JP2006049971A - Method of manufacturing crystal resonator - Google Patents

Method of manufacturing crystal resonator Download PDF

Info

Publication number
JP2006049971A
JP2006049971A JP2004224046A JP2004224046A JP2006049971A JP 2006049971 A JP2006049971 A JP 2006049971A JP 2004224046 A JP2004224046 A JP 2004224046A JP 2004224046 A JP2004224046 A JP 2004224046A JP 2006049971 A JP2006049971 A JP 2006049971A
Authority
JP
Japan
Prior art keywords
etchant
crystal resonator
manufacturing
vibration
vibrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004224046A
Other languages
Japanese (ja)
Inventor
Tomoaki Ogura
友昭 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2004224046A priority Critical patent/JP2006049971A/en
Publication of JP2006049971A publication Critical patent/JP2006049971A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an AT-cut crystal resonator which performs thickness-shear vibration, in which a vibrating section of a crystal thin blank plate and a reinforcing section of a thick crystal blank plate for surrounding the periphery thereof are integrated. <P>SOLUTION: In the method of manufacturing the AT-cut crystal resonator which performs thickness-shear vibration, in which a vibrating section of a crystal thin blank plate and a reinforcing section of a thick crystal blank plate for surrounding the periphery thereof are integrated, the method has a process of patterning for forming a vibrating surface, processes of etching for outer shape, and forming the vibrating surface, a process of peeling a protective film, and a process of forming an etchant stopping segment section. The width of the etchant stopping segment section is 200 μm-300 μm, and the etchant stopping segment section is formed of a water-repellent resist. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は水晶デバイスに属し、主として通信分野の伝送系装置に使用される水晶発振器に用いられるATカットの厚み滑り振動をする水晶振動子の製造方法に関する。      The present invention relates to a method of manufacturing a crystal resonator that belongs to a crystal device and performs AT-cut thickness-slip vibration used in a crystal oscillator mainly used in a transmission system apparatus in the communication field.

従来の水晶素板薄板の振動部とその周囲を囲う水晶素板厚板の補強部とが一体と成った形状をしたATカットの厚み滑り振動をする水晶振動子においては、不要なスプリアス振動の発生の回避の為に電極面の大きさに対して振動面の大きさを出来得る限り大きくとる形状とすることが一般的であった。      In the case of an AT-cut thickness-slip vibration that is formed by integrating the vibration part of a conventional quartz base plate thin plate and the reinforcement part of the quartz base plate thick plate that surrounds it, unnecessary spurious vibrations In order to avoid the occurrence, it has been common to make the vibration surface as large as possible with respect to the electrode surface.

一方、最近の傾向では通信分野の伝送系装置等を中核として、その搭載部品についての非常に急激な市場からの小型化や低背化、更に加えて軽量化や低価格化の要求がある。      On the other hand, the recent trend is centered on transmission systems in the communication field, etc., and there is a demand for downsizing and lowering of the mounted parts from the market, as well as weight reduction and price reduction.

特開2000−031769号公報JP 2000-031769 A 特開2001−168674号公報JP 2001-168673 A

なお、出願人は前記した先行技術文献情報で特定される先行技術文献以外には、本発明に関連する先行技術文献を、本件出願時までに発見するに至らなかった。      The applicant has not found any prior art documents related to the present invention other than the prior art documents specified by the prior art document information described above by the time of filing of the present application.

しかしながら、前述の振動子の振動部の厚さは、例えば主振動周波数150MHzの場合ではその振動部分の厚みは10μm程度といった薄板であり、その為に振動子の振動部の周囲部分の僅かな機械的な歪みの影響も受けやすく、その機械的な歪みは振動部の薄板の厚みを変化させて、その結果、主振動以外の多数の不要なスプリアス振動の発生を招く結果となる。      However, the thickness of the vibration part of the vibrator described above is a thin plate having a vibration part thickness of about 10 μm, for example, in the case of the main vibration frequency of 150 MHz. The mechanical distortion changes the thickness of the thin plate of the vibration part, resulting in the generation of many unnecessary spurious vibrations other than the main vibration.

こういったことを鑑みて、この様な形状の水晶振動子はエッチング加工によって形成され、上述したように水晶素板薄板の振動部とその周囲を囲う水晶素板厚板の補強部とから成る形状をした水晶振動子が多数個一枚のウェハー上にパターンニングされているのが一般的である。      In view of this, the crystal resonator having such a shape is formed by etching, and as described above, includes the vibrating portion of the quartz base plate thin plate and the reinforcing portion of the quartz base plate thick plate surrounding the surrounding portion. In general, a large number of shaped crystal resonators are patterned on a single wafer.

この様に、一枚のウェハー上に多数個の水晶振動子がパターンニングされている夫々の振動子の薄板状の振動部の周波数を調整するには、ダイシングなどにより所望の大きさに個割りして、その後周波数分類をかけて分類されたグループ毎にエッチングして調整するのが一般的である。      As described above, in order to adjust the frequency of the thin plate-like vibrating portion of each vibrator in which a large number of crystal vibrators are patterned on a single wafer, it is divided into a desired size by dicing or the like. Then, it is general that the frequency is classified and then etched and adjusted for each classified group.

しかしながら、前述の近年における搭載部品の小型化や高周波化に伴って取り扱われる水晶が小型化・薄片化されている傾向があり、上述のグループ毎にエッチングして調整する方法では振動子の小片の紛失や破損が懸念され、また工数が多いためにコスト的にも不利になりつつある。      However, there is a tendency that the quartz that is handled in recent years with the miniaturization and the high frequency of the mounted components is miniaturized and thinned, and in the method of adjusting by etching for each group described above, There are concerns about loss and damage, and because of the large number of man-hours, it is becoming disadvantageous in terms of cost.

この対策として、個割りすることなくエッチング作業を行う方法が考えられるが、ウェハー内の夫々の振動子の周波数は必ずしも均一ではないために、従来のようにウェハーをエッチャントに浸漬させるような作業方法では、歩留まりが悪く適用することは出来ない。      As a countermeasure against this, a method of performing etching without dividing the wafer is conceivable. However, since the frequency of each vibrator in the wafer is not necessarily uniform, an operation method in which the wafer is immersed in an etchant as in the past. Then, the yield is bad and cannot be applied.

そこで、ウェハー内の夫々の振動子の周波数を均一とするには、エッチャントを順次振動子の薄板状の振動部に滴下する方法が取られる。しかしながら従来においては、ある薄板状の振動部にエッチャントを滴下した場合、図5に示す様に、まだエッチャントを滴下してエッチングを行わない先述の、ある薄板の振動部をもった水晶振動子に隣り合わせた他の振動子の薄板の振動部に、エッチャントが流入してしまうといった問題があった。      Therefore, in order to make the frequency of each vibrator in the wafer uniform, a method of dropping the etchant sequentially onto the thin plate-like vibrating portion of the vibrator is taken. However, in the prior art, when an etchant is dropped on a thin plate-like vibrating portion, as shown in FIG. 5, the etching is not yet performed by dropping the etchant, and the crystal resonator having the vibrating portion of a certain thin plate is used. There is a problem that the etchant flows into the vibrating portion of the thin plate of another vibrator adjacent to the other.

本発明は、以上のような技術的背景のもとでなされたものであり、従がってその目的は、水晶素板薄板の振動部とその周囲を囲う水晶素板厚板の補強部とが一体に成ったATカットの厚み滑り振動をする水晶振動子の製造方法を提供することである。      The present invention has been made under the technical background as described above. Accordingly, the object of the present invention is to provide a vibrating portion of the quartz base plate thin plate and a reinforcing portion of the quartz base plate thick plate surrounding the surrounding portion. It is an object to provide a method for manufacturing a quartz crystal resonator that performs AT-cut thickness-slip vibration.

上記の目的を達成するために、本発明は、水晶素板薄板の振動部とその周囲を囲う水晶素板厚板の補強部とが一体に成ったATカットの厚み滑り振動をする水晶振動子の製造方法において、振動面形成の為のパターンニングの工程と、外形加工エッチング、及び振動面形成の工程と、保護膜剥離の工程と、エッチャント止め仕切り部の形成の工程を有することを特徴とする。      In order to achieve the above object, the present invention provides an AT-cut thickness-shear vibration unit in which a vibrating part of a quartz base plate thin plate and a reinforcing part of a quartz base plate thick plate surrounding it are integrally formed. In the manufacturing method, a patterning step for forming a vibration surface, an outer shape processing etching and a vibration surface forming step, a protective film peeling step, and an etchant stopper partition portion forming step are characterized. To do.

また、エッチャント止め仕切り部の仕切り部の幅が200μmから300μmであることを特徴とする。      Further, the width of the partition portion of the etchant stopper partition portion is 200 μm to 300 μm.

また、エッチャント止め仕切り部は撥水性のあるレジストから成ることを特徴とする。      Further, the etchant stopper partition portion is made of a water-repellent resist.

本発明の水晶振動子の製造方法によれば、エッチャントを滴下してエッチングを行う薄板の振動部を成す凹部から、隣接する振動子の薄板の振動部の振動面へのエッチャントの流入が、仕切り部により確実に防止され、その結果、水晶振動子の製造の歩留まりを著しく向上することが出来る。      According to the method for manufacturing a quartz crystal resonator of the present invention, the inflow of the etchant from the concave portion forming the vibrating portion of the thin plate to which etching is performed by dropping the etchant to the vibrating surface of the vibrating portion of the thin plate of the adjacent vibrator is partitioned. Therefore, the manufacturing yield of the crystal resonator can be remarkably improved.

本発明により形成される撥水性のあるレジストから成る仕切り部は、水晶振動子の製造方法の後方のダイシングの工程(S111)において、個々の水晶振動子に個割りされるときに削られる為に、レジストから成る仕切り部の剥離工程を新たに加える必要が無く生産性を著しく高めることが出来る。      The partition portion formed of the water-repellent resist formed according to the present invention is scraped when divided into individual crystal resonators in the dicing step (S111) at the rear of the crystal resonator manufacturing method. Further, it is not necessary to newly add a step for removing the partition portion made of resist, and the productivity can be remarkably increased.

以下に図面を参照しながら本発明の実施の一形態について説明する。
なお、各図においての同一の符号は同じ対象を示すものとする。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
In addition, the same code | symbol in each figure shall show the same object.

図1は本発明の水晶振動子の製造方法のフローチャートである。図1の水晶振動子の製造方法のフローチャートのなかで、S103の工程において 多数個の薄板状の振動部1の振動面を一枚のウェハー6上にパターンニングする。      FIG. 1 is a flowchart of a method for manufacturing a crystal resonator according to the present invention. In the flow chart of the method for manufacturing the crystal resonator of FIG. 1, the vibration surfaces of a large number of thin plate-like vibration parts 1 are patterned on a single wafer 6 in step S <b> 103.

図2は本発明の一枚のウェハー6上に多数個の水晶振動子3とエッチャント止め仕切り部4が形成された様子を示す概略の上面図である。ひとつの水晶振動子3の薄板の振動部1の振動面を囲むように、その上下、及び左右にエッチャント止め仕切り部4が夫々の水晶振動子3の薄板の振動部1の振動面の形成(S104)に続き保護膜が剥離され(S105)、引き続いてウェハー6上に印刷技術により撥水性を有するレジストが塗布されてエッチャント止め仕切り部4が形成される(S106)。      FIG. 2 is a schematic top view showing a state in which a large number of crystal resonators 3 and etchant stopper partitions 4 are formed on a single wafer 6 of the present invention. Forming the vibration surface of the vibration part 1 of the thin plate of each crystal resonator 3 with the etchant stop partitioning part 4 above and below and right and left so as to surround the vibration surface of the vibration part 1 of the thin plate of one crystal resonator 3 ( Subsequently to S104), the protective film is peeled off (S105), and subsequently, a resist having water repellency is applied onto the wafer 6 by a printing technique to form the etchant stopper partition 4 (S106).

図3は本発明の一枚のウェハー6上に多数個の水晶振動子3とエッチャント止め仕切り部4が形成され、そのひとつの水晶振動子3の薄板の振動部1の振動面にエッチャント7を滴下する様子を示した概略の部分側面図である。      In FIG. 3, a large number of crystal resonators 3 and etchant stopper partitions 4 are formed on a single wafer 6 of the present invention, and an etchant 7 is placed on the vibration surface of the vibration portion 1 of the thin plate of the single crystal resonator 3. It is the general | schematic partial side view which showed a mode that it dripped.

図4は本発明の一枚のウェハー6上に多数個の水晶振動子3とエッチャント止め仕切り部4が形成され、そのひとつの水晶振動子3の薄板の振動部1の振動面にエッチャント7を滴下する様子を示した概略の側面模式図である。エッチャント止め仕切り部4が夫々の水晶振動子3の薄板の振動部1のあいだに形成されているために、エッチャント7を滴下しエッチングを行う薄板の振動部1の振動面を成す凹部から、隣接する水晶振動子3の薄板の振動部1の振動面へのエッチャント7の流入が確実に防止される。      In FIG. 4, a large number of crystal resonators 3 and etchant stopper partitions 4 are formed on a single wafer 6 of the present invention, and an etchant 7 is placed on the vibration surface of the vibration portion 1 of the thin plate of the single crystal resonator 3. It is the schematic side surface figure which showed a mode that it dripped. Since the etchant stop partition 4 is formed between the thin plate vibrating portions 1 of the respective quartz crystal resonators 3, the etchant 7 is dropped from the concave portion forming the vibrating surface of the thin plate vibrating portion 1 where etching is performed. Thus, the etchant 7 is reliably prevented from flowing into the vibrating surface of the vibrating portion 1 of the thin plate of the quartz crystal resonator 3.

図5は従来の一枚のウェハー6上に多数個の水晶振動子3が形成されて、そのひとつの水晶振動子3の薄板の振動部1の振動面にエッチャント7を滴下して周波数調整を行う様子を示した概略の側面模式図である。エッチャント7を凹部薄板の振動部1の振動面に順次滴下してエッチングを行っていたが、エッチングを行う薄板の振動部1の振動面を成す凹部から、まだエッチングを行わない隣接する振動子3の薄板の振動部1の振動面へエッチャント7が流入してしまうという問題の発生があった。      In FIG. 5, a large number of crystal resonators 3 are formed on a conventional wafer 6, and the frequency is adjusted by dropping an etchant 7 on the vibration surface of the vibrating portion 1 of the thin plate of the one crystal resonator 3. It is the schematic side surface figure which showed a mode that it performed. Etchant 7 is dropped sequentially on the vibration surface of vibrating part 1 of the concave thin plate, and etching is performed. However, adjacent vibrator 3 that is not yet etched from the concave portion forming the vibrating surface of vibrating part 1 of the thin plate to be etched. There is a problem that the etchant 7 flows into the vibration surface of the vibration part 1 of the thin plate.

また、図2、図3、図4に示されるエッチャント止め仕切り部4の幅は、潤滑にエッチャントが流れ込み、かつエッチャントが溢れてしまうことがない形状を成すことが必要であり、実際の試行の結果、エッチャント止め仕切り部の幅が200μmから300μmであるときに良好な結果を得ることが出来た。また、エッチャント止め仕切り部4の長さは一枚のウェハー6上に多数個の水晶振動子3とエッチャント止め仕切り部4を形成することから、ほぼ隣り合わせる水晶振動子3の寸法と成る。      Further, the width of the etchant stopper partition 4 shown in FIGS. 2, 3 and 4 is required to have a shape in which the etchant flows into the lubrication and the etchant does not overflow. As a result, good results could be obtained when the width of the etchant stopper partition was 200 μm to 300 μm. Further, the length of the etchant stopper partition 4 is the same as that of the adjacent crystal resonators 3 because a large number of crystal resonators 3 and etchant stopper partitions 4 are formed on a single wafer 6.

本発明の水晶振動子の製造方法のフローチャートである。図1のS106の工程で印刷技術を用いてエッチャント止め仕切り部を形成する。It is a flowchart of the manufacturing method of the crystal oscillator of this invention. In the step of S106 in FIG. 1, an etchant stop partition portion is formed using a printing technique. 本発明の一枚のウェハー上に多数個の水晶振動子とエッチャント止め仕切り部が形成された様子を示す概略の上面図である。FIG. 4 is a schematic top view showing a state in which a large number of crystal resonators and etchant stopper partitions are formed on a single wafer of the present invention. 本発明の一枚のウェハー上に多数個の水晶振動子とエッチャント止め仕切り部が形成され、そのひとつの水晶振動子の薄板の振動部にエッチャントを滴下する様子を示した概略の部分側面図である。FIG. 6 is a schematic partial side view showing a state in which a large number of crystal resonators and etchant stopper partitions are formed on a single wafer of the present invention, and the etchant is dropped on the vibration portion of a thin plate of the single crystal resonator. is there. 本発明の一枚のウェハー上に多数個の水晶振動子とエッチャント止め仕切り部が形成され、そのひとつの水晶振動子の薄板の振動部にエッチャントを滴下する様子を示した概略の側面模式図である。FIG. 5 is a schematic side view schematically showing a state in which a large number of crystal resonators and etchant stopper partitions are formed on a single wafer of the present invention, and the etchant is dropped on the vibration portion of a thin plate of the single crystal resonator. is there. 従来の一枚のウェハー上に多数個の水晶振動子が形成されて、そのひとつの水晶振動子の薄板の振動部にエッチャントを滴下して周波数調整を行う様子を示した概略の側面模式図である。This is a schematic side view showing how a large number of quartz resonators are formed on a single conventional wafer and the frequency is adjusted by dropping an etchant on the vibrating part of the thin plate of the single quartz resonator. is there. 従来の水晶振動子の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the conventional crystal oscillator.

符号の説明Explanation of symbols

1 薄板の振動部
2 厚板の補強部
3 水晶振動子
4 エッチャント仕切り部
5 仕切り部幅
6 ウェハー
7 エッチャント
DESCRIPTION OF SYMBOLS 1 Thin plate vibration part 2 Thick plate reinforcement part 3 Crystal oscillator 4 Etchant partition part 5 Partition part width 6 Wafer 7 Etchant

Claims (3)

水晶素板薄板の振動部とその周囲を囲う水晶素板厚板の補強部とが一体に成ったATカットの厚み滑り振動をする水晶振動子の製造方法において、
振動面形成の為のパターンニングの工程と、
外形加工エッチング、及び振動面形成の工程と、
保護膜剥離の工程と、
エッチャント止め仕切り部の形成の工程を有することを特徴とする水晶振動子の製造方法。
In the manufacturing method of the crystal resonator that performs AT-cut thickness sliding vibration in which the vibrating portion of the quartz base plate thin plate and the reinforcing portion of the quartz base plate thick plate surrounding the quartz base plate are integrally formed,
Patterning process for vibration surface formation;
Steps of outer shape etching and vibration surface formation;
A protective film peeling process;
A method of manufacturing a crystal resonator, comprising the step of forming an etchant stop partition.
エッチャント止め仕切り部の幅が200μmから300μmであることを特徴とする請求項1に記載の水晶振動子の製造方法。      2. The method for manufacturing a crystal resonator according to claim 1, wherein the width of the etchant stopper partition portion is 200 μm to 300 μm. エッチャント止め仕切り部は撥水性のあるレジストから成ることを特徴とする請求項1に記載の水晶振動子の製造方法。      2. The method for manufacturing a crystal resonator according to claim 1, wherein the etchant stopper partition portion is made of a water-repellent resist.
JP2004224046A 2004-07-30 2004-07-30 Method of manufacturing crystal resonator Pending JP2006049971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004224046A JP2006049971A (en) 2004-07-30 2004-07-30 Method of manufacturing crystal resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004224046A JP2006049971A (en) 2004-07-30 2004-07-30 Method of manufacturing crystal resonator

Publications (1)

Publication Number Publication Date
JP2006049971A true JP2006049971A (en) 2006-02-16

Family

ID=36028061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004224046A Pending JP2006049971A (en) 2004-07-30 2004-07-30 Method of manufacturing crystal resonator

Country Status (1)

Country Link
JP (1) JP2006049971A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007274348A (en) * 2006-03-31 2007-10-18 Kyocera Kinseki Corp Manufacturing method of lame mode crystal vibrator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007274348A (en) * 2006-03-31 2007-10-18 Kyocera Kinseki Corp Manufacturing method of lame mode crystal vibrator

Similar Documents

Publication Publication Date Title
JP2008011278A (en) Method of manufacturing crystal piece, crystal piece, crystal vibrator, and electronic component
JP2003258601A (en) Surface acoustic wave apparatus and communication device using it
JP2007318350A (en) Piezoelectric vibrating reed and manufacturing method thereof
JP2004328739A (en) Thin film bulk acoustic resonator with air gap floating from substrate and its manufacturing method
JP2010136202A (en) Method of manufacturing piezoelectric oscillating piece, piezoelectric oscillating piece, and piezoelectric resonator
JP2006049971A (en) Method of manufacturing crystal resonator
JP4197001B2 (en) Method for manufacturing piezoelectric vibrating piece
JP2005065234A (en) Method for manufacturing quartz oscillator
JP2006211583A (en) Method of manufacturing crystal vibrator
JP4472381B2 (en) Manufacturing method of crystal unit
JP2009071640A (en) Method for beveling piezoelectric vibrating raw substrate, piezoelectric vibrating reed, and piezoelectric vibrator
JP4599231B2 (en) Quartz crystal manufacturing method and crystal resonator
JP4060699B2 (en) Manufacturing method of crystal unit
JP2004040399A (en) Etching method, and etched product formed by the same
JP2016174328A (en) Wafer manufacturing method and wafer
JP2006238257A (en) Manufacturing method of crystal vibrator
JP2007097046A (en) Processing method of crystal blank and crystal resonance chip
JP2007135129A (en) Manufacturing method of piezoelectric vibrating piece and piezoelectric vibrating piece manufactured by method
KR100956235B1 (en) Method of manufacturing crystal unit
JP2002314162A (en) Crystal substrate and its manufacturing method
JP2004357049A (en) Method for manufacturing piezoelectric oscillator
JP5024427B2 (en) Piezoelectric device
JP2007208675A (en) Substrate
JP4441258B2 (en) Crystal oscillator
JP3980850B2 (en) Manufacturing method of crystal unit