base material layer of the biaxially oriented polyester film, and adjusting the polymer binder and fine particles in the coating layer.

<ヘイズ>
本発明の二軸配向ポリエステルフィルムは、ヘイズが1.5%以下であることが好ましい。本発明におけるヘイズは、より好ましくは1.0%以下、特に好ましくは0.5%以下である。ヘイズが上限を超えると透明性が悪くなりFPCの基板下部より、例えば発光ダイオードで照明し、基板上部に該照明を視認させるといった使用が困難となることがある。本発明のヘイズの範囲であれば、下限は小さければ小さい程好ましいが、好ましくは0%である。かかるヘイズは、二軸配向ポリエステルフィルムの基材層中に不活性粒子を含まないこと、また塗布層中の高分子バインダーおよび微粒子を調整することによって達成される。
<Haze>
The biaxially oriented polyester film of the present invention preferably has a haze of 1.5% or less. The haze in the present invention is more preferably 1.0% or less, and particularly preferably 0.5% or less. When the haze exceeds the upper limit, the transparency is deteriorated, and it may be difficult to use the FPC by illuminating it with, for example, a light emitting diode from the lower part of the FPC board. If it is the range of the haze of this invention, it is so preferable that a minimum is small, However Preferably it is 0%. Such haze is achieved by not containing inert particles in the base material layer of the biaxially oriented polyester film, and by adjusting the polymer binder and fine particles in the coating layer.

<吸水率>
本発明の二軸配向ポリエステルフィルムの吸水率は、好ましくは1.0%以下であり、より好ましくは0.8%以下、更に好ましくは0.6以下である。吸水率が上限を超える場合、高湿度の環境下で使用すると、フィルムが吸湿しやすく絶縁性能が低下したり、あるいは回路の金属部分の腐蝕を引き起こす原因となることがある。
<Water absorption rate>
The water absorption rate of the biaxially oriented polyester film of the present invention is preferably 1.0% or less, more preferably 0.8% or less, and still more preferably 0.6 or less. When the water absorption rate exceeds the upper limit, when used in a high humidity environment, the film tends to absorb moisture, resulting in a decrease in insulation performance, or corrosion of metal parts of the circuit.

<フィルム厚み>
本発明の二軸配向ポリエステルフィルムの厚みは12〜250μmの範囲であることが好ましく、より好ましくは25〜200μm、特に好ましくは38〜150μmである。フィルムの厚みが下限に満たない場合、フィルムの絶縁性能が不足し、また回路基板用フィルムとして曲げ剛性が不足することがある。一方、フィルムの厚みが上限を超える場合、フィルムの耐屈曲性が不足し、外力を加えられた場合フィルムに割れが発生したり折れた状態のまま戻らなくなることがある。
<Film thickness>
The thickness of the biaxially oriented polyester film of the present invention is preferably in the range of 12 to 250 μm, more preferably 25 to 200 μm, and particularly preferably 38 to 150 μm. When the film thickness is less than the lower limit, the insulation performance of the film is insufficient, and the bending rigidity may be insufficient as a circuit board film. On the other hand, when the thickness of the film exceeds the upper limit, the film has insufficient bending resistance, and when an external force is applied, the film may be cracked or may not return in a broken state.

<絶縁抵抗値>
本発明は、二軸配向ポリエステルフィルムの基材層面にさらに銅箔または導電ペーストが積層された銅張積層板を用いてなるフレキシブルプリント回路基板も好ましい態様と包含する。かかるフレキシブルプリント回路基板は、ライン/スペースの間隔が25μm/25μm以下であるような微細な回路パターンが形成されることが好ましく、さらにライン/スペースの間隔が20μm/20μm以下であるような微細な回路パターンが形成されることが好ましい。本発明におけるフレキシブルプリント回路基板は、かかる微細な回路パターンを形成し、85℃、85%RHの環境下で直流電圧(DC)100Vを連続印加したときのフレキシブルプリント回路の絶縁抵抗値が下記式(I)を満たすことが好ましい。R1000/R0が0.7未満の場合、回路の長期電気特性が十分でなく、長期にわたる絶縁特性が求められるフレキシブルプリント回路基板として用いることができないことがある。
1000/R0≧0.7 ・・・(I)
(式中、R1000はDC100Vを1000時間連続印加後の絶縁抵抗値(単位:MΩ)を表わし、R0は絶縁抵抗初期値(単位:MΩ)を表わす。)
<Insulation resistance value>
The present invention also includes a preferred embodiment of a flexible printed circuit board using a copper clad laminate in which a copper foil or a conductive paste is further laminated on the base layer surface of the biaxially oriented polyester film. Such a flexible printed circuit board is preferably formed with a fine circuit pattern having a line / space interval of 25 μm / 25 μm or less, and a fine line pattern having a line / space interval of 20 μm / 20 μm or less. A circuit pattern is preferably formed. The flexible printed circuit board according to the present invention forms such a fine circuit pattern, and the insulation resistance value of the flexible printed circuit when a DC voltage (DC) of 100 V is continuously applied in an environment of 85 ° C. and 85% RH is expressed by the following formula. It is preferable to satisfy (I). If R 1000 / R 0 is less than 0.7, the circuit may not be used as a flexible printed circuit board that has insufficient long-term electrical characteristics and requires long-term insulation characteristics.
R 1000 / R 0 ≧ 0.7 (I)
(In the formula, R 1000 represents an insulation resistance value (unit: MΩ) after continuous application of DC 100 V for 1000 hours, and R 0 represents an initial value of insulation resistance (unit: MΩ).)

なお、本発明の範囲のR1000/R0を達成するためには、二軸配向ポリエステルフィルムの基材層面における十点平均粗さRzが本発明の範囲内であることが必要である。基材層面が極めて平坦であることによって、ライン/スペースの間隔が25μm/25μm以下であるような微細な回路を形成しても、フィルム表面の凹凸が極めて小さいことから、積層された金属層のエッチングが連続的に形成され、配線間の絶縁不良(マイグレーション)の原因となるエッチング不良部、すなわちエッチングされずに残る金属屑が発生しないためである。 In order to achieve R 1000 / R 0 in the range of the present invention, it is necessary that the ten-point average roughness Rz on the substrate layer surface of the biaxially oriented polyester film is within the range of the present invention. Since the substrate layer surface is extremely flat, even when a fine circuit having a line / space spacing of 25 μm / 25 μm or less is formed, the unevenness of the film surface is extremely small. This is because the etching is continuously formed, and defective etching portions that cause insulation failure (migration) between the wirings, that is, metal scraps remaining without being etched are not generated.

<製膜方法>
本発明の二軸配向ポリエステルフィルムは、上述のポリエチレン−2,6−ナフタレンジカルボキシレートをフィルム状に溶融押出し、キャスティングドラムで冷却固化させて未延伸フィルムとし、この未延伸フィルムをTg〜(Tg+60)℃で縦方向、横方向に倍率2.0〜5.0倍で2軸に延伸し、(Tm−100)〜(Tm―5)℃の温度で1〜100秒間熱固定することで所望のフィルムを得ることができる。延伸は一般に用いられる方法例えばロールによる方法やステンターを用いる方法で行うことができ、縦方向、横方向を同時に延伸してもよく、また縦方向、横方向に逐次延伸してもよい。塗布層は逐次延伸の場合、一方向に延伸した1軸配向フィルムに、水性塗液を塗布し、そのままもう一方向に延伸し熱固定する。塗工方法としてはロールコート法、グラビアコート法、ロールブラッシュ法、スプレー法、エアーナイフコート法、含浸法、カーテンコート法等を単独または組み合わせて用いることができる。ここで、Tgは、ポリマーのガラス転移温度、Tmはポリマーの融点を表わす。
<Film forming method>
The biaxially oriented polyester film of the present invention is obtained by melt-extruding the above-described polyethylene-2,6-naphthalenedicarboxylate into a film shape and cooling and solidifying it with a casting drum to form an unstretched film. ) Stretched biaxially at a magnification of 2.0 to 5.0 times in the longitudinal and transverse directions at ° C, and desired by heat setting at a temperature of (Tm-100) to (Tm-5) ° C for 1 to 100 seconds Film can be obtained. Stretching can be performed by a generally used method such as a method using a roll or a method using a stenter. The stretching may be performed simultaneously in the longitudinal direction and the transverse direction, or may be sequentially performed in the longitudinal direction and the transverse direction. In the case of sequential stretching, the coating layer is formed by applying an aqueous coating liquid to a uniaxially oriented film stretched in one direction, stretching in the other direction as it is, and heat fixing. As a coating method, a roll coating method, a gravure coating method, a roll brush method, a spray method, an air knife coating method, an impregnation method, a curtain coating method, or the like can be used alone or in combination. Here, Tg represents the glass transition temperature of the polymer, and Tm represents the melting point of the polymer.

さらに弛緩処理を行う場合は、加熱処理をフィルムの(X−80)〜X℃の温度において行うことが効果的である。ここでXは熱固定温度のことを表す。弛緩処理の方法としては熱固定後ロールに巻き取るまでの間の、熱固定ゾーンの途中でフィルムの両端部を切り離しフィルムの供給速度に対して引き取り速度を減速させる方法、2つの速度の異なる搬送ロールの間においてIRヒーターで加熱する方法、加熱搬送ロール上にフィルムを搬送させ加熱搬送ロール後の搬送ロールの速度を減速させる方法、熱固定後熱風を吹き出すノズルの上にフィルムを搬送させながら、供給の速度よりも引き取りの速度を減速する方法、あるいは製膜機で巻き取った後、加熱搬送ロール上にフィルムを搬送させ搬送ロールの速度を減速する方法、あるいは加熱オーブン内やIRヒーターによる加熱ゾーンを搬送させながら加熱ゾーン後のロール速度を加熱ゾーン前のロール速度より減速する方法があり、いずれの方法を用いても良く、供給側の速度に対して引き取り側の速度の減速率を0.1〜10%にして弛緩処理を行うことが好ましい。   Furthermore, when performing a relaxation | loosening process, it is effective to perform heat processing in the temperature of (X-80) -X degreeC of a film. Here, X represents the heat setting temperature. As a relaxation treatment method, the film is cut off at both ends of the film in the middle of the heat setting zone until it is wound on a roll after heat setting, and the take-off speed is reduced with respect to the film supply speed. A method of heating with an IR heater between rolls, a method of transporting a film on a heated transport roll and reducing the speed of the transport roll after the heated transport roll, while transporting the film on a nozzle that blows hot air after heat fixing, A method of reducing the take-off speed over the supply speed, or a method of reducing the speed of the transport roll by transporting the film onto a heating transport roll after winding with a film forming machine, or heating in a heating oven or IR heater There is a method to reduce the roll speed after the heating zone from the roll speed before the heating zone while transporting the zone. Of may be used a method, it is preferable to perform relaxation by the deceleration rate of the take-off side of the speed from 0.1 to 10% with respect to the speed of the supply side.

特に本発明の塗布層は、微粒子を含有し、フィルム塗布層面側の十点平均粗さRzが本発明の範囲内にあることにより、フィル製造時の製膜性が良好になる。   In particular, the coating layer of the present invention contains fine particles, and the ten-point average roughness Rz on the film coating layer surface side is within the range of the present invention, so that the film-forming property at the time of producing the film is improved.

以下、実施例により本発明を更に詳細に説明するが、本発明における種々の物性値および特性は以下の如くして測定されたものであり且つ定義される。また、実施例中の部および%は、特に断らない限り、それぞれ重量部および重量%を意味する。
(1)フィルム厚み
得られた二軸配向ポリエステルフィルムについて、電子マイクロメータ(アンリツ(株)製の商品名「K−312A型」)を用いて針圧30gにて10点フィルム厚みを測定し、その平均値をフィルム厚みとした。
Hereinafter, the present invention will be described in more detail by way of examples, but various physical property values and characteristics in the present invention are measured and defined as follows. Moreover, unless otherwise indicated, the part and% in an Example mean a weight part and weight%, respectively.
(1) Film thickness About the obtained biaxially oriented polyester film, 10-point film thickness was measured at 30 g of needle pressure using an electronic micrometer (trade name “K-312A type” manufactured by Anritsu Corporation). The average value was defined as the film thickness.

(2)表面粗さ/十点平均粗さRz
原子間力顕微鏡(Digital Instruments社製の商品名「Nano Scope III AFM」のJスキャナー)を使用し、以下の条件で算出されるRzを測定した。
探針 単結合シリコンセンサー
走査モード タッピングモード
画素数 256×256データポイント
スキャン速度 2.0Hz
測定環境 室温、大気中
走査範囲 10μm×10μm
(2) Surface roughness / ten-point average roughness Rz
Using an atomic force microscope (trade name “Nano Scope III AFM” manufactured by Digital Instruments, J scanner), Rz calculated under the following conditions was measured.
Probe Single-bond silicon sensor scan mode Tapping mode Number of pixels 256 × 256 data point scan speed 2.0 Hz
Measurement environment Room temperature, scanning range in air 10μm × 10μm

(3)熱収縮率
得られた二軸配向ポリエステルフィルムサンプルに30cm間隔で標点をつけ、荷重をかけずに200℃の温度のオーブンで10分間熱処理を実施し、熱処理後の標点間隔を測定して、フィルム連続製膜方向(MD方向)と、製膜方向に垂直な方向(TD方向)において、下記式にて熱収縮率Rを算出した。
R(%)={(L1−L2)/L1}×100
ここで、L1は熱処理前標点間距離、L2は熱処理後標点間距離である。
(3) Heat shrinkage rate The obtained biaxially oriented polyester film samples were marked at intervals of 30 cm, heat-treated for 10 minutes in an oven at a temperature of 200 ° C. without applying a load, It measured and the thermal contraction rate R was computed by the following formula in the film continuous film forming direction (MD direction) and the direction (TD direction) perpendicular | vertical to the film forming direction.
R (%) = {(L1-L2) / L1} × 100
Here, L1 is the distance between the marks before heat treatment, and L2 is the distance between the marks after heat treatment.

(4)吸水率
JIS K7209に準じて測定した。
(4) Water absorption Measured according to JIS K7209.

(5)温度膨張係数(αt)
セイコーインスツレメント(株)製TMA/SS 120Cにフィルムを試料幅3mm、チャック間15.05mmとしてセットし、荷重80g/mmの条件で、室温(30℃)から180℃(PETの場合は150℃)まで10℃/分の昇温速度で昇温して測定した。得られた温度寸法変化曲線において、30〜100℃の傾きより熱膨張係数を求めた。
(5) Temperature expansion coefficient (αt)
A film is set on a TMA / SS 120C manufactured by Seiko Instruments Inc. with a sample width of 3 mm and a space between chucks of 15.05 mm, and under a load of 80 g / mm 2 , from room temperature (30 ° C.) to 180 ° C. (in the case of PET) The temperature was measured at a temperature increase rate of 10 ° C./min up to 150 ° C.). In the obtained temperature dimension change curve, the thermal expansion coefficient was determined from the slope of 30 to 100 ° C.

(6)全光線透過率、ヘイズ
得られた二軸配向ポリエステルフィルムを用い、JIS規格 K6714−1958に準じ、全光線透過率Tt(%)と散乱光透過率Td(%)を求め、ヘイズ((Td/Tt)×100)(%)を算出した。
(6) Total light transmittance, haze Using the obtained biaxially oriented polyester film, the total light transmittance Tt (%) and scattered light transmittance Td (%) were determined according to JIS standard K6714-1958, and haze ( (Td / Tt) × 100) (%) was calculated.

(7)電気絶縁性
得られた二軸配向ポリエステルフィルムの基材層面に銅箔を積層し、図1に示すようにパターン長さ3が10mmである櫛形パターンよりなる回路パターンをエッチングにより作成し、85℃、85%RHの恒温恒湿機内に投入し24時間放置した。その後DC100Vの電圧をかけ、同環境下でDC100Vを連続印荷し、抵抗値を連続してモニタリングした。初期絶縁抵抗値をR0(単位:MΩ)1000時間後の絶縁抵抗値をR1000(単位:MΩ)としたときのR1000/R0値を算出し、下記の基準に従って評価した。なお、図1に示すパターン幅1、線間スペース2は共に25μmで測定を行った。
○:R1000/R0が0.7以上
△:R1000/R0が0.5以上0.7未満
×:R1000/R0が0.5未満
(7) Electrical insulation Copper foil is laminated on the surface of the base material layer of the obtained biaxially oriented polyester film, and as shown in FIG. 1, a circuit pattern made of a comb pattern having a pattern length 3 of 10 mm is formed by etching. , 85 ° C. and 85% RH in a constant temperature and humidity machine and left for 24 hours. Thereafter, a voltage of 100 V DC was applied, 100 V DC was continuously applied under the same environment, and the resistance value was continuously monitored. The R 1000 / R 0 value was calculated when the initial insulation resistance value was R 0 (unit: MΩ) and the insulation resistance value after 1000 hours was R 1000 (unit: MΩ), and evaluation was performed according to the following criteria. The pattern width 1 and the inter-line space 2 shown in FIG. 1 were both measured at 25 μm.
○: R 1000 / R 0 is 0.7 or more Δ: R 1000 / R 0 is 0.5 or more and less than 0.7 ×: R 1000 / R 0 is less than 0.5

(8)フィルム平面性
ポリエステルフィルムと汎用塩化ビニル系樹脂とを可塑剤からなる接着剤により貼り合わせて、温度160℃、圧力30kg/cm、時間30分の条件で圧着ロールを用いて圧着した。試料寸法を25cm×25cmとし、相対湿度85%、65℃の雰囲気下で100時間定盤上に置いた状態で4隅のカール状態を観測した。4隅の反り量(mm)の平均を測定した。下記の基準に従って評価を行った。○が合格である。
○:10mm未満の反り量
×:10mm以上の反り量
(8) Film flatness A polyester film and a general-purpose vinyl chloride resin are bonded to each other with an adhesive made of a plasticizer, and pressure-bonded using a pressure-bonding roll under conditions of a temperature of 160 ° C., a pressure of 30 kg / cm 2 , and a time of 30 minutes. . The sample size was 25 cm × 25 cm, and the curled state at the four corners was observed in a state where the sample was placed on a surface plate for 100 hours in an atmosphere of 85% relative humidity and 65 ° C. The average of the amount of warping (mm) at the four corners was measured. Evaluation was performed according to the following criteria. ○ is a pass.
○: Warpage amount less than 10 mm ×: Warpage amount of 10 mm or more

(9)塗布層の厚み
フィルムの小片をエポキシ樹脂(リファインテック(株)製の商品名「エポマウント」)中に包埋し、Reichert−Jung社製Microtome2050を用いて包埋樹脂ごと50nm厚さにスライスし、透過型電子顕微鏡(日本電子(株)製「LEM−2000」)にて加速電圧100KV、倍率10万倍にて観察し、塗膜層の厚みを測定した。
(9) Thickness of coating layer A small piece of film is embedded in an epoxy resin (trade name “Epomount” manufactured by Refine Tech Co., Ltd.), and the total thickness of the embedded resin is 50 nm using a Microtome 2050 manufactured by Reichert-Jung. The film was observed with a transmission electron microscope (“LEM-2000” manufactured by JEOL Ltd.) at an acceleration voltage of 100 KV and a magnification of 100,000 times, and the thickness of the coating layer was measured.

(10)平均粒子径
塗布層厚みの測定と同様の操作を行い、100個の粒子の粒子径を測定し、平均値を平均粒子径とした。
(10) Average particle diameter The same operation as the measurement of the coating layer thickness was performed, the particle diameter of 100 particles was measured, and the average value was defined as the average particle diameter.

(11)総合評価
以上の各評価結果を受けて、二軸配向ポリエステルフィルムの平面性、熱寸法安定性、吸水率についての結果を総合評価した。◎および○が合格である。
◎:非常に良好(上記の結果がすべて良好で特に優れた部分がある)
○:良好(上記の結果がすべて良好)
△:やや不良(上記の結果のいずれかにやや不満足な部分がある)
×:不良(上記の結果のいずれかに致命的な欠陥がある)
(11) Comprehensive evaluation In response to the above evaluation results, the results of the planarity, thermal dimensional stability and water absorption of the biaxially oriented polyester film were comprehensively evaluated. ◎ and ○ are acceptable.
A: Very good (all the above results are good and there is a particularly excellent part)
○: Good (all the above results are good)
Δ: Slightly poor (some of the above results are somewhat unsatisfactory)
×: Defect (Any of the above results has a fatal defect)

[塗布層中の樹脂組成と各成分の配合比]
実施例で用いた塗布層の組成および配合比を表1に示す。ここで塗布層を構成する各成分は以下の物を用いた。
[Resin composition in coating layer and blending ratio of each component]
Table 1 shows the composition and blending ratio of the coating layers used in the examples. Here, the following components were used as the components constituting the coating layer.

Figure 2006054239
Figure 2006054239

ポリエステル樹脂:酸成分が2,6−ナフタレンジカルボン酸63モル%/イソフタル酸32モル%/5−ナトリウムスルホイソフタル酸5モル%、グリコール成分がエチレングリコール90モル%/ジエチレングリコール10モル%で構成されている(Tg=76℃、平均分子量12000)。なお、ポリエステルは、特開平06−116487号公報の実施例1に記載の方法に準じて下記の通り製造した。すなわち、2,6−ナフタレンジカルボン酸ジメチル42部、イソフタル酸ジメチル17部、5−ナトリウムスルホイソフタル酸ジメチル4部、エチレングリコール33部、ジエチレングリコール2部を反応器に仕込み、これにテトラブトキシチタン0.05部を添加して窒素雰囲気下で温度を230℃にコントロールして加熱し、生成するメタノールを留去させてエステル交換反応を行った。次いで反応系の温度を徐々に255℃まで上昇させ系内を1mmHgの減圧にして重縮合反応を行い、ポリエステル樹脂を得た。   Polyester resin: Acid component is composed of 63 mol% of 2,6-naphthalenedicarboxylic acid / 32 mol% of isophthalic acid / 5 mol% of 5-sodium sulfoisophthalic acid, and glycol component is composed of 90 mol% of ethylene glycol / 10 mol% of diethylene glycol. (Tg = 76 ° C., average molecular weight 12000). In addition, polyester was manufactured as follows according to the method of Example 1 of Unexamined-Japanese-Patent No. 06-116487. That is, 42 parts of dimethyl 2,6-naphthalenedicarboxylate, 17 parts of dimethyl isophthalate, 4 parts of dimethyl 5-sodium sulfoisophthalate, 33 parts of ethylene glycol and 2 parts of diethylene glycol were charged into a reactor. 05 parts were added, the temperature was controlled at 230 ° C. in a nitrogen atmosphere, and the resulting methanol was distilled off to conduct a transesterification reaction. Subsequently, the temperature of the reaction system was gradually raised to 255 ° C., and the pressure inside the system was reduced to 1 mmHg to carry out a polycondensation reaction to obtain a polyester resin.

アクリル樹脂:メチルメタクリレート30モル%/2−イソプロペニル−2−オキサゾリン30モル%/ポリエチレンオキシド(n=10)メタクリレート10モル%/アクリルアミド30モル%で構成されている(Tg=50℃)。なお、アクリルは、特開昭63−37167号公報の製造例1〜3に記載の方法に準じて下記の通り製造した。すなわち、四つ口フラスコに、イオン交換水302部を仕込んで窒素気流中で60℃まで昇温させ、次いで重合開始剤として過硫酸アンモニウム0.5部、亜硝酸水素ナトリウム0.2部を添加し、更にモノマー類である、メタクリル酸メチル23.3部、2−イソプロペニル−2−オキサゾリン22.6部、ポリエチレンオキシド(n=10)メタクリル酸40.7部、アクリルアミド13.3部の混合物を3時間にわたり、液温が60〜70℃になるよう調整しながら滴下した。滴下終了後も同温度範囲に2時間保持しつつ、撹拌下に反応を継続させ、次いで冷却して固形分が25%のアクリルの水分散体を得た。   Acrylic resin: composed of 30 mol% methyl methacrylate / 2 mol% 2-isopropenyl-2-oxazoline / 10 mol% polyethylene oxide (n = 10) methacrylate / 30 mol% acrylamide (Tg = 50 ° C.). The acrylic was produced as follows according to the method described in Production Examples 1 to 3 of JP-A-63-37167. That is, 302 parts of ion-exchanged water was charged into a four-necked flask and heated to 60 ° C. in a nitrogen stream, and then 0.5 parts of ammonium persulfate and 0.2 part of sodium hydrogen nitrite were added as a polymerization initiator. Furthermore, a mixture of monomers, 23.3 parts of methyl methacrylate, 22.6 parts of 2-isopropenyl-2-oxazoline, 40.7 parts of polyethylene oxide (n = 10) methacrylic acid, and 13.3 parts of acrylamide. The solution was added dropwise over 3 hours while adjusting the liquid temperature to 60 to 70 ° C. After completion of dropping, the reaction was continued with stirring while maintaining the same temperature range for 2 hours, and then cooled to obtain an acrylic aqueous dispersion having a solid content of 25%.

微粒子:シリカ及びチタニアの複合無機粒子(平均粒子径:100nm)を用いた。なお、微粒子は、特開平7−2520号公報の製造例及び実施例に記載の方法に準じて下記の通り製造した。撹拌羽根付きの内容積4リットルのガラス製反応容器にメタノール140g、イソプロパノール260g、およびアンモニア水(25重量%)100gを仕込み、反応液を調製し、反応液の温度を40℃に保持しつつ攪拌した。次に、3リットルの三角フラスコに、シリコンテトラメトキシド(Si(OMe)、コルコート(株)製の商品名「メチルシリケート39」)542gを仕込み、撹拌しながら、メタノール195gと0.1重量%塩酸水溶液(和光純薬工業(株)製の35%塩酸を1/1000に水で希釈)28gを加え、約10分間撹拌した。続いて、チタニウムテトライソプロポキシド(Ti(O−i−Pr)、日本曹達(株)製の商品名「A−1(TPT)」)300gをイソプロパノール634gで希釈した液を加え、透明な均一溶液(シリコンテトラアルコキシドとチタニウムテトラアルコキシドの共縮合物)を得た。上記均一溶液1699gとアンモニア水(25重量%)480gの各々を前記反応液中に、最初は滴下速度を小さくし、終盤にかけて徐々に速度を大きくして、2時間かけて同時に滴下した。滴下終了後、得られた共加水分解物をろ過し、50℃で有機溶媒を乾燥させ、その後、水に分散化させ、濃度10重量%、屈折率1.56の微粒子を得た。 Fine particles: Silica and titania composite inorganic particles (average particle size: 100 nm) were used. The fine particles were produced as follows according to the methods described in the production examples and examples of JP-A-7-2520. A glass reaction vessel with an inner volume of 4 liters equipped with a stirring blade was charged with 140 g of methanol, 260 g of isopropanol, and 100 g of aqueous ammonia (25% by weight) to prepare a reaction solution, and stirred while maintaining the temperature of the reaction solution at 40 ° C. did. Next, 542 g of silicon tetramethoxide (Si (OMe) 4 , trade name “Methyl silicate 39” manufactured by Colcoat Co., Ltd.) 542 g was charged into a 3 liter Erlenmeyer flask, and 195 g of methanol and 0.1 wt. 28 g of an aqueous hydrochloric acid solution (35% hydrochloric acid manufactured by Wako Pure Chemical Industries, Ltd. diluted with water to 1/1000) was added and stirred for about 10 minutes. Subsequently, a solution obtained by diluting 300 g of titanium tetraisopropoxide (Ti (O-i-Pr) 4 , trade name “A-1 (TPT)”) manufactured by Nippon Soda Co., Ltd. with 634 g of isopropanol was added, and transparent. A homogeneous solution (co-condensate of silicon tetraalkoxide and titanium tetraalkoxide) was obtained. Each of 1699 g of the homogeneous solution and 480 g of aqueous ammonia (25% by weight) were simultaneously added dropwise to the reaction solution over 2 hours while initially decreasing the dropping speed and gradually increasing the speed toward the end. After completion of the dropping, the obtained cohydrolyzate was filtered, the organic solvent was dried at 50 ° C., and then dispersed in water to obtain fine particles having a concentration of 10% by weight and a refractive index of 1.56.

ワックス:カルナバワックス(中京油脂株式会社製の商品名「セロゾール524」)を用いた。   Wax: Carnauba wax (trade name “Cerosol 524” manufactured by Chukyo Yushi Co., Ltd.) was used.

濡れ剤:ポリオキシエチレン(n=7)ラウリルエーテル(三洋化成株式会社製の商品名「ナロアクティーN−70」)を用いた。   Wetting agent: Polyoxyethylene (n = 7) lauryl ether (trade name “Naroacty N-70” manufactured by Sanyo Chemical Co., Ltd.) was used.

[実施例1]
ナフタレン−2,6−ジカルボン酸ジメチル100部、およびエチレングリコール60部を、エステル交換触媒として酢酸マンガン四水塩0.03部を使用し、150℃から238℃に徐々に昇温させながら120分間エステル交換反応を行った。途中反応温度が170℃に達した時点で三酸化アンチモン0.024部を添加し、エステル交換反応終了後、リン酸トリメチル(エチレングリコール中で135℃、5時間0.11〜0.16MPaの加圧下で加熱処理した溶液:リン酸トリメチル換算量で0.023部)を添加した。その後反応生成物を重合反応器に移し、290℃まで昇温し、27Pa以下の高真空下にて重縮合反応を行って、固有粘度が0.61dl/gの、実質的に粒子を含有しないポリエチレン−2,6−ナフタレンジカルボキシレートを得た。
[Example 1]
Using 100 parts of dimethyl naphthalene-2,6-dicarboxylate and 60 parts of ethylene glycol as a transesterification catalyst, 0.03 part of manganese acetate tetrahydrate, and gradually increasing the temperature from 150 ° C. to 238 ° C. for 120 minutes A transesterification reaction was performed. On the way, when the reaction temperature reached 170 ° C., 0.024 part of antimony trioxide was added, and after the transesterification reaction, trimethyl phosphate (135 ° C. in ethylene glycol, 0.11 to 0.16 MPa for 5 hours) was added. The solution heat-treated under pressure: 0.023 parts in terms of trimethyl phosphate was added. Thereafter, the reaction product is transferred to a polymerization reactor, heated to 290 ° C., and subjected to a polycondensation reaction under a high vacuum of 27 Pa or less, and has an intrinsic viscosity of 0.61 dl / g and substantially no particles. Polyethylene-2,6-naphthalenedicarboxylate was obtained.

このポリエチレン−2,6−ナフタレンジカルボキシレートのペレットを170℃で6時間乾燥後、押出機ホッパーに供給し、溶融温度305℃で溶融し、平均目開きが17μmのステンレス鋼細線フィルターで濾過し、3mmのスリット状ダイを通して表面温度60℃の回転冷却ドラム上で押出し、急冷して未延伸フィルムを得た。このようにして得られた未延伸フィルムを120℃にて予熱し、さらに低速、高速のロール間で15mm上方より900℃のIRヒーターにて加熱して縦方向に3.1倍に延伸した。この縦延伸後のフィルムの片面に上記の塗布層用の塗剤を乾燥後の塗膜厚みが0.1μmになるようにロールコーターで塗工した。   The polyethylene-2,6-naphthalenedicarboxylate pellets were dried at 170 ° C. for 6 hours, then fed to an extruder hopper, melted at a melting temperature of 305 ° C., and filtered through a stainless steel fine wire filter having an average opening of 17 μm. The film was extruded through a 3 mm slit die on a rotary cooling drum having a surface temperature of 60 ° C. and rapidly cooled to obtain an unstretched film. The unstretched film thus obtained was preheated at 120 ° C., and further heated by a 900 ° C. IR heater 15 mm above between low-speed and high-speed rolls and stretched 3.1 times in the longitudinal direction. The coating for the coating layer was applied to one side of the film after the longitudinal stretching with a roll coater so that the coating thickness after drying was 0.1 μm.

続いてテンターに供給し、145℃にて横方向に.3.2倍に延伸した。得られた二軸配向フィルムを240℃の温度で40秒間熱固定し厚み50μmの二軸配向ポリエステルフィルムを得た。得られたフィルムの特性を表2に示す。本実施例により基材層面の表面平坦性、寸法安定性、低吸水性、透明性、電気絶縁性(電気抵抗特性)に優れたフィルムを得ることができた。   Subsequently, it was supplied to a tenter and laterally at 145 ° C. 3. Stretched 2 times. The obtained biaxially oriented film was heat-fixed at a temperature of 240 ° C. for 40 seconds to obtain a biaxially oriented polyester film having a thickness of 50 μm. The properties of the obtained film are shown in Table 2. According to this example, a film excellent in surface flatness, dimensional stability, low water absorption, transparency, and electrical insulation (electric resistance characteristics) of the base material layer surface could be obtained.

[実施例2]
実施例1で得られた二軸配向ポリエステルフィルムをロールに巻取った後、IRヒーターによる加熱ゾーンを用いて、処理温度220℃、弛緩率0.5%で弛緩処理を行い、二軸配向ポリエステルフィルムを得た。得られたフィルムの特性を表2に示す。本実施例により基材層面の表面平坦性、寸法安定性、低吸水性、透明性および電気絶縁性に優れたフィルムを得ることができた。中でも寸法安定性は特に優れていた。
[Example 2]
After winding the biaxially oriented polyester film obtained in Example 1 on a roll, the biaxially oriented polyester was subjected to a relaxation treatment at a treatment temperature of 220 ° C. and a relaxation rate of 0.5% using an IR heater heating zone. A film was obtained. The properties of the obtained film are shown in Table 2. By this example, a film excellent in surface flatness, dimensional stability, low water absorption, transparency and electrical insulation on the surface of the base material layer could be obtained. Among them, the dimensional stability was particularly excellent.

[比較例1]
実施例1で用いたポリエチレン−2,6−ナフタレンジカルボキシレートに平均粒子径0.35μmの球状シリカ粒子を0.1重量%練り込んだものを作成し、延伸倍率を縦方向に3.7倍、横方向に3.8倍延伸し、塗布層を設けなかったこと以外は実施例1と同様の方法にて二軸配向ポリエステルフィルムを得た。得られたフィルムの特性を表2に示す。得られたフィルムは基材層に滑材が含まれているため基材層面の表面平坦性が劣り、電気絶縁性が不十分であった。また得られた二軸配向ポリエステルフィルムは不透明であった。
[Comparative Example 1]
A polyethylene-2,6-naphthalene dicarboxylate used in Example 1 was kneaded with 0.1% by weight of spherical silica particles having an average particle size of 0.35 μm, and the draw ratio was 3.7 in the machine direction. A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the film was stretched 3.8 times in the transverse direction and no coating layer was provided. The properties of the obtained film are shown in Table 2. Since the obtained film contained a lubricant in the base material layer, the surface flatness of the base material layer surface was inferior, and the electrical insulation was insufficient. Further, the obtained biaxially oriented polyester film was opaque.

[比較例2]
塗布層を設けなかった以外は実施例1と同様の方法によって2軸配向ポリエステルフィルムを得た。得られたフィルムの特性を表2に示す。得られたフィルムは、塗膜層を有していないためフィルム走行性が不十分であり、さらにフィルムしわが発生して電気絶縁性にも劣るものであった。
[Comparative Example 2]
A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the coating layer was not provided. The properties of the obtained film are shown in Table 2. Since the obtained film did not have a coating film layer, the film running property was insufficient, and further, film wrinkles were generated and the electrical insulation was inferior.

[比較例3]
メチルテレフタレート96部、エチレングリコール58部、酢酸マンガン0.038部及び三酸化アンチモン0.041部を夫々反応器に仕込み、攪拌下内温が240℃になるまでメタノールを留出せしめながらエステル交換反応を行い、該エステル交換反応が終了したのちトリメチルホスフェート0.097部を添加した。引き続いて、反応生成物を昇温し、最終的に高真空下280℃の条件で重縮合を行って固有粘度([η])0.64のポリエチレンテレフタレートのチップを得た。
[Comparative Example 3]
96 parts of methyl terephthalate, 58 parts of ethylene glycol, 0.038 part of manganese acetate and 0.041 part of antimony trioxide were charged into the reactor, respectively, and the ester exchange reaction was carried out while distilling methanol under stirring until the internal temperature reached 240 ° C. After the transesterification reaction was completed, 0.097 parts of trimethyl phosphate was added. Subsequently, the temperature of the reaction product was raised, and finally polycondensation was performed under conditions of 280 ° C. under high vacuum to obtain a chip of polyethylene terephthalate having an intrinsic viscosity ([η]) of 0.64.

次に、このポリエチレンテレフタレートのチップを170℃で3時間乾燥したのち、二軸押出機に供給し、280℃で溶融混練し、急冷固化してマスターチップを得た。
このポリエチレンテレフタレートのペレットを160℃で3時間乾燥後、押出機ホッパーに供給し、溶融温度295℃で溶融し、20℃に保持した冷却ドラム上で急冷固化せしめ未延伸フィルムを得た。該未延伸フィルムを95℃で縦方向に3.5倍に延伸し、次いで縦延伸後のフィルムの片面に上記の塗布層用の塗剤を乾燥後の塗膜厚みが0.1μmになるように塗布し、110℃で横方向に3.8倍に延伸したのち、230℃で熱固定し、厚み100μmの二軸延伸ポリエステルフィルムを得た。得られたフィルムの特性を表2に示す。電気絶縁性に劣るのに加え、熱収縮率が大きく寸法安定性に欠けるフィルムであった。
Next, this polyethylene terephthalate chip was dried at 170 ° C. for 3 hours, then supplied to a twin-screw extruder, melt-kneaded at 280 ° C., and rapidly cooled and solidified to obtain a master chip.
The polyethylene terephthalate pellets were dried at 160 ° C. for 3 hours, then supplied to an extruder hopper, melted at a melting temperature of 295 ° C., and rapidly cooled and solidified on a cooling drum maintained at 20 ° C. to obtain an unstretched film. The unstretched film is stretched 3.5 times in the longitudinal direction at 95 ° C., and then the coating film thickness after drying the above coating layer coating agent is 0.1 μm on one side of the film after longitudinal stretching. The film was stretched 3.8 times in the transverse direction at 110 ° C. and heat-set at 230 ° C. to obtain a biaxially stretched polyester film having a thickness of 100 μm. The properties of the obtained film are shown in Table 2. In addition to being inferior in electrical insulation, the film had a large thermal shrinkage rate and lacked dimensional stability.

[比較例4]
東レ・デュポン製「カプトン;タイプH」の50μmフィルムを用いた。得られたフィルムの特性は表2の通りである。熱収縮率は非常に優れているが、表面平坦性、透明性に劣るのに加え、吸水率が高いため高湿度下の雰囲気ではフィルム平面性に劣るものであった。
[Comparative Example 4]
A 50 μm film of “Kapton; Type H” manufactured by Toray DuPont was used. The properties of the obtained film are as shown in Table 2. Although the heat shrinkage ratio is very excellent, in addition to being inferior in surface flatness and transparency, the film flatness is inferior in an atmosphere under high humidity due to high water absorption.

Figure 2006054239
Figure 2006054239

本発明によって得られた二軸配向ポリエステルフィルムは、表面平坦性、熱寸法安定性、走行性に優れ、フレキシブルプリント回路基板として用いた際の電気絶縁性が極めて良好で電気抵抗特性に優れることから回路パターンのファインピッチ化が可能となり、フレキシブルプリント回路基板用途に好適に使用される。   The biaxially oriented polyester film obtained by the present invention is excellent in surface flatness, thermal dimensional stability, runnability, and has excellent electrical insulation properties and excellent electrical resistance characteristics when used as a flexible printed circuit board. A fine pitch of the circuit pattern can be achieved, and it is suitably used for flexible printed circuit board applications.

本発明の電気絶縁性の評価に使用する回路パターンを例示した図である。It is the figure which illustrated the circuit pattern used for evaluation of the electrical insulation of this invention.

符号の説明Explanation of symbols

1 パターン幅
2 線間スペース
3 パターン長さ
4 直流電源
1 Pattern width 2 Space between lines 3 Pattern length 4 DC power supply

Claims (6)

ポリエチレン−2,6−ナフタレンジカルボキシレートからなる基材層の片面に塗布層が設けられた二軸配向ポリエステルフィルムにおいて、
(1)フィルムの基材層面における十点平均粗さRzが2〜30nm
(2)フィルムの塗布層面における十点平均粗さRzが50〜150nm
(3)200℃×10分における熱収縮率がフィルムの長手方向および幅方向のいずれも1.5%以下
で表される特性を同時に満たすことを特徴とするフレキシブルプリント回路基板用二軸配向ポリエステルフィルム。
In the biaxially oriented polyester film in which the coating layer is provided on one side of the base material layer made of polyethylene-2,6-naphthalenedicarboxylate,
(1) Ten-point average roughness Rz on the base material layer surface of the film is 2 to 30 nm.
(2) Ten-point average roughness Rz on the coating layer surface of the film is 50 to 150 nm.
(3) Biaxially oriented polyester for flexible printed circuit boards characterized in that the thermal shrinkage rate at 200 ° C. × 10 minutes simultaneously satisfies the characteristics represented by 1.5% or less in both the longitudinal direction and the width direction of the film the film.
30〜100℃における温度膨張係数(αt)が20ppm/℃以下である請求項1に記載のフレキシブルプリント回路基板用二軸配向ポリエステルフィルム。   The biaxially oriented polyester film for flexible printed circuit boards according to claim 1, wherein the coefficient of thermal expansion (αt) at 30 to 100 ° C is 20 ppm / ° C or less. 全光線透過率が85%以上、ヘイズが1.5%以下である請求項1または2に記載のフレキシブルプリント回路基板用二軸配向ポリエステルフィルム。   The biaxially oriented polyester film for flexible printed circuit boards according to claim 1 or 2, wherein the total light transmittance is 85% or more and the haze is 1.5% or less. 塗布層に高分子バインダーと高分子バインダーの屈折率と同一な屈折率を有する微粒子とを含む請求項1〜3のいずれかに記載のフレキシブルプリント回路基板用二軸配向ポリエステルフィルム。   The biaxially oriented polyester film for flexible printed circuit boards according to any one of claims 1 to 3, wherein the coating layer contains a polymer binder and fine particles having the same refractive index as that of the polymer binder. 請求項1〜4のいずれかに記載の二軸配向ポリエステルフィルムが基材層面にさらに銅箔または導電ペーストが積層されてなることを特徴とするフレキシブルプリント回路基板用銅張積層板。   A copper-clad laminate for a flexible printed circuit board, wherein the biaxially oriented polyester film according to claim 1 is further laminated with a copper foil or a conductive paste on the surface of the base material layer. 請求項5に記載の銅張積層板からなるフレキシブルプリント回路基板を用いて形成された回路パターンに、85℃、85%RHの環境下でDC100Vを連続印加したときの該回路パターンの絶縁抵抗値が下記式(I)を満たすことを特徴とするフレキシブルプリント回路基板。
1000/R0≧0.7 ・・・(I)
(式中、R1000はDC100Vを1000時間連続印加後の絶縁抵抗値(単位:MΩ)を表わし、R0は絶縁抵抗初期値(単位:MΩ)を表わす。)
The insulation resistance value of the circuit pattern when DC100V is continuously applied to the circuit pattern formed using the flexible printed circuit board made of the copper clad laminate according to claim 5 in an environment of 85 ° C and 85% RH. Satisfy | fills following formula (I), The flexible printed circuit board characterized by the above-mentioned.
R 1000 / R 0 ≧ 0.7 (I)
(In the formula, R 1000 represents an insulation resistance value (unit: MΩ) after continuous application of DC 100 V for 1000 hours, and R 0 represents an initial value of insulation resistance (unit: MΩ).)
JP2004233216A 2004-08-10 2004-08-10 Biaxially oriented polyester film for flexible printed circuit boards Active JP4546786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004233216A JP4546786B2 (en) 2004-08-10 2004-08-10 Biaxially oriented polyester film for flexible printed circuit boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004233216A JP4546786B2 (en) 2004-08-10 2004-08-10 Biaxially oriented polyester film for flexible printed circuit boards

Publications (2)

Publication Number Publication Date
JP2006054239A true JP2006054239A (en) 2006-02-23
JP4546786B2 JP4546786B2 (en) 2010-09-15

Family

ID=36031535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004233216A Active JP4546786B2 (en) 2004-08-10 2004-08-10 Biaxially oriented polyester film for flexible printed circuit boards

Country Status (1)

Country Link
JP (1) JP4546786B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008219739A (en) * 2007-03-07 2008-09-18 Teijin Dupont Films Japan Ltd Biaxial orientation polyester film for planar speaker substrate and laminating member for planar speaker constituted thereof
JP2010182871A (en) * 2009-02-05 2010-08-19 Lintec Corp Wiring circuit member
JP2017065036A (en) * 2015-09-30 2017-04-06 三菱樹脂株式会社 Film for laminating metal layer
JP2017065035A (en) * 2015-09-30 2017-04-06 三菱樹脂株式会社 Film for laminating metal layer
JP2021038281A (en) * 2019-08-30 2021-03-11 東洋紡フイルムソリューション株式会社 Biaxially stretched polyethylenenaphthalate film and method for producing biaxially stretched polyethylenenaphthalate film
US20210332218A1 (en) * 2020-04-24 2021-10-28 Nan Ya Plastics Corporation Polyester film for dry films

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1016167A (en) * 1997-03-12 1998-01-20 Toray Ind Inc Polyester composite film
JPH11168267A (en) * 1997-12-03 1999-06-22 Teijin Ltd Flexible circuit board film
JP2004009362A (en) * 2002-06-04 2004-01-15 Teijin Dupont Films Japan Ltd Orientated polyester film and laminated film using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1016167A (en) * 1997-03-12 1998-01-20 Toray Ind Inc Polyester composite film
JPH11168267A (en) * 1997-12-03 1999-06-22 Teijin Ltd Flexible circuit board film
JP2004009362A (en) * 2002-06-04 2004-01-15 Teijin Dupont Films Japan Ltd Orientated polyester film and laminated film using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008219739A (en) * 2007-03-07 2008-09-18 Teijin Dupont Films Japan Ltd Biaxial orientation polyester film for planar speaker substrate and laminating member for planar speaker constituted thereof
JP2010182871A (en) * 2009-02-05 2010-08-19 Lintec Corp Wiring circuit member
JP2017065036A (en) * 2015-09-30 2017-04-06 三菱樹脂株式会社 Film for laminating metal layer
JP2017065035A (en) * 2015-09-30 2017-04-06 三菱樹脂株式会社 Film for laminating metal layer
JP2021038281A (en) * 2019-08-30 2021-03-11 東洋紡フイルムソリューション株式会社 Biaxially stretched polyethylenenaphthalate film and method for producing biaxially stretched polyethylenenaphthalate film
JP7432135B2 (en) 2019-08-30 2024-02-16 東洋紡株式会社 Biaxially oriented polyethylene naphthalate film and method for producing biaxially oriented polyethylene naphthalate film
US20210332218A1 (en) * 2020-04-24 2021-10-28 Nan Ya Plastics Corporation Polyester film for dry films

Also Published As

Publication number Publication date
JP4546786B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
JP4444955B2 (en) Oriented polyester film for flexible electronics device substrate
JP4052021B2 (en) Oriented polyester film and laminated film using the same
EP1495083B1 (en) Coated polymeric substrates having improved surface smoothness suitable for use in flexible electronic and opto-electronic devices
JP3909268B2 (en) Highly transparent and easily adhesive polyester film
KR100646147B1 (en) Release film
JP2010032609A (en) Polyester film for dry film photoresist
JP2007281071A (en) Biaxial orientation polyester film for amorphous silicon solar battery board
JP2007268711A (en) Laminated polyester film for flexible display substrate
JP3942494B2 (en) Highly transparent and easily adhesive polyester film
JP4546786B2 (en) Biaxially oriented polyester film for flexible printed circuit boards
JP4169546B2 (en) Laminated polyester film
JP5519260B2 (en) Flexible printed circuit board reinforcing film, flexible printed circuit reinforcing plate comprising the same, and flexible printed circuit board laminate comprising the same
JP3948908B2 (en) Polyester film for coverlay film
JP4817729B2 (en) Flame retardant stretched polyester film
JP4904019B2 (en) Biaxially oriented polyester film
JP2001191405A (en) Biaxially oriented film and its manufacturing method
JP2014008720A (en) Release film
JP2010171052A (en) Reinforcing film for flexible printed circuit board, reinforcing plate for flexible printed circuit board, and laminated body for flexible printed circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4546786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140709

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250