JP2006053053A - Probe device for eddy current flaw detection - Google Patents

Probe device for eddy current flaw detection Download PDF

Info

Publication number
JP2006053053A
JP2006053053A JP2004235100A JP2004235100A JP2006053053A JP 2006053053 A JP2006053053 A JP 2006053053A JP 2004235100 A JP2004235100 A JP 2004235100A JP 2004235100 A JP2004235100 A JP 2004235100A JP 2006053053 A JP2006053053 A JP 2006053053A
Authority
JP
Japan
Prior art keywords
probe
coils
eddy current
resonance coil
probe coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004235100A
Other languages
Japanese (ja)
Inventor
Hide Imai
秀 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004235100A priority Critical patent/JP2006053053A/en
Publication of JP2006053053A publication Critical patent/JP2006053053A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To realize an inspection of high precision using a resonance coil in an eddy current flaw detector due to a stationary probe. <P>SOLUTION: This probe device for eddy current flaw detection has a pair of probe coils arranged in a mutually parallel state and attaining the same phase of a generated magnetic field, a bridge circuit having a pair of the probe coils as two sides and emitting a detection signal when the impedances of the probe coils do not coincide with each other, a resonance coil arranged across a pair of the probe coils at a position where the magnetic fields generated from the probe coils are set off in a state parallel to the probe coils and not producing a detection signal by the bridge circuit and the resonance circuit connected to the resonance coil. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は渦電流を用いて金属材料内部の傷等を検査するプローブ装置に関する。   The present invention relates to a probe device that inspects a scratch or the like inside a metal material using eddy current.

従来、定置型のプローブ装置は図3に示すような構造を有している。すなわち、互いに平行に配列された磁界を発生させる一対のプローブコイルL1、L2と、前記一対のプローブコイルを2辺とし、これらのプローブコイルのインピーダンスが一致しない場合に検出信号を発生するブリッジ回路10ととからなる。そして、検査においては、両プローブコイルL1、L2の先端間と検査対象となる金属材料面が平行となるように、金属材料面上をプローブで走査していく。これにより、金属材料内に渦電流が発生するが、金属材料に異常がなければ両プローブコイルL1、L2のインピーダンスは同じであるので、ブリッジ回路10から検査信号は出力しない。一方、金属材料に傷や異物が存在する場合には、その部分で発生する渦電流の大きさが変化し、結果として両プローブコイルL1、L2のインピーダンスのバランスが崩れ、ブリッジ回路10から検査信号が生じる。この検査信号を検出することで金属材料の傷などの有無を検査することができる。
このような渦電流を用いた深傷探査装置には、このような定置型プローブのほかに、電線のように細く長い導体に直接コイルを通す装置がある。このタイプの深傷探査装置においては、下記特許文献1に示すように、共振コイルを用いてインピーダンスのバランスが崩れた際に、これを増幅してより精度の高い検査を行うようにすることが行われている。
特許第2882856号公報
Conventionally, a stationary probe device has a structure as shown in FIG. That is, a pair of probe coils L1 and L2 that generate magnetic fields arranged in parallel to each other and the pair of probe coils have two sides, and a bridge circuit 10 that generates a detection signal when the impedances of these probe coils do not match. And consist of In the inspection, the metal material surface is scanned with the probe so that the distance between the tips of the probe coils L1 and L2 is parallel to the metal material surface to be inspected. As a result, an eddy current is generated in the metal material. However, if there is no abnormality in the metal material, the impedances of both probe coils L1 and L2 are the same, so no inspection signal is output from the bridge circuit 10. On the other hand, when there are scratches or foreign matter in the metal material, the magnitude of the eddy current generated in that portion changes, and as a result, the impedance balance of both probe coils L1 and L2 is lost, and the inspection signal from the bridge circuit 10 is lost. Occurs. By detecting this inspection signal, it is possible to inspect the presence or absence of scratches on the metal material.
In addition to such a stationary probe, there is an apparatus that directly passes a coil through a thin and long conductor such as an electric wire as such a deep wound survey apparatus using eddy current. In this type of deep flaw detection apparatus, as shown in Patent Document 1 below, when the impedance balance is lost using a resonance coil, this is amplified to perform a more accurate inspection. Has been done.
Japanese Patent No. 28882856

上記特許文献1に記載されているように、共振コイルを用いて精度の高い検査を行うようにすることは、定置型プローブ装置においても望ましい。しかし、直接コイルを検査対象となる導体に通す場合は、検知をするコイルが一列に並ぶために共振コイルを設置することは容易であるが、定置型プローブの場合は、検知をするコイルが平行に並ぶために共振コイルをそのまま設けることはできない。
そこで、本発明は、定置型プローブによる渦流探傷装置において、共振コイルを用いて精度の高い検査を実現することを課題とする。
As described in Patent Document 1, it is desirable for a stationary probe apparatus to perform a highly accurate inspection using a resonance coil. However, when the coil is directly passed through the conductor to be inspected, it is easy to install the resonance coil because the coils to be detected are arranged in a line, but in the case of a stationary probe, the coils to be detected are parallel. Therefore, the resonance coil cannot be provided as it is.
Therefore, an object of the present invention is to realize a highly accurate inspection using a resonance coil in an eddy current flaw detector using a stationary probe.

上記課題を解決するために、本発明は次のような構成を有する。
請求項1に記載の発明は、互いに平行に配列された、発生する磁界が逆相となる一対のプローブコイルと、
前記一対のプローブコイルを2辺とし、これらのプローブコイルのインピーダンスが一致しない場合に検出信号を発生するブリッジ回路と、前記一対のプローブコイルの間にこれらと平行で、かつ、ブリッジ回路が検出信号を発生しない状態において、前記プローブコイルから生じる磁界が相殺される位置に配列される共振コイルと、
前記共振コイルに接続される共振回路とを有する渦流深傷用プローブ装置である。
In order to solve the above problems, the present invention has the following configuration.
The invention according to claim 1 is a pair of probe coils arranged in parallel to each other and having a magnetic field generated in reverse phase,
The pair of probe coils has two sides, a bridge circuit that generates a detection signal when the impedances of the probe coils do not match, and a bridge circuit between the pair of probe coils that is in parallel with the detection signal. In a state where the magnetic field generated from the probe coil is canceled,
It is a probe device for eddy current deep wound having a resonance circuit connected to the resonance coil.

請求項1に記載の発明は、プローブコイルの磁界を逆相とし、その間に平行に磁界がちょうど相殺される位置に共振コイルを設置することで、検査時に金属に異常がなければ共振コイルを通る磁束は0となる。一方、金属に傷などがあればプローブ間のバランスが崩れる結果、共振コイルに磁束の変化が発生し、これが共振回路により共振コイルが共振すると、プローブコイルのQ値が大きくなり、各プローブコイルのインダクタンスの差がより大きくなる。すなわち、小さな変化によっても大きな出力が得られ、定置型のプローブにおいてより精度の高い検査が可能となる。   According to the first aspect of the present invention, the magnetic field of the probe coil is reversed, and the resonant coil is installed in a position where the magnetic field is just canceled in parallel between them. The magnetic flux becomes zero. On the other hand, if there is a scratch on the metal, the balance between the probes is lost. As a result, a change in magnetic flux occurs in the resonance coil. When the resonance coil resonates by the resonance circuit, the Q value of the probe coil increases, The difference in inductance becomes larger. That is, a large output can be obtained even with a small change, and a more accurate inspection can be performed with a stationary probe.

以下、本発明の形態について、図面を参照しながら説明する。
図1に本発明の形態に係る渦流探傷用プローブ装置Xの回路図を示す。渦流探傷用プローブ装置Xは、プローブコイル11、12、ブリッジ回路10、共振コイル21、共振回路22を含む。
プローブコイル11、12と共振コイル21はE字状のフェライトコア30に設けられる先端が直線上に並ぶ3本の軸31、32、33に巻きつけられて形成される。プローブコイル31、32は両端の軸31、32に巻きつけられ、共振コイル21は、真ん中の軸33に巻きつけられる。プローブコイル11、12は同じものであり、各プローブコイル11、12と共振コイル21との距離は等しい。
ブリッジ回路10は、プローブコイル11、12と抵抗13、抵抗14、交流電源15とともに形成される。この際、プローブコイル11、12に発生する磁束は互いに逆相となるように接続されている。この結果、共振コイル21を通る磁束は図2に示すようにプローブコイル11からの磁束と、プローブコイル12からの磁束が互いに打ち消し合うことになり、共振コイル21を通る磁束は通常では0となる。ブリッジ回路10は両プローブコイル11、12のインピーダンスが等しい場合は、出力端子16からの出力は0であり、両プローブコイルのインピーダンス11、
12のバランスが崩れると出力端子16から出力信号を発生させる。
共振回路22は公知のもので、コンデンサーにより共振コイル21とともに、共振コイル21の磁束の変化により発生する電流に対して共振を起こさせる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a circuit diagram of a probe device X for eddy current flaw detection according to an embodiment of the present invention. The eddy current flaw detection probe apparatus X includes probe coils 11 and 12, a bridge circuit 10, a resonance coil 21, and a resonance circuit 22.
The probe coils 11 and 12 and the resonance coil 21 are formed by winding the tips provided on the E-shaped ferrite core 30 around three shafts 31, 32 and 33 arranged in a straight line. The probe coils 31 and 32 are wound around the shafts 31 and 32 at both ends, and the resonance coil 21 is wound around the middle shaft 33. The probe coils 11 and 12 are the same, and the distances between the probe coils 11 and 12 and the resonance coil 21 are equal.
The bridge circuit 10 is formed with probe coils 11 and 12, a resistor 13, a resistor 14, and an AC power supply 15. At this time, the magnetic fluxes generated in the probe coils 11 and 12 are connected so as to have opposite phases. As a result, the magnetic flux passing through the resonance coil 21 cancels out the magnetic flux from the probe coil 11 and the magnetic flux from the probe coil 12 as shown in FIG. . In the bridge circuit 10, when the impedances of both probe coils 11 and 12 are equal, the output from the output terminal 16 is 0, and the impedances 11 and 12 of both probe coils are
When the balance of 12 is lost, an output signal is generated from the output terminal 16.
The resonance circuit 22 is a known circuit, and causes resonance with respect to a current generated by a change in magnetic flux of the resonance coil 21 together with the resonance coil 21 by a capacitor.

次に、以上のような構成を有する渦流探傷用プローブ装置Xの使用方法および動作について説明する。
まず、検査対象となる金属材料面上を鉄心30の各軸31、32、33の先端を結んだ線が平行となるように走査していく。これにより、金属材料内に渦電流が発生するが、金属材料に異常がなければ両プローブコイル11、12のインピーダンスは同じであるので、ブリッジ回路から検査信号は出力せず、また、共振コイル21を通る磁束も0である。一方、金属材料に傷や異物が存在する場合には、その部分で発生する渦電流の大きさが変化し、結果として両プローブコイルのインピーダンス11、12のバランスが崩れる。これにより、共振コイル21を通る磁束が変化し、誘導電流が流れると共振回路22により共振コイル21が共振する。これにより発生する磁束の変化によりプローブコイル11(12)のQ値が大きくなり、各プローブコイル11、12のインピーダンスの差が大きくなる。すなわち、共振コイル21がない場合に比べてより大きな検出信号がブリッジ回路10の出力端子16から発生することになり、定置型のプローブにおいてより感度の高い検査が可能となる。
Next, the usage method and operation | movement of the probe apparatus X for eddy current test which has the above structures are demonstrated.
First, the metal material surface to be inspected is scanned so that the lines connecting the tips of the axes 31, 32, and 33 of the iron core 30 are parallel. As a result, an eddy current is generated in the metal material, but if there is no abnormality in the metal material, the impedances of the probe coils 11 and 12 are the same, so that no inspection signal is output from the bridge circuit, and the resonance coil 21 The magnetic flux passing through is also zero. On the other hand, when a flaw or a foreign substance exists in the metal material, the magnitude of the eddy current generated in the portion changes, and as a result, the balance between the impedances 11 and 12 of both probe coils is lost. As a result, the magnetic flux passing through the resonance coil 21 changes, and when the induced current flows, the resonance coil 21 resonates. As a result, the Q value of the probe coil 11 (12) increases due to the change in magnetic flux generated, and the difference in impedance between the probe coils 11 and 12 increases. That is, a larger detection signal is generated from the output terminal 16 of the bridge circuit 10 than in the case where the resonance coil 21 is not provided, and a test with higher sensitivity can be performed with a stationary probe.

渦流探傷用プローブ装置の回路図である。It is a circuit diagram of the probe apparatus for eddy current flaw detection. 共振コイルを通る磁束を示す概念図である。It is a conceptual diagram which shows the magnetic flux which passes along a resonance coil. 従来の定置型の渦流探傷用プローブ装置の回路図である。It is a circuit diagram of a conventional stationary eddy current flaw detection probe apparatus.

符号の説明Explanation of symbols

X 渦流探傷用プローブ装置
10 ブリッジ回路
11、12 プローブコイル
21 共振コイル
22 共振回路
X Probe device for eddy current flaw detection 10 Bridge circuit 11, 12 Probe coil 21 Resonant coil 22 Resonant circuit

Claims (1)

互いに平行に配列された、発生する磁界が逆相となる一対のプローブコイルと、
前記一対のプローブコイルを2辺とし、これらのプローブコイルのインピーダンスが一致しない場合に検出信号を発生するブリッジ回路と、
前記一対のプローブコイルの間にこれらと平行で、かつ、ブリッジ回路が検出信号を発生しない状態において、前記プローブコイルから生じる磁界が相殺される位置に配列される共振コイルと、
前記共振コイルに接続される共振回路と
を有する渦流深傷用プローブ装置。
A pair of probe coils arranged in parallel to each other and having opposite phases of the generated magnetic field;
A bridge circuit for generating a detection signal when the pair of probe coils has two sides and impedances of these probe coils do not match;
A resonance coil arranged between the pair of probe coils in parallel with them and in a state in which the magnetic field generated from the probe coil is canceled in a state where the bridge circuit does not generate a detection signal;
A probe device for eddy current damage having a resonance circuit connected to the resonance coil.
JP2004235100A 2004-08-12 2004-08-12 Probe device for eddy current flaw detection Pending JP2006053053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004235100A JP2006053053A (en) 2004-08-12 2004-08-12 Probe device for eddy current flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004235100A JP2006053053A (en) 2004-08-12 2004-08-12 Probe device for eddy current flaw detection

Publications (1)

Publication Number Publication Date
JP2006053053A true JP2006053053A (en) 2006-02-23

Family

ID=36030631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004235100A Pending JP2006053053A (en) 2004-08-12 2004-08-12 Probe device for eddy current flaw detection

Country Status (1)

Country Link
JP (1) JP2006053053A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047521A1 (en) * 2011-09-26 2013-04-04 株式会社東芝 Eddy current flaw detector and eddy current flaw detection method
CN113640374A (en) * 2021-08-05 2021-11-12 四川德源管道科技股份有限公司 Eddy current detection system for nondestructive testing of pipeline

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047521A1 (en) * 2011-09-26 2013-04-04 株式会社東芝 Eddy current flaw detector and eddy current flaw detection method
JPWO2013047521A1 (en) * 2011-09-26 2015-03-26 株式会社東芝 Eddy current flaw detector and eddy current flaw detection method
CN113640374A (en) * 2021-08-05 2021-11-12 四川德源管道科技股份有限公司 Eddy current detection system for nondestructive testing of pipeline

Similar Documents

Publication Publication Date Title
EP1674861A1 (en) Eddy current probe and inspection method comprising a pair of sense coils
JP5156432B2 (en) Eddy current sample measurement method and eddy current sensor
JP4003975B2 (en) Metal inspection method and metal inspection apparatus
KR20150048141A (en) Eddy current flaw detection probe and eddy current flaw inspection apparatus
JP2009186433A (en) Eddy-current type sample measuring method, eddy-current sensor and eddy-current type sample measurement system
US2964699A (en) Probe device for flaw detection
JPH10197493A (en) Eddy-current flow detecting probe
JP3572452B2 (en) Eddy current probe
JP2006053053A (en) Probe device for eddy current flaw detection
JP2014066688A (en) Eddy current flaw detection probe, and eddy current flaw detection device
JP2016057225A (en) Eddy current flaw detection sensor device
JP2005031014A (en) Magnetic sensor
JPH0815229A (en) High resolution eddy current flaw detector
JP2010266277A (en) Eddy-current flaw detection system
JP5721475B2 (en) Interpolation probe for eddy current testing of ferromagnetic steel tubes
JP5638544B2 (en) Eddy current testing probe
JP5281941B2 (en) Shield member abnormality detection method and shield member abnormality detection device
JP2016133459A (en) Eddy current flaw detection probe, and eddy current flaw detection device
JP3223991U (en) Nondestructive inspection equipment
JP2011053160A (en) Magnetic detection sensor
JP6095063B2 (en) Eddy current testing probe
WO2022185998A1 (en) Detection device
RU2672978C1 (en) Method for detecting defects in a long-dimensional ferromagnetic object
JPH0727868A (en) Device for detecting position of buried metallic object
JP2017053635A (en) Flaw detection probe and flaw detection method