JP2008219739A - Biaxial orientation polyester film for planar speaker substrate and laminating member for planar speaker constituted thereof - Google Patents

Biaxial orientation polyester film for planar speaker substrate and laminating member for planar speaker constituted thereof Download PDF

Info

Publication number
JP2008219739A
JP2008219739A JP2007057175A JP2007057175A JP2008219739A JP 2008219739 A JP2008219739 A JP 2008219739A JP 2007057175 A JP2007057175 A JP 2007057175A JP 2007057175 A JP2007057175 A JP 2007057175A JP 2008219739 A JP2008219739 A JP 2008219739A
Authority
JP
Japan
Prior art keywords
film
flat speaker
biaxially oriented
polyester film
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007057175A
Other languages
Japanese (ja)
Other versions
JP4904179B2 (en
Inventor
Tetsuo Yoshida
哲男 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Film Solutions Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2007057175A priority Critical patent/JP4904179B2/en
Publication of JP2008219739A publication Critical patent/JP2008219739A/en
Application granted granted Critical
Publication of JP4904179B2 publication Critical patent/JP4904179B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Diaphragms For Electromechanical Transducers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biaxial orientation polyester film for a planar speaker substrate in which the distortion of a substrate film caused by the heating of a coil is reduced and sound quality reproducibility is improved by improving both characteristics of thermo-resistant dimensional stability and rigidity. <P>SOLUTION: The present invention relates to a biaxial orientation polyester film for a planar speaker substrate of which a thermal shrinkage percentage in treatment for 10 minutes at 200°C is ≥0% and ≤0.5%, respectively, in a length direction and a width direction, a Young's modulus is ≥6 GPa and ≤8 GPa, respectively, in the length direction and the width direction, and a variation in film thickness represented as a formula (1): film thickness variation (%)=ä(maximum value of film thickness-minimum value of film thickness)/average value of film thickness}×100 is ≥0% and ≤10%. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は薄型の平面スピーカー基板用二軸配向ポリエステルフィルムに関し、さらに詳しくは平面スピーカーの振動膜回路基板上にコイルが積層される構造を有する平面スピーカーの基板用として、コイルの発熱による基板フィルムの歪みが小さく、音質再現性に優れた、平面スピーカー基板用二軸配向ポリエステルフィルムに関する。   The present invention relates to a thin biaxially oriented polyester film for a flat speaker substrate. More specifically, the present invention relates to a flat speaker substrate having a structure in which a coil is laminated on a vibrating membrane circuit substrate of a flat speaker. The present invention relates to a biaxially oriented polyester film for a flat speaker substrate that has low distortion and excellent sound quality reproducibility.

従来、プラスチックからなるスピーカー用振動板として、ポリエチレンテレフタレート、ポリエチレンナフタレートなどの二軸配向フィルムが検討されている(特許文献1、2、3など)。
近年、スピーカーの省スペース化が求められており、従来よりも厚みの薄い平面スピーカーの開発が進められつつある。このような平面スピーカーは厚さを薄くできることから壁掛けテレビやノートパソコンの付属スピーカー等に好適である。また自動車のピラーやサンバイザー等への組み込みも可能となる。
Conventionally, biaxially oriented films such as polyethylene terephthalate and polyethylene naphthalate have been studied as diaphragms for plastic speakers (Patent Documents 1, 2, 3, etc.).
In recent years, there has been a demand for space-saving speakers, and the development of flat speakers with thinner thickness than before has been underway. Since such a flat speaker can be thinned, it is suitable for a speaker mounted on a wall-mounted television or a notebook computer. It can also be incorporated into automobile pillars and sun visors.

平面スピーカーとして様々な構成が提案されているが、一例として長方形状の振動膜の四辺に引っ張り張力を与え、この振動膜の背面側から加振器により駆動する平面スピーカが提案されており、こうした全周引っ張り型の平面スピーカは、振動膜の背面中央部を点振動駆動する構成であるため、振動膜のストロークが短辺の長さによって規制されてしまい、長辺の長さが低域再生に活かされないために低音再生能力が難しい。そこで特許文献4において振動膜の周囲に指示枠を設け、また一部方向に引張り張力を付与することなどが提案されており、振動膜の材料としてポリエチレンナフタレートが開示されている。   Various configurations have been proposed as a flat speaker, and as an example, a flat speaker is proposed in which tensile tension is applied to the four sides of a rectangular diaphragm, and driven by a vibrator from the back side of the diaphragm. Since the all-round pull type flat speaker is configured to drive point vibration at the center of the back of the diaphragm, the stroke of the diaphragm is regulated by the length of the short side, and the length of the long side is reproduced in the low frequency range. The bass reproduction ability is difficult because it is not utilized in Therefore, Patent Document 4 proposes that an instruction frame is provided around the vibration film and a tensile tension is applied in a part of the direction, and polyethylene naphthalate is disclosed as a material of the vibration film.

平面スピーカーの場合、振動板の主要部は扁平形状を有しているため、振動板の中心近傍は構造的に強度が弱くなることがある。この点について、例えば特許文献5では強度を向上させると共に音質を向上させるために主要部を縁部よりも厚く形成することが提案されており、また振動板を構成する材料としてポリエチレンテレフタレート、ポリカーボネート、ポリエチレンナフタレート、ポリエーテルイミド、ポリイミドなどが提案されている。   In the case of a flat speaker, since the main part of the diaphragm has a flat shape, the strength near the center of the diaphragm may be structurally weak. In this regard, for example, Patent Document 5 proposes to form a main part thicker than the edge part in order to improve strength and improve sound quality, and polyethylene terephthalate, polycarbonate, Polyethylene naphthalate, polyetherimide, polyimide and the like have been proposed.

一方、特許文献6で提案されている平面スピーカーは、鉄板(磁性金属板)からなる平板状のヨーク、ヨークの片面に磁軸を垂直にして取り付けられた複数の永久磁石からなり、永久磁石はヨークの平面方向に所定の間隔をおいて隣同士で極性が反対になるように取り付けられている。そして、平面上に配置された面状磁石の極の近くに、渦巻き状のコイル(以下、導電回路と称することがある)が積層された振動板が平行に配置されている。   On the other hand, the flat speaker proposed in Patent Document 6 is composed of a flat yoke made of an iron plate (magnetic metal plate), and a plurality of permanent magnets attached to one side of the yoke with the magnetic axis perpendicular to each other. The yokes are attached so that the polarities are opposite to each other at a predetermined interval in the plane direction of the yoke. A diaphragm in which spiral coils (hereinafter sometimes referred to as conductive circuits) are stacked is arranged in parallel near the poles of the planar magnets arranged on a plane.

しかしながら特許文献6で示されているタイプの平面スピーカーは、振動膜の大部分の領域を渦巻状のコイルが占めており、各コイルがジュール熱で発熱するため、振動膜の基板であるベースフィルムへの熱の影響を無視できない。また、このようなタイプの平面スピーカーは、振動膜が大きく振動したときに永久磁石と接触し、雑音を発生することがある。この問題は前述した発熱により振動膜のゆがみが発生するとさらに顕著になる。   However, in the flat speaker of the type shown in Patent Document 6, a spiral film occupies most of the region of the vibration film, and each coil generates heat due to Joule heat. The influence of heat on the water cannot be ignored. In addition, such a type of flat speaker may come into contact with the permanent magnet and generate noise when the vibration membrane vibrates greatly. This problem becomes more prominent when the vibration film is distorted by the heat generation described above.

特開平7−284193号公報JP 7-284193 A 特開平1−256298号公報JP-A-1-256298 特開平2−152400号公報JP-A-2-152400 特開2001−275187号公報JP 2001-275187 A 特開2004−328531号公報JP 2004-328531 A 国際公開WO99/03304号公報International Publication WO99 / 03304

本発明の目的は、かかる従来技術の課題を解消し、耐熱寸法安定性及び剛性の両特性に優れるフィルムを平面スピーカーの振動膜の基板フィルムとして用いることで、コイルの発熱による基板フィルムの歪みが小さく、音質再現性に優れた平面スピーカー基板用二軸配向ポリエステルフィルムを提供することにある。   The object of the present invention is to eliminate the problems of the prior art and to use a film excellent in both heat-resistant dimensional stability and rigidity as a substrate film of a vibration film of a flat speaker, so that the distortion of the substrate film due to heat generation of the coil can be reduced. An object of the present invention is to provide a small biaxially oriented polyester film for a flat speaker substrate having excellent sound quality reproducibility.

本発明者らは、前記課題を解決するために鋭意検討した結果、200℃での寸法変化が小さく、かつ一定の剛性を有し、しかもフィルム厚みのばらつきが少ない二軸配向ポリエステルフィルムを平面スピーカーの基板用フィルムとして用いることにより、コイルが該基板用フィルムに積層された構造を有する平面スピーカーにおいて、コイルの発熱による基板フィルムの歪みが小さいため雑音の発生が少なくなり、しかもこれらのフィルム特性を有する場合に音質再現性自体も向上することを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have obtained a flat speaker using a biaxially oriented polyester film having a small dimensional change at 200 ° C., a certain rigidity, and a small variation in film thickness. In the flat speaker having a structure in which the coil is laminated on the substrate film, the distortion of the substrate film due to the heat generated by the coil is small, so that the generation of noise is reduced. It has been found that the sound quality reproducibility itself is improved when it is included, and the present invention has been completed.

すなわち本発明によれば、本発明の目的は、200℃で10分間処理した際の熱収縮率が長手方向、幅方向それぞれ0%以上0.5%以下、ヤング率が長手方向、幅方向それぞれ6GPa以上8GPa以下であり、かつ下記式(1)
フィルム厚みのばらつき(%)={(フィルム厚みの最大値−フィルム厚みの最小値)/フィルム厚みの平均値}×100 ・・・(1)
で表されるフィルム厚みのばらつきが0%以上10%以下である平面スピーカー基板用二軸配向ポリエステルフィルムによって達成される。
That is, according to the present invention, the object of the present invention is to have a thermal shrinkage rate of 0% or more and 0.5% or less in the longitudinal direction and the width direction when treated at 200 ° C. for 10 minutes, and a Young's modulus in the longitudinal direction and the width direction, respectively. 6 GPa or more and 8 GPa or less and the following formula (1)
Variation in film thickness (%) = {(maximum value of film thickness−minimum value of film thickness) / average value of film thickness} × 100 (1)
Is achieved by a biaxially oriented polyester film for a flat speaker substrate in which the variation in film thickness represented by is from 0% to 10%.

また本発明の平面スピーカー用基板フィルムは、その好ましい態様として、ポリエステルがポリエチレンナフタレンジカルボキシレートであること、全光線透過率が50%以上であること、フィルム表面粗さWRaが1nm以上100nm以下であること、フィルムの密度が1.3g/cm以上1.4g/cm以下であること、フィルム厚みが5μm以上125μm以下であること、の少なくともいずれか一つを具備するものも好ましい態様として包含する。 In addition, the preferred embodiment of the flat speaker substrate film of the present invention is that the polyester is polyethylene naphthalene dicarboxylate, the total light transmittance is 50% or more, and the film surface roughness WRa is 1 nm or more and 100 nm or less. It is also preferable that the film has at least one of density of 1.3 g / cm 3 to 1.4 g / cm 3 and film thickness of 5 μm to 125 μm. Include.

また本発明の平面スピーカー基板用二軸配向ポリエステルフィルムは、平面スピーカーの振動膜または振動膜回路基板として好適に用いられる。
さらに本発明は、本発明の平面スピーカー基板用二軸配向ポリエステルフィルムの少なくとも片面に金属箔またはコイルが配置されてなる平面スピーカー用積層部材に関する。
The biaxially oriented polyester film for a flat speaker substrate of the present invention is suitably used as a vibration membrane or a vibration membrane circuit substrate for a flat speaker.
Furthermore, this invention relates to the laminated member for planar speakers by which metal foil or a coil is arrange | positioned at least on one side of the biaxially oriented polyester film for planar speaker substrates of this invention.

本発明の二軸配向ポリエステルフィルムは200℃での耐熱寸法安定性に優れ、かつ一定の剛性を有し、しかもフィルム厚みのばらつきが少ないため、コイルが基板用フィルムに積層された構造を有する平面スピーカーの基板用フィルムとして用いた場合に、コイルの発熱による基板フィルムの歪みが小さいため雑音の発生が少なくなり、しかもこれらのフィルム特性を有する場合に音質再現性自体も向上するという効果を有する。   The biaxially oriented polyester film of the present invention is excellent in heat-resistant dimensional stability at 200 ° C., has a certain rigidity, and has little variation in film thickness, and therefore has a structure in which a coil is laminated on a substrate film. When used as a substrate film for a speaker, the distortion of the substrate film due to the heat generated by the coil is small, so that the generation of noise is reduced. In addition, the sound quality reproducibility itself is improved when these film characteristics are provided.

以下、本発明を詳しく説明する。
<ポリエステル>
本発明のポリエステルフィルムは、ジカルボン酸とグリコールとの縮重合によって得られるポリエステルによって形成される。ジカルボン酸成分として、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸が例示され、グリコール成分としてエチレングリコール、1,4−ブタンジオール,1,4−シクロヘキサンジメタノール、1,6−ヘキサンジオールが例示される。
The present invention will be described in detail below.
<Polyester>
The polyester film of the present invention is formed by a polyester obtained by condensation polymerization of dicarboxylic acid and glycol. Examples of the dicarboxylic acid component include terephthalic acid, isophthalic acid, and naphthalenedicarboxylic acid, and examples of the glycol component include ethylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol, and 1,6-hexanediol.

これらの成分によって得られるポリエステルの中でも特に、主たる成分がポリエチレンテレフタレート、ポリエチレンナフタレンジカルボキシレートが好ましく、高温での寸法安定性及び剛性のバランスの点でポリエチレンナフタレンジカルボキシレートが最も好ましい。かかるポリエチレンナフタレンジカルボキシレートは、ジカルボン酸成分としてナフタレンジカルボン酸、グリコール成分としてエチレングリコールとからなる。ここで「主たる」とは、ポリマー成分のうち、全繰り返し構造単位の80モル%以上であることを意味する。本発明のポリエチレンナフタレンジカルボキシレートは、全繰返し単位の80モル%以上がエチレン−2,6−ナフタレンジカルボキシレート、エチレン−2,7−ナフタレンジカルボキシレート、エチレン−1,5−ナフタレンジカルボキシレートからなる群から選ばれる少なくとも1種であることが好ましく、特にエチレン−2,6−ナフタレンジカルボキシレートであることが好ましい。更に好ましくは全繰返し単位の90モル%以上、特に好ましくは95モル%以上がエチレン−2,6−ナフタレンジカルボキシレートであり、特にポリエチレン−2,6−ナフタレンジカルボキシレートの実質的な単独重合体であることが好ましい。   Among the polyesters obtained from these components, the main components are preferably polyethylene terephthalate and polyethylene naphthalene dicarboxylate, and polyethylene naphthalene dicarboxylate is most preferable in terms of the balance between dimensional stability at high temperature and rigidity. Such polyethylene naphthalene dicarboxylate comprises naphthalenedicarboxylic acid as a dicarboxylic acid component and ethylene glycol as a glycol component. Here, “main” means 80 mol% or more of all repeating structural units in the polymer component. In the polyethylene naphthalene dicarboxylate of the present invention, 80% by mole or more of all repeating units are ethylene-2,6-naphthalene dicarboxylate, ethylene-2,7-naphthalene dicarboxylate, ethylene-1,5-naphthalene dicarboxylate. It is preferably at least one selected from the group consisting of rates, particularly ethylene-2,6-naphthalenedicarboxylate. More preferably, 90 mol% or more, particularly preferably 95 mol% or more of all repeating units is ethylene-2,6-naphthalene dicarboxylate, and particularly a substantially single weight of polyethylene-2,6-naphthalene dicarboxylate. It is preferably a coalescence.

本発明のポリエチレンナフタレンジカルボキシレートは、共重合成分が20モル%以下のポリエチレンナフタレンジカルボキシレート共重合体であってもよい。ポリエチレンナフタレンジカルボキシレートが共重合体の場合、共重合成分として分子内に2つのエステル形成性官能基を有する化合物を用いることができる。このような化合物として例えば、蓚酸、アジピン酸、フタル酸、セバシン酸、ドデカンジカルボン酸、イソフタル酸、テレフタル酸、2,7−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸、1,4−シクロヘキサンジカルボン酸、4,4’−ジフェニルジカルボン酸、フェニルインダンジカルボン酸、テトラリンジカルボン酸、デカリンジカルボン酸、ジフェニルエーテルジカルボン酸等の如きジカルボン酸;p−オキシ安息香酸、p−オキシエトキシ安息香酸等の如きオキシカルボン酸;或いはジエチレングリコール、プロピレングリコール、トリメチレングリコール、テトラメチレングリコール、ヘキサメチレングリコール、シクロヘキサンメチレングリコール、ネオペンチルグリコール、ビスフェノールスルホンのエチレンオキサイド付加物、ビスフェノールAのエチレンオキサイド付加物、ジエチレングリコール、ポリエチレンオキシドグリコール等の如き2価アルコール類等を用いることができる。これらの共重合成分は1種であっても、2種以上を併用してもよい。かかる共重合成分の中で、酸成分としてはイソフタル酸、テレフタル酸、4,4’−ジフェニルジカルボン酸、2,7−ナフタレンジカルボン酸、p―オキシ安息香酸を、グリコール成分としてはジエチレングリコール、トリメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、ビスフェノールスルホンのエチレンオキサイド付加物を好ましい例として挙げることができる。   The polyethylene naphthalene dicarboxylate of the present invention may be a polyethylene naphthalene dicarboxylate copolymer having a copolymerization component of 20 mol% or less. When polyethylene naphthalene dicarboxylate is a copolymer, a compound having two ester-forming functional groups in the molecule can be used as a copolymerization component. Examples of such compounds include oxalic acid, adipic acid, phthalic acid, sebacic acid, dodecanedicarboxylic acid, isophthalic acid, terephthalic acid, 2,7-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid. Dicarboxylic acids such as acid, 4,4′-diphenyldicarboxylic acid, phenylindanedicarboxylic acid, tetralindicarboxylic acid, decalindicarboxylic acid, diphenyletherdicarboxylic acid; oxycarboxylic such as p-oxybenzoic acid and p-oxyethoxybenzoic acid Acid; or diethylene glycol, propylene glycol, trimethylene glycol, tetramethylene glycol, hexamethylene glycol, cyclohexane methylene glycol, neopentyl glycol, bisphenol sulfone ethylene Emissions oxide adducts, ethylene oxide adducts of bisphenol A, can be used diethylene glycol, dihydric alcohols such as such as polyethylene oxide glycol. These copolymerization components may be used alone or in combination of two or more. Among the copolymer components, isophthalic acid, terephthalic acid, 4,4′-diphenyldicarboxylic acid, 2,7-naphthalenedicarboxylic acid, and p-oxybenzoic acid are used as the acid component, and diethylene glycol and trimethylene are used as the glycol components. Preferred examples include ethylene oxide adducts of glycol, hexamethylene glycol, neopentyl glycol, and bisphenol sulfone.

また、ポリエチレンナフタレンジカルボキシレートは、例えば安息香酸、メトキシポリアルキレングリコールなどの一官能性化合物によって末端の水酸基および/またはカルボキシル基の一部または全部を封鎖したものであってもよく、或いは例えば極少量のグリセリン、ペンタエリスリトール等の如き三官能以上のエステル形成性化合物で実質的に線状のポリマーが得られる範囲内で共重合したものであってもよい。   The polyethylene naphthalene dicarboxylate may be one in which a terminal hydroxyl group and / or a carboxyl group is partially or entirely blocked with a monofunctional compound such as benzoic acid or methoxypolyalkylene glycol, or for example, It may be a copolymer obtained by using a trifunctional or higher functional ester-forming compound such as glycerin and pentaerythritol within a range in which a substantially linear polymer is obtained.

本発明のポリエステルフィルムにおけるポリマーの構成成分は、ポリエチレンナフタレンジカルボキシレートの単独重合体または共重合体を主成分とするが、他のポリエステルやポリエステル以外の有機高分子との混合体であってもよい。
ポリエチレンナフタレンジカルボキシレートに混合できるポリエステル或いはポリエステル以外の有機高分子としては、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリトリメチレンテレフタレート、ポリエチレン4,4’−テトラメチレンジフェニルジカルボキシレート、ポリエチレン−2,7−ナフタレンジカルボキシレート、ポリトリメチレン−2,6−ナフタレンジカルボキシレート、ポリネオペンチレン−2,6−ナフタレンジカルボキシレート、ポリ(ビス(4−エチレンオキシフェニル)スルホン)−2,6−ナフタレンジカルボキシレート等のポリエステルを挙げることができ、これらの中でポリエチレンイソフタレート、ポリトリメチレンテレフタレート、ポリトリメチレン−2,6−ナフタレンジカルボキシレート、ポリ(ビス(4−エチレンオキシフェニル)スルホン)−2,6−ナフタレンジカルボキシレートが好ましい。これらのポリエステルまたはポリエステル以外の有機高分子は、1種であっても2種以上を併用してもよい。
The constituent component of the polymer in the polyester film of the present invention is mainly composed of a homopolymer or copolymer of polyethylene naphthalene dicarboxylate, but may be a mixture with other polyesters or organic polymers other than polyester. Good.
Polyesters that can be mixed with polyethylene naphthalene dicarboxylate or organic polymers other than polyester include polyethylene terephthalate, polyethylene isophthalate, polytrimethylene terephthalate, polyethylene 4,4'-tetramethylene diphenyl dicarboxylate, polyethylene-2,7- Naphthalene dicarboxylate, polytrimethylene-2,6-naphthalene dicarboxylate, polyneopentylene-2,6-naphthalene dicarboxylate, poly (bis (4-ethyleneoxyphenyl) sulfone) -2,6-naphthalene Polyesters such as dicarboxylate can be mentioned, and among these, polyethylene isophthalate, polytrimethylene terephthalate, polytrimethylene-2,6-naphthalene dicarboxylate Xylates and poly (bis (4-ethyleneoxyphenyl) sulfone) -2,6-naphthalenedicarboxylate are preferred. These polyesters or organic polymers other than polyester may be used alone or in combination of two or more.

本発明のポリエステルは、ジカルボン酸とグリコールとの反応で直接低重合度ポリエステルを得、或いはジカルボン酸の低級アルキルエステルとグリコールとをエステル交換反応で低重合度ポリエステルを得、この低重合度ポリエステルを重合触媒の存在下で更に重合させてポリエステルを得る方法で製造することができる。
二軸配向フィルムに製膜した後のポリエステルフィルムの固有粘度は、ο−クロロフェノール中、35℃において、0.4dl/g以上であることが好ましい。
The polyester of the present invention can be obtained by directly reacting a dicarboxylic acid with a glycol to obtain a low polymerization degree polyester, or by transesterifying a lower alkyl ester of a dicarboxylic acid with a glycol to obtain a low polymerization degree polyester. It can be produced by a method of further polymerizing in the presence of a polymerization catalyst to obtain a polyester.
The intrinsic viscosity of the polyester film after being formed into a biaxially oriented film is preferably 0.4 dl / g or more at 35 ° C. in o-chlorophenol.

<添加剤>
本発明の二軸配向ポリステルフィルムは、フィルムの取り扱い性を向上させるため、発明の効果を損なわない範囲で不活性粒子などが添加されていても良い。不活性粒子として、例えば、周期律表第IIA、第IIB、第IVA、第IVBの元素を含有する無機粒子(例えば、カオリン、アルミナ、酸化チタン、炭酸カルシウム、二酸化ケイ素など)、架橋シリコーン樹脂、架橋ポリスチレン、架橋アクリル樹脂粒子等のごとき耐熱性の高いポリマーよりなる微粒子などを含有させることができる。不活性粒子を含有させる場合、不活性粒子の平均粒径は、0.001〜5μmの範囲が好ましく、フィルム全重量に対して0.01〜10重量%、さらに好ましくは0.05〜5重量%の範囲で含有されることが好ましい。また本発明の二軸配向ポリエステルフィルムは、必要に応じて少量の紫外線吸収剤、酸化防止剤、帯電防止剤、光安定剤、熱安定剤を含んでいてもよい。
<Additives>
In order to improve the handleability of the biaxially oriented polyester film of the present invention, inert particles or the like may be added within a range not impairing the effects of the invention. Examples of the inert particles include inorganic particles (for example, kaolin, alumina, titanium oxide, calcium carbonate, silicon dioxide, etc.) containing the elements of Periodic Tables IIA, IIB, IVA, and IVB, crosslinked silicone resins, Fine particles made of a polymer having high heat resistance such as crosslinked polystyrene and crosslinked acrylic resin particles can be contained. When the inert particles are contained, the average particle diameter of the inert particles is preferably in the range of 0.001 to 5 μm, 0.01 to 10% by weight, more preferably 0.05 to 5% by weight with respect to the total weight of the film. It is preferable to contain in the range of%. In addition, the biaxially oriented polyester film of the present invention may contain a small amount of an ultraviolet absorber, an antioxidant, an antistatic agent, a light stabilizer, and a heat stabilizer as necessary.

<熱収縮率>
本発明の二軸配向ポリエステルフィルムは、コイルの発熱に対する耐熱寸法安定性を高める目的で、200℃、10分間熱処理された後の長手方向(以下、縦方向、連続製膜方向、MD方向と称することがある)および幅方向(以下、横方向、TD方向と称することがある)の熱収縮率がそれぞれ0%以上0.5%以下であることが必要であり、好ましくは0.1%以上0.4%以下である。熱収縮率が上限を超えると、コイルが基板用フィルムに積層された構造を有する平面スピーカーの基板用フィルムとして用いた場合にコイルの発熱によってフィルムが変形し、歪みが発生して雑音が生じるためスピーカーの音質再現性が低下する。200℃における熱収縮率は、0.5%以下の範囲であればより小さい方が好ましい。一方、熱収縮率が0%を下回る場合は逆にフィルム膨張に伴う変形が生じる。
熱収縮率をかかる範囲内にするための具体的手段は、フィルム長手方向および幅方向の延伸をそれぞれ2.8〜3.8倍の倍率範囲で行い、さらに200〜250℃の温度範囲で熱固定処理を行い、その後150℃〜230℃の温度範囲で長手方向および/または幅方向に0.5〜5%の弛緩率で熱弛緩処理を行うことによって達成することができる。
<Heat shrinkage>
The biaxially oriented polyester film of the present invention is referred to as a longitudinal direction (hereinafter, referred to as a longitudinal direction, a continuous film-forming direction, or an MD direction) after being heat-treated at 200 ° C. for 10 minutes for the purpose of enhancing heat-resistant dimensional stability against heat generation of the coil. The thermal shrinkage in the width direction (hereinafter sometimes referred to as the transverse direction and the TD direction) must be 0% or more and 0.5% or less, preferably 0.1% or more. 0.4% or less. If the heat shrinkage rate exceeds the upper limit, when the coil is used as a substrate film for a flat speaker having a structure in which the coil is laminated on the substrate film, the film is deformed by the heat generated by the coil, causing distortion and noise. The sound quality reproducibility of the speaker decreases. It is preferable that the thermal shrinkage rate at 200 ° C. is smaller if it is in the range of 0.5% or less. On the other hand, when the thermal shrinkage rate is less than 0%, on the contrary, deformation accompanying film expansion occurs.
Specific means for bringing the thermal shrinkage rate into such a range is that the film is stretched in the longitudinal direction and the width direction in a magnification range of 2.8 to 3.8 times, respectively, and further in the temperature range of 200 to 250 ° C. It can be achieved by performing a fixing treatment and then performing a thermal relaxation treatment at a relaxation rate of 0.5 to 5% in the longitudinal direction and / or the width direction in a temperature range of 150 ° C. to 230 ° C.

<ヤング率>
本発明の二軸配向ポリエステルフィルムは、フィルムの長手方向および幅方向のヤング率がそれぞれ6GPa以上8GPa以下であることが好ましく、より好ましくは6.1GPa以上7.0GPa以下、特に好ましくは6.1GPa以上6.8GPa以下である。ヤング率が下限に満たない場合、フィルムの腰がないため、振動膜としての性能が低く、音響特性に悪影響を及ぼす。一方ヤング率が上限を超える場合、200℃における熱収縮率が0.5%を超えてしまい、コイルが発熱した場合にフィルム変形が生じる。
フィルムの長手方向および幅方向のヤング率は、延伸時の倍率で調整することができ、フィルム長手方向および幅方向の延伸をそれぞれ2.8〜3.8倍の倍率範囲で行うことによって達成される。
<Young's modulus>
In the biaxially oriented polyester film of the present invention, the Young's modulus in the longitudinal direction and the width direction of the film is preferably 6 GPa or more and 8 GPa or less, more preferably 6.1 GPa or more and 7.0 GPa or less, and particularly preferably 6.1 GPa. The above is 6.8 GPa or less. If the Young's modulus is less than the lower limit, the film does not have a low stiffness, so the performance as a vibrating membrane is low, and the acoustic characteristics are adversely affected. On the other hand, when the Young's modulus exceeds the upper limit, the thermal shrinkage at 200 ° C. exceeds 0.5%, and film deformation occurs when the coil generates heat.
The Young's modulus in the longitudinal direction and the width direction of the film can be adjusted by the magnification at the time of stretching, and is achieved by performing stretching in the film longitudinal direction and the width direction in a magnification range of 2.8 to 3.8 times, respectively. The

<フィルム厚みのばらつき>
本発明の二軸配向ポリエステルフィルムは、下記式(1)で表されるフィルム厚みのばらつきが0%以上10%以下である必要がある。フィルム厚みのばらつきはさらに好ましくは0%以上5%以下である。
フィルム厚みのばらつき(%)={(フィルム厚みの最大値−フィルム厚みの最小値)/フィルム厚みの平均値}×100 ・・・(1)
ここで上式(1)の各項目は、打点式フィルム厚み計を用いて以下の測定方法によって求められる。すなわち、フィルム幅方向の任意の50箇所、およびフィルム幅の中心付近の位置で、長手方向に沿って任意の50箇所について厚みを測定し、全100箇所の数平均値をフィルム厚みの平均値とする。また全100箇所の測定値のうち測定値の大きい方から5点の平均値をフィルム厚みの最大値とし、また全100箇所の測定値のうち測定値の小さい方から5点の平均値をフィルム厚みの最小値とする。
フィルム厚みのばらつきが上限を超える場合、振動にばらつきが生じて振動膜としての性能が低下し、音響特性の低下につながる。フィルム厚みのばらつきは、上述の範囲内であればより小さい方が好ましい。
<Dispersion of film thickness>
In the biaxially oriented polyester film of the present invention, the film thickness variation represented by the following formula (1) needs to be 0% or more and 10% or less. The variation in film thickness is more preferably 0% or more and 5% or less.
Variation in film thickness (%) = {(maximum value of film thickness−minimum value of film thickness) / average value of film thickness} × 100 (1)
Here, each item of the above formula (1) is obtained by the following measuring method using a dot-type film thickness meter. That is, at any 50 locations in the film width direction and at a position near the center of the film width, the thickness is measured at any 50 locations along the longitudinal direction, and the number average value of all 100 locations is taken as the average value of the film thickness. To do. Moreover, the average value of 5 points from the larger measured value among the measured values at all 100 locations is the maximum value of the film thickness, and the average value of 5 points from the smaller measured value among the measured values at all 100 locations is the film. The minimum thickness.
When the variation in the film thickness exceeds the upper limit, the variation occurs in the vibration, the performance as the vibration film is lowered, and the acoustic characteristics are lowered. The smaller the variation in the film thickness, the better if it is within the above-mentioned range.

本発明のフィルム厚みのばらつきは、延伸倍率と熱固定温度を調整することによって達成することができ、熱収縮率と同様、フィルム長手方向および幅方向の延伸をそれぞれ2.8〜3.8倍の倍率範囲で行い、さらに200〜250℃の温度範囲で熱固定処理を行うことによって達成される。またかかる範囲内で、延伸倍率が高くなるに従い、ばらつきが小さくなる。さらにフィルム厚みのばらつきは、かかる範囲内において熱固定処理時の温度が低い方がよりばらつきを小さくすることができる。   Variations in the thickness of the film of the present invention can be achieved by adjusting the draw ratio and the heat setting temperature. Like the heat shrinkage, the film lengthwise and widthwise stretches are 2.8 to 3.8 times, respectively. This is achieved by performing heat setting in a temperature range of 200 to 250 ° C. Also, within this range, the variation becomes smaller as the draw ratio increases. Furthermore, the variation in film thickness can be reduced more in the range where the temperature during the heat setting treatment is lower.

<全光線透過率>
本発明の二軸配向ポリエステルフィルムは、全光線透過率が50%以上であることが好ましく、さらに好ましくは60%以上、特に好ましくは70%以上である。全光線透過率が下限に満たない場合、平面スピーカー用基板フィルムとして用いた場合に透明性が低下するためコイルを加工する場合の位置合わせの精度が低下することがある。ここでフィルムの全光線透過率はJIS規格のK7105に準拠して求められる。全光線透過率を達成するためには、フィルムに配合する添加剤含有量が0.05〜5重量%の範囲であることが好ましい。
<Total light transmittance>
The biaxially oriented polyester film of the present invention preferably has a total light transmittance of 50% or more, more preferably 60% or more, and particularly preferably 70% or more. When the total light transmittance is less than the lower limit, when used as a substrate film for a flat speaker, the transparency is lowered, so that the alignment accuracy in processing the coil may be lowered. Here, the total light transmittance of the film is determined in accordance with JIS standard K7105. In order to achieve the total light transmittance, the additive content to be blended in the film is preferably in the range of 0.05 to 5% by weight.

<フィルム表面粗さWRa>
本発明の二軸配向ポリエステルフィルムは、フィルム表面粗さWRa(中心面平均粗さ)が1nm以上100nm以下であることが好ましい。フィルム表面粗さWRaは、5nm以上80nm以下であることがより好ましい。フィルム表面粗さWRaが下限に満たない場合、フィルム加工時の滑り性が低下して生産性が低下することがある。一方、フィルム表面粗さWRaが上限を超える場合、基板用フィルム上に配置されるコイルとの接着性が低下したり、金属箔を加工してコイルを作成する際にコイルの加工精度が低下することがある。
<Film surface roughness WRa>
The biaxially oriented polyester film of the present invention preferably has a film surface roughness WRa (central surface average roughness) of 1 nm to 100 nm. The film surface roughness WRa is more preferably 5 nm or more and 80 nm or less. When the film surface roughness WRa is less than the lower limit, the slipping property during film processing may be reduced, and productivity may be reduced. On the other hand, when the film surface roughness WRa exceeds the upper limit, the adhesiveness with the coil arranged on the film for a substrate is lowered, or the processing accuracy of the coil is lowered when the metal foil is processed to create the coil. Sometimes.

<密度>
本発明の二軸配向ポリエステルフィルムは、密度が1.3g/cm以上1.4g/cm以下であることが好ましい。フィルムの密度の下限は、好ましくは1.33g/cm以上、より好ましくは1.35g/cm以上である。またフィルム密度の上限は、好ましくは1.38g/cm以下、より好ましくは1.36g/cm以下である。密度が下限に満たない場合、音質変化が大きく、音響特性が悪化することがある。一方密度が上限を超える場合、フィルムの結晶性が高いためフィルムが脆くなることがある。フィルムの密度をかかる範囲にするためには、フィルム長手方向および幅方向の延伸をそれぞれ2.8〜3.8倍の倍率範囲で行い、さらに200〜250℃の温度範囲で熱固定処理を行うことによって達成することができる。
<Density>
The biaxially oriented polyester film of the present invention preferably has a density of 1.3 g / cm 3 or more and 1.4 g / cm 3 or less. The lower limit of the density of the film is preferably 1.33 g / cm 3 or more, more preferably 1.35 g / cm 3 or more. The upper limit of the film density is preferably 1.38 g / cm 3 or less, more preferably 1.36 g / cm 3 or less. When the density is less than the lower limit, the sound quality change is large and the acoustic characteristics may be deteriorated. On the other hand, when the density exceeds the upper limit, the film may become brittle due to high crystallinity of the film. In order to bring the density of the film into such a range, the film is stretched in the longitudinal direction and the width direction in a magnification range of 2.8 to 3.8 times, respectively, and further subjected to heat setting treatment in a temperature range of 200 to 250 ° C. Can be achieved.

<厚み>
本発明の二軸配向ポリエステルフィルムの厚みは、特に限定はされないが5μm以上125μm以下であることが好ましく、より好ましくは7μm以上100μm以下、さらに好ましくは10μm以上50μm以下、特に好ましくは10μm以上30μm以下である。フィルム厚みが下限に満たない場合、平面スピーカー用基板フィルムとして音質再現性が不充分であることがある。一方フィルム厚みが上限を超える場合、ハンドリング性が低下することがある。
<Thickness>
The thickness of the biaxially oriented polyester film of the present invention is not particularly limited, but is preferably 5 μm or more and 125 μm or less, more preferably 7 μm or more and 100 μm or less, further preferably 10 μm or more and 50 μm or less, and particularly preferably 10 μm or more and 30 μm or less. It is. When the film thickness is less than the lower limit, the sound quality reproducibility may be insufficient as a substrate film for a flat speaker. On the other hand, when film thickness exceeds an upper limit, handling property may fall.

<損失弾性率ピーク>
本発明の二軸配向ポリエステルフィルムは、損失弾性率ピーク(E”と称することがある)が80〜180℃であることが好ましく、より好ましくは90〜170℃、さらに好ましくは100〜160℃、特に好ましくは130〜156℃である。損失弾性率ピークが下限に満たない場合、フィルムの分子配向が十分でないため振動膜としての性能が低下し、音響特性に悪影響を及ぼすことがある。一方、損失弾性率ピークが上限を超える場合、200℃における熱収縮率が0.5%を超えてしまい、コイルが発熱した場合にフィルム変形が生じることがある。なお、本発明におけるフィルムの損失弾性率ピークは、動的粘弾性を測定する装置、例えばオリエンテック社製DDV−01FPのバイブロン装置を用い、荷重10g、周波数10Hzで、室温から200℃まで5℃/minの昇温速度で昇温する測定方法によって得られる。損失弾性率ピークをかかる範囲内にするためには、フィルム長手方向および幅方向の延伸をそれぞれ2.8〜3.8倍の倍率範囲で行うことによって達成される。
<Loss modulus peak>
The biaxially oriented polyester film of the present invention preferably has a loss modulus peak (sometimes referred to as E ″) of 80 to 180 ° C., more preferably 90 to 170 ° C., still more preferably 100 to 160 ° C., It is particularly preferably 130 to 156 ° C. When the loss elastic modulus peak is less than the lower limit, the molecular orientation of the film is not sufficient, so that the performance as a vibrating membrane is lowered, and the acoustic characteristics may be adversely affected. When the loss elastic modulus peak exceeds the upper limit, the heat shrinkage rate at 200 ° C. exceeds 0.5%, and film deformation may occur when the coil generates heat. For the peak, a device for measuring dynamic viscoelasticity, for example, a Vibron device of DDV-01FP manufactured by Orientec Co., Ltd., load 10 g, frequency 10 z is obtained by a measuring method in which the temperature is increased from room temperature to 200 ° C. at a temperature increase rate of 5 ° C./min. This is achieved by performing in a magnification range of 2.8 to 3.8 times.

<塗膜層>
本発明においては、ポリエステルフィルムの少なくとも片面に塗膜層を設けることができる。塗膜層の一例としてコーティングによって形成された塗膜層が挙げられる。塗膜層を形成するバインダー樹脂として、熱可塑性樹脂、熱硬化性樹脂の各樹脂を用いることができ、ポリエステル、ポリイミド、ポリアミド、ポリエステルアミド、ポリ塩化ビニル、ポリ(メタ)アクリル酸エステル、ポリウレタン、ポリ塩化ビニル、ポリオレフィンやこれらの共重合体やブレンド物が挙げられる。
<Coating layer>
In the present invention, a coating layer can be provided on at least one side of the polyester film. An example of the coating layer is a coating layer formed by coating. As the binder resin for forming the coating layer, thermoplastic resins and thermosetting resins can be used. Polyester, polyimide, polyamide, polyesteramide, polyvinyl chloride, poly (meth) acrylic ester, polyurethane, Examples thereof include polyvinyl chloride, polyolefin, and copolymers and blends thereof.

<フィルム製膜方法>
本発明の二軸配向ポリエステルフィルムは、テンター法、インフレーション法等の従来知られている製膜方法を用いて製造することができる。
予め乾燥したポリエステル樹脂を280℃に加熱された押出機に供給し、Tダイよりシート状に成形する。Tダイより押し出されたフィルムを表面温度10〜60℃の冷却ドラムで冷却固化し、この未延伸フィルムをロール加熱、赤外線加熱などで加熱し、縦方向に延伸して縦延伸フィルムを得る。この延伸は2個以上のロールの周速差を利用して行うのが好ましい。延伸温度はポリエステルのガラス転移点(Tg)より高い温度、更にはTgより20〜40℃高い温度とするのが好ましい。
<Film forming method>
The biaxially oriented polyester film of the present invention can be produced using a conventionally known film production method such as a tenter method or an inflation method.
The polyester resin dried beforehand is supplied to an extruder heated to 280 ° C., and formed into a sheet form from a T-die. The film extruded from the T-die is cooled and solidified with a cooling drum having a surface temperature of 10 to 60 ° C., the unstretched film is heated by roll heating, infrared heating, or the like, and stretched in the longitudinal direction to obtain a longitudinally stretched film. This stretching is preferably performed by utilizing the difference in peripheral speed between two or more rolls. The stretching temperature is preferably higher than the glass transition point (Tg) of the polyester, more preferably 20 to 40 ° C. higher than Tg.

縦延伸フィルムは、続いて横延伸、熱固定、熱弛緩処理を順次施して二軸配向フィルムとするが、これら処理はフィルムを走行させながら行う。横延伸処理はポリエステルのガラス転移点(Tg)より20℃高い温度から始め、ポリエステルの融点(Tm)より(120〜30)℃低い温度まで昇温しながら行う。横延伸の開始温度は(Tg+40)℃以下であることが好ましい。また横延伸の最高温度はTmより(100〜40)℃低い温度であることが好ましい。   The longitudinally stretched film is successively subjected to transverse stretching, heat setting, and thermal relaxation treatment to form a biaxially oriented film. These treatments are performed while the film is running. The transverse stretching treatment starts from a temperature 20 ° C. higher than the glass transition point (Tg) of the polyester and is performed while raising the temperature to a temperature lower by 120 to 30 ° C. than the melting point (Tm) of the polyester. The starting temperature of the transverse stretching is preferably (Tg + 40) ° C. or lower. Moreover, it is preferable that the maximum temperature of transverse stretching is a temperature lower than Tm by (100 to 40) ° C.

横延伸過程での昇温は連続的でも段階的(逐次的)でもよい。通常は逐次的に昇温する。例えばステンターの横延伸ゾーンをフィルム走行方向に沿って複数に分け、各ゾーンごとに所定温度の加熱媒体を流すことで昇温する。横延伸開始温度が低すぎるとフィルム破れが生じることがある。また横延伸最高温度が(Tm−120)℃より低いとフィルムの熱収縮率が大きくなることがある。一方、横延伸最高温度が(Tm−30)℃より高いとフィルムが柔らかくなりすぎて外乱などによってフィルム破れが生じることがある。   The temperature increase in the transverse stretching process may be continuous or stepwise (sequential). Usually, the temperature is raised sequentially. For example, the transverse stretching zone of the stenter is divided into a plurality along the film running direction, and the temperature is raised by flowing a heating medium of a predetermined temperature for each zone. If the transverse stretching start temperature is too low, film breakage may occur. On the other hand, if the maximum transverse stretching temperature is lower than (Tm−120) ° C., the thermal shrinkage rate of the film may increase. On the other hand, when the maximum transverse stretching temperature is higher than (Tm-30) ° C., the film becomes too soft and the film may be broken due to disturbance or the like.

延伸倍率は縦方向、横方向ともに2.8倍以上3.8倍以下とするのが好ましい。延伸倍率の下限は、より好ましくは3.0倍以上である。また、延伸倍率の上限は、より好ましくは3.6倍以下であり、さらに好ましくは3.4倍以下であり、特に好ましくは3.3倍以下である。延伸倍率が下限に満たないと十分なヤング率が得られないことがある。また延伸倍率が上限を超えると熱収縮率が上限を超えることがある。   The draw ratio is preferably 2.8 times or more and 3.8 times or less in both the longitudinal direction and the transverse direction. The lower limit of the draw ratio is more preferably 3.0 times or more. Further, the upper limit of the draw ratio is more preferably 3.6 times or less, still more preferably 3.4 times or less, and particularly preferably 3.3 times or less. If the draw ratio is less than the lower limit, sufficient Young's modulus may not be obtained. Moreover, when a draw ratio exceeds an upper limit, a thermal contraction rate may exceed an upper limit.

二軸延伸されたフィルムは、その後熱固定処理が施される。熱固定を施すことにより、フィルムの熱寸法安定性が向上する。また熱固定処理を行うことによりポリマーの結晶化が進み、フィルムの密度が高くなる。熱固定は(Tm−100)℃以上の温度で行うことが好ましい。熱固定温度は、200〜250℃で行うことが好ましく、220〜245℃で行うことがさらに好ましい。また、熱寸法安定性を更に高めるために、熱固定後にさらに150〜230℃の温度範囲で長手方向および/または幅方向に0.5〜5%の弛緩率で1〜60秒間熱弛緩処理を行い、さらに50〜80℃で徐冷するアニール処理を行ってもよい。
このようにして得られた二軸配向ポリエステルフィルムは、片面または両面にさらに塗膜層や金属薄膜、ハードコート層などの機能層を積層することができる。
The biaxially stretched film is then heat set. By performing heat setting, the thermal dimensional stability of the film is improved. Further, by performing the heat setting treatment, the crystallization of the polymer proceeds and the density of the film increases. The heat setting is preferably performed at a temperature of (Tm-100) ° C. or higher. The heat setting temperature is preferably 200 to 250 ° C, more preferably 220 to 245 ° C. In order to further improve the thermal dimensional stability, heat relaxation treatment is further carried out for 1 to 60 seconds at a relaxation rate of 0.5 to 5% in the longitudinal direction and / or width direction in the temperature range of 150 to 230 ° C. after heat setting. An annealing process may be performed in which annealing is further performed at 50 to 80 ° C.
In the biaxially oriented polyester film thus obtained, functional layers such as a coating layer, a metal thin film, and a hard coat layer can be further laminated on one side or both sides.

<平面スピーカー基板>
本発明の二軸配向ポリエステルフィルムは平面スピーカー基板用途に用いることができ、好ましくは振動膜、または基板フィルムの両面に渦巻状コイルが配置される振動膜回路基板として使用され、特に振動膜回路基板として好ましく用いることができる。本発明の二軸配向ポリエステルフィルムは200℃での耐熱寸法安定性に優れ、一定の剛性を有し、しかもフィルム厚みのばらつきが少ないため、コイルが基板フィルムに積層された構造を有する平面スピーカーの基板用フィルムとして用いた場合、コイルの発熱による基板フィルムの歪みが小さく、雑音の発生が少なくなり、しかもこれらのフィルム特性によって音質再現性に優れる。
<Plane speaker board>
The biaxially oriented polyester film of the present invention can be used for flat speaker substrate applications, and is preferably used as a vibrating membrane or a vibrating membrane circuit substrate in which spiral coils are arranged on both sides of the substrate film. Can be preferably used. Since the biaxially oriented polyester film of the present invention is excellent in heat-resistant dimensional stability at 200 ° C., has a certain rigidity, and has little variation in film thickness, a flat speaker having a structure in which a coil is laminated on a substrate film. When used as a film for a substrate, the distortion of the substrate film due to the heat generated by the coil is small, noise is reduced, and these film characteristics are excellent in sound quality reproducibility.

ポリエステルフィルム上に形成される渦巻状コイルは、サブトラクティブ法と呼ばれる銅張り積層フィルムをパターンエッチングして配線パターンを形成する方法、アディティブ法と呼ばれる基板フィルムに無電解メッキ、または無電解メッキと電解メッキの併用により配線パターンを形成する方法、のいずれの方法によっても形成することができる。また、導電ペーストを用いて回路形成する方法も挙げられる。   The spiral coil formed on the polyester film is a method of forming a wiring pattern by pattern etching a copper-clad laminate film called a subtractive method, or an electroless plating or electroless plating and electrolysis on a substrate film called an additive method. It can be formed by any method of forming a wiring pattern by using plating together. Another example is a method of forming a circuit using a conductive paste.

一般的にサブトラクティブ法ではサイドエッチングの影響で配線パターンの寸法安定性が低く、コイルのインピーダンスのばらつきを小さくすることが困難であるが、アディティブ法であれば配線パターンの寸法安定性が高いので、コイルのインピーダンスのばらつきをより小さく抑えることができる。   In general, the subtractive method has low dimensional stability of the wiring pattern due to the effect of side etching, and it is difficult to reduce the variation in coil impedance. However, the additive method has high dimensional stability of the wiring pattern. Thus, variation in coil impedance can be further reduced.

コイルに加工される前段階として、基板フィルム上に金属箔を積層することができる。金属箔は、銅箔やアルミニウム箔が例示される。これら金属箔は、圧延されて作成されたもの、電解によって作成されたものなど一般的な方法で得られるものを用いることができる。これら金属箔の積層方法として、接着剤を介する方法やフィルム表層を溶融させて直接シールする方法などが挙げられる。接着剤は市販のものを用いることができるが、耐熱性の観点から硬化性樹脂が好ましい。硬化性樹脂として、エポキシ樹脂、フェノール樹脂、アクリル樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリイソシアネート樹脂、ポリエスエル樹脂、ポリフェニルエーテル樹脂、脂環式オレフィン重合体などが挙げられる。また接着剤を使用しない方法として、メッキやスパッタリング、クラッドなどによって直接基板フィルムに金属箔を形成させる方法であってもよい。   As a step before being processed into a coil, a metal foil can be laminated on the substrate film. As for metal foil, copper foil and aluminum foil are illustrated. As these metal foils, those obtained by a general method such as those produced by rolling and those produced by electrolysis can be used. Examples of a method for laminating these metal foils include a method using an adhesive and a method of directly sealing a film surface layer by melting it. Although a commercially available adhesive can be used, a curable resin is preferable from the viewpoint of heat resistance. Examples of the curable resin include epoxy resins, phenol resins, acrylic resins, polyimide resins, polyamide resins, polyisocyanate resins, polyester resins, polyphenyl ether resins, and alicyclic olefin polymers. Further, as a method not using an adhesive, a method of directly forming a metal foil on a substrate film by plating, sputtering, cladding, or the like may be used.

基板フィルムにコイルを形成する方法は上記方法のいずれを用いてもよいが、本発明の平面スピーカーの場合、接着剤の影響で音響特性に悪影響を及ぼす可能性があるため、接着剤を用いないで基板フィルム上に形成する方法がより好ましい。
また、基板フィルム上に渦巻状コイルを形成し、さらにカバーレイを積層してもよい。カバーレイの種類として、例えばフィルムやソルダーレジストが挙げられる。フィルムタイプを用いる場合、貼り合わせた後にカールが発生する可能性があるため、基板フィルムと同一の素材を用いることが好ましい。カバーレイフィルムには、所望に応じてその他の成分を配合することができる。配合剤としては、紫外線吸収剤、軟質重合体、フィラー、熱安定剤、耐候安定剤、老化防止剤、レベリング剤、帯電防止剤、スリップ剤、アンチブロッキング剤、防曇剤、染料、顔料、天然油、合成油、ワックス、乳剤、充填剤、硬化剤、難燃剤などが挙げられる。
Any of the above methods may be used as a method for forming the coil on the substrate film. However, in the case of the flat speaker of the present invention, the adhesive property may adversely affect the acoustic characteristics. The method of forming on a substrate film is more preferable.
Further, a spiral coil may be formed on the substrate film, and a coverlay may be further laminated. Examples of the type of coverlay include a film and a solder resist. When using a film type, it is preferable to use the same material as the substrate film because curling may occur after bonding. Other components can be blended in the coverlay film as desired. Compounding agents include UV absorbers, soft polymers, fillers, heat stabilizers, weathering stabilizers, anti-aging agents, leveling agents, antistatic agents, slip agents, antiblocking agents, antifogging agents, dyes, pigments, natural Oils, synthetic oils, waxes, emulsions, fillers, hardeners, flame retardants and the like.

以下、実施例により本発明を詳述するが、本発明はこれらの実施例のみに限定されるものではない。なお、各特性値は以下の方法で測定した。また、実施例中の部および%は、特に断らない限り、それぞれ重量部および重量%を意味する。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited only to these Examples. Each characteristic value was measured by the following method. Moreover, unless otherwise indicated, the part and% in an Example mean a weight part and weight%, respectively.

(1)固有粘度
o−クロロフェノールを溶媒として用い、35℃で測定した(単位:dl/g)。フィルムの固有粘度は二軸配向フィルムをサンプリングして行った。
(1) Intrinsic viscosity Measured at 35 ° C. using o-chlorophenol as a solvent (unit: dl / g). The intrinsic viscosity of the film was obtained by sampling a biaxially oriented film.

(2)熱収縮率
二軸配向フィルムの長手方向および幅方向がマーキングされ、あらかじめ正確な長さを測定した長さ30cm四方のフィルムを温度200℃に設定されたオーブン中に無荷重で入れ、10分間静置した後取出し、室温に戻してからその寸法変化を読み取る。熱処理前の長さ(L0 )と熱処理による寸法変化量(ΔL)より、次式(2)に従って長手方向および幅方向の熱収縮率をそれぞれ求めた。各方向の熱収縮率はそれぞれサンプル数n=5で評価を行い、その平均値を用いた。
熱収縮率(%)=ΔL/L0×100 ・・・(2)
(2) Heat shrinkage ratio The longitudinal direction and the width direction of the biaxially oriented film are marked, and a 30 cm long film whose exact length has been measured in advance is placed in an oven set at a temperature of 200 ° C. with no load, After leaving it to stand for 10 minutes, it is taken out and returned to room temperature, and then its dimensional change is read. From the length (L 0 ) before the heat treatment and the dimensional change (ΔL) due to the heat treatment, the thermal contraction rates in the longitudinal direction and the width direction were obtained according to the following equation (2). The thermal contraction rate in each direction was evaluated with the number of samples n = 5, and the average value was used.
Thermal contraction rate (%) = ΔL / L 0 × 100 (2)

(3)ヤング率
オリエンテック社製テンシロンUCT−100型を用いて、温度20℃、湿度50%に調節された室内において、二軸配向フィルムを試料幅10mm、長さ15cmに切り、チャック間100mm、引張速度10mm/分、チャート速度500mm/分で引張り、得られる荷重―伸び曲線の立ち上り部の接線よりヤング率を計算する。なお、長手方向のヤング率とはフィルムの長手方向を測定方向としたものであり、幅方向のヤング率とはフィルムの幅方向を測定方向としたものである。各ヤング率は10回測定し、その平均値を用いた。
(3) Young's modulus Using a Tensilon UCT-100 model manufactured by Orientec Co., Ltd., a biaxially oriented film was cut to a sample width of 10 mm and a length of 15 cm in a room adjusted to a temperature of 20 ° C. and a humidity of 50%, and the chuck spacing was 100 mm. The Young's modulus is calculated from the tangent of the rising portion of the load-elongation curve obtained by pulling at a tensile speed of 10 mm / min and a chart speed of 500 mm / min. In addition, the Young's modulus in the longitudinal direction is that in which the longitudinal direction of the film is the measurement direction, and the Young's modulus in the width direction is that in which the width direction of the film is the measurement direction. Each Young's modulus was measured 10 times and the average value was used.

(4)密度
JIS規格 C2151に準じて測定した。
(4) Density Measured according to JIS standard C2151.

(5)全光線透過率
JIS規格 K7105に従い、全光線透過率Tt(%)を測定した。
(5) Total light transmittance Total light transmittance Tt (%) was measured according to JIS standard K7105.

(6)フィルム表面粗さWRa
WYKO社製非接触式三次元粗さ計(NT-2000)を用いて測定倍率25倍、測定面積246.6μm×187.5μm(0.0462mm)の条件にて、該粗さ計に内蔵された表面解析ソフトにより、中心面平均粗さ(WRa)を次式(3)にて求める。なお、測定は、10回繰り返し、それらの平均値を用いた。
(6) Film surface roughness WRa
Built in the roughness meter using a non-contact type three-dimensional roughness meter (NT-2000) manufactured by WYKO under the conditions of a measurement magnification of 25 times and a measurement area of 246.6 μm × 187.5 μm (0.0462 mm 2 ). The center surface average roughness (WRa) is obtained by the following equation (3) by the surface analysis software thus performed. The measurement was repeated 10 times, and the average value thereof was used.

Figure 2008219739
ここで、Zjkは測定方向(246.6μm)、それと直行する方向(187.5μm)をそれぞれM分割、N分割したときの各方向のj番目、k番目の位置における3次元粗さチャート上の高さである。
Figure 2008219739
Here, Z jk is a three-dimensional roughness chart at the j-th and k-th positions in each direction when the measurement direction (246.6 μm) and the direction orthogonal thereto (187.5 μm) are divided into M and N, respectively. Of height.

(7)フィルム厚み及びフィルム厚みのばらつき
打点式フィルム厚み計を用いて、フィルム幅方向の任意の50箇所、及びフィルム幅の中心付近の位置で、長手方向に沿って任意の50箇所について厚みを測定し、全100箇所の数平均値をフィルム厚みとした。
また、フィルム厚みのばらつき(%)は下記式(1)に従って求めた。
フィルム厚みのばらつき(%)={(フィルム厚みの最大値−フィルム厚みの最小値)/フィルム厚みの平均値}×100 ・・・(1)
ここで上式(1)の各項目は、打点式フィルム厚み計を用いて以下の測定方法によって求められる。すなわち、上記のフィルム厚みの測定方法に従って計100箇所の厚みを測定し、全100箇所の数平均値をフィルム厚みの平均値とする。また全100箇所の測定値のうち測定値の大きい方から5点の平均値をフィルム厚みの最大値とし、また全100箇所の測定値のうち測定値の小さい方から5点の平均値をフィルム厚みの最小値とする。
(7) Variation in film thickness and film thickness Using a dot-type film thickness gauge, the thickness is measured at any 50 locations in the film width direction and at any location near the center of the film width along the longitudinal direction. Measurement was made and the number average value at all 100 locations was taken as the film thickness.
Moreover, the variation (%) in film thickness was determined according to the following formula (1).
Variation in film thickness (%) = {(maximum value of film thickness−minimum value of film thickness) / average value of film thickness} × 100 (1)
Here, each item of the above formula (1) is obtained by the following measuring method using a dot-type film thickness meter. That is, according to the method for measuring film thickness, the total thickness of 100 locations is measured, and the number average value of all 100 locations is taken as the average value of the film thickness. Moreover, the average value of 5 points from the larger measured value among the measured values at all 100 locations is the maximum value of the film thickness, and the average value of 5 points from the smaller measured value among the measured values at all 100 locations is the film. The minimum thickness.

(8)動的損失弾性率ピーク温度
二軸配向フィルムを幅4mm、長さ50mmに切り取り、オリエンテック社製DDV−01FPのバイブロン装置を用い、荷重10g、周波数10Hzで、室温から200℃まで5℃/minの昇温速度で昇温して測定する。得られたチャートより動的損失弾性率のピーク温度を求める。
(8) Dynamic Loss Modulus Peak Temperature A biaxially oriented film was cut into a width of 4 mm and a length of 50 mm, and 5 V from room temperature to 200 ° C. at a load of 10 g and a frequency of 10 Hz using a DDV-01FP Vibron apparatus manufactured by Orientec. The temperature is measured at a temperature increase rate of ° C / min. The peak temperature of the dynamic loss modulus is obtained from the obtained chart.

(9)音響特性
二軸配向フィルムを振動膜回路基板として両面に渦巻状コイルを形成し、面状磁石が配置された面に対して平行に配置して平面スピーカーに組み込み、該平面スピーカーについて、JIS規格 C5532に準拠して周波数特性を測定して、下記の加速試験を行っていないフィルムと、加速試験を行ったフィルムとの周波数特性を比較し、加速試験前後で周波数特性に変化が生じたか、下記の基準にしたがって評価した。また、加速試験を行ったフィルムについて、ビビリと呼ばれる雑音の発生有無を下記基準に従って評価した。
コイル発熱によるフィルム変形が音響特性に与える影響を測定するための加速試験として、コイル形成後のフィルムを温度200℃に設定されたオーブン中に無荷重で入れ、10分間静置した後取出し、室温に戻してから平面スピーカーに組み込んだ。
◎: 加速試験前後で周波数特性に変化なく、また加速試験後のフィルム評価でビビリなどの雑音発生がない
○: 加速試験前後で周波数特性にわずかな変化があるが、加速試験後のフィルム評価でビビリなどの雑音発生がない
×: 加速試験前後で周波数特性に大きな変化があり、また加速試験後のフィルム評価でビビリなど雑音の発生がある
(9) Acoustic characteristics
Spiral coils are formed on both sides using a biaxially oriented film as a vibrating membrane circuit board, arranged parallel to the surface on which the planar magnets are arranged, and incorporated into a flat speaker. The flat speaker complies with JIS standard C5532. Measure the frequency characteristics and compare the frequency characteristics of the film not subjected to the following acceleration test with the film subjected to the acceleration test. Therefore, it was evaluated. The film subjected to the acceleration test was evaluated for the presence or absence of noise called chatter according to the following criteria.
As an accelerated test for measuring the effect of film deformation caused by coil heat generation on the acoustic characteristics, the film after coil formation was placed in an oven set at a temperature of 200 ° C. with no load, left for 10 minutes, and then taken out. It was assembled in a flat speaker after returning to.
◎: There is no change in frequency characteristics before and after the acceleration test, and there is no noise such as chatter in the film evaluation after the acceleration test. ○: There is a slight change in frequency characteristics before and after the acceleration test, but the film evaluation after the acceleration test. There is no noise such as chatter. ×: There is a large change in frequency characteristics before and after the acceleration test, and there is noise such as chatter during film evaluation after the acceleration test.

[実施例1]
ポリエチレン−2,6−ナフタレンジカルボキシレート樹脂に平均粒径0.3μmの球状シリカ粒子を0.1%添加し、290℃に加熱された押出機に供給して290℃のダイスよりシート状に成形した。さらにこのシートを表面温度60℃の冷却ドラムで冷却固化した未延伸フィルムを140℃に加熱したロール群に導き、長手方向(縦方向)に3.1倍に延伸し、60℃のロール群で冷却した。続いて縦延伸したフィルムの両端をクリップで保持しながらテンターに導き、150℃に加熱された雰囲気中で長手方向に垂直な方向(幅方向)に3.3倍に延伸した。その後テンター内で235℃の温度条件で熱固定処理を行い、200℃で2%幅方向に熱弛緩した後、均一に徐冷して室温まで冷やして25μm厚みの二軸配向フィルムを得た。得られたフィルムの特性を表1に示す。本実施例のフィルムは200℃での耐熱寸法安定性に優れており、音響特性評価でも雑音の発生がなく、音質再現性に優れていた。
[Example 1]
0.1% of spherical silica particles having an average particle diameter of 0.3 μm are added to polyethylene-2,6-naphthalene dicarboxylate resin, and the resulting mixture is supplied to an extruder heated to 290 ° C. to form a sheet from a 290 ° C. die. Molded. Furthermore, the unstretched film obtained by cooling and solidifying this sheet with a cooling drum having a surface temperature of 60 ° C. is led to a roll group heated to 140 ° C., and stretched 3.1 times in the longitudinal direction (longitudinal direction). Cooled down. Subsequently, both ends of the longitudinally stretched film were guided to a tenter while being held with clips, and stretched 3.3 times in a direction (width direction) perpendicular to the longitudinal direction in an atmosphere heated to 150 ° C. Thereafter, heat setting was performed in a tenter under a temperature condition of 235 ° C., heat relaxation was performed in a 2% width direction at 200 ° C., and then uniformly cooled and cooled to room temperature to obtain a 25 μm thick biaxially oriented film. The properties of the obtained film are shown in Table 1. The film of this example was excellent in heat-resistant dimensional stability at 200 ° C., and no noise was generated in the acoustic characteristic evaluation, and the sound quality reproducibility was excellent.

[実施例2]
長手方向の延伸倍率を3.0倍、幅方向の延伸倍率を3.2倍とし、熱弛緩の温度条件を230℃とした以外は実施例1と同様の操作を繰り返した。得られたフィルムの特性を表1に示す。本実施例のフィルムは200℃での耐熱寸法安定性に優れており、音響特性評価でも雑音の発生がなく、音質再現性に優れていた。
[Example 2]
The same operation as in Example 1 was repeated except that the draw ratio in the longitudinal direction was 3.0 times, the draw ratio in the width direction was 3.2 times, and the thermal relaxation temperature condition was 230 ° C. The properties of the obtained film are shown in Table 1. The film of this example was excellent in heat-resistant dimensional stability at 200 ° C., and no noise was generated in the acoustic characteristic evaluation, and the sound quality reproducibility was excellent.

[実施例3]
熱固定処理温度を250℃とし、また熱弛緩の温度条件を230℃とし、長手方向、幅方向の両方向に2%熱弛緩した以外は実施例1と同様の操作を繰り返した。得られたフィルムの特性を表1に示す。本実施例のフィルムは200℃での耐熱寸法安定性に優れており、音響特性評価でも雑音の発生がなかった。
[Example 3]
The same operation as in Example 1 was repeated except that the heat setting treatment temperature was 250 ° C., the temperature condition of heat relaxation was 230 ° C., and heat relaxation was performed by 2% in both the longitudinal direction and the width direction. The properties of the obtained film are shown in Table 1. The film of this example was excellent in heat-resistant dimensional stability at 200 ° C., and no noise was generated in the evaluation of acoustic characteristics.

[実施例4]
熱固定処理温度を210℃に変更した以外は実施例1と同様の操作を繰り返した。得られたフィルムの特性を表1に示す。本実施例のフィルムは200℃での耐熱寸法安定性に優れており、音響特性評価でも雑音の発生がなかった。
[Example 4]
The same operation as in Example 1 was repeated except that the heat setting treatment temperature was changed to 210 ° C. The properties of the obtained film are shown in Table 1. The film of this example was excellent in heat-resistant dimensional stability at 200 ° C., and no noise was generated in the evaluation of acoustic characteristics.

[比較例1]
ポリエチレンテレフタレート樹脂に平均粒径0.3μmの球状シリカ粒子を0.1%添加し、280℃に加熱された押出機に供給して280℃のダイスよりシート状に成形した。さらにこのシートを表面温度20℃の冷却ドラムで冷却固化した未延伸フィルムを110℃に加熱したロール群に導き、長手方向(縦方向)に3.1倍に延伸し、20℃のロール群で冷却した。続いて縦延伸したフィルムの両端をクリップで保持しながらテンターに導き、120℃に加熱された雰囲気中で長手方向に垂直な方向(幅方向)に3.3倍に延伸した。その後テンター内で230℃の温度条件で熱固定処理を行い、200℃で2%幅方向に熱弛緩した後、均一に徐冷して室温まで冷やして25μm厚みの二軸配向フィルムを得た。得られたフィルムの特性を表1に示す。本比較例のフィルムは200℃での耐熱寸法安定性に乏しく、音響特性評価でも雑音が発生し、音質再現性に乏しかった。
[Comparative Example 1]
0.1% of spherical silica particles having an average particle diameter of 0.3 μm were added to polyethylene terephthalate resin, and the resulting mixture was supplied to an extruder heated to 280 ° C. and molded into a sheet form from a die at 280 ° C. Furthermore, the unstretched film obtained by cooling and solidifying this sheet with a cooling drum having a surface temperature of 20 ° C. is led to a roll group heated to 110 ° C., and stretched 3.1 times in the longitudinal direction (longitudinal direction). Cooled down. Subsequently, the both ends of the longitudinally stretched film were guided to a tenter while being held by clips, and stretched 3.3 times in a direction (width direction) perpendicular to the longitudinal direction in an atmosphere heated to 120 ° C. Thereafter, heat setting was performed in a tenter under a temperature condition of 230 ° C., heat relaxation was performed in a width direction of 2% at 200 ° C., and then uniformly cooled and cooled to room temperature to obtain a 25 μm thick biaxially oriented film. The properties of the obtained film are shown in Table 1. The film of this comparative example was poor in heat-resistant dimensional stability at 200 ° C., noise was generated even in the evaluation of acoustic characteristics, and sound quality reproducibility was poor.

[比較例2]
長手方向の延伸倍率を2.5倍、幅方向の延伸倍率を2.6倍とし、熱固定温度を180℃とし、熱弛緩の条件を240℃、3%に変更した以外は実施例1と同様の操作を繰り返した。得られたフィルムの特性を表1に示す。本比較例のフィルムは200℃での耐熱寸法安定性に乏しく、音響特性評価でも雑音が発生し、またヤング率が低いために音質再現性に乏しかった。
[Comparative Example 2]
Example 1 except that the draw ratio in the longitudinal direction is 2.5 times, the draw ratio in the width direction is 2.6 times, the heat setting temperature is 180 ° C., and the thermal relaxation conditions are changed to 240 ° C. and 3%. The same operation was repeated. The properties of the obtained film are shown in Table 1. The film of this comparative example was poor in heat-resistant dimensional stability at 200 ° C., generated noise in the evaluation of acoustic characteristics, and also had poor sound quality reproducibility due to its low Young's modulus.

[比較例3]
長手方向の延伸倍率を3.5倍、幅方向の延伸倍率を3.6倍とし、熱固定温度を245℃とし、熱弛緩を行わなかった以外は実施例1と同様の操作を繰り返した。得られたフィルムの特性を表1に示す。本比較例のフィルムは200℃での耐熱寸法安定性に乏しく、音響特性評価でも雑音が発生し、音質再現性に乏しかった。
[Comparative Example 3]
The same operation as in Example 1 was repeated except that the draw ratio in the longitudinal direction was 3.5 times, the draw ratio in the width direction was 3.6 times, the heat setting temperature was 245 ° C., and heat relaxation was not performed. The properties of the obtained film are shown in Table 1. The film of this comparative example was poor in heat-resistant dimensional stability at 200 ° C., noise was generated even in the evaluation of acoustic characteristics, and sound quality reproducibility was poor.

Figure 2008219739
Figure 2008219739

本発明における二軸配向ポリエステルフィルムは、コイルが基板用フィルムに積層された構造を有する平面スピーカーの基板用フィルムとして用いた場合に、耐熱での寸法変化が小さく、コイルの発熱による基板フィルムの歪みが小さいため雑音の発生が少なくなり、しかも耐熱寸法安定性と剛性とを兼ね備え、フィルム厚みのばらつきが小さいために音質再現性に優れるという効果を有する。   The biaxially oriented polyester film in the present invention has a small dimensional change under heat resistance when used as a substrate film for a flat speaker having a structure in which a coil is laminated on a substrate film. Is small, noise is reduced, heat resistance dimensional stability and rigidity are combined, and the variation in film thickness is small, resulting in excellent sound quality reproducibility.

Claims (10)

200℃で10分間処理した際の熱収縮率が長手方向、幅方向それぞれ0%以上0.5%以下、ヤング率が長手方向、幅方向それぞれ6GPa以上8GPa以下であり、かつ下記式(1)で表されるフィルム厚みのばらつきが0%以上10%以下であることを特徴とする平面スピーカー基板用二軸配向ポリエステルフィルム。
フィルム厚みのばらつき(%)={(フィルム厚みの最大値−フィルム厚みの最小値)/フィルム厚みの平均値}×100 ・・・(1)
The thermal contraction rate when treated at 200 ° C. for 10 minutes is 0% or more and 0.5% or less in the longitudinal direction and the width direction, Young's modulus is 6 GPa or more and 8 GPa or less in the longitudinal direction and the width direction, respectively, and the following formula (1) The biaxially oriented polyester film for a flat speaker substrate is characterized in that the variation in film thickness represented by the formula is 0% or more and 10% or less.
Variation in film thickness (%) = {(maximum value of film thickness−minimum value of film thickness) / average value of film thickness} × 100 (1)
ポリエステルがポリエチレンナフタレンジカルボキシレートである請求項1記載の平面スピーカー基板用二軸配向ポリエステルフィルム。   The biaxially oriented polyester film for a flat speaker substrate according to claim 1, wherein the polyester is polyethylene naphthalene dicarboxylate. 全光線透過率が50%以上である請求項1または2に記載の平面スピーカー基板用二軸配向ポリエステルフィルム。   The biaxially oriented polyester film for a flat speaker substrate according to claim 1 or 2, wherein the total light transmittance is 50% or more. フィルム表面粗さWRaが1nm以上100nm以下である請求項1〜3のいずれかに記載の平面スピーカー基板用二軸配向ポリエステルフィルム。   The biaxially oriented polyester film for a flat speaker substrate according to any one of claims 1 to 3, wherein the film surface roughness WRa is from 1 nm to 100 nm. フィルムの密度が1.3g/cm以上1.4g/cm以下である請求項1〜4のいずれかに記載の平面スピーカー基板用二軸配向ポリエステルフィルム。 The biaxially oriented polyester film for a flat speaker substrate according to any one of claims 1 to 4, wherein the density of the film is 1.3 g / cm 3 or more and 1.4 g / cm 3 or less. フィルム厚みが5μm以上125μm以下である請求項1〜5のいずれかに記載の平面スピーカー基板用二軸配向ポリエステルフィルム。   The biaxially oriented polyester film for a flat speaker substrate according to any one of claims 1 to 5, wherein the film thickness is 5 µm or more and 125 µm or less. 平面スピーカーの振動膜に用いられる請求項1〜6のいずれかに記載の平面スピーカー基板用二軸配向ポリエステルフィルム。   The biaxially oriented polyester film for a flat speaker substrate according to any one of claims 1 to 6, which is used for a vibration membrane of a flat speaker. 平面スピーカーの振動膜回路基板に用いられる請求項1〜6のいずれかに記載の平面スピーカー基板用二軸配向ポリエステルフィルム。   The biaxially oriented polyester film for a flat speaker substrate according to any one of claims 1 to 6, which is used for a vibrating membrane circuit substrate of a flat speaker. 請求項1〜8のいずれかに記載の平面スピーカー基板用二軸配向ポリエステルフィルムの少なくとも片面に金属箔が配置されてなる平面スピーカー用積層部材。   A laminated member for a flat speaker in which a metal foil is disposed on at least one side of the biaxially oriented polyester film for a flat speaker substrate according to any one of claims 1 to 8. 請求項1〜8のいずれかに記載の平面スピーカー基板用二軸配向ポリエステルフィルムの少なくとも片面にコイルが配置されてなる平面スピーカー用積層部材。   A laminated member for a flat speaker in which a coil is disposed on at least one side of the biaxially oriented polyester film for a flat speaker substrate according to any one of claims 1 to 8.
JP2007057175A 2007-03-07 2007-03-07 Biaxially oriented polyester film for flat speaker substrate and laminated member for flat speaker comprising the same Active JP4904179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007057175A JP4904179B2 (en) 2007-03-07 2007-03-07 Biaxially oriented polyester film for flat speaker substrate and laminated member for flat speaker comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007057175A JP4904179B2 (en) 2007-03-07 2007-03-07 Biaxially oriented polyester film for flat speaker substrate and laminated member for flat speaker comprising the same

Publications (2)

Publication Number Publication Date
JP2008219739A true JP2008219739A (en) 2008-09-18
JP4904179B2 JP4904179B2 (en) 2012-03-28

Family

ID=39839197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007057175A Active JP4904179B2 (en) 2007-03-07 2007-03-07 Biaxially oriented polyester film for flat speaker substrate and laminated member for flat speaker comprising the same

Country Status (1)

Country Link
JP (1) JP4904179B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011097359A (en) * 2009-10-29 2011-05-12 Teijin Dupont Films Japan Ltd Biaxial orientation polyester film for transparent planar speaker, diaphragm formed of the same, and transparent planar speaker comprising the same
CN108610499A (en) * 2017-12-19 2018-10-02 深圳市赫裕技术有限公司 A kind of preparation method of loudspeaker functional coating pen film piece
WO2019236539A1 (en) * 2018-06-06 2019-12-12 Drexel University Mxene-based voice coils and active acoustic devices
CN110948988A (en) * 2019-11-05 2020-04-03 浙江旗声电子科技股份有限公司 Diaphragm material for loudspeaker and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6282511A (en) * 1985-10-08 1987-04-16 Teijin Ltd High density magnetic recording medium
JPS63184500A (en) * 1986-09-22 1988-07-29 Idemitsu Petrochem Co Ltd Film for acoustic diaphragm
JPH01174100A (en) * 1987-12-28 1989-07-10 Teijin Ltd Film for speaker diaphragm
JPH01256298A (en) * 1988-04-06 1989-10-12 Teijin Ltd Film for speaker diaphragm
JPH02152400A (en) * 1988-12-05 1990-06-12 Teijin Ltd Film for speaker diaphragm
JP2000169599A (en) * 1997-10-20 2000-06-20 Toray Ind Inc Polyester film and its manufacture
JP2003319489A (en) * 2002-04-26 2003-11-07 Toray Ind Inc Film for diaphragm of acoustic apparatus, diaphragm of acoustic apparatus and acoustic apparatus
JP2006054239A (en) * 2004-08-10 2006-02-23 Teijin Dupont Films Japan Ltd Biaxially oriented polyester film for flexible printed circuit board

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6282511A (en) * 1985-10-08 1987-04-16 Teijin Ltd High density magnetic recording medium
JPS63184500A (en) * 1986-09-22 1988-07-29 Idemitsu Petrochem Co Ltd Film for acoustic diaphragm
JPH01174100A (en) * 1987-12-28 1989-07-10 Teijin Ltd Film for speaker diaphragm
JPH01256298A (en) * 1988-04-06 1989-10-12 Teijin Ltd Film for speaker diaphragm
JPH02152400A (en) * 1988-12-05 1990-06-12 Teijin Ltd Film for speaker diaphragm
JP2000169599A (en) * 1997-10-20 2000-06-20 Toray Ind Inc Polyester film and its manufacture
JP2003319489A (en) * 2002-04-26 2003-11-07 Toray Ind Inc Film for diaphragm of acoustic apparatus, diaphragm of acoustic apparatus and acoustic apparatus
JP2006054239A (en) * 2004-08-10 2006-02-23 Teijin Dupont Films Japan Ltd Biaxially oriented polyester film for flexible printed circuit board

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011097359A (en) * 2009-10-29 2011-05-12 Teijin Dupont Films Japan Ltd Biaxial orientation polyester film for transparent planar speaker, diaphragm formed of the same, and transparent planar speaker comprising the same
CN108610499A (en) * 2017-12-19 2018-10-02 深圳市赫裕技术有限公司 A kind of preparation method of loudspeaker functional coating pen film piece
CN108610499B (en) * 2017-12-19 2021-03-02 深圳市赫裕技术有限公司 Preparation method of functional coating PEN membrane for loudspeaker
WO2019236539A1 (en) * 2018-06-06 2019-12-12 Drexel University Mxene-based voice coils and active acoustic devices
US11470424B2 (en) 2018-06-06 2022-10-11 Drexel University MXene-based voice coils and active acoustic devices
CN110948988A (en) * 2019-11-05 2020-04-03 浙江旗声电子科技股份有限公司 Diaphragm material for loudspeaker and preparation method thereof
CN110948988B (en) * 2019-11-05 2022-04-01 浙江旗声电子科技股份有限公司 Diaphragm material for loudspeaker and preparation method thereof

Also Published As

Publication number Publication date
JP4904179B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
JP5275849B2 (en) Biaxially oriented multilayer laminated polyester film
US20100190037A1 (en) Biaxially oriented laminated film
JP4904179B2 (en) Biaxially oriented polyester film for flat speaker substrate and laminated member for flat speaker comprising the same
JP2011084037A (en) Biaxial orientation multilayer laminate film
JP2008307742A (en) Biaxially oriented laminated polyester film
JP5763456B2 (en) Biaxially oriented film
JPWO2004033540A1 (en) Substrate film for membrane switch and membrane switch
JP2010024409A (en) Biaxially oriented polyester film
JP5739146B2 (en) Copolymerized aromatic polyester, biaxially oriented polyester film and magnetic recording medium
KR102017514B1 (en) Polyester film, solar cell backsheet, and solar cell
JP2012224674A (en) Biaxially oriented polyester film
JP5249796B2 (en) Flexible printed circuit board reinforcing film, flexible printed circuit board reinforcing plate, and flexible printed circuit board laminate
JP5373313B2 (en) Biaxially oriented laminated polyester film
JP3948908B2 (en) Polyester film for coverlay film
JP4944726B2 (en) Biaxially oriented multilayer laminated film for acoustic diaphragm and method for producing the same
WO1995016223A1 (en) Laminated base film for photographic film
JP4904019B2 (en) Biaxially oriented polyester film
JP2001191405A (en) Biaxially oriented film and its manufacturing method
JP2013103995A (en) Aromatic copolyester, oriented polyester film and magnetic recording medium
JP2014208438A (en) Film for transfer foil
JP2019130777A (en) Laminate polyester film and magnetic recording medium
JP2002146056A (en) Biaxially oriented polyethylene naphthalate film
JP2010046898A (en) Heat-resistant composite film, and substrate film for flexible electronics device composed of the same
JPH11254578A (en) Film structure
JP2000336183A (en) Biaxially oriented polyester film and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100125

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110707

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120106

R150 Certificate of patent or registration of utility model

Ref document number: 4904179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250