JP5638544B2 - Eddy current testing probe - Google Patents

Eddy current testing probe Download PDF

Info

Publication number
JP5638544B2
JP5638544B2 JP2012021462A JP2012021462A JP5638544B2 JP 5638544 B2 JP5638544 B2 JP 5638544B2 JP 2012021462 A JP2012021462 A JP 2012021462A JP 2012021462 A JP2012021462 A JP 2012021462A JP 5638544 B2 JP5638544 B2 JP 5638544B2
Authority
JP
Japan
Prior art keywords
gap
eddy current
magnetic material
magnetic field
detection coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012021462A
Other languages
Japanese (ja)
Other versions
JP2013160579A (en
Inventor
亮 西水
亮 西水
石原 篤
篤 石原
純 松本
純 松本
貴行 河中
貴行 河中
遠藤 久
久 遠藤
将史 成重
将史 成重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2012021462A priority Critical patent/JP5638544B2/en
Publication of JP2013160579A publication Critical patent/JP2013160579A/en
Application granted granted Critical
Publication of JP5638544B2 publication Critical patent/JP5638544B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

本発明は、渦電流探傷プローブに関する。   The present invention relates to an eddy current flaw detection probe.

渦電流探傷の原理は、導電性の被検査体を対象としてコイルにより発生する交流磁場により、被検査体に渦電流を誘起させ、欠陥による渦電流の乱れに起因するコイルのインピーダンス変化から欠陥の有無を評価する手法である。   The principle of eddy current flaw detection is that an eddy current is induced in a test object by an AC magnetic field generated by a coil for a conductive test object, and the defect impedance is changed from the change in the impedance of the coil due to the eddy current disturbance due to the defect. This is a method for evaluating the presence or absence.

一般的に、上置渦電流探傷プローブは交流磁場を発生させるコイル(励磁コイル)の軸方向が被検査体面と直交するように配置することで被検査体面に効率よく磁場を浸透させることができる。被検査体面には、電磁誘導の法則に従い励磁コイルから発生する交流磁場を打消すように電流(渦電流)が発生する。欠陥があると、この渦電流の流路が変化して、渦電流により被検体面の磁場分布に変化を生じる。この変化を検出コイルで捉えることで欠陥を検出する。   Generally, an upper eddy current flaw detection probe can be efficiently penetrated into the surface of an object to be inspected by arranging the coil (excitation coil) for generating an alternating magnetic field so that the axial direction thereof is orthogonal to the surface of the object to be inspected. . A current (eddy current) is generated on the surface of the inspection object so as to cancel the alternating magnetic field generated from the exciting coil in accordance with the law of electromagnetic induction. If there is a defect, the flow path of this eddy current changes, and the eddy current changes the magnetic field distribution on the subject surface. A defect is detected by capturing this change with a detection coil.

渦電流探傷で微小欠陥の検出を目的とする場合、単純にコイル単体により磁性体を励磁すると、磁場は広く空間に拡散する分布を示すため渦電流も広く発生する。このため、空間的な分解能が低くなることが課題となる。この課題を克服するため引用文献1に示すプローブは、励磁コイルを有する励磁部を、ループ状の磁気回路を形成する磁性材コアにより、被検査体に沿う交流磁場を発生させる励磁コイルを有するものである。磁性材コアのギャップを小さくすることで渦電流の発生領域を狭くすることができる。   When eddy current testing is intended to detect minute defects, if a magnetic material is simply excited by a single coil, the magnetic field shows a distribution that spreads widely in space, and eddy currents are also widely generated. For this reason, it becomes a subject that spatial resolution becomes low. In order to overcome this problem, the probe shown in Patent Document 1 has an excitation coil having an excitation coil and an excitation coil that generates an alternating magnetic field along the object to be inspected by a magnetic material core that forms a loop-shaped magnetic circuit. It is. By reducing the gap of the magnetic material core, the eddy current generation region can be narrowed.

再公表特許(WO2003/091655)Republished patent (WO2003 / 091655)

渦電流探傷で微小欠陥の検出を目的とする場合、空間的な分解能以外に、ノイズ要因を抑えることが重要となる。欠陥以外の信号要因として、磁性体と被検査体までの距離(リフトオフ)に依存する信号がある。リフトオフ信号を抑制するために、引用文献1のプローブは、検出コイルを2つ利用して差動に接続することで相殺する方法を利用している。この場合、リフトオフ信号の低減は可能となるものの、現実的には各検出コイルの寸法、電気的特性(抵抗、インダクタンス、キャパシタンス)の誤差によるアンバランス分が相殺できずに信号として発生する。また、渦電流の発生領域を狭くするために、励磁部の磁性材コアのギャップを小さくすると、励磁磁場が試験体に進入せず直接コアに流れることから、渦電流の発生量が低下、結果的に欠陥の検出感度低下を招く。   In the case of detecting minute defects by eddy current flaw detection, it is important to suppress noise factors in addition to spatial resolution. As a signal factor other than the defect, there is a signal that depends on a distance (lift-off) between the magnetic body and the inspection object. In order to suppress the lift-off signal, the probe of the cited document 1 uses a method of canceling by connecting two detection coils in a differential manner. In this case, although it is possible to reduce the lift-off signal, in reality, an unbalance due to an error in the dimensions and electrical characteristics (resistance, inductance, capacitance) of each detection coil cannot be offset and is generated as a signal. In addition, if the gap of the magnetic material core in the excitation part is reduced to narrow the eddy current generation region, the excitation magnetic field flows directly into the core without entering the specimen, resulting in a decrease in the amount of eddy current generation. In particular, the detection sensitivity of defects is reduced.

本発明の目的は、リフトオフ信号の発生を抑え、かつ渦電流の発生領域を狭くすることで、微小欠陥の検出性に優れたプローブを提供することにある。   An object of the present invention is to provide a probe having excellent detectability of micro defects by suppressing generation of a lift-off signal and narrowing an eddy current generation region.

本発明の渦電流探傷プローブにおける励磁器は、被検査体の検査面に配置された一箇所のギャップを挟むように配置された磁性材板と、前記ギャップ部に配置した1つの検出コイル及び前記検出コイルの直上に配置した導電性を有する板で構成し、当該励磁器は、前記磁性材板を被検査体に対向する面に平行に、一定のギャップを設けた配置であり、前記導電性を有する板は最も広い平面部が前記被検査体の検査面に直交し、かつ前記ギャップの幅方向に直交する方向に配置されるとともに、前記検出コイルに隣り合うように配置されることを特徴とする。 The exciter in the eddy current flaw detection probe according to the present invention includes a magnetic material plate arranged so as to sandwich one gap arranged on the inspection surface of the object to be inspected, one detection coil arranged in the gap portion, and the above-mentioned It is composed of a conductive plate arranged immediately above the detection coil , and the exciter is an arrangement in which a certain gap is provided in parallel with the surface of the magnetic material plate facing the object to be inspected. The widest flat portion is disposed in a direction orthogonal to the inspection surface of the object to be inspected and orthogonal to the width direction of the gap, and is disposed adjacent to the detection coil. And

本発明によれば、リフトオフ信号の発生を抑え、かつ渦電流の発生領域を狭くすることで、微小欠陥の検出性に優れたプローブを提供することができる。   According to the present invention, it is possible to provide a probe having excellent detectability of a micro defect by suppressing the generation of a lift-off signal and narrowing the eddy current generation region.

実施例1を示す渦電流探傷プローブ構造の説明図である。It is explanatory drawing of the eddy current test probe structure which shows Example 1. FIG. 実施例1の非磁性材で導電性を有する板がないときの磁場分布を示す説明図である。It is explanatory drawing which shows magnetic field distribution when there is no board | plate which has the electroconductivity with the nonmagnetic material of Example 1. FIG. 実施例1の磁場分布を示す説明図である。FIG. 4 is an explanatory diagram showing a magnetic field distribution of Example 1. 実施例1の検出コイル配置を示す説明図である。It is explanatory drawing which shows the detection coil arrangement | positioning of Example 1. FIG. 実施例1の検出コイル配置を示す説明図である。It is explanatory drawing which shows the detection coil arrangement | positioning of Example 1. FIG. 実施例2を示す渦電流探傷プローブ構造の説明図である。It is explanatory drawing of the eddy current test probe structure which shows Example 2. FIG. 実施例2の磁場分布を示す説明図である。6 is an explanatory diagram illustrating a magnetic field distribution of Example 2. FIG. 実施例3を示す渦電流探傷プローブ構造の説明図である。It is explanatory drawing of the eddy current test probe structure which shows Example 3. FIG.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

図1に実施例1を示す。本プローブの励磁器は、一箇所のギャップを設けた磁性材に励磁コイルを巻き回したものである。具体的には、コの字型の磁性材2に励磁コイル1を巻き回した部材と、当該コの字型の磁性材2の脚部に一定のギャップを設けて配置した磁性材板3と4である。この磁性材板3と4は、被検査体10に対向する面に平行に配置されている。なお、磁性材2、磁性材板3,4は、一部にギャップを有する一体構造の磁性材でも良い。   Example 1 is shown in FIG. The exciter of this probe is obtained by winding an exciting coil around a magnetic material having a gap at one location. Specifically, a member in which an exciting coil 1 is wound around a U-shaped magnetic material 2, and a magnetic material plate 3 arranged with a certain gap at a leg portion of the U-shaped magnetic material 2, 4. The magnetic material plates 3 and 4 are arranged in parallel to the surface facing the device under test 10. The magnetic material 2 and the magnetic material plates 3 and 4 may be an integral structure magnetic material having a gap in part.

検出コイル5は当該ギャップ部に1つ配置する。検出コイルの軸方向は、当該ギャップを渡る磁場に対して、直交する方向に配置する。具体的には、図5に示す検出コイルの軸方向は被検査体10の面と直交する方向であり、図4に示す検出コイルの軸方向は被検査体10の面と平行方向であってギャップの幅方向に直交する方向の2種である。   One detection coil 5 is arranged in the gap portion. The axial direction of the detection coil is arranged in a direction orthogonal to the magnetic field across the gap. Specifically, the axial direction of the detection coil shown in FIG. 5 is a direction orthogonal to the surface of the device under test 10, and the axial direction of the detection coil shown in FIG. 4 is parallel to the surface of the device under test 10. There are two types of directions perpendicular to the width direction of the gap.

そして、検出コイルに隣り合い、非磁性材で導電性を有する板6を配置する。当該非磁性材で導電性を有する板は、検出コイルの直上に立てかけるようにして配置されている。そして、当該板6は、コの字型の磁性材2の脚部と平行に配置されている。(当該板6の最も広い平面部は、被検査体10の検査面に直交し、かつ、ギャップの幅方向に直交する方向に配置する。)非磁性材で導電性を有する板6としては、銅、アルミが望ましい。   And the board 6 which adjoins a detection coil and has electroconductivity with a nonmagnetic material is arrange | positioned. The conductive plate made of the non-magnetic material is disposed so as to stand on the detection coil. The plate 6 is arranged in parallel with the leg portions of the U-shaped magnetic material 2. (The widest plane portion of the plate 6 is arranged in a direction orthogonal to the inspection surface of the object to be inspected 10 and orthogonal to the width direction of the gap.) As the plate 6 having conductivity with a nonmagnetic material, Copper and aluminum are desirable.

この構成により、励磁器を交流で励磁すると、言い換えれば励磁コイル1に交流電流を通電すると磁場が発生する。ギャップ部分を渡る磁場の大半は被検査体10と平行に発生する。図2は図1のXZ面を、当該ギャップ部分に対して示す。(図2は検出コイルを図示せず。)励磁コイル1により発生した磁場は、磁性材板3と4で形成したギャップを介して流れる。ここで、非磁性材で導電性を有する板6がない場合は、磁性材板3,4は広域の面が被検査体10の検査面と平行に配置されているので、ギャップを渡る磁場11の大半は被検査体10の面と平行に発生する。被検査体10には、磁場11の多少のふくらみによって、渦電流が還流する。この渦電流は図中の12,13,14で示す。   With this configuration, when the exciter is excited with an alternating current, in other words, when an alternating current is passed through the exciting coil 1, a magnetic field is generated. Most of the magnetic field across the gap portion is generated in parallel with the inspection object 10. FIG. 2 shows the XZ plane of FIG. 1 with respect to the gap portion. (FIG. 2 does not show a detection coil.) The magnetic field generated by the exciting coil 1 flows through a gap formed by the magnetic material plates 3 and 4. Here, when there is no electrically conductive plate 6 made of a non-magnetic material, the magnetic material plates 3 and 4 are arranged in parallel with the inspection surface of the object to be inspected 10, so that the magnetic field 11 across the gap. Most of this occurs in parallel with the surface of the device under test 10. An eddy current circulates in the inspection object 10 due to some bulge of the magnetic field 11. This eddy current is indicated by 12, 13, and 14 in the figure.

これに対して、非磁性材で導電性を有する板6を、検出コイルに隣り合い、板の最も広い平面部が、被検査体10の検査面に直交、ギャップの幅方向に直交する方向に配置した場合の磁場の模式図を図3に示す。ギャップを渡る磁場15は、非磁性材で導電性を有する板6に作用して、板6に渦電流が流れる。この作用により、磁場15は非磁性材で導電性を有する板6と逆側である被検査体10側に押出されるように分布する。その結果、非磁性材で導電性を有する板6がない場合と比較して、被検査体10に作用する磁場は大きくなることから、被検査体10に発生する渦電流も大きくなる。この渦電流は図中の16,17,18で示す。ギャップ幅に対応して発生する渦電流値が大きくなるので、狭い領域に大きな渦電流を発生させることができ、微小な欠陥に対しても検出感度が向上する。   On the other hand, the conductive plate 6 made of a non-magnetic material is adjacent to the detection coil, and the widest flat portion of the plate is orthogonal to the inspection surface of the object to be inspected and orthogonal to the width direction of the gap. FIG. 3 shows a schematic diagram of the magnetic field when arranged. The magnetic field 15 across the gap acts on the non-magnetic material and the conductive plate 6, and an eddy current flows through the plate 6. By this action, the magnetic field 15 is distributed so as to be pushed toward the object 10 to be inspected, which is the opposite side to the conductive plate 6 made of a nonmagnetic material. As a result, the magnetic field acting on the object to be inspected 10 increases as compared with the case where there is no conductive plate 6 made of a nonmagnetic material, and the eddy current generated in the object to be inspected 10 also increases. This eddy current is indicated by 16, 17 and 18 in the figure. Since the value of the eddy current generated corresponding to the gap width increases, a large eddy current can be generated in a narrow region, and the detection sensitivity is improved even for a minute defect.

次に、図4、図5を用いて1つの検出コイルでリフトオフ信号を抑える原理に関して説明する。図4は検出コイルの軸が被検査体10の検査面と平行であってギャップの幅方向に直交する方向と一致する場合である。(非磁性材で導電性を有する板6は図示していない)検出コイル20は、軸方向の磁場成分により電圧が誘起され測定器で計測される。(測定器は図示せず)上記配置とした検出コイル20は、図のY軸方向の磁場を検出する。言い換えれば、被検査体10の検査面と平行であって、磁性材板3と4のギャップ方向と直交する磁場成分を検出する。検出コイル20の周りの磁場は図4下図に示すXY平面のように、磁場15のZ軸方向の磁場成分は存在しない。プローブと被検査体10の距離(リフトオフ)が変化した場合、磁場15の大きさが変化するのみでZ軸方向の磁場成分の発生はない。このため、リフトオフが変化しても検出コイル20に誘起電圧が発生することはない。   Next, the principle of suppressing the lift-off signal with one detection coil will be described with reference to FIGS. FIG. 4 shows the case where the axis of the detection coil is parallel to the inspection surface of the device under test 10 and coincides with the direction perpendicular to the width direction of the gap. (The non-magnetic material and the conductive plate 6 are not shown in the figure) The detection coil 20 is voltage-induced by a magnetic field component in the axial direction and measured by a measuring instrument. (A measuring instrument is not shown) The detection coil 20 arranged as described above detects a magnetic field in the Y-axis direction in the figure. In other words, a magnetic field component that is parallel to the inspection surface of the object to be inspected 10 and orthogonal to the gap direction between the magnetic material plates 3 and 4 is detected. The magnetic field around the detection coil 20 has no magnetic field component in the Z-axis direction of the magnetic field 15 as in the XY plane shown in the lower diagram of FIG. When the distance between the probe and the object to be inspected 10 (lift-off) changes, only the magnitude of the magnetic field 15 changes, and no magnetic field component is generated in the Z-axis direction. For this reason, no induced voltage is generated in the detection coil 20 even if the lift-off changes.

また、図5は検出コイルの軸が被検査体10の検査面と直交する場合である。検出コイル21は、軸方向の磁場成分により電圧が誘起され測定器で計測される。(測定器は図示せず)上記配置とした検出コイル21は、図のZ軸方向の磁場を検出する。言い換えれば、被検査体10の検査面と直交する磁場成分を検出する。図5下図に示すXZ平面のように、磁場15のZ軸方向の磁場成分は、磁性材板3と4で形成したギャップ幅の中心(ギャップ幅の1/2の距離を通過するYZ面)に対して対称となる。これより、磁性材板3と4で形成したギャップ幅の中心に検出コイル21を配置することで、検出コイル21と鎖交する磁場15のZ軸成分の総和はゼロとなる。つまり、検出コイル21の誘起電圧は発生しない。プローブと被検査体10の距離(リフトオフ)が変化した場合、磁場15の大きさが変化するのみで、同様に磁性材板3と4で形成したギャップ幅の中心に配置した検出コイル21と鎖交する磁場15のZ軸成分の総和はゼロである。つまり、リフトオフが変化しても検出コイル20に誘起電圧が発生することはない。これより、1つの検出コイルでリフトオフ信号を抑えることが可能となり、検出コイルを2つ利用して差動に接続する場合の課題である各検出コイルの寸法、電気的特性(抵抗、インダクタンス、キャパシタンス)の誤差により発生するリフトオフ信号を抑制できる。   FIG. 5 shows a case where the axis of the detection coil is orthogonal to the inspection surface of the inspection object 10. A voltage is induced in the detection coil 21 by the magnetic field component in the axial direction and is measured by a measuring instrument. (A measuring instrument is not shown) The detection coil 21 arranged as described above detects a magnetic field in the Z-axis direction in the figure. In other words, a magnetic field component orthogonal to the inspection surface of the inspection object 10 is detected. As in the XZ plane shown in the lower diagram of FIG. 5, the magnetic field component in the Z-axis direction of the magnetic field 15 is the center of the gap width formed by the magnetic material plates 3 and 4 (YZ plane passing through half the gap width). Is symmetric. Thus, by arranging the detection coil 21 at the center of the gap width formed by the magnetic material plates 3 and 4, the total sum of the Z-axis components of the magnetic field 15 interlinking with the detection coil 21 becomes zero. That is, the induced voltage of the detection coil 21 is not generated. When the distance (lift-off) between the probe and the object to be inspected 10 changes, only the magnitude of the magnetic field 15 changes. Similarly, the detection coil 21 and the chain arranged at the center of the gap width formed by the magnetic material plates 3 and 4 are connected. The sum of the Z-axis components of the magnetic field 15 that intersects is zero. That is, no induced voltage is generated in the detection coil 20 even if the lift-off changes. As a result, it is possible to suppress the lift-off signal with one detection coil, and the dimensions and electrical characteristics (resistance, inductance, capacitance) of each detection coil, which are problems when differentially connecting two detection coils, are used. ), The lift-off signal generated by the error can be suppressed.

このように、本実施例によれば、励磁部の磁性材コアのギャップを小さくすることで生じる感度低下に対して、非磁性材で導電性を有する板を利用してギャップ間の磁場方向を被検査体の方向に向けることで検出感度を向上させているまた、2つの検出コイルを作動に結線して利用する際の各コイルの寸法、電気的特性(抵抗、インダクタンス、キャパシタンス)の誤差により発生するリフトオフ信号を、検出コイルを1つとし上記ギャップ間に適切に配置することで抑制することが可能である。   As described above, according to the present embodiment, the magnetic field direction between the gaps can be changed by using a non-magnetic material that is conductive with respect to sensitivity reduction caused by reducing the gap of the magnetic material core of the excitation unit. The detection sensitivity is improved by directing it toward the object to be inspected. Also, due to errors in the dimensions and electrical characteristics (resistance, inductance, capacitance) of each coil when two detection coils are connected in operation. The generated lift-off signal can be suppressed by using one detection coil and appropriately arranging it between the gaps.

図6に実施例2を示す。これは実施例1に、ギャップ部分以外で発生する磁場を非磁性材で導電性を有する金属22,23でシールドした構造である。非磁性材で導電性を有する金属22,23は、被検査体10の検査面に対して平行に配置され、一定のギャップが形成された磁性材板3,4を覆うように、被検査体10側の面及び磁性材2の脚部の外面に配置する。また、非磁性材で導電性を有する金属22,23は、一定のギャップを設けて配置した磁性材板3,4の被検査体10側の面のみに配置した場合も同様の効果が得られる。   Example 2 is shown in FIG. This is a structure in which the magnetic field generated in the portion other than the gap portion is shielded by the non-magnetic material and the conductive metals 22 and 23 in the first embodiment. The non-magnetic conductive materials 22 and 23 are arranged in parallel to the inspection surface of the inspection object 10 so as to cover the magnetic material plates 3 and 4 in which a certain gap is formed. It arrange | positions on the outer surface of the surface of 10 side, and the leg part of the magnetic material 2. FIG. Further, the same effect can be obtained when the non-magnetic materials 22 and 23 having conductivity are arranged only on the surface of the magnetic material plates 3 and 4 arranged with a certain gap on the object 10 side. .

図7に示すように、磁場23のうち磁性材板3,4のギャップ間以外から被検査体10に漏れる磁場は、非磁性材で導電性を有する金属22,23の作用により磁性材板3,4へ封じ込められる。その結果、磁場23は、実施例1よりも狭い分布でギャップ部分のみに膨らむ分布を示す。この磁場23により被検査体10に生成する渦電流は、ギャップ部分に生じる紙面の垂直方向で裏から表に向かう渦電流25、紙面の垂直方向で表から裏に向かう渦電流24,26が還流するように生成される。   As shown in FIG. 7, the magnetic material plate 3 leaks to the device under test 10 from other than the gap between the magnetic material plates 3 and 4 in the magnetic field 23 due to the action of the non-magnetic material and the conductive metals 22 and 23. , 4 is contained. As a result, the magnetic field 23 shows a distribution that is narrower than that of the first embodiment and expands only in the gap portion. The eddy current generated in the test object 10 by the magnetic field 23 is circulated by the eddy current 25 that is generated in the gap portion from the back to the front in the vertical direction of the paper, and the eddy currents 24 and 26 that are directed from the front to the back in the vertical direction of the paper. To be generated.

図8に実施例3を示す。これは実施例1及び2で説明した励磁器の構造を変えたものである。2つの励磁コイル32,33に逆向きの電流を通電することで、磁性材板3,4のギャップには図3と同様の方向に磁場が発生する。図示していないが、非磁性材で導電性を有する金属を、一定のギャップを設けて配置した磁性材板3,4の被検査体10側の面のみに配置した場合も同様の効果が得られる。   FIG. 8 shows a third embodiment. This is a modification of the structure of the exciter described in the first and second embodiments. By applying currents in opposite directions to the two exciting coils 32 and 33, a magnetic field is generated in the gap between the magnetic material plates 3 and 4 in the same direction as in FIG. Although not shown in the drawing, the same effect can be obtained when a nonmagnetic material and a conductive metal are disposed only on the surface of the magnetic material plates 3 and 4 disposed with a certain gap on the side of the object to be inspected 10. It is done.

ここで、磁性材の具体的な材料例としては、磁性材であるフェライトコア、又はパーマロイ箔帯、鉄系アモルファス箔帯、電磁鋼板等の高透磁率材の積層材の利用が望ましい。また、厚みは(1)式で示す渦電流の表皮深さδで、利用する試験周波数による表皮深さが磁性材の厚みより大きくなるように選定することが望ましい。厚みは(1)式で示す渦電流の表皮深さで、利用する試験周波数による表皮深さがシールド材の厚みより小さくなるように選定することが望ましい。また、ギャップに配置する磁場検出素子としては、検出コイル以外に、ホール素子、GMR素子を利用しても同様の効果が得られる。   Here, as a specific material example of the magnetic material, it is desirable to use a ferrite core, which is a magnetic material, or a laminated material of a high permeability material such as a permalloy foil strip, an iron-based amorphous foil strip, or an electromagnetic steel plate. Further, it is desirable to select the thickness so that the skin depth δ of the eddy current expressed by the equation (1) is larger than the thickness of the magnetic material by the test frequency to be used. The thickness is the eddy current skin depth expressed by equation (1), and it is desirable that the skin depth at the test frequency to be used be smaller than the shield material thickness. In addition to the detection coil, the same effect can be obtained by using a Hall element or a GMR element as the magnetic field detection element disposed in the gap.

以上説明したように本発明によれば、ギャップを設けた磁性材を配置して磁場を印加することにより、ギャップ間を渡る磁束を利用して、被検体に渦電流を生成させる。その結果、渦電流を小さな領域に発生させることができるので、欠陥検出領域を小さな領域とすることができるので分解能が高くすることができる。   As described above, according to the present invention, a magnetic material provided with a gap is arranged and a magnetic field is applied to generate an eddy current in the subject using a magnetic flux across the gap. As a result, an eddy current can be generated in a small area, and the defect detection area can be made a small area, so that the resolution can be increased.

1 励磁コイル
2 磁性材
3,4 磁性材板
5 検出コイル
10 被検査体
DESCRIPTION OF SYMBOLS 1 Excitation coil 2 Magnetic material 3, 4 Magnetic material plate 5 Detection coil 10 Inspected object

Claims (3)

励磁コイルと磁性材を励磁器として利用する渦電流探傷プローブにおいて、
前記励磁器は、被検査体の検査面に配置された一箇所のギャップを挟むように配置された磁性材板と、前記ギャップ部に配置した1つの検出コイル及び前記検出コイルの直上に配置した導電性を有する板で構成し
当該励磁器は、前記磁性材板を被検査体に対向する面に平行に、一定のギャップを設けた配置であり、前記導電性を有する板は最も広い平面部が前記被検査体の検査面に直交し、かつ前記ギャップの幅方向に直交する方向に配置されるとともに、前記検出コイルに隣り合うように配置されることを特徴とする渦電流探傷プローブ。
In an eddy current flaw detection probe that uses an excitation coil and magnetic material as an exciter,
The exciter is disposed on a magnetic material plate disposed so as to sandwich one gap disposed on the inspection surface of the object to be inspected, one detection coil disposed in the gap portion, and immediately above the detection coil. Consists of conductive plates ,
The exciter has an arrangement in which the magnetic material plate is provided with a certain gap in parallel to a surface facing the object to be inspected, and the conductive plate has the widest flat part on the inspection surface of the object to be inspected. The eddy current flaw detection probe is arranged in a direction perpendicular to the gap and perpendicular to the width direction of the gap and adjacent to the detection coil.
請求項において、
前記ギャップに配置された検出コイルの軸は、被検査体の検査面と直交する、または被検査体の検査面と平行であって前記ギャップの幅方向に直交することを特徴とする渦電流探傷プローブ。
In claim 1 ,
The detection coil arranged in the gap is perpendicular to the inspection surface of the inspection object or parallel to the inspection surface of the inspection object and orthogonal to the width direction of the gap. probe.
請求項1又は2において、
前記導電性を有する板とは別の導電性を有する板を、前記ギャップを設けた磁性材板を覆うように、前記被検査体側の面に配置したことを特徴とする渦電流探傷プローブ。
In claim 1 or 2 ,
An eddy current flaw detection probe characterized in that a plate having conductivity different from the plate having conductivity is arranged on the surface on the inspected object side so as to cover the magnetic material plate provided with the gap.
JP2012021462A 2012-02-03 2012-02-03 Eddy current testing probe Active JP5638544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012021462A JP5638544B2 (en) 2012-02-03 2012-02-03 Eddy current testing probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012021462A JP5638544B2 (en) 2012-02-03 2012-02-03 Eddy current testing probe

Publications (2)

Publication Number Publication Date
JP2013160579A JP2013160579A (en) 2013-08-19
JP5638544B2 true JP5638544B2 (en) 2014-12-10

Family

ID=49172954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012021462A Active JP5638544B2 (en) 2012-02-03 2012-02-03 Eddy current testing probe

Country Status (1)

Country Link
JP (1) JP5638544B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6095063B2 (en) * 2013-07-31 2017-03-15 日立Geニュークリア・エナジー株式会社 Eddy current testing probe
CN108896946B (en) * 2018-07-04 2020-05-19 中国原子能科学研究院 Calibration method for calibrating area of induction coil probe
JP7475029B2 (en) 2020-04-15 2024-04-26 株式会社テイエルブイ probe

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312786A (en) * 1992-05-11 1993-11-22 Kawasaki Steel Corp Magnetic flaw-detecting device
JPH10293122A (en) * 1997-04-17 1998-11-04 Nkk Corp Equipment and method for detecting flaw of metallic body
AU2003231400A1 (en) * 2002-04-26 2003-11-10 Azuma Systems Co., Ltd Metal inspecting method and metal inspector
JP2005043154A (en) * 2003-07-25 2005-02-17 Hitachi Ltd Eddy current flaw detecting probe
JP5173680B2 (en) * 2008-08-28 2013-04-03 株式会社日立製作所 Eddy current flaw detection method and eddy current flaw detection apparatus
JP2011117890A (en) * 2009-12-07 2011-06-16 Hitachi Ltd Eddy current flaw detection probe

Also Published As

Publication number Publication date
JP2013160579A (en) 2013-08-19

Similar Documents

Publication Publication Date Title
Tsukada et al. Small eddy current testing sensor probe using a tunneling magnetoresistance sensor to detect cracks in steel structures
JP5201495B2 (en) Magnetic flaw detection method and magnetic flaw detection apparatus
KR20150052865A (en) Differential sensor, inspection system and method for the detection of anomalies in electrically conductive materials
EP1674861A1 (en) Eddy current probe and inspection method comprising a pair of sense coils
JP6083613B2 (en) Magnetic nondestructive inspection equipment
US20070200563A1 (en) Device For Detecting Defects Which Are Deep And Close To The Surface In Electrically Conductive Materials In A Nondestructive Manner
JP2009210406A (en) Current sensor and watthour meter
JP2013205024A (en) Detector for non-destructive examination employing alternating field
Lee et al. Estimation of deep defect in ferromagnetic material by low frequency eddy current method
JP4003975B2 (en) Metal inspection method and metal inspection apparatus
JP5638544B2 (en) Eddy current testing probe
Tsukada et al. Low-frequency eddy current imaging using MR sensor detecting tangential magnetic field components for nondestructive evaluation
CN110431428A (en) Current transducer with magnetic field gradient sensor
JP5940401B2 (en) Eddy current flaw detector
KR20120052394A (en) Method for inspecting an austenitic stainless steel weld
Wang et al. AC-MFL testing of orthogonal cracks detection of square billet based on the flexible-printed parallel cable magnetizer
JP2009103534A (en) Magnetic measurement apparatus
JP2014010118A (en) Magnetic sensor device
JP2013170910A (en) Carburization depth measuring method and device
JP2014066688A (en) Eddy current flaw detection probe, and eddy current flaw detection device
JP5767886B2 (en) Surface current probe
JP2008145137A (en) Eddy current flaw detection probe, flaw detector, and flaw detection method
JP6095063B2 (en) Eddy current testing probe
RU103926U1 (en) ELECTROMAGNETIC CONVERTER TO DEFECTOSCOPE
US20240142404A1 (en) Detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131226

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140123

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140225

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140730

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141022

R150 Certificate of patent or registration of utility model

Ref document number: 5638544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250