JP2021038281A - Biaxially stretched polyethylenenaphthalate film and method for producing biaxially stretched polyethylenenaphthalate film - Google Patents

Biaxially stretched polyethylenenaphthalate film and method for producing biaxially stretched polyethylenenaphthalate film Download PDF

Info

Publication number
JP2021038281A
JP2021038281A JP2019158718A JP2019158718A JP2021038281A JP 2021038281 A JP2021038281 A JP 2021038281A JP 2019158718 A JP2019158718 A JP 2019158718A JP 2019158718 A JP2019158718 A JP 2019158718A JP 2021038281 A JP2021038281 A JP 2021038281A
Authority
JP
Japan
Prior art keywords
polyethylene naphthalate
biaxially stretched
film
less
naphthalate film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019158718A
Other languages
Japanese (ja)
Other versions
JP7432135B2 (en
Inventor
久雄 奥村
Hisao Okumura
久雄 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Film Solutions Ltd
Original Assignee
Toyobo Film Solutions Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Film Solutions Ltd filed Critical Toyobo Film Solutions Ltd
Priority to JP2019158718A priority Critical patent/JP7432135B2/en
Publication of JP2021038281A publication Critical patent/JP2021038281A/en
Application granted granted Critical
Publication of JP7432135B2 publication Critical patent/JP7432135B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

To provide a biaxially stretched polyethylenenaphthalate film that makes it possible to produce a flexible circuit board having excellent via connection reliability.SOLUTION: A biaxially stretched polyethylenenaphthalate film has polyethylenenaphthalate as the main component, has a refractive index in thickness direction of 1.499-1.512, has a dielectric loss tangent at 5.0 GHz of 0.007 or less and a relative dielectric constant at 5.0 GHz of 3.20 or less, and is used for a flexible circuit board that transmits a high frequency signal of 6.0 GHz or more.SELECTED DRAWING: None

Description

本発明は、二軸延伸ポリエチレンナフタレートフィルム及び二軸延伸ポリエチレンナフタレートフィルムの製造方法に関する。 The present invention relates to a biaxially stretched polyethylene naphthalate film and a method for producing a biaxially stretched polyethylene naphthalate film.

近年、高度情報化時代を迎え、モバイル通信の伝送速度は指数関数的な高速化及び高周波化が進んでいる。いわゆる第5世代の移動体通信においてはミリ波帯の電波が活用される。このような高周波用の回路基板には、出力信号の減衰を抑制し、良好な通信品質を確保するため、伝送損失を従来よりも大幅に低減することが求められている。 In recent years, in the advanced information age, the transmission speed of mobile communication has been exponentially increased and increased in frequency. Millimeter-wave band radio waves are used in so-called fifth-generation mobile communications. Such a high-frequency circuit board is required to significantly reduce transmission loss in order to suppress attenuation of output signals and ensure good communication quality.

伝送損失は、主に、誘電体に起因する誘電損失と、導体に起因する導体損失とからなるが、誘電損失に関しては、誘電体の誘電率、誘電正接(tanδ)等が小さくなるほど減少することが知られており、誘電体の誘電率又は誘電正接を小さくして誘電損失を低減化することが行われている。 The transmission loss mainly consists of a dielectric loss caused by a dielectric and a conductor loss caused by a conductor. The dielectric loss decreases as the dielectric constant, dielectric loss tangent (tan δ), etc. of the dielectric become smaller. Is known, and the dielectric constant or dielectric loss tangent of a dielectric is reduced to reduce the dielectric loss.

様々な種類の低伝送損失材料の開発が行われており、例えば、高周波回路における電気信号の伝送損失を低減することができると共に金属箔と樹脂との密着性が高い、金属箔に熱可塑性液晶ポリマーフィルムを積層した積層体からなる高周波回路基板が提案されている(例えば、特許文献1を参照)。また、高い信頼性、特に吸湿特性及び高周波特性に優れた回路基板も提案されている(例えば、特許文献2参照)。 Various types of low transmission loss materials have been developed. For example, a thermoplastic liquid crystal on a metal foil, which can reduce the transmission loss of an electric signal in a high frequency circuit and has high adhesion between a metal foil and a resin. A high-frequency circuit board made of a laminated body in which a polymer film is laminated has been proposed (see, for example, Patent Document 1). Further, a circuit board having high reliability, particularly excellent hygroscopicity characteristics and high frequency characteristics, has also been proposed (see, for example, Patent Document 2).

特開2011−216598号公報Japanese Unexamined Patent Publication No. 2011-216598 特開2002−171046号公報Japanese Unexamined Patent Publication No. 2002-171466

低損失の誘電体基板材料としては、液晶ポリマーフィルム、フッ素樹脂フィルム、改質ポリイミドフィルム等が挙げられる。液晶ポリマーは誘電正接が極めて小さく、伝送特性に優れる反面、製膜時の配向結晶化の制御が難しく厚さムラが生じやすい。フッ素樹脂も誘電率、誘電正接ともに非常に低く伝送特性に優れるものの、銅箔、他の材料等との接着が難しく、これらの材料と積層がしにくいという課題がある。改質ポリイミドは絶乾状態では誘電特性が良好であるが、吸水率が高く大気中の水分を吸収すると誘電特性が悪化する。 Examples of the low-loss dielectric substrate material include a liquid crystal polymer film, a fluororesin film, and a modified polyimide film. The liquid crystal polymer has an extremely small dielectric loss tangent and is excellent in transmission characteristics, but it is difficult to control orientation crystallization during film formation and uneven thickness is likely to occur. Fluororesin also has a very low dielectric constant and dielectric loss tangent and is excellent in transmission characteristics, but has a problem that it is difficult to adhere to copper foil, other materials, etc., and it is difficult to laminate with these materials. The modified polyimide has good dielectric properties in an absolutely dry state, but has a high water absorption rate and deteriorates in dielectric properties when it absorbs moisture in the atmosphere.

小型化が顕著に要求されるモバイル機器の回路基板は実装の高密度化と多層化が進み、層間の配線を接続するビアに要求される性能が厳しくなっている。特に高速通信においては、ビアの持つ寄生要素により通信品質が劣化するため、ビアの加工精度、熱寸法安定性等が非常に重要な要素となる。ビア長さ、つまりフィルム厚さが不均一である場合、信号乱れの原因となる。さらに基板が温度、湿度等の変化で伸び縮みした場合も信号品質に悪影響を与えるだけでなく、ビア内面のメッキ層に繰り返しの応力負荷がかかり、やがては断線に至る。従って、ビア内面のメッキ層に時間の経過によって繰り返しの応力負荷がかかり、割れが発生したり、断線が生じたりするといった問題が生じるおそれがあり、ビアの接続信頼性を高めることが望まれている。 Circuit boards for mobile devices, which are remarkably required to be miniaturized, are becoming more densely packed and multi-layered, and the performance required for vias connecting the wiring between layers is becoming stricter. Especially in high-speed communication, the communication quality deteriorates due to the parasitic elements of the vias, so the processing accuracy of the vias, the thermal dimensional stability, and the like are very important factors. If the via length, that is, the film thickness is not uniform, it causes signal disturbance. Further, when the substrate expands and contracts due to changes in temperature, humidity, etc., not only the signal quality is adversely affected, but also a repeated stress load is applied to the plating layer on the inner surface of the via, which eventually leads to disconnection. Therefore, the plating layer on the inner surface of the via is repeatedly stressed with the passage of time, which may cause problems such as cracking and disconnection, and it is desired to improve the connection reliability of the via. There is.

フィルム厚さの均一性及び厚さ方向の熱寸法安定性は、フィルムの分子配向状態に強く依存するが、液晶ポリマーフィルム、フッ素樹脂フィルム、改質ポリイミドフィルム等はいずれも分子配向制御が難しい手段で製膜され、一般には厚さの変動も大きいことが知られている。そのため、分子配向を精密に制御でき、厚さ均一性にも優れる半結晶性ポリマーであるポリオレフィン、ポリアミド、ポリエステル等の二軸延伸フィルムの適用が好ましく、なかでも耐熱性、低吸水性、加工特性等に優れるポリエステルが好ましい。 The uniformity of the film thickness and the thermal dimensional stability in the thickness direction strongly depend on the molecular orientation state of the film, but the molecular orientation of the liquid crystal polymer film, the fluororesin film, the modified polyimide film, etc. is difficult to control. It is known that the film is formed with a large amount of variation in thickness. Therefore, it is preferable to apply a biaxially stretched film such as polyolefin, polyamide, polyester, which is a semi-crystalline polymer that can precisely control the molecular orientation and has excellent thickness uniformity, and among them, heat resistance, low water absorption, and processing characteristics. Polyester having excellent properties such as is preferable.

本発明の目的は、ビアの接続信頼性に優れるフレキシブル回路基板を製造可能な二軸延伸ポリエチレンナフタレートフィルム、及びその製造方法を提供することである。 An object of the present invention is to provide a biaxially stretched polyethylene naphthalate film capable of producing a flexible circuit board having excellent via connection reliability, and a method for producing the same.

前記課題を達成するための具体的手段は、以下の通りである。
<1> ポリエチレンナフタレートを主たる構成成分とし、厚さ方向の屈折率が1.499〜1.512であり、5.0GHzにおける誘電正接が0.007以下であり5.0GHzにおける比誘電率が3.20以下であり、6.0GHz以上の高周波信号を伝送するフレキシブル回路基板に用いるための二軸延伸ポリエチレンナフタレートフィルム。
<2> 200℃、10分の熱処理後における熱収縮率が縦及び横ともに1.0%以下である<1>に記載の二軸延伸ポリエチレンナフタレートフィルム。
Specific means for achieving the above-mentioned problems are as follows.
<1> Polyethylene naphthalate is the main component, the refractive index in the thickness direction is 1.499 to 1.512, the dielectric loss tangent at 5.0 GHz is 0.007 or less, and the relative permittivity at 5.0 GHz is A biaxially stretched polyethylene naphthalate film for use in a flexible circuit board that transmits a high frequency signal of 3.20 or less and 6.0 GHz or more.
<2> The biaxially stretched polyethylene naphthalate film according to <1>, wherein the heat shrinkage after heat treatment at 200 ° C. for 10 minutes is 1.0% or less in both the vertical and horizontal directions.

<3> <1>又は<2>に記載の二軸延伸ポリエチレンナフタレートフィルムからなる樹脂層と、前記樹脂層の一方の主面上に配置された銅箔からなる銅箔層と、を備える積層体。 <3> A resin layer made of the biaxially stretched polyethylene naphthalate film according to <1> or <2> and a copper foil layer made of copper foil arranged on one main surface of the resin layer are provided. Laminated body.

<4> <1>又は<2>に記載の二軸延伸ポリエチレンナフタレートフィルムの製造方法であって、未延伸のポリエチレンナフタレートフィルムを準備する工程と、前記未延伸のポリエチレンナフタレートフィルムを縦延伸倍率及び横延伸倍率がそれぞれ独立に3.5倍以下の条件で二軸延伸する工程と、二軸延伸された前記ポリエチレンナフタレートフィルムを熱固定ゾーンの最高温度が250℃以上の条件で加熱する工程と、を含む、二軸延伸ポリエチレンナフタレートフィルムの製造方法。
<5> 前記加熱する工程後にて、二軸延伸された前記ポリエチレンナフタレートフィルムを、200℃以上の温度で後処理する工程をさらに含む<4>に記載の二軸延伸ポリエチレンナフタレートフィルムの製造方法。
<4> The method for producing a biaxially stretched polyethylene naphthalate film according to <1> or <2>, wherein an unstretched polyethylene naphthalate film is prepared and the unstretched polyethylene naphthalate film is vertically formed. The step of biaxially stretching the biaxially stretched polyethylene naphthalate film independently under the condition that the stretching ratio and the lateral stretching ratio are 3.5 times or less, and heating the biaxially stretched polyethylene naphthalate film under the condition that the maximum temperature of the heat fixing zone is 250 ° C. or more. A method for producing a biaxially stretched polyethylene naphthalate film, which comprises the steps of
<5> Production of the biaxially stretched polyethylene naphthalate film according to <4>, further comprising a step of post-treating the biaxially stretched polyethylene naphthalate film at a temperature of 200 ° C. or higher after the heating step. Method.

本発明によれば、ビアの接続信頼性に優れるフレキシブル回路基板を製造可能な二軸延伸ポリエチレンナフタレートフィルム、及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a biaxially stretched polyethylene naphthalate film capable of producing a flexible circuit board having excellent via connection reliability, and a method for producing the same.

本開示において、「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
In the present disclosure, the numerical range represented by using "~" means a range including the numerical values before and after "~" as the lower limit value and the upper limit value.
In the numerical range described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. .. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.

<二軸延伸ポリエチレンナフタレートフィルム>
本開示の二軸延伸ポリエチレンナフタレートフィルム(以下、単に「PENフィルム」とも称する。)は、ポリエチレンナフタレートを主たる構成成分とし、厚さ方向の屈折率が1.499〜1.512であり、5.0GHzにおける誘電正接が0.007以下であり5.0GHzにおける比誘電率が3.20以下であり、6.0GHz以上の高周波信号を伝送するフレキシブル回路基板に用いられる。
<Biaxially stretched polyethylene naphthalate film>
The biaxially stretched polyethylene naphthalate film (hereinafter, also simply referred to as “PEN film”) of the present disclosure contains polyethylene naphthalate as a main component and has a refractive index in the thickness direction of 1.499 to 1.512. It is used for a flexible circuit board that transmits a high-frequency signal of 6.0 GHz or more, having a dielectric constant tangent of 0.007 or less at 5.0 GHz and a relative permittivity of 3.20 or less at 5.0 GHz.

本開示のPENフィルムを用いることでビアの接続信頼性に優れるフレキシブル回路基板を製造可能である。本開示のPENフィルムは、厚さ方向の屈折率が1.499以上であるため、厚さ方向と直交する平面方向の分子配向が大きすぎず、厚さ方向の屈折率が1.512以下であるため、PENフィルムの柔軟性、耐熱性等を確保することができる。厚さ方向と直交する平面方向の分子配向が大きすぎないため、PENフィルムの厚さ方向の熱膨張が小さく厚さ方向の熱寸法安定性に優れる。これにより、PENフィルムを用いて製造したフレキシブル回路基板は断線等が生じにくくビアの接続信頼性に優れると考えられる。さらに、本開示のPENフィルムは、5.0GHzにおける誘電正接が0.007以下であり5.0GHzにおける比誘電率が3.20以下であることにより、高周波信号の伝送損失を低減することができ、6.0GHz以上の高周波信号を伝送するフレキシブル回路基板に好適に用いることができる。この理由としては、以下のように考えられる。本開示のPENフィルムは5.0GHzにおける誘電正接及び比誘電率が小さいため、6.0GHz以上の高周波であっても誘電正接及び比誘電率を小さくすることができる。その結果、6.0GHz以上の高周波信号の伝送損失を少なくしつつ高周波信号の伝送を好適に行うことができる。
本開示のPENフィルムが伝送する高周波信号の上限としては、実用上の伝送損失の大きさの点から、好ましくは60GHz以下であり、より好ましくは40GHz以下であり、さらに好ましくは30GHz以下である。
By using the PEN film of the present disclosure, it is possible to manufacture a flexible circuit board having excellent via connection reliability. Since the PEN film of the present disclosure has a refractive index of 1.499 or more in the thickness direction, the molecular orientation in the plane direction orthogonal to the thickness direction is not too large, and the refractive index in the thickness direction is 1.512 or less. Therefore, the flexibility and heat resistance of the PEN film can be ensured. Since the molecular orientation in the plane direction orthogonal to the thickness direction is not too large, the thermal expansion in the thickness direction of the PEN film is small and the thermal dimensional stability in the thickness direction is excellent. As a result, it is considered that the flexible circuit board manufactured by using the PEN film is less likely to be disconnected and has excellent via connection reliability. Further, the PEN film of the present disclosure has a dielectric loss tangent at 5.0 GHz of 0.007 or less and a relative permittivity of 3.20 or less at 5.0 GHz, so that transmission loss of a high frequency signal can be reduced. , 6.0 GHz or higher can be suitably used for a flexible circuit board that transmits a high frequency signal. The reason for this is considered as follows. Since the PEN film of the present disclosure has a small dielectric loss tangent and relative permittivity at 5.0 GHz, the dielectric loss tangent and relative permittivity can be reduced even at a high frequency of 6.0 GHz or higher. As a result, it is possible to suitably transmit the high frequency signal while reducing the transmission loss of the high frequency signal of 6.0 GHz or more.
The upper limit of the high frequency signal transmitted by the PEN film of the present disclosure is preferably 60 GHz or less, more preferably 40 GHz or less, and further preferably 30 GHz or less from the viewpoint of the magnitude of practical transmission loss.

本開示のPENフィルムの主たる構成成分であるポリエチレンナフタレートは、例えば、ナフタレンジカルボン酸とエチレングリコールとの重縮合によって得られる。ポリエチレンナフタレートとしては、中でもポリエチレン−2,6−ナフタレンジカルボキシレートが好ましい。ポリエチレン−2,6−ナフタレンジカルボキシレートは、例えば、2,6−ナフタレンジカルボン酸とエチレングリコールとの重縮合によって得られる。フレキシブルプリント基板の製造では、層間のボンディングシートの熱硬化、プリベーク等で高温環境下に晒されることが多い。一方、ガラス転移温度が高いポリエチレンナフタレートを主たる構成成分とすることにより、フィルムの熱寸法安定性を高めることができる。 Polyethylene naphthalate, which is a main component of the PEN film of the present disclosure, is obtained, for example, by polycondensation of naphthalenedicarboxylic acid and ethylene glycol. As the polyethylene naphthalate, polyethylene-2,6-naphthalene dicarboxylate is particularly preferable. Polyethylene-2,6-naphthalenedicarboxylate is obtained, for example, by polycondensation of 2,6-naphthalenedicarboxylic acid and ethylene glycol. In the manufacture of flexible printed circuit boards, they are often exposed to high temperature environments due to thermosetting, prebaking, etc. of the bonding sheets between layers. On the other hand, by using polyethylene naphthalate, which has a high glass transition temperature, as a main component, the thermal dimensional stability of the film can be improved.

本開示のPENフィルムでは、ポリエチレンナフタレートの含有率は、フィルムの全量に対して50質量%以上が好ましく、70質量%以上がより好ましく、90質量%以上が好ましい。PENフィルムは、実質的にポリエチレンナフタレートからなるものであってもよく、99質量%以下であってもよく、97質量%以下であってもよく、95質量%以下であってもよい。本開示のPENフィルムに含まれるポリエチレンナフタレートは、1種であってもよく、2種以上であってもよい。 In the PEN film of the present disclosure, the content of polyethylene naphthalate is preferably 50% by mass or more, more preferably 70% by mass or more, and preferably 90% by mass or more with respect to the total amount of the film. The PEN film may be substantially made of polyethylene naphthalate, may be 99% by mass or less, may be 97% by mass or less, or may be 95% by mass or less. The polyethylene naphthalate contained in the PEN film of the present disclosure may be one kind or two or more kinds.

本開示のPENフィルムの主たる構成成分であるポリエチレンナフタレートは、ナフタレンジカルボン酸に由来する構成単位及びエチレングリコールに由来する構成単位のみからなる重合体であってもよく、ナフタレンジカルボン酸及びエチレングリコール以外の他のモノマーに由来する構成単位をさらに含む重合体であってもよい。 The polyethylene naphthalate which is a main component of the PEN film of the present disclosure may be a polymer consisting of only a structural unit derived from a naphthalenedicarboxylic acid and a structural unit derived from ethylene glycol, other than naphthalenedicarboxylic acid and ethylene glycol. It may be a polymer further containing a structural unit derived from another monomer.

ナフタレンジカルボン酸及びエチレングリコール以外の他のモノマーに由来する構成単位としては、ジエチレングリコール、ネオペンチルグリコール、ポリアルキレングリコール等のジオール成分(エチレングリコールを除く)に由来する構成単位、アジピン酸、セバシン酸、フタル酸、イソフタル酸、テレフタル酸、5−ナトリウムスルホイソフタル酸等のジカルボン酸成分(ナフタレン酸ジカルボン酸を除く)に由来する構成単位などが挙げられる。 Constituent units derived from monomers other than naphthalenedicarboxylic acid and ethylene glycol include constituent units derived from diol components (excluding ethylene glycol) such as diethylene glycol, neopentyl glycol, and polyalkylene glycol, adipic acid, and sebacic acid. Examples thereof include constituent units derived from dicarboxylic acid components (excluding dicarboxylic acid naphthalene acid) such as phthalic acid, isophthalic acid, terephthalic acid, and 5-sodium sulfoisophthalic acid.

ポリエチレンナフタレートにおけるナフタレンジカルボン酸及びエチレングリコール以外の他のモノマーに由来する構成単位の含有率は、全構成単位に対して10mol%以下であることが好ましく、5mol%以下であることがより好ましい。 The content of structural units derived from monomers other than naphthalene dicarboxylic acid and ethylene glycol in polyethylene naphthalate is preferably 10 mol% or less, more preferably 5 mol% or less, based on all the structural units.

ポリエチレンナフタレートは、公知の方法を適用して製造することができる。例えば、ナフタレンジカルボン酸及びエチレングリコールと、必要に応じてジオール成分(エチレングリコールを除く)及びジカルボン酸成分(ナフタレン酸ジカルボン酸を除く)からなる群より選択される少なくとも一種と、をエステル化反応させ、次いで得られる反応生成物を重縮合反応させてポリエステルとする方法が知られている。また、これらの原料モノマーの誘導体をエステル交換反応させ、次いで得られる反応生成物を重縮合反応させてポリエステルとする方法で製造してもよい。 Polyethylene naphthalate can be produced by applying a known method. For example, a naphthalenedicarboxylic acid and ethylene glycol are subjected to an esterification reaction with at least one selected from the group consisting of a diol component (excluding ethylene glycol) and a dicarboxylic acid component (excluding dicarboxylic acid naphthalene acid), if necessary. Then, a method is known in which the reaction product obtained is subjected to a polycondensation reaction to obtain a polyester. Further, it may be produced by a method in which derivatives of these raw material monomers are subjected to a transesterification reaction, and then the obtained reaction product is subjected to a polycondensation reaction to obtain a polyester.

また、後述するフィルム状物と回転冷却ドラムとの密着性を高める目的で、ナフタレンジカルボン酸、エチレングリコール等にエステル形成性官能基を有するスルホン酸4級ホスホニウムを添加してエステル化反応させてもよい。エステル形成性官能基を有するスルホン酸4級ホスホニウムの添加量としては、ナフタレンジカルボン酸等の2官能性カルボン酸成分に対し、0.1mmol%〜10mmol%であることが好ましい。エステル形成性官能基を有するスルホン酸4級ホスホニウムとしては、例えば3,5−ジカルボキシベンゼンスルホン酸テトラブチルホスホニウム塩が好ましい。 Further, for the purpose of improving the adhesion between the film-like substance described later and the rotary cooling drum, quaternary phosphonium sulfonic acid having an ester-forming functional group may be added to naphthalene dicarboxylic acid, ethylene glycol, etc. and subjected to an esterification reaction. Good. The amount of the quaternary phosphonium sulfonic acid having an ester-forming functional group added is preferably 0.1 mmol% to 10 mmol% with respect to the bifunctional carboxylic acid component such as naphthalene dicarboxylic acid. As the quaternary sulfonic acid having an ester-forming functional group, for example, a tetrabutylphosphonium salt of 3,5-dicarboxybenzenesulfonic acid is preferable.

本開示のPENフィルムは、ポリエチレンナフタレートが主たる構成成分であるが、本発明の目的を奏する範囲で、添加剤を含んでいてもよい。添加剤としては、例えば滑剤、紫外線吸収剤、酸化防止剤、帯電防止剤、光安定剤、熱安定剤等が挙げられる。 The PEN film of the present disclosure is mainly composed of polyethylene naphthalate, but may contain additives as long as the object of the present invention is achieved. Examples of the additive include a lubricant, an ultraviolet absorber, an antioxidant, an antistatic agent, a light stabilizer, a heat stabilizer and the like.

滑剤は、例えば、炭酸カルシウム、シリカ、タルク、クレー等の無機粒子、シリコーン、熱可塑性樹脂、熱硬化性樹脂等の有機粒子、硫酸バリウム、酸化チタン等の顔料などの不活性粒子が挙げられる。滑剤は、1種単独で用いてもよく、2種以上を組み合わせてもよい。 Examples of the lubricant include inorganic particles such as calcium carbonate, silica, talc and clay, organic particles such as silicone, thermoplastic resin and thermosetting resin, and inert particles such as pigments such as barium sulfate and titanium oxide. The lubricant may be used alone or in combination of two or more.

本開示のPENフィルムが添加剤を含む場合、添加剤の含有率は、PENフィルムの全量に対して5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下がさらに好ましい。 When the PEN film of the present disclosure contains an additive, the content of the additive is preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 1% by mass or less, based on the total amount of the PEN film.

本開示のPENフィルムは、厚さ方向の屈折率が1.499〜1.512である。前述の屈折率が1.499以上であることにより、厚さ方向の熱膨張係数の増加が抑制され、比誘電率及び誘電正接の上昇が抑制され、さらに、PENフィルムを用いて製造したフレキシブル回路基板についてビアの接続信頼性に優れる。さらに、前述の屈折率が1.512以下であることにより、フィルム平面方向の配向性に優れ、フィルムは柔軟性及び耐熱性に優れる。 The PEN film of the present disclosure has a refractive index in the thickness direction of 1.499 to 1.512. When the above-mentioned refractive index is 1.499 or more, an increase in the coefficient of thermal expansion in the thickness direction is suppressed, an increase in the relative permittivity and the dielectric loss tangent is suppressed, and a flexible circuit manufactured using a PEN film is used. Excellent connection reliability of vias for the board. Further, when the above-mentioned refractive index is 1.512 or less, the orientation in the plane direction of the film is excellent, and the film is excellent in flexibility and heat resistance.

本開示のPENフィルムは、厚さ方向の屈折率が1.501〜1.511であることが好ましく、1.503〜1.511であることがより好ましく、1.503〜1.510であることがさらに好ましく、1.505〜1.508であることが特に好ましい。 The PEN film of the present disclosure preferably has a refractive index in the thickness direction of 1.501 to 1.511, more preferably 1.503 to 1.511, and 1.503 to 1.510. It is more preferable, and it is particularly preferable that it is 1.505 to 1.508.

本開示のPENフィルムは、5.0GHzにおける誘電正接が0.007以下である。前述の誘電正接が0.007以下であることにより誘電損失を抑制できる。5.0GHzにおける誘電正接は、0.006以下であることが好ましい。また、5.0GHzにおける誘電正接は、0.001以上であってもよく、0.003以上であってもよい。 The PEN film of the present disclosure has a dielectric loss tangent of 0.007 or less at 5.0 GHz. Dielectric loss can be suppressed when the above-mentioned dielectric loss tangent is 0.007 or less. The dielectric loss tangent at 5.0 GHz is preferably 0.006 or less. Further, the dielectric loss tangent at 5.0 GHz may be 0.001 or more, or 0.003 or more.

本開示のPENフィルムは、5.0GHzにおける比誘電率が3.20以下である。前述の比誘電率が3.20以下であることにより誘電損失を抑制できる。5.0GHzにおける比誘電率は、3.16以下であることが好ましい。また、5.0GHzにおける比誘電率は、2.70以上であってもよく、2.90以上であってもよい。 The PEN film of the present disclosure has a relative permittivity of 3.20 or less at 5.0 GHz. When the above-mentioned relative permittivity is 3.20 or less, the dielectric loss can be suppressed. The relative permittivity at 5.0 GHz is preferably 3.16 or less. The relative permittivity at 5.0 GHz may be 2.70 or more, or 2.90 or more.

本開示のPENフィルムにて、厚さ方向の屈折率、誘電正接及び比誘電率は、後述の実施例に記載の方法により測定される値である。 In the PEN film of the present disclosure, the refractive index, dielectric loss tangent and relative permittivity in the thickness direction are values measured by the method described in Examples described later.

本開示のPENフィルムの厚さは特に限定されず、例えば、25μm〜250μmであってもよく、30μm〜200μmであってもよい。PENフィルムの厚さが25μm以上であることにより、加工時のハンドリング性に優れる傾向にある。PENフィルムの厚さが250μm以下であることにより、フレキシブル回路基板にした際の柔軟性に優れる傾向にある。
本開示にて、PENフィルムの厚さは、中心厚さを意味する。
The thickness of the PEN film of the present disclosure is not particularly limited, and may be, for example, 25 μm to 250 μm or 30 μm to 200 μm. When the thickness of the PEN film is 25 μm or more, the handleability during processing tends to be excellent. Since the thickness of the PEN film is 250 μm or less, the flexibility of the flexible circuit board tends to be excellent.
In the present disclosure, the thickness of the PEN film means the center thickness.

本開示のPENフィルムの縦方向(機械方向)の熱収縮率は、200℃、10分の熱処理後において、0.01%〜2.0%であることが好ましく、150℃、30分の熱処理後において、0.01%〜1.0%であることが好ましい。また、前述の縦方向の熱収縮率は、200℃、10分の熱処理後において、精細な回路が形成できる点から、1.0%以下であることが好ましく、0.8%以下であることがより好ましい。 The heat shrinkage rate of the PEN film of the present disclosure in the longitudinal direction (mechanical direction) is preferably 0.01% to 2.0% after heat treatment at 200 ° C. for 10 minutes, and heat treatment at 150 ° C. for 30 minutes. Later, it is preferably 0.01% to 1.0%. Further, the above-mentioned heat shrinkage rate in the vertical direction is preferably 1.0% or less, preferably 0.8% or less, from the viewpoint that a fine circuit can be formed after heat treatment at 200 ° C. for 10 minutes. Is more preferable.

本開示のPENフィルムの横方向の熱収縮率は、200℃、10分の熱処理後において、−0.5%〜2.0%であることが好ましく、150℃、30分の熱処理後において、−0.1%〜1.0%であることが好ましい。また、前述の横方向の熱収縮率は、200℃、10分の熱処理後において、精細な回路が形成できる点から、1.0%以下であることが好ましく、0.8%以下であることがより好ましく、0.5%以下であることがさらに好ましく、0.3%以下であることが特に好ましい。 The lateral heat shrinkage of the PEN film of the present disclosure is preferably −0.5% to 2.0% after heat treatment at 200 ° C. for 10 minutes, and after heat treatment at 150 ° C. for 30 minutes. It is preferably −0.1% to 1.0%. Further, the above-mentioned heat shrinkage rate in the lateral direction is preferably 1.0% or less, preferably 0.8% or less, from the viewpoint that a fine circuit can be formed after heat treatment at 200 ° C. for 10 minutes. Is more preferable, 0.5% or less is further preferable, and 0.3% or less is particularly preferable.

本開示のPENフィルムの縦方向及び横方向の熱収縮率が前述の下限値以上であることにより、PENフィルムを用いて形成された回路のパターンを維持しやすく、より高精細な回路パターンを形成でき、デバイスを小型化できる。また、PENフィルムの加工後にシワ、うねり等の変形が生じにくい。一方、本開示のPENフィルムの縦方向及び横方向の熱収縮率が前述の上限値以上であることにより、このPENフィルムを用いて形成した回路基板の平面性に優れる。 When the heat shrinkage rate in the vertical direction and the horizontal direction of the PEN film of the present disclosure is equal to or higher than the above-mentioned lower limit value, it is easy to maintain the pattern of the circuit formed by using the PEN film, and a higher definition circuit pattern is formed. And the device can be miniaturized. In addition, deformation such as wrinkles and waviness is unlikely to occur after processing the PEN film. On the other hand, when the heat shrinkage rate in the vertical direction and the horizontal direction of the PEN film of the present disclosure is equal to or higher than the above-mentioned upper limit value, the flatness of the circuit board formed by using the PEN film is excellent.

本開示のPENフィルムの縦方向及び横方向の200℃、10分の熱処理後における熱収縮率は、実施例に記載の方法により求めることができる。本開示のPENフィルムの縦方向及び横方向の150℃、30分の熱処理後における熱収縮率は、実施例に記載の加熱温度及び加熱時間の条件を150℃、30分の条件に置き換えた方法により求めることができる。 The heat shrinkage of the PEN film of the present disclosure in the vertical and horizontal directions after heat treatment at 200 ° C. for 10 minutes can be determined by the method described in Examples. The heat shrinkage rate of the PEN film of the present disclosure in the vertical and horizontal directions after heat treatment at 150 ° C. for 30 minutes is a method in which the heating temperature and heating time conditions described in Examples are replaced with the conditions of 150 ° C. and 30 minutes. Can be obtained by.

PENフィルムの熱収縮率の縦方向と横方向との差、PENフィルムにて、中央部の熱収縮率と端部の熱収縮率との差は、小さいことが好ましい。これらの差の適切なバランスは使用条件によっても左右されるため、用途に応じて適切に調整される。 It is preferable that the difference between the heat shrinkage rate of the PEN film in the vertical direction and the horizontal direction and the difference between the heat shrinkage rate of the central portion and the heat shrinkage rate of the edge portion of the PEN film are small. The proper balance of these differences also depends on the conditions of use and is therefore adjusted appropriately according to the application.

<二軸延伸ポリエチレンナフタレートフィルムの製造方法>
本開示の二軸延伸ポリエチレンナフタレートフィルムの製造方法は、未延伸のポリエチレンナフタレートフィルムを準備する工程と、前記未延伸のポリエチレンナフタレートフィルムを縦延伸倍率及び横延伸倍率がそれぞれ独立に3.5倍以下の条件で二軸延伸する工程と、二軸延伸された前記ポリエチレンナフタレートフィルムを熱固定ゾーンの最高温度が250℃以上の条件で加熱する工程と、を含む。
<Manufacturing method of biaxially stretched polyethylene naphthalate film>
In the method for producing a biaxially stretched polyethylene naphthalate film of the present disclosure, the step of preparing an unstretched polyethylene naphthalate film and the longitudinal stretching ratio and the transverse stretching ratio of the unstretched polyethylene naphthalate film are independent of each other. It includes a step of biaxially stretching under the condition of 5 times or less, and a step of heating the biaxially stretched polyethylene naphthalate film under the condition that the maximum temperature of the heat fixing zone is 250 ° C. or higher.

(準備工程)
本開示の製造方法では、未延伸のポリエチレンナフタレートフィルムを準備する(準備工程)。未延伸のポリエチレンナフタレートフィルムは、例えば、前述のように、ナフタレンジカルボン酸とエチレングリコールとの重縮合等により得たポリエチレンナフタレートを押出機に供給し、押出機にて混練溶融した溶融物をTダイから吐出してフィルム状とし、フィルム状物を急冷することで得られる。
(Preparation process)
In the manufacturing method of the present disclosure, an unstretched polyethylene naphthalate film is prepared (preparation step). In the unstretched polyethylene naphthalate film, for example, as described above, polyethylene naphthalate obtained by polycondensation of naphthalenedicarboxylic acid and ethylene glycol is supplied to an extruder, and a melt kneaded and melted by the extruder is produced. It is obtained by discharging from a T-die to form a film, and quenching the film-like material.

未延伸のポリエチレンナフタレートフィルムの製造に用いるポリエチレンナフタレートの固有粘度は、o−クロロフェノール中、35℃において、0.40dl/g以上であることが好ましく、0.40dl/g〜0.90dl/gであることがより好ましい。前述の固有粘度が0.40dl/g以上であることにより、フィルム製造時に切断が生じにくく、成形加工後のプリント基板の強度に優れる傾向にある。また、前述の固有粘度が0.90dl/g以下であることにより、重合時の生産性に優れ、溶融粘度が高くなりすぎず、フィルムが製造しやすい傾向にある。 The intrinsic viscosity of polyethylene naphthalate used for producing an unstretched polyethylene naphthalate film is preferably 0.40 dl / g or more at 35 ° C. in o-chlorophenol, and is 0.40 dl / g to 0.90 dl. It is more preferably / g. When the above-mentioned intrinsic viscosity is 0.40 dl / g or more, cutting is unlikely to occur during film production, and the strength of the printed circuit board after molding tends to be excellent. Further, since the above-mentioned intrinsic viscosity is 0.90 dl / g or less, the productivity at the time of polymerization is excellent, the melt viscosity does not become too high, and the film tends to be easily produced.

押出機にてポリエチレンナフタレートを混練溶融する温度としては、例えば、その融点(以下、Tmとも表す)以上、(Tm+70)℃以下であることが好ましい。 The temperature at which polyethylene naphthalate is kneaded and melted in an extruder is preferably, for example, at least its melting point (hereinafter, also referred to as Tm) and at least (Tm + 70) ° C.

Tダイから吐出されたフィルム状物は、回転冷却ドラムの表面で急冷されてもよい。このとき、フィルム状物と回転冷却ドラムとの密着性を高める目的で、フィルム状物に静電荷を付与してもよい。フィルム状物に静電荷を付与する場合、例えば、ポリエチレンナフタレートの原料であるナフタレンジカルボン酸等の2官能性カルボン酸成分に対し、0.1mmol%〜10mmol%のエステル形成性官能基を有するスルホン酸4級ホスホニウムを添加してポリエチレンナフタレートを製造することが好ましい。エステル形成性官能基を有するスルホン酸4級ホスホニウムとしては、例えば3,5−ジカルボキシベンゼンスルホン酸テトラブチルホスホニウム塩が好ましい。ポリエチレンナフタレートの溶融物は、電気抵抗が高いため、上記の回転冷却ドラムとの静電密着が不十分になる場合がある一方、前述のエステル形成性官能基を有するスルホン酸4級ホスホニウムを用いることにより、フィルム状物と回転冷却ドラムとの密着性を高めることができる。 The film-like material discharged from the T-die may be rapidly cooled on the surface of the rotary cooling drum. At this time, an electrostatic charge may be applied to the film-like material for the purpose of improving the adhesion between the film-like material and the rotary cooling drum. When a static charge is applied to a film-like material, for example, a sulfon having an ester-forming functional group of 0.1 mmol% to 10 mmol% with respect to a bifunctional carboxylic acid component such as naphthalenedicarboxylic acid which is a raw material of polyethylene naphthalate. It is preferable to add quaternary phosphonium acid to produce polyethylene naphthalate. As the quaternary sulfonic acid having an ester-forming functional group, for example, a tetrabutylphosphonium salt of 3,5-dicarboxybenzenesulfonic acid is preferable. Since the melt of polyethylene naphthalate has high electrical resistance, electrostatic adhesion with the above-mentioned rotary cooling drum may be insufficient, while the above-mentioned quaternary phosphonium sulfonic acid having an ester-forming functional group is used. As a result, the adhesion between the film-like material and the rotary cooling drum can be improved.

(延伸工程)
本開示の製造方法では、未延伸のポリエチレンナフタレートフィルムを縦延伸倍率及び横延伸倍率がそれぞれ独立に3.5倍以下の条件で二軸延伸する(延伸工程)。
(Stretching process)
In the production method of the present disclosure, an unstretched polyethylene naphthalate film is biaxially stretched independently under the condition that the longitudinal stretching ratio and the transverse stretching ratio are 3.5 times or less (stretching step).

未延伸のポリエチレンナフタレートフィルムは、例えば、100〜160℃、好ましくは110℃〜140℃の温度に加熱されたロール上で予熱された後、加熱した赤外線ヒーター上で縦方向に好ましくは3.5倍以下、より好ましくは2.5倍〜3.5倍、さらに好ましくは2.8倍〜3.3倍の延伸倍率で延伸される。 The unstretched polyethylene naphthalate film is, for example, preheated on a roll heated to a temperature of 100 to 160 ° C., preferably 110 ° C. to 140 ° C., and then vertically preferably on a heated infrared heater. It is stretched at a stretching ratio of 5 times or less, more preferably 2.5 times to 3.5 times, still more preferably 2.8 times to 3.3 times.

縦方向に延伸されたポリエチレンナフタレートフィルムは、110℃〜150℃の温度にて横方向に好ましくは3.5倍以下、より好ましくは2.5倍〜3.5倍、さらに好ましくは3.0倍〜3.5倍の延伸倍率で延伸される。横方向に延伸を行う場合、延伸過程にて昇温してもよい。横延伸過程の昇温は連続的でも段階的(逐次的)でもよく、段階的に昇温することが好ましい。例えば、ステンターの横延伸ゾーンをフィルム走行方向に沿って複数に分け、ゾーンごとに所定温度の加熱媒体を流すことで段階昇温してもよい。 The polyethylene naphthalate film stretched in the longitudinal direction is preferably 3.5 times or less, more preferably 2.5 times to 3.5 times, still more preferably 3. It is stretched at a stretching ratio of 0 to 3.5 times. When stretching in the lateral direction, the temperature may be raised during the stretching process. The temperature rise in the transverse stretching process may be continuous or stepwise (sequential), and it is preferable to raise the temperature stepwise. For example, the lateral stretching zone of the stenter may be divided into a plurality of zones along the film traveling direction, and the temperature may be gradually raised by flowing a heating medium having a predetermined temperature for each zone.

横方向の延伸倍率が2.5倍以上であることにより、回路基板としてのPENフィルムの強度が十分に得られる傾向にある。横方向の延伸倍率が3.5倍以下であることにより、本開示のPENフィルムにおける厚さ方向の屈折率の範囲に調整しやすく、フィルム製造時の破断が生じにくく、また、PENフィルムに厚さムラが生じにくく、PENフィルムの厚さ均一性に優れる傾向にある。 When the stretching ratio in the lateral direction is 2.5 times or more, the strength of the PEN film as a circuit board tends to be sufficiently obtained. When the stretching ratio in the lateral direction is 3.5 times or less, it is easy to adjust the range of the refractive index in the thickness direction of the PEN film of the present disclosure, breakage during film production is unlikely to occur, and the thickness of the PEN film is increased. Roughness is less likely to occur, and the thickness uniformity of the PEN film tends to be excellent.

縦方向の延伸倍率に対する横方向の延伸倍率(横方向の延伸倍率/縦方向の延伸倍率)は、1.06倍〜1.20倍であることが好ましい。これらの延伸は、複数段階に分割して行われる多段延伸であってもよいし、縦延伸と横延伸を同時に行う同時二軸延伸であってもよい。 The horizontal stretching ratio (horizontal stretching ratio / longitudinal stretching ratio) with respect to the vertical stretching ratio is preferably 1.06 times to 1.20 times. These stretchings may be multi-stage stretching performed by dividing into a plurality of stages, or simultaneous biaxial stretching in which longitudinal stretching and transverse stretching are performed at the same time.

(加熱工程)
本開示の製造方法では、二軸延伸されたポリエチレンナフタレートフィルムを熱固定ゾーンの最高温度が250℃以上の条件で加熱する(加熱工程)。
(Heating process)
In the manufacturing method of the present disclosure, the biaxially stretched polyethylene naphthalate film is heated under the condition that the maximum temperature of the heat fixing zone is 250 ° C. or higher (heating step).

二軸延伸されたポリエチレンナフタレートフィルムに加熱工程を施すことにより、前述の厚さ方向の屈折率を有し、さらに熱寸法安定性に優れるPENフィルムが得られる。 By subjecting the biaxially stretched polyethylene naphthalate film to a heating step, a PEN film having the above-mentioned refractive index in the thickness direction and further excellent in thermal dimensional stability can be obtained.

熱固定ゾーンの温度としては、(Tm−100)℃以上であることが好ましく、(Tm−70)℃〜(Tm−10)℃であることがより好ましい。 The temperature of the heat fixing zone is preferably (Tm-100) ° C. or higher, and more preferably (Tm-70) ° C. to (Tm-10) ° C.

また、200℃で熱処理した後のPENフィルムの熱収縮率を低下させる点から、熱固定ゾーンの最高温度が250℃以上で加熱しているとき、又は加熱後に、縦方向及び横方向の少なくとも一方に、弛緩率0.1%〜15%の範囲で、熱弛緩処理を行うことが好ましい。 Further, from the viewpoint of reducing the heat shrinkage rate of the PEN film after heat treatment at 200 ° C., at least one of the vertical direction and the horizontal direction is obtained when the maximum temperature of the heat fixing zone is 250 ° C. or higher, or after heating. In addition, it is preferable to perform the heat relaxation treatment in the range of the relaxation rate of 0.1% to 15%.

PENフィルムでは、厚さ方向の屈折率と、平面方向の分子配向とは相関関係があり、平面方向の分子配向を低くするほど、厚さ方向の屈折率が高くなる傾向にあり、厚さ方向の熱寸法安定性及び誘電特性に優れる傾向にある。 In the PEN film, there is a correlation between the refractive index in the thickness direction and the molecular orientation in the plane direction, and the lower the molecular orientation in the plane direction, the higher the refractive index in the thickness direction tends to be. Tends to be excellent in thermal dimensional stability and dielectric properties.

平面方向の分子配向を低くする手段としては、例えば、延伸倍率を低くする方法、及び一旦通常通りの倍率で延伸する延伸工程の後に分子鎖を弛緩させる方法の2種類が挙げられる。延伸倍率を低くする方法では厚さばらつきが大きくなる傾向にあるため、延伸工程の後に弛緩処理を行う方法が好ましい。PENフィルムにて、厚さムラの範囲は、中心厚さの±10%未満、より好ましくは±5%未満である。 As a means for lowering the molecular orientation in the plane direction, for example, there are two types, a method of lowering the draw ratio and a method of relaxing the molecular chain after the drawing step of once stretching at a normal ratio. Since the method of lowering the draw ratio tends to increase the thickness variation, a method of performing a relaxation treatment after the drawing step is preferable. In the PEN film, the range of thickness unevenness is less than ± 10%, more preferably less than ± 5% of the center thickness.

(後処理工程)
本開示の製造方法では、前述の加熱工程の後にて二軸延伸されたポリエチレンナフタレートフィルムを、200℃以上の温度で後処理する工程をさらに含んでいてもよい。これにより、PENフィルムの比誘電率をさらに低下させることが可能になる。PENフィルムの比誘電率の低下は、詳細な理由は不明であるが、結晶化度の増加、分子の局所配向の影響等が理由と考えられる。
(Post-treatment process)
The production method of the present disclosure may further include a step of post-treating the biaxially stretched polyethylene naphthalate film at a temperature of 200 ° C. or higher after the above-mentioned heating step. This makes it possible to further reduce the relative permittivity of the PEN film. The detailed reason for the decrease in the relative permittivity of the PEN film is unknown, but it is considered that the reason is an increase in crystallinity, the influence of local orientation of molecules, and the like.

後処理の方法は特に限定されず、例えば、懸垂式の弛緩熱処理法が好ましい。懸垂式の弛緩熱処理法としては、処理するPENフィルムを上方に設置したローラーを経て下方に自重で垂下させ、その途中で加熱した後、下方のローラーで冷却しながらほぼ水平方向に向きを変え、ニップローラーで巻取り張力を遮断した上で巻き取る方法が好ましい。 The method of post-treatment is not particularly limited, and for example, a suspension type relaxation heat treatment method is preferable. As a suspension type relaxation heat treatment method, the PEN film to be treated is hung down by its own weight through a roller installed above, heated in the middle, and then turned almost horizontally while being cooled by the lower roller. A method of winding after blocking the winding tension with a nip roller is preferable.

懸垂式の弛緩熱処理法では、垂下距離は2m〜10m程度が好ましい。垂下距離が2m以上であることにより、自重を確保することができて平面性に優れ、加熱範囲も確保できるため、十分な弛緩効果が得られる。垂下距離が10m以下であることにより、自重が大きくなりすぎることが抑制され、加熱域の位置による熱収縮率のバラつきが抑制される。 In the suspension type relaxation heat treatment method, the hanging distance is preferably about 2 m to 10 m. When the hanging distance is 2 m or more, the own weight can be secured, the flatness is excellent, and the heating range can be secured, so that a sufficient relaxing effect can be obtained. When the hanging distance is 10 m or less, it is suppressed that the self-weight becomes too large, and the variation in the heat shrinkage rate depending on the position of the heating region is suppressed.

後処理工程でのPENフィルムの加熱方式は、特に限定されず、PENフィルムを迅速に加熱できるため、赤外線加熱が好ましい。 The heating method of the PEN film in the post-treatment step is not particularly limited, and infrared heating is preferable because the PEN film can be heated quickly.

後処理工程は、PENフィルムの温度が200〜240℃となるように加熱することが好ましい。PENフィルムの温度を200℃以上となるように加熱することにより、200℃で熱処理した後のPENフィルムの熱収縮率を小さくすることができ、PENフィルムの温度を240℃以下となるように加熱することにより、平面性に優れ、オリゴマー析出による白化が抑制されたPENフィルムが得られる。
なお、フィルム温度は、非接触の赤外線式温度計(例えばバーンズ式輻射温度計)を用いて測定できる。
In the post-treatment step, it is preferable to heat the PEN film so that the temperature becomes 200 to 240 ° C. By heating the temperature of the PEN film to 200 ° C. or higher, the heat shrinkage rate of the PEN film after heat treatment at 200 ° C. can be reduced, and the temperature of the PEN film is heated to 240 ° C. or lower. By doing so, a PEN film having excellent flatness and suppressed whitening due to oligomer precipitation can be obtained.
The film temperature can be measured using a non-contact infrared thermometer (for example, a Burns type radiation thermometer).

熱処理方法の中で、PENフィルムの広範囲な範囲の熱収縮率をより均一に抑えやすいことから、懸垂式の弛緩熱処理法が好ましい。 Among the heat treatment methods, the suspension type relaxation heat treatment method is preferable because it is easy to more uniformly suppress the heat shrinkage rate in a wide range of the PEN film.

<積層体>
本開示の積層体は、二軸延伸ポリエチレンナフタレートフィルムからなる樹脂層と、前記樹脂層の一方の主面上に配置された銅箔からなる銅箔層と、を備える。本開示の積層体を用いることで、6.0GHz以上の高周波信号を伝送し、ビアの接続信頼性に優れるフレキシブル回路基板を製造することができる。
<Laminated body>
The laminate of the present disclosure includes a resin layer made of a biaxially stretched polyethylene naphthalate film and a copper foil layer made of a copper foil arranged on one main surface of the resin layer. By using the laminate of the present disclosure, it is possible to manufacture a flexible circuit board which transmits a high frequency signal of 6.0 GHz or more and has excellent via connection reliability.

積層体形成に用いる銅箔としては特に限定されず、従来公知の銅箔を用いてもよい。中でも、導体損失を低減する点から、表面平滑性の高い銅箔を用いることが好ましい。例えば、銅箔としては、表面平滑性に優れる点から、例えば表面粗さRzが2μm以下であることが好ましい。例えば、特許第3155920号、特開2019−51709号公報に記載の銅箔を用いてもよい。銅箔として市販品を用いてもよく、例えば、三井金属鉱業株式会社製の「TQM4−VSP」等が挙げられる。
なお、本開示において、表面粗さRzは、「最大高さ粗さ」と呼ばれる高さ方向のパラメータであり、JIS B 0601:2013で規定されている、基準長さにおける粗さ曲線の山高さの最大値と谷深さの最大値との和である。
The copper foil used for forming the laminate is not particularly limited, and a conventionally known copper foil may be used. Above all, it is preferable to use a copper foil having high surface smoothness from the viewpoint of reducing conductor loss. For example, the copper foil preferably has a surface roughness Rz of 2 μm or less from the viewpoint of excellent surface smoothness. For example, the copper foil described in Japanese Patent No. 3155920 and Japanese Patent Application Laid-Open No. 2019-51709 may be used. A commercially available product may be used as the copper foil, and examples thereof include "TQM4-VSP" manufactured by Mitsui Mining & Smelting Co., Ltd.
In the present disclosure, the surface roughness Rz is a parameter in the height direction called "maximum height roughness", and is the peak height of the roughness curve at the reference length specified in JIS B 0601: 2013. Is the sum of the maximum value of and the maximum value of the valley depth.

樹脂層と銅箔層とは接触して直接積層されていてもよく、接着層等の他の層を介して樹脂層と銅箔層とが積層されていてもよい。 The resin layer and the copper foil layer may be in contact with each other and directly laminated, or the resin layer and the copper foil layer may be laminated via another layer such as an adhesive layer.

樹脂層と銅箔層との間に接着層を設ける場合、従来公知の接着剤を用いて接着層を設けてもよい。中でも、誘電率、誘電正接等が小さい材料で構成されている接着剤が好ましい。またPENフィルム及び銅箔との密着力は高いほど好ましく、例えば、0.5N/10mm以上の密着力であることが好ましい。接着剤としては、例えば、特許第6485577号に記載の接着剤を用いてもよい。接着剤として市販品を用いてもよく、例えば、東亞合成株式会社の「アロンマイティAF−700」等を用いてもよい。 When an adhesive layer is provided between the resin layer and the copper foil layer, the adhesive layer may be provided by using a conventionally known adhesive. Of these, an adhesive made of a material having a small dielectric constant, dielectric loss tangent, and the like is preferable. Further, the higher the adhesion with the PEN film and the copper foil, the more preferable, and for example, the adhesion with 0.5 N / 10 mm or more is preferable. As the adhesive, for example, the adhesive described in Japanese Patent No. 6485577 may be used. A commercially available product may be used as the adhesive, and for example, "Aronmighty AF-700" manufactured by Toagosei Co., Ltd. may be used.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限を受けるものではない。また、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited by the following examples. In addition, it is of course possible to carry out with appropriate modifications within the range that can be adapted to the gist of the present invention, and all of them are included in the technical scope of the present invention.

本実施例において、各物性値は以下のようにして測定した。 In this example, each physical property value was measured as follows.

(屈折率)
二軸延伸ポリエチレンナフタレートフィルムの屈折率を、ナトリウムD線(589nm)を光源として、偏光板を装着したアッベ屈折計を用いて測定した。
(Refractive index)
The refractive index of the biaxially stretched polyethylene naphthalate film was measured using an Abbe refractometer equipped with a polarizing plate using a sodium D line (589 nm) as a light source.

(200℃処理後の熱収縮率)
二軸延伸ポリエチレンナフタレートフィルムの縦方向及び横方向に、あらかじめ正確な長さを測定してマーキングした長さ30cm四方のフィルムを、200℃に設定されたオーブン中に無荷重で入れ、10分間静置した後に取り出し、室温に戻してからその寸法変化を読み取った。
熱処理前の長さ(L0)と熱処理による寸法変化量(ΔL)より、次式(1)に従って縦方向及び横方向の熱収縮率をそれぞれ求めた。各方向の熱収縮率はそれぞれサンプル数n=5で評価を行い、その平均値を用いた。
熱収縮率(%)=(ΔL/L0)×100・・・(1)
(Heat shrinkage after treatment at 200 ° C)
A 30 cm square film with a length of 30 cm square, which was previously measured and marked with an accurate length in the vertical and horizontal directions of the biaxially stretched polyethylene naphthalate film, was placed in an oven set at 200 ° C. without load for 10 minutes. After allowing to stand, it was taken out, returned to room temperature, and the dimensional change was read.
From the length (L0) before the heat treatment and the dimensional change amount (ΔL) due to the heat treatment, the heat shrinkage rates in the vertical direction and the horizontal direction were obtained according to the following equation (1), respectively. The heat shrinkage rate in each direction was evaluated with the number of samples n = 5, and the average value was used.
Heat shrinkage rate (%) = (ΔL / L0) × 100 ... (1)

(比誘電率及び誘電正接)
二軸延伸ポリエチレンナフタレートフィルムの5.0GHzでの比誘電率及び誘電正接を、円筒空胴共振器法にて測定した。
(Relative permittivity and dielectric loss tangent)
The relative permittivity and dielectric loss tangent at 5.0 GHz of the biaxially stretched polyethylene naphthalate film were measured by the cylindrical cavity resonator method.

(サイクル試験)
積層体を用い、JIS C5016:1994の熱衝撃試験方法に従ってヒートサイクル試験を実施した。温度は−55℃〜100℃、サイクル回数は100回とし、試験終了後のビア導通を評価した。
10個のサンプルの測定で導通不良が1つもない場合に評価Aとし、1個以上のサンプルに導通不良がある場合に評価Bとした。
(Cycle test)
The heat cycle test was carried out using the laminate according to the thermal shock test method of JIS C5016: 1994. The temperature was −55 ° C. to 100 ° C., the number of cycles was 100, and the via continuity after the test was evaluated.
Evaluation A was given when there was no poor continuity in the measurement of 10 samples, and evaluation B was given when there was no poor continuity in one or more samples.

[実施例1]
(ポリマーの合成)
2,6−ナフタレンジカルボン酸ジメチル100質量部及びエチレングリコール60質量部の混合物に、酢酸マンガン・4水塩0.03質量部を添加し、150℃から240℃に徐々に昇温しながらエステル交換反応を行った。途中反応温度が170℃に達した時点で三酸化アンチモン0.024質量部を添加し、さらに平均粒径0.3μmの多孔質シリカを0.15質量%添加して、次いで220℃に達した時点で3,5−ジカルボキシベンゼンスルホン酸テトラブチルホスホニウム塩0.042質量部(2mmol%に相当)を添加した。引き続いてエステル交換反応を行い、エステル交換反応終了後に燐酸トリメチル0.023質量部を添加した。その後反応生成物を重合反応器に移し、290℃まで昇温し、0.2mmHg以下の高真空下にて重縮合反応を行って25℃のo−クロロフェノール溶液で測定した固有粘度が0.61dl/g、DEG共重合量1.1mol%のポリエチレン−2,6−ナフタレンジカルボキシレートポリマーを得た。
[Example 1]
(Synthesis of polymer)
To a mixture of 100 parts by mass of dimethyl 2,6-naphthalenedicarboxylic acid and 60 parts by mass of ethylene glycol, 0.03 parts by mass of manganese acetate / tetrahydrate was added, and transesterification was performed while gradually raising the temperature from 150 ° C. to 240 ° C. The reaction was carried out. When the reaction temperature reached 170 ° C. on the way, 0.024 parts by mass of antimony trioxide was added, 0.15% by mass of porous silica having an average particle size of 0.3 μm was added, and then 220 ° C. was reached. At this time, 0.042 parts by mass (corresponding to 2 mmol%) of tetrabutylphosphonium salt of 3,5-dicarboxybenzenesulfonic acid was added. Subsequently, a transesterification reaction was carried out, and 0.023 parts by mass of trimethyl phosphate was added after the transesterification reaction was completed. After that, the reaction product was transferred to a polymerization reactor, the temperature was raised to 290 ° C., a polycondensation reaction was carried out under a high vacuum of 0.2 mmHg or less, and the intrinsic viscosity measured with an o-chlorophenol solution at 25 ° C. was 0. A polyethylene-2,6-naphthalenedicarboxylate polymer having 61 dl / g and a DEF copolymerization amount of 1.1 mol% was obtained.

(二軸延伸ポリエチレンナフタレートフィルムの製造)
このポリマーを170℃において6時間乾燥させた後、単軸押出機に供給し、溶融温度302℃で溶融し、線径13μmのステンレス細線よりなる平均目開き24μmの不織布型フィルターで濾過した後、スリットダイよりフィルム状に吐出し、表面仕上げ0.3S、表面温度60℃の回転冷却ドラム上に押出し、未延伸フィルムを得た。なお、溶融ポリマーが回転冷却ドラムと接する付近に直流の電圧6.5kVを印加した線電極を近接させ、静電気による回転冷却ドラムへの密着を促進した。こうして得られた未延伸フィルムを140℃に予熱した予熱ローラーに通し、600℃以上の温度に加熱した赤外線ヒーター上で縦方向に3.0倍に延伸し、縦延伸フィルムを得た。
(Manufacture of biaxially stretched polyethylene naphthalate film)
After drying this polymer at 170 ° C. for 6 hours, it was supplied to a single-screw extruder, melted at a melting temperature of 302 ° C., filtered through a non-woven fabric filter having an average opening of 24 μm made of fine stainless steel wire having a wire diameter of 13 μm, and then filtered. The film was discharged from a slit die and extruded onto a rotary cooling drum having a surface finish of 0.3S and a surface temperature of 60 ° C. to obtain an unstretched film. A wire electrode to which a direct current voltage of 6.5 kV was applied was placed close to the molten polymer in contact with the rotary cooling drum to promote adhesion to the rotary cooling drum due to static electricity. The unstretched film thus obtained was passed through a preheating roller preheated to 140 ° C. and stretched 3.0 times in the vertical direction on an infrared heater heated to a temperature of 600 ° C. or higher to obtain a vertically stretched film.

次いでこの縦延伸フィルムを連続してステンター延伸機に通し、110℃、117℃、130℃、145℃の4段階の昇温ゾーン中で横方向に3.3倍延伸した。さらに連続して220℃及び250℃に設定した熱固定ゾーンをこの順で通過させ、250℃の熱固定ゾーン中で20秒間熱固定処理しつつ、横方向に0.7%の弛緩処理を行い、135℃の冷却ゾーンを通過させて巻取り機で巻き取って、厚さが50μmである二軸延伸ポリエチレンナフタレートフィルムを得た。
さらに得られた延伸フィルムをさらに懸垂式の弛緩熱処理装置を用いて230℃、5分間熱処理した。
Next, this longitudinally stretched film was continuously passed through a stenter stretching machine, and stretched 3.3 times in the lateral direction in a four-step temperature raising zone of 110 ° C., 117 ° C., 130 ° C., and 145 ° C. Furthermore, the heat fixing zones set at 220 ° C. and 250 ° C. are continuously passed in this order, and while the heat fixing treatment is performed for 20 seconds in the heat fixing zone at 250 ° C., 0.7% relaxation treatment is performed in the lateral direction. , A biaxially stretched polyethylene naphthalate film having a thickness of 50 μm was obtained by passing through a cooling zone at 135 ° C. and winding with a winder.
Further, the obtained stretched film was further heat-treated at 230 ° C. for 5 minutes using a suspension type relaxation heat treatment apparatus.

[実施例2]
二軸延伸後にて前述の弛緩熱処理装置を用いた熱処理を行わなかった以外は実施例1と同様にして二軸延伸ポリエチレンナフタレートフィルムを得た。
[Example 2]
A biaxially stretched polyethylene naphthalate film was obtained in the same manner as in Example 1 except that the heat treatment using the above-mentioned relaxation heat treatment apparatus was not performed after the biaxial stretching.

[比較例1]
延伸倍率を縦3.7倍及び横3.8倍とし、熱固定ゾーンの温度をそれぞれ224℃及び244℃とし、熱固定ゾーンでの弛緩率を0%とした以外は実施例2と同様にして二軸延伸ポリエチレンナフタレートフィルムを得た。
[Comparative Example 1]
The same as in Example 2 except that the stretching ratio was 3.7 times in the vertical direction and 3.8 times in the horizontal direction, the temperature of the heat fixing zone was 224 ° C. and 244 ° C., respectively, and the relaxation rate in the heat fixing zone was 0%. A biaxially stretched polyethylene naphthalate film was obtained.

(積層体の製造)
得られた実施例1及び2並びに比較例1の二軸延伸ポリエチレンナフタレートフィルムの両面に熱硬化性接着剤シート「アロンマイティAF−700」(東亞合成株式会社製)を100℃で仮接着し、厚さ18μmの銅箔「TQ−M4−VSP」(三井金属鉱業株式会社製)を重ね合わせた後、180℃、1MPaの条件で30分間熱プレスしてフレキシブル銅貼積層板を作製した。
得られた銅貼積層板にドリルで直径0.1mmのビアを形成し、表面を酸洗浄した後、無電解メッキにてビア内面に銅メッキを施して積層体を製造した。
(Manufacturing of laminate)
A thermosetting adhesive sheet "Alonmighty AF-700" (manufactured by Toagosei Co., Ltd.) was temporarily bonded to both sides of the obtained biaxially stretched polyethylene naphthalate films of Examples 1 and 2 and Comparative Example 1 at 100 ° C. , A copper foil "TQ-M4-VSP" (manufactured by Mitsui Metal Mining Co., Ltd.) having a thickness of 18 μm was laminated, and then heat-pressed at 180 ° C. and 1 MPa for 30 minutes to prepare a flexible copper-clad laminate.
A via having a diameter of 0.1 mm was formed on the obtained copper-clad laminate with a drill, the surface was acid-cleaned, and then the inner surface of the via was plated with copper by electroless plating to produce a laminate.

実施例1及び2並びに比較例1の二軸延伸ポリエチレンナフタレートフィルム及び積層体について、各物性の評価結果を表1に示す。 Table 1 shows the evaluation results of each physical property of the biaxially stretched polyethylene naphthalate film and the laminate of Examples 1 and 2 and Comparative Example 1.

表1に示すように、実施例1及び2では、比較例1と比べてサイクル試験の結果が良好であり、ビアの接続信頼性に優れるフレキシブル回路基板を製造可能な二軸延伸ポリエチレンナフタレートフィルムが得られた。
表1に示すように、実施例1及び2では、比較例1と比べて200℃処理後の熱収縮率の数値が小さかった。これにより、実施例1及び2にて得られた二軸延伸ポリエチレンナフタレートフィルムは、熱収縮しにくく、精細又は小型なフレキシブル回路基板の製造に適していることが分かった。
As shown in Table 1, in Examples 1 and 2, a biaxially stretched polyethylene naphthalate film capable of producing a flexible circuit board having better cycle test results and excellent via connection reliability than Comparative Example 1. was gotten.
As shown in Table 1, in Examples 1 and 2, the numerical value of the heat shrinkage rate after the treatment at 200 ° C. was smaller than that in Comparative Example 1. As a result, it was found that the biaxially stretched polyethylene naphthalate films obtained in Examples 1 and 2 are resistant to heat shrinkage and are suitable for producing fine or small flexible circuit boards.

Claims (5)

ポリエチレンナフタレートを主たる構成成分とし、
厚さ方向の屈折率が1.499〜1.512であり、
5.0GHzにおける誘電正接が0.007以下であり5.0GHzにおける比誘電率が3.20以下であり、
6.0GHz以上の高周波信号を伝送するフレキシブル回路基板に用いるための二軸延伸ポリエチレンナフタレートフィルム。
Polyethylene naphthalate is the main constituent,
The refractive index in the thickness direction is 1.499 to 1.512.
The dielectric loss tangent at 5.0 GHz is 0.007 or less, and the relative permittivity at 5.0 GHz is 3.20 or less.
A biaxially stretched polyethylene naphthalate film for use in a flexible circuit board that transmits high-frequency signals of 6.0 GHz or higher.
200℃、10分の熱処理後における熱収縮率が縦及び横ともに1.0%以下である請求項1に記載の二軸延伸ポリエチレンナフタレートフィルム。 The biaxially stretched polyethylene naphthalate film according to claim 1, wherein the heat shrinkage after heat treatment at 200 ° C. for 10 minutes is 1.0% or less in both the vertical and horizontal directions. 請求項1又は請求項2に記載の二軸延伸ポリエチレンナフタレートフィルムからなる樹脂層と、
前記樹脂層の一方の主面上に配置された銅箔からなる銅箔層と、
を備える積層体。
The resin layer made of the biaxially stretched polyethylene naphthalate film according to claim 1 or 2.
A copper foil layer made of copper foil arranged on one main surface of the resin layer,
Laminated body comprising.
請求項1又は請求項2に記載の二軸延伸ポリエチレンナフタレートフィルムの製造方法であって、
未延伸のポリエチレンナフタレートフィルムを準備する工程と、
前記未延伸のポリエチレンナフタレートフィルムを縦延伸倍率及び横延伸倍率がそれぞれ独立に3.5倍以下の条件で二軸延伸する工程と、
二軸延伸された前記ポリエチレンナフタレートフィルムを熱固定ゾーンの最高温度が250℃以上の条件で加熱する工程と、
を含む、二軸延伸ポリエチレンナフタレートフィルムの製造方法。
The method for producing a biaxially stretched polyethylene naphthalate film according to claim 1 or 2.
The process of preparing an unstretched polyethylene naphthalate film and
A step of biaxially stretching the unstretched polyethylene naphthalate film under the condition that the longitudinal stretching ratio and the transverse stretching ratio are each independently 3.5 times or less.
A step of heating the biaxially stretched polyethylene naphthalate film under the condition that the maximum temperature of the heat fixing zone is 250 ° C. or higher, and
A method for producing a biaxially stretched polyethylene naphthalate film, which comprises.
前記加熱する工程後にて、二軸延伸された前記ポリエチレンナフタレートフィルムを、200℃以上の温度で後処理する工程をさらに含む請求項4に記載の二軸延伸ポリエチレンナフタレートフィルムの製造方法。 The method for producing a biaxially stretched polyethylene naphthalate film according to claim 4, further comprising a step of post-treating the biaxially stretched polyethylene naphthalate film at a temperature of 200 ° C. or higher after the heating step.
JP2019158718A 2019-08-30 2019-08-30 Biaxially oriented polyethylene naphthalate film and method for producing biaxially oriented polyethylene naphthalate film Active JP7432135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019158718A JP7432135B2 (en) 2019-08-30 2019-08-30 Biaxially oriented polyethylene naphthalate film and method for producing biaxially oriented polyethylene naphthalate film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019158718A JP7432135B2 (en) 2019-08-30 2019-08-30 Biaxially oriented polyethylene naphthalate film and method for producing biaxially oriented polyethylene naphthalate film

Publications (2)

Publication Number Publication Date
JP2021038281A true JP2021038281A (en) 2021-03-11
JP7432135B2 JP7432135B2 (en) 2024-02-16

Family

ID=74846782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019158718A Active JP7432135B2 (en) 2019-08-30 2019-08-30 Biaxially oriented polyethylene naphthalate film and method for producing biaxially oriented polyethylene naphthalate film

Country Status (1)

Country Link
JP (1) JP7432135B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62135350A (en) * 1985-12-10 1987-06-18 Diafoil Co Ltd Polyester film for membrane switch
JPH10207008A (en) * 1997-01-24 1998-08-07 Fuji Photo Film Co Ltd Support for long-sized photographic film having >=35mm width
JPH11168267A (en) * 1997-12-03 1999-06-22 Teijin Ltd Flexible circuit board film
JPH11333922A (en) * 1998-05-25 1999-12-07 Fuji Photo Film Co Ltd Low thermal shrinkage polyester support and thermal development photographic photosensitive material
JP2001191405A (en) * 2000-01-06 2001-07-17 Teijin Ltd Biaxially oriented film and its manufacturing method
JP2006054239A (en) * 2004-08-10 2006-02-23 Teijin Dupont Films Japan Ltd Biaxially oriented polyester film for flexible printed circuit board
JP2011184579A (en) * 2010-03-09 2011-09-22 Fujifilm Corp Film for capacitor, method for producing film for capacitor and capacitor
JP2013131323A (en) * 2011-12-20 2013-07-04 Teijin Dupont Films Japan Ltd Biaxial oriented film for electric insulation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62135350A (en) * 1985-12-10 1987-06-18 Diafoil Co Ltd Polyester film for membrane switch
JPH10207008A (en) * 1997-01-24 1998-08-07 Fuji Photo Film Co Ltd Support for long-sized photographic film having >=35mm width
JPH11168267A (en) * 1997-12-03 1999-06-22 Teijin Ltd Flexible circuit board film
JPH11333922A (en) * 1998-05-25 1999-12-07 Fuji Photo Film Co Ltd Low thermal shrinkage polyester support and thermal development photographic photosensitive material
JP2001191405A (en) * 2000-01-06 2001-07-17 Teijin Ltd Biaxially oriented film and its manufacturing method
JP2006054239A (en) * 2004-08-10 2006-02-23 Teijin Dupont Films Japan Ltd Biaxially oriented polyester film for flexible printed circuit board
JP2011184579A (en) * 2010-03-09 2011-09-22 Fujifilm Corp Film for capacitor, method for producing film for capacitor and capacitor
JP2013131323A (en) * 2011-12-20 2013-07-04 Teijin Dupont Films Japan Ltd Biaxial oriented film for electric insulation

Also Published As

Publication number Publication date
JP7432135B2 (en) 2024-02-16

Similar Documents

Publication Publication Date Title
TWI616328B (en) Thermotropic liquid crystal polymer film, laminate and circuit board using the same, method of producing laminate, and method of producing thermotropic liquid crystal polymer film
KR102245388B1 (en) Biaxially oriented polyester film
TWI787249B (en) Metal-clad laminate, production method thereof, and circuit board
JP5081910B2 (en) Biaxially oriented film for electrical insulation
JP2017197766A (en) Polyester film
KR20190059216A (en) Compostions of polyester resin and biaxially oriented polyester film comprising thereof
KR101393937B1 (en) Biaxially-oriented polyester film for flexible display
US10699827B2 (en) Film, and electrical insulation sheet, adhesive tape, rotating machine using same
JP2018083415A (en) Laminate film, and production method thereof
TWI761970B (en) Film and laminate for electronic board, and electronic board comprising same
JP7432135B2 (en) Biaxially oriented polyethylene naphthalate film and method for producing biaxially oriented polyethylene naphthalate film
JP2010031138A (en) Biaxially oriented film
JP2009292902A (en) Biaxially oriented polyarylene sulfide film and adhesive material using the same
JP2012224674A (en) Biaxially oriented polyester film
JP2012171329A (en) Biaxially-oriented polyethylene film roll and method for forming the same
JP3947994B2 (en) Polyimide film, its production method and use
JP3948908B2 (en) Polyester film for coverlay film
JP6796671B2 (en) Cables including insulation and manufacturing method of cable insulation
JP2021003808A (en) Biaxially oriented polyester film and method for producing the same
JP2692269B2 (en) Low shrinkage polyester film
WO2024004952A1 (en) Stretched liquid crystal polymer film, laminate, circuit board, and production method for liquid crystal polymer film
JP2692273B2 (en) Biaxially oriented polyester film
TWI804759B (en) Film and laminate for electronic board, and electronic board comprising same
JP2005144839A (en) Polyester film for diffusion plate
JP2023117374A (en) Mold releasing polyester film, method for producing laminate green sheet, method for producing polarizing film, release film, and laminate

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190919

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20191224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230310

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231204

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240118

R151 Written notification of patent or utility model registration

Ref document number: 7432135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151