JP2006049262A - Plasma processing device - Google Patents

Plasma processing device Download PDF

Info

Publication number
JP2006049262A
JP2006049262A JP2004344779A JP2004344779A JP2006049262A JP 2006049262 A JP2006049262 A JP 2006049262A JP 2004344779 A JP2004344779 A JP 2004344779A JP 2004344779 A JP2004344779 A JP 2004344779A JP 2006049262 A JP2006049262 A JP 2006049262A
Authority
JP
Japan
Prior art keywords
electrode
insulating
space
spacer
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004344779A
Other languages
Japanese (ja)
Other versions
JP4541114B2 (en
Inventor
Mamoru Hino
守 日野
Harukazu Shimizu
治和 清水
Hidenori Takahashi
英則 高橋
Masao Inoue
将男 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2004344779A priority Critical patent/JP4541114B2/en
Publication of JP2006049262A publication Critical patent/JP2006049262A/en
Application granted granted Critical
Publication of JP4541114B2 publication Critical patent/JP4541114B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma processing device capable of surely insulating an electrode. <P>SOLUTION: The electrode 31 of the plasma processing device is extended in a direction perpendicular to the direction extending from a plasma space 30a to a base material W. A metallic frame member 22L is arranged at a side opposite to the side where the plasma space 30a of the electrode 31 is formed. Insulating spacers 70, 75 are intermittently arranged between the electrode 31 and the frame member 22L in a longitudinal direction of the electrode 31. An electrically grounded conduction member 50 is interposed between the electrode 31 and an arrangement position of the base material W, and an L-shaped second side part 72 of the spacer 70 is interposed between the electrode 31 and the conduction member 50. An insulation space is formed between adjacent spacers 70, 75. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、プロセスガスをプラズマ化し基材へ向けて吹出す所謂リモート式のプラズマ処理装置に関し、特に長尺の電極構造を有するプラズマ処理装置に関する。   The present invention relates to a so-called remote type plasma processing apparatus that converts a process gas into plasma and blows it toward a substrate, and more particularly to a plasma processing apparatus having a long electrode structure.

この種のプラズマ処理装置は、一対の電極どうし間に電界を印加しグロー放電を起こさせることにより電極どうし間をプラズマ化空間とし、そこにプロセスガスを導入してプラズマ化(活性化、イオン化)するとともに、プラズマ化空間の外部に配置した基材へ向けて吹出し、基材の表面処理を行なう。
例えば、特許文献1に記載のプラズマ処理装置では、電極が長尺状をなしている。これによって、電極の長さ分の表面処理を一度に行なうことができ、処理速度を向上させることができる。
特開2002−237480号公報 特開2003−100646号公報
In this type of plasma processing apparatus, an electric field is applied between a pair of electrodes to cause glow discharge to create a plasma space between the electrodes, and a process gas is introduced into the space to activate it (activation, ionization). At the same time, the substrate is blown toward the substrate disposed outside the plasmatization space to perform surface treatment of the substrate.
For example, in the plasma processing apparatus described in Patent Document 1, the electrodes are elongated. Thereby, the surface treatment for the length of the electrode can be performed at a time, and the processing speed can be improved.
JP 2002-237480 A Japanese Patent Laid-Open No. 2003-1000064

電極は金属フレームから絶縁する必要がある。電極が長尺状である場合、これとほぼ同じ長さの絶縁スペーサを金属フレームと電極の間に埋めることが考えられるが、熱変形や沿面放電等の問題がある。   The electrode needs to be insulated from the metal frame. In the case where the electrode is long, it is conceivable that an insulating spacer having substantially the same length as this is buried between the metal frame and the electrode, but there are problems such as thermal deformation and creeping discharge.

本発明は、プロセスガスをプラズマ化空間に通してプラズマ化し、基材が配置されるべき位置へ吹出すプラズマ処理装置において、前記プラズマ化空間を形成するとともにこのプラズマ化空間から前記基材配置位置へ向かう方向とは直交する方向に延びる電極と、前記電極のプラズマ化空間を形成する側とは逆側(背部)に設けられた金属製のフレーム部材と、前記電極とフレーム部材の間に介在されるとともに、前記電極の長手方向に間欠的に(電極の全長にわたって(端寄り部分にも中央部分にも)途切れ途切れに)配置された複数の絶縁性のスペーサと、を備え、前記スペーサの隣り合うものどうしの間には、前記電極とフレームを絶縁する絶縁空間が形成されていることを特徴とする。
これによって、電極とフレーム部材を確実に絶縁できる。また、沿面放電を抑えてエネルギーロスを小さくできる。さらに、熱変形による影響を小さくできる。絶縁空間を外部に連ねることにすれば、除熱性も確保できる。
前記電極は、基本的には電源(電界印加手段)に接続されたホット電極であるが、接地されたアース電極に適用してもよい。もちろん、両方の電極に適用してもよい。
The present invention provides a plasma processing apparatus in which a process gas is converted into plasma through a plasma formation space and blown out to a position where a substrate is to be disposed, and the plasma formation space is formed and the substrate arrangement position is formed from the plasma formation space. An electrode extending in a direction orthogonal to the direction toward the surface, a metal frame member provided on the opposite side (back part) of the electrode from the side forming the plasmatized space, and interposed between the electrode and the frame member A plurality of insulating spacers disposed intermittently in the longitudinal direction of the electrode (discontinuously over the entire length of the electrode (both at the end portion and at the central portion)), An insulating space that insulates the electrode from the frame is formed between adjacent ones.
Thereby, an electrode and a frame member can be insulated reliably. Further, creepage discharge can be suppressed and energy loss can be reduced. Furthermore, the influence of thermal deformation can be reduced. If the insulating space is connected to the outside, it is possible to secure heat removal.
The electrode is basically a hot electrode connected to a power source (electric field applying means), but may be applied to a grounded earth electrode. Of course, it may be applied to both electrodes.

前記電極と基材配置位置との間には、電気的に接地された導電部材が介在されているのが望ましい。これによって、基材への電界漏れを防止しつつ確実にプラズマ処理できる。
この場合、前記複数のスペーサの少なくとも一部が、前記電極とフレーム部材の間に介在される第1側部と、前記電極と導電部材の間に介在される第2側部を一体に有して大略L形をなし、前記電極とフレーム部材の間だけでなく電極と導電部材の間にも絶縁空間が形成されているのが望ましい。これによって、電極とフレーム部材の間だけでなく、電極と導電部材との間をも確実に絶縁することができる。
また、前記電極と導電部材の間の開口には、これを塞ぐとともに前記プラズマ化空間に連なる吹出し路を形成する吹出し路形成部材が設けられており、前記スペーサの第2側部が、前記吹出し路形成部材よりフレーム部材の側に配置されていることが望ましい。これによって、プロセスガスの絶縁空間への進入を防止することができる。この吹出し路形成部材は、絶縁性は勿論のこと耐プラズマ性をも有していることが望ましい。
It is desirable that an electrically grounded conductive member is interposed between the electrode and the substrate arrangement position. Thereby, plasma processing can be reliably performed while preventing electric field leakage to the base material.
In this case, at least a part of the plurality of spacers integrally includes a first side portion interposed between the electrode and the frame member and a second side portion interposed between the electrode and the conductive member. It is preferable that the insulating space is formed not only between the electrode and the frame member but also between the electrode and the conductive member. Accordingly, it is possible to reliably insulate not only between the electrode and the frame member but also between the electrode and the conductive member.
In addition, an opening between the electrode and the conductive member is provided with a blowing path forming member that closes the opening and forms a blowing path connected to the plasma space, and the second side portion of the spacer has the blowing path. It is desirable to arrange on the frame member side with respect to the path forming member. This prevents the process gas from entering the insulating space. It is desirable that this blowout path forming member has not only insulation but also plasma resistance.

前記スペーサと同じ長手方向位置には、前記フレーム部材に係着されて電極を押し又は引き可能なネジ部材が配置されていることが望ましい。これによって、電極の歪みを阻止又は矯正できるとともに絶縁空間を十分に確保できる。
前記電極を引き可能なネジ部材は、頭部が前記フレーム部材に引っ掛けられるとともに、脚部が前記スペーサを貫通して前記電極にねじ込まれている。
前記電極を押し可能なネジ部材は、前記フレーム部材にねじ込まれるとともに先端が前記スペーサに突き当たり、このスペーサを介して電極を押し可能になっている。
It is desirable that a screw member that is engaged with the frame member and can push or pull the electrode is disposed at the same longitudinal position as the spacer. As a result, the distortion of the electrode can be prevented or corrected, and a sufficient insulating space can be secured.
The screw member capable of pulling the electrode has a head hooked on the frame member and a leg portion passing through the spacer and screwed into the electrode.
The screw member that can push the electrode is screwed into the frame member, and the front end abuts against the spacer, and the electrode can be pushed through the spacer.

前記電極の前記フレーム部材側を向く背面に、電極の略全長にわたって延びる絶縁性の背部絶縁部材を宛がい、この背部絶縁部材と前記フレーム部材の間に前記スペーサを挟み、これら背部絶縁部材とフレーム部材とスペーサによって前記絶縁空間が画成されていることが望ましい。これによって、万が一、電極とフレームの間が何らかの原因で絶縁破壊した場合、背部絶縁部材がダメージを受けることはあっても電極にはダメージが及ばないようにすることができる。したがって、比較的安価な背部絶縁部材だけを交換すれば済み、高価な長尺電極を交換する必要が無い。   An insulating back insulating member extending over substantially the entire length of the electrode is applied to the back surface of the electrode facing the frame member, and the spacer is sandwiched between the back insulating member and the frame member, and the back insulating member and the frame The insulating space is preferably defined by a member and a spacer. As a result, in the unlikely event that dielectric breakdown occurs between the electrode and the frame for some reason, the electrode can be prevented from being damaged even if the back insulating member is damaged. Therefore, it is only necessary to replace the relatively inexpensive back insulating member, and there is no need to replace the expensive long electrode.

前記背部絶縁部材は、前記スペーサと一体に形成されていてもよく、長手方向に複数の背部絶縁部に分割されていてもよい。さらには、スペーサと一体形成かつ長手方向に分割されていてもよい。すなわち、前記電極と前記フレームの間に、複数の絶縁材料からなる絶縁ピースが電極長手方向に並べられており、各絶縁ピースが、電極の背面に宛がわれる背部絶縁部と、この背部絶縁部の背面に凸設された前記スペーサとを一体に含み、複数の絶縁ピースの背部絶縁部が連なることにより前記背部絶縁部材が構成されていてもよい。これによって、長さの異なる電極に対しても絶縁ピースの数を増減することにより対応することができ、電極長にかかわらず絶縁ピースの共通化を図ることができ、コストの削減を図ることができる。また、背部絶縁部材とスペーサの接触面を無くすことができ、寸法精度を向上させることができる。
前記電極を誘電体のケースに収容し、このケースのプラズマ化空間形成側の壁を電極に被膜の固体誘電体層として提供することにしてもよい。このケースのプラズマ化空間形成側とは逆側の壁を、前記背部絶縁部材又は複数の絶縁ピースにて構成してもよい。
The back insulating member may be formed integrally with the spacer, or may be divided into a plurality of back insulating portions in the longitudinal direction. Further, it may be formed integrally with the spacer and divided in the longitudinal direction. That is, insulating pieces made of a plurality of insulating materials are arranged in the longitudinal direction of the electrode between the electrode and the frame, and each insulating piece is directed to the back surface of the electrode, and the back insulating portion. The back insulating member may be configured by integrally including the spacer protruding from the back surface of the plurality of insulating pieces and connecting back insulating portions of a plurality of insulating pieces. As a result, it is possible to cope with electrodes having different lengths by increasing or decreasing the number of insulating pieces, and the insulating pieces can be used in common regardless of the electrode length, thereby reducing costs. it can. Further, the contact surface between the back insulating member and the spacer can be eliminated, and the dimensional accuracy can be improved.
The electrode may be housed in a dielectric case, and the wall on the plasma forming space forming side of the case may be provided as a solid dielectric layer on the electrode. You may comprise the wall on the opposite side to the plasma formation space formation side of this case with the said back part insulation member or several insulation pieces.

本発明は、例えば略常圧(大気圧近傍の圧力)の環境で行なう常圧プラズマ処理等に適用される。ここで、略常圧とは、1.013×104〜50.663×104Paの範囲を言い、圧力調整の容易化や装置構成の簡便化を考慮すると、1.333×104〜10.664×104Paが好ましく、9.331×104〜10.397×104Paがより好ましい。 The present invention is applied to, for example, atmospheric pressure plasma processing performed in an environment of substantially normal pressure (pressure near atmospheric pressure). Here, “substantially normal pressure” refers to a range of 1.013 × 10 4 to 50.663 × 10 4 Pa, and considering the ease of pressure adjustment and the simplification of the apparatus configuration, 1.333 × 10 4 to 10.664 × 10 4 Pa is preferable, and 9.331 × 10 4 to 10.9797 × 10 4 Pa is more preferable.

本発明によれば、絶縁性のスペーサによって電極とフレーム部材の間の距離を確保して絶縁空間を形成でき、電極とフレーム部材を確実に絶縁することができる。   According to the present invention, the insulating space can be formed by securing the distance between the electrode and the frame member by the insulating spacer, and the electrode and the frame member can be reliably insulated.

以下、本発明の第1実施形態を、図面を参照して説明する。
図3に示すように、常圧プラズマ処理装置は、架台(図示せず)に支持されたプラズマノズルヘッド1を備えている。プラズマノズルヘッド1の下方に、大面積の基材Wが左右に通され、成膜等のプラズマ表面処理が行なわれるようになっている。勿論、基材Wを固定する一方、プラズマノズルヘッド1が移動されるようになっていてもよい。この基材Wの通される位置が、請求の範囲の「基材の配置されるべき基材配置位置」となる。
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 3, the atmospheric pressure plasma processing apparatus includes a plasma nozzle head 1 supported on a gantry (not shown). Below the plasma nozzle head 1, a large-area base material W is passed left and right to perform plasma surface treatment such as film formation. Of course, while fixing the base material W, the plasma nozzle head 1 may be moved. The position through which the base material W passes is the “base material placement position where the base material is to be placed” in the claims.

プラズマノズルヘッド1は、上側のガス整流部10と、下側の放電処理部20を備え、前後方向(図3の紙面と直交する方向)に長く延びている。詳細な図示は省略するが、ガス整流部10には、チャンバーやスリットが設けられており、図示しないプロセスガス源からのプロセスガスを前後長手方向に均一化するようになっている。   The plasma nozzle head 1 includes an upper gas rectifying unit 10 and a lower discharge processing unit 20, and extends long in the front-rear direction (a direction orthogonal to the paper surface of FIG. 3). Although detailed illustration is omitted, the gas rectifying unit 10 is provided with a chamber and a slit so that a process gas from a process gas source (not shown) is made uniform in the longitudinal direction.

放電処理部20は、一対の長尺電極31,32と、これら電極31,32を収容するフレーム21を有している。
図1〜図3に示すように、電極31,32は、例えばステンレス等の導電性材料によって出来、断面四角形状をなして前後方向(後記プラズマ化空間30aから基材配置位置へ向かう方向と直交する方向(図1において左右方向))へ直線状に長く延びている。図3に示すように、これら電極31,32は、互いに平行をなして左右に並べられている。左側の電極31は、図示しない電源に接続されてホット電極(電界印加電極)となり、右側の電極32は、接地されてアース電極(接地電極)となっている。これら電極31,32の対向面どうし間に、狭いスリット状の隙間が形成されている。この隙間が、プラズマ化空間30aになっている。なお、上記電源は、例えばパルス状の電圧を出力するようになっている。このパルスの立上がり時間及び/又は立下り時間は、10μs以下、電極間のプラズマ化空間30aでの電界強度は10〜1000kV/cm、周波数は0.5kHz以上であることが望ましい。パルス波に代えて、正弦波等の連続波を用いてもよい。
図示は省略するが、各電極31,32の対向面(プラズマ化空間30aを形成する面)と上面と下面には、アルミナ等からなる固体誘電体が溶射被膜されている。
なお、上記アルミナ等からなる固定誘電体を、電極の背面にも溶射被膜することにしてもよい。また、溶射被膜に代えて、電極を固体誘電体からなるケースに収容し、このケースを電極の対向面、上面、下面及び背面をそれぞれ覆う固体誘電体の層として用いることにしてもよい。
The discharge processing unit 20 includes a pair of long electrodes 31 and 32 and a frame 21 that accommodates the electrodes 31 and 32.
As shown in FIGS. 1 to 3, the electrodes 31 and 32 are made of, for example, a conductive material such as stainless steel, and have a square cross-sectional shape and are orthogonal to the front-rear direction (the direction from the plasmalized space 30a to the substrate arrangement position described later). It extends in a straight line in the direction (left and right direction in FIG. 1). As shown in FIG. 3, these electrodes 31 and 32 are arranged in parallel on the left and right sides. The left electrode 31 is connected to a power source (not shown) to be a hot electrode (electric field applying electrode), and the right electrode 32 is grounded to be an earth electrode (ground electrode). A narrow slit-like gap is formed between the opposing surfaces of the electrodes 31 and 32. This gap is a plasmatized space 30a. The power supply outputs a pulse voltage, for example. It is desirable that the rise time and / or fall time of this pulse is 10 μs or less, the electric field strength in the plasmaization space 30a between the electrodes is 10 to 1000 kV / cm, and the frequency is 0.5 kHz or more. A continuous wave such as a sine wave may be used instead of the pulse wave.
Although not shown, a solid dielectric made of alumina or the like is sprayed on the opposing surfaces (surfaces forming the plasmatizing space 30a), the upper surface, and the lower surface of the electrodes 31, 32.
The fixed dielectric made of alumina or the like may be sprayed on the back surface of the electrode. Further, instead of the thermal spray coating, the electrode may be housed in a case made of a solid dielectric, and this case may be used as a solid dielectric layer covering the opposing surface, upper surface, lower surface and back surface of the electrode.

各電極31,32の背面(プラズマ化空間30aを形成する面とは逆側の面)には、絶縁樹脂からなる背部絶縁部材43が宛がわれている。背部絶縁部材43は、電極31,32の全長にわたって前後に延びている。背部絶縁部材43の下端部は、L字状に折曲されており、そこに電極31の角部が載せられている。
背部絶縁部材43は、電極背部が万が一絶縁破壊したときのダメージ受けであり、前記電極背面への溶射膜の有無に拘わらず設けるのが望ましいが、絶縁破壊が確実に防止できるのであれば省略することにしてもよい。
図3において、符号30cは、電極の内部に形成された電極温調用の温調媒体を通す温調路である。
A back insulating member 43 made of an insulating resin is assigned to the back surface of each electrode 31, 32 (the surface opposite to the surface forming the plasmatizing space 30a). The back insulating member 43 extends back and forth over the entire length of the electrodes 31 and 32. A lower end portion of the back insulating member 43 is bent in an L shape, and a corner portion of the electrode 31 is placed thereon.
The back insulating member 43 is damaged when the back of the electrode breaks down, and is preferably provided regardless of the presence or absence of the sprayed film on the back surface of the electrode. However, the back insulating member 43 is omitted if the breakdown can be reliably prevented. You may decide.
In FIG. 3, reference numeral 30 c denotes a temperature adjustment path through which a temperature adjustment medium for electrode temperature adjustment formed inside the electrode is passed.

フレーム21は、剛性金属からなる左右一対のフレーム部材22L,22Rを有している。これらフレーム部材22L,22Rは、幅方向を上下に向けて前後に延びる板状をなしている。左側のフレーム部材22Lは、ホット電極31の背部(プラズマ化空間30aを形成する側とは逆側)に配置されている。同様に、右側のフレーム部材22Rは、アース電極32の背部に配置されている。左右のフレーム部材22L,22Rの上端部どうし間に剛性金属からなるアッパープレート23が架け渡され、ボルト締めにて剛結合されている。   The frame 21 has a pair of left and right frame members 22L, 22R made of a rigid metal. These frame members 22L and 22R have a plate shape extending in the front-rear direction with the width direction being directed up and down. The left frame member 22L is disposed on the back of the hot electrode 31 (on the side opposite to the side on which the plasmatization space 30a is formed). Similarly, the right frame member 22 </ b> R is disposed behind the ground electrode 32. An upper plate 23 made of a rigid metal is bridged between the upper ends of the left and right frame members 22L and 22R, and is rigidly connected by bolting.

アッパープレート23と各電極31,32の間には、絶縁性の樹脂からなる左右一対の第1上部絶縁部材41が設けられている。これら上部絶縁部材41は、電極31,32の全長にわたる長板状をなし、アッパープレート23と電極31を絶縁している。各上部絶縁部材41の内端部(他方の上部絶縁部材41との対向端部)の下隅には、段差状の切欠きが形成され、そこに第2上部絶縁部材42が嵌め込まれている。第2上部絶縁部材42は、第1上部絶縁部材41より耐プラズマ性及び耐熱性が高い絶縁材料、例えばアルミナ等のセラミックによって構成され、細い角棒状をなして第1上部絶縁部材41の全長に及んでいる。   A pair of left and right first upper insulating members 41 made of an insulating resin is provided between the upper plate 23 and the electrodes 31 and 32. These upper insulating members 41 have a long plate shape extending over the entire length of the electrodes 31 and 32 and insulate the upper plate 23 and the electrodes 31 from each other. A stepped notch is formed in the lower corner of the inner end portion of each upper insulating member 41 (the end portion facing the other upper insulating member 41), and the second upper insulating member 42 is fitted therein. The second upper insulating member 42 is made of an insulating material having higher plasma resistance and heat resistance than the first upper insulating member 41, for example, ceramic such as alumina, and has a thin square bar shape so as to extend to the entire length of the first upper insulating member 41. It extends.

アッパープレート23の左右中央部および左右の上部絶縁部材41,42間に、スリット状のガス導入路20aが形成されている。ガス導入路20aの上端部は、上記ガス整流部10の下流端に連なり、下端部は、電極31,32間のプラズマ化空間30aの上端部の全長にストレートに連なっている。   A slit-like gas introduction path 20 a is formed between the left and right central portions of the upper plate 23 and the left and right upper insulating members 41 and 42. The upper end portion of the gas introduction path 20a is connected to the downstream end of the gas rectifying unit 10, and the lower end portion is connected to the entire length of the upper end portion of the plasmaization space 30a between the electrodes 31 and 32 in a straight line.

放電処理部20の下端部には、左右一対の導電部材50が設けられている。導電部材50は、アルミ等からなる薄い金属板であり、放電処理部20の略全長にわたるように前後に延びている。導電部材50の外縁部は、フレーム21にボルト等にて連結固定されている。導電部材50又はフレーム21から図示しない接地線が延びており、この接地線を介して導電部材50とフレーム21の双方が電気的に接地されている。   A pair of left and right conductive members 50 are provided at the lower end of the discharge processing unit 20. The conductive member 50 is a thin metal plate made of aluminum or the like, and extends forward and backward so as to cover the substantially entire length of the discharge processing unit 20. The outer edge portion of the conductive member 50 is connected and fixed to the frame 21 with bolts or the like. A ground line (not shown) extends from the conductive member 50 or the frame 21, and both the conductive member 50 and the frame 21 are electrically grounded via the ground line.

導電部材50は、電極31との間で放電が起きないように、電極31,32より下方に十分離れて配置されている。この導電部材50が、電極31,32と基材配置位置との間に介在されることになる。左右各々の電極31,32と導電部材50の間には、吹出し路形成部材46が設けられている。吹出し路形成部材46は、耐プラズマ性及び耐熱性が高い絶縁材料、例えばパイレックス(登録商標)ガラスによって構成され、断面逆L字状をなし、電極31,32の全長にわたって前後(図3の紙面直交方向)に細長く延びている。左側の吹出し路形成部材46によって、左側の電極31と導電部材50の間の開口が塞がれ、右側の吹出し路形成部材46によって、右側の電極32と導電部材50の間の開口が塞がれている。   The conductive member 50 is disposed sufficiently below the electrodes 31 and 32 so that no discharge occurs between the conductive member 50 and the electrode 31. The conductive member 50 is interposed between the electrodes 31 and 32 and the base material arrangement position. A blowing path forming member 46 is provided between the left and right electrodes 31 and 32 and the conductive member 50. The blow-out path forming member 46 is made of an insulating material having high plasma resistance and heat resistance, such as Pyrex (registered trademark) glass, has an inverted L-shaped cross section, and extends back and forth over the entire length of the electrodes 31 and 32 (the paper surface of FIG. 3). Elongate in the orthogonal direction). The opening between the left electrode 31 and the conductive member 50 is blocked by the left blowing path forming member 46, and the opening between the right electrode 32 and the conductive member 50 is blocked by the right blowing path forming member 46. It is.

左右の吹出し路形成部材46の対向面どうし間に、吹出し路46aが形成されている。吹出し路46aは、電極31,32間のプラズマ化空間30aの下端部の全長に連なっている。
左右の導電部材50の対向端面間には、この吹出し路46aの全長に連なる吹出し口50bが形成されている。
A blowing path 46 a is formed between the opposing surfaces of the left and right blowing path forming members 46. The blow-out path 46a continues to the entire length of the lower end portion of the plasmatized space 30a between the electrodes 31 and 32.
Between the opposing end surfaces of the left and right conductive members 50, a blowout port 50 b that is continuous with the entire length of the blowout path 46 a is formed.

図1及び図2に示すように、ホット電極31の側(左側)の導電部材50の上面には、2種類のスペーサ70,75が、前後に間欠的に設けられている。これらスペーサ70,75は、例えばガラス繊維入りポリカーボネート等の硬質絶縁材料にて構成されている。図2及び図3に示すように、1種類のスペーサ70は、垂直をなす第1側部71と、水平をなす第2側部72を一体に有して、L字状をなしている。図2及び図4に示すように、もう1種類のスペーサ75は、垂直な平板状をなしている。以下、適宜、スペーサ70を「L形スペーサ70」といい、スペーサ75を「平スペーサ75」という。   As shown in FIGS. 1 and 2, two types of spacers 70 and 75 are intermittently provided in the front and rear directions on the upper surface of the conductive member 50 on the hot electrode 31 side (left side). The spacers 70 and 75 are made of a hard insulating material such as polycarbonate containing glass fiber. As shown in FIGS. 2 and 3, one type of spacer 70 has a first side portion 71 that is vertical and a second side portion 72 that is horizontal, and has an L shape. As shown in FIGS. 2 and 4, the other type of spacer 75 has a vertical flat plate shape. Hereinafter, the spacer 70 is referred to as “L-shaped spacer 70” and the spacer 75 is referred to as “flat spacer 75” as appropriate.

図3に示すように、L形スペーサ70の垂直な第1側部71は、ホット電極31の背部の絶縁部材43とフレーム部材22Lの間に挟まれている。これによって、背部絶縁部材43とフレーム部材22Lの間の間隔、ひいては、電極31とフレーム部材21の間の間隔が確保されている。   As shown in FIG. 3, the vertical first side 71 of the L-shaped spacer 70 is sandwiched between the insulating member 43 and the frame member 22 </ b> L at the back of the hot electrode 31. As a result, a distance between the back insulating member 43 and the frame member 22L, and hence a distance between the electrode 31 and the frame member 21, is ensured.

L形スペーサ70の水平な第2側部72は、導電部材50の上面に添って電極31の下側に差し入れられ、導電部材50と電極31の間に介在されている。これによって、電極31と導電部材50の間の間隔が確保されている。このL形スペーサ70の第2側部72に、背部絶縁部材43の下端部が当てられ、絶縁性のピン44にて止められている。   The horizontal second side portion 72 of the L-shaped spacer 70 is inserted below the electrode 31 along the upper surface of the conductive member 50 and is interposed between the conductive member 50 and the electrode 31. Thereby, a space between the electrode 31 and the conductive member 50 is secured. A lower end portion of the back insulating member 43 is applied to the second side portion 72 of the L-shaped spacer 70 and is fixed by an insulating pin 44.

L形スペーサ70の第2側部72は、上記吹出し路形成部材46よりフレーム部材22Lの側に配置されている。L形スペーサ70の第2側部72の先端部には、浅い段差が形成されている。この段差に、逆L字状の吹出し路形成部材46が引っ掛けられるようにして被せられている。これによって、吹出し路形成部材46が、L形スペーサ70によって支持されている。   The second side portion 72 of the L-shaped spacer 70 is disposed closer to the frame member 22 </ b> L than the blowing path forming member 46. A shallow step is formed at the tip of the second side portion 72 of the L-shaped spacer 70. An inverted L-shaped blowout passage forming member 46 is put on the step so as to be hooked. As a result, the blowout path forming member 46 is supported by the L-shaped spacer 70.

L形スペーサ70の第1側部71には、カラー収容孔71cが形成されている。また、フレーム部材22Lには、このカラー収容孔71cと対応する位置にカラー収容孔22cが形成されている。これらカラー収容孔71c,22c内に、絶縁樹脂製のボルトカラー61が収容されている。フレーム部材22Lのカラー収容孔22cの内周面には、段差が形成されており、この段差に、ボルトカラー61の外端部のフランジ61fが引っ掛けられている。ボルトカラー61の内部に、引きネジ部材60が収容されている。このネジ部材60の頭部が、ボルトカラー61の内奥底面に引っ掛けられ、ひいてはボルトカラー61を介してフレーム部材22に引っ掛けられている。ネジ部材60の脚部は、ボルトカラー61及び背部絶縁部材43を貫通し、ホット電極31の背部にねじ込まれている。   A collar housing hole 71 c is formed in the first side portion 71 of the L-shaped spacer 70. The frame member 22L is provided with a collar accommodating hole 22c at a position corresponding to the collar accommodating hole 71c. A bolt collar 61 made of an insulating resin is housed in the collar housing holes 71c and 22c. A step is formed on the inner peripheral surface of the collar housing hole 22c of the frame member 22L, and the flange 61f of the outer end portion of the bolt collar 61 is hooked on this step. A pull screw member 60 is accommodated in the bolt collar 61. The head portion of the screw member 60 is hooked on the inner bottom surface of the bolt collar 61, and as a result, is hooked on the frame member 22 via the bolt collar 61. The leg portion of the screw member 60 passes through the bolt collar 61 and the back insulating member 43 and is screwed into the back portion of the hot electrode 31.

図1及び図4に示すように、平スペーサ75は、隣り合うL形スペーサ70どうしの中間に配置され、左側のフレーム部材22と背部絶縁部材43の間に挟まれるとともに、フレーム部材22にピン45にて止められている。
フレーム部材22Lの平スペーサ75に対応する位置には、ネジ孔22bが形成され、このネジ孔22bに金属製いもネジからなる押しネジ部材63が捩じ込まれている。押しネジ部材63の先端は、平スペーサ75のフレーム部材22L側の面に埋め込まれた座金64に突き当てられている。
As shown in FIGS. 1 and 4, the flat spacer 75 is disposed between the adjacent L-shaped spacers 70 and is sandwiched between the left frame member 22 and the back insulating member 43, and is pinned to the frame member 22. Stopped at 45.
A screw hole 22b is formed at a position corresponding to the flat spacer 75 of the frame member 22L, and a push screw member 63 made of a metal steel screw is screwed into the screw hole 22b. The front end of the push screw member 63 is abutted against a washer 64 embedded in the surface of the flat spacer 75 on the frame member 22L side.

図5に示すように、スペーサ70,75によって絶縁空間49が形成されている。絶縁空間49は、電極31の背部の第1絶縁空間部49aと、電極31の下側の第2絶縁空間部49bからなり、これら空間部分49a,49bが一体に連なっている。第1絶縁空間部49aは、フレーム部材22Lと、電極31の背部の絶縁部材43と、スペーサ70の第1側部71と、平スペーサ75の間に画成されている。第2絶縁空間部49bは、電極31の下面並びに電極31の下側の絶縁部材43及び吹出し路形成部材46と、導電部材50と、隣り合うスペーサ70,70の第2側部72,72の間に画成されている。   As shown in FIG. 5, an insulating space 49 is formed by the spacers 70 and 75. The insulating space 49 includes a first insulating space 49a on the back of the electrode 31 and a second insulating space 49b on the lower side of the electrode 31, and these space portions 49a and 49b are integrally connected. The first insulating space 49 a is defined between the frame member 22 </ b> L, the insulating member 43 at the back of the electrode 31, the first side 71 of the spacer 70, and the flat spacer 75. The second insulating space 49b includes the lower surface of the electrode 31, the insulating member 43 on the lower side of the electrode 31, the blowing path forming member 46, the conductive member 50, and the second side portions 72, 72 of the adjacent spacers 70, 70. It is defined in between.

なお、図2及び図3に示すように、アース電極32の側(右側)の導電部材50の上面には、L形スペーサ70Xが、前後に間欠的に設けられ、これらL形スペーサ70Xどうしの間に空間部49が形成されている。平スペーサは設けられていない。また、アース側には、上記ネジ部材60,63より少し長めのネジ部材65が設けられている。ネジ部材65は、フレーム部材22R、L形スペーサ70X、及び背部絶縁部材43を貫通し、アース電極32にねじ込まれている。このネジ部材65によって電極32がL形スペーサ70と背部絶縁部材43を介してフレーム部材22Rに引き付けられ、位置固定されている。   As shown in FIGS. 2 and 3, L-shaped spacers 70 </ b> X are intermittently provided on the upper surface of the conductive member 50 on the side of the ground electrode 32 (on the right side). A space 49 is formed between them. A flat spacer is not provided. Further, a screw member 65 slightly longer than the screw members 60 and 63 is provided on the ground side. The screw member 65 passes through the frame member 22 </ b> R, the L-shaped spacer 70 </ b> X, and the back insulating member 43 and is screwed into the ground electrode 32. The electrode 32 is attracted to the frame member 22R via the L-shaped spacer 70 and the back insulating member 43 by the screw member 65, and the position is fixed.

上記のように構成された常圧プラズマ処理装置の作用を説明する。
プロセスガス源からのプロセスガスは、整流部10において前後長手方向に均一化された後、放電処理部20のガス導入路20aを経て、電極31,32間のプラズマ化空間30aに導入される。そして、電源から電極31への電圧印加によって空間30a内にパルス電界が形成されてグロー放電が起き、これによって、プロセスガスがプラズマ化される。このプラズマ化されたプロセスガスが、吹出し路46aを通って吹出し口50bから下方へ吹出され、基材Wに当てられる。これにより、洗浄等のプラズマ表面処理を行なうことができる。
プラズマ化空間30aの直近上方及び下方には、耐プラズマ性の部材42,46を配置することにより、変質や変形を防止できる。
The operation of the atmospheric pressure plasma processing apparatus configured as described above will be described.
The process gas from the process gas source is made uniform in the longitudinal direction in the rectifying unit 10, and then introduced into the plasmaization space 30 a between the electrodes 31 and 32 through the gas introduction path 20 a of the discharge processing unit 20. Then, by applying a voltage from the power source to the electrode 31, a pulse electric field is formed in the space 30a and a glow discharge occurs, whereby the process gas is turned into plasma. The plasma-processed process gas is blown downward from the blowout port 50 b through the blowout path 46 a and is applied to the substrate W. Thereby, plasma surface treatment such as cleaning can be performed.
By disposing plasma-resistant members 42 and 46 immediately above and below the plasmatizing space 30a, alteration and deformation can be prevented.

電極31と基材Wの間には、接地された導電部材50が介在されることになるので、電極31から基材Wにアークが落ちるのを防止できるとともに、プラズマノズルヘッド1を基材Wに十分に近づけることができる。これによって、常圧下においてもプラズマを基材Wに確実に到達させることができる。ひいては、処理効率を確実に向上させることができる。また、電界が基材Wへ洩れるのを防止でき、基材Wが電界によって影響を受けることがないようにすることができる。   Since the grounded conductive member 50 is interposed between the electrode 31 and the base material W, it is possible to prevent an arc from dropping from the electrode 31 to the base material W, and to connect the plasma nozzle head 1 to the base material W. Can be close enough. Thereby, the plasma can reliably reach the substrate W even under normal pressure. As a result, processing efficiency can be improved reliably. In addition, the electric field can be prevented from leaking to the base material W, and the base material W can be prevented from being affected by the electric field.

L形スペーサ70の第1側部71と平スペーサ75によって、ホット電極31とフレーム部材22Lを確実に離間できるとともに、電極31の背部に絶縁空間部49aを形成することができる。また、L形スペーサ70の第2側部72によって、電極31と導電部材50を確実に離間できるとともに、電極31の下部に絶縁空間部49bを形成することができる。これによって、電極31の絶縁性を高めることができる。
スペーサ70,75,70Xは、電極31,32の全長にわたる長尺状にするよりも製造が容易でコストダウンを図ることができるだけでなく、熱による変形度を十分に小さくすることができる。
電極31,32が発熱しても空間部49を介して容易に除熱するようにすることができる。
また、L形スペーサ70は、面積が小さいので、沿面放電を抑えることができ、エネルギ損失を小さくすることができる。
万が一、電極31,32とフレーム22L,22Rの間が何らかの原因で絶縁破壊した場合、ダメージを受けるのは専ら背部絶縁部材43であり、電極31,32にダメージが及ぶことはない。したがって、比較的安価な背部絶縁部材43だけを交換すれば済み、高価な長尺電極31,32を交換する必要は無く、メンテナンスコストを低廉化できる。
The hot electrode 31 and the frame member 22L can be reliably separated by the first side portion 71 of the L-shaped spacer 70 and the flat spacer 75, and the insulating space 49a can be formed on the back portion of the electrode 31. In addition, the electrode 31 and the conductive member 50 can be reliably separated by the second side portion 72 of the L-shaped spacer 70, and the insulating space portion 49 b can be formed below the electrode 31. Thereby, the insulation of the electrode 31 can be improved.
The spacers 70, 75, and 70X can be manufactured more easily and cost can be reduced than a long shape over the entire length of the electrodes 31 and 32, and the degree of deformation due to heat can be sufficiently reduced.
Even if the electrodes 31 and 32 generate heat, the heat can be easily removed through the space 49.
Further, since the L-shaped spacer 70 has a small area, creeping discharge can be suppressed and energy loss can be reduced.
In the unlikely event that dielectric breakdown occurs between the electrodes 31 and 32 and the frames 22L and 22R for some reason, it is only the back insulating member 43 that is damaged, and the electrodes 31 and 32 are not damaged. Therefore, only the relatively inexpensive back insulating member 43 needs to be replaced, and there is no need to replace the expensive long electrodes 31 and 32, and the maintenance cost can be reduced.

電極31は、引きネジ部材60によって電極32から遠ざかる方向へ引くことができ、押しネジ部材63によって電極32へ向けて押すことができる。これによって、電極31の歪みを矯正したり、プラズマ化空間30aの厚さを調節したりすることができる。また、引きネジ部材60によって、電極31がクーロン力や熱膨張差によって電極32の側へ接近するように歪むのを阻止することができ、押しネジ部材63によって、電極31が電極31から遠ざかるように歪むのを阻止することができる。これによって、プラズマ化空間30aの幅を前後全長にわたって一定にすることができ、プロセスガスを、前後長手方向に沿って確実に均一に吹出すことができる。ひいては、基材Wを確実に均一にプラズマ処理することができる。
これらネジ部材60,63の配置箇所にだけスペーサ70,75を配置することにより、ネジ部材60,63を確実に絶縁しつつ、絶縁空間49を十分確保することができる。
The electrode 31 can be pulled away from the electrode 32 by the pull screw member 60, and can be pushed toward the electrode 32 by the push screw member 63. As a result, the distortion of the electrode 31 can be corrected, and the thickness of the plasmatized space 30a can be adjusted. Further, the pulling screw member 60 can prevent the electrode 31 from being distorted so as to approach the electrode 32 due to a Coulomb force or a thermal expansion difference, and the push screw member 63 causes the electrode 31 to move away from the electrode 31. Can be prevented from being distorted. As a result, the width of the plasmified space 30a can be made constant over the entire length in the front-rear direction, and the process gas can be reliably blown out along the longitudinal direction in the front-rear direction. As a result, the substrate W can be surely and uniformly subjected to plasma treatment.
By disposing the spacers 70 and 75 only at the positions where the screw members 60 and 63 are disposed, the insulating space 49 can be sufficiently secured while the screw members 60 and 63 are reliably insulated.

次に、本発明の他の実施形態を説明する。以下の実施形態において、上記第1実施形態と重複する構成に関しては、図面に同一符号を付して説明を省略する。
図6〜図8は、本発明の第2実施形態を示したものである。第2実施形態では、ホット電極31の背部絶縁部材がスペーサと一体形成されるとともに、長手方向に複数に分割されている。
Next, another embodiment of the present invention will be described. In the following embodiments, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
6 to 8 show a second embodiment of the present invention. In the second embodiment, the back insulating member of the hot electrode 31 is integrally formed with the spacer and is divided into a plurality in the longitudinal direction.

詳述すると、ホット電極31とフレーム部材22L(図3等参照)の間には、図6に示すように、複数の絶縁ピース80が電極31の長手方向に並べられている。これら絶縁ピース80は、絶縁性の樹脂にて形成されている。図7及び図8に示すように、各絶縁ピース80は、短い板状の背部絶縁部81を有し、この背部絶縁部81の背面にスペーサ82が一体に凸設されている。各絶縁ピース80のスペーサ82は、前記第1実施形態のL字スペーサ70と実質的に同形状の断面L字状をなしている。絶縁ピース80のスペーサ82には、引きネジ部材60(図示省略)用のカラー収容孔82cが形成されたものと(図8(a)及び(b))、押しネジ部材63の座金64(図示省略)用の収容凹部82dが形成されたもの(図8(c)及び(d))との2種類がある。図面においては、引きネジ用の絶縁ピース80及びスペーサ82の符号の末尾に「A」を添え、押しネジ用の絶縁ピース80及びスペーサ82の符号の末尾に「B」を添えて示す。   Specifically, as shown in FIG. 6, a plurality of insulating pieces 80 are arranged in the longitudinal direction of the electrode 31 between the hot electrode 31 and the frame member 22 </ b> L (see FIG. 3 and the like). These insulating pieces 80 are formed of an insulating resin. As shown in FIGS. 7 and 8, each insulating piece 80 has a short plate-like back insulating portion 81, and a spacer 82 is integrally projected on the back surface of the back insulating portion 81. The spacer 82 of each insulating piece 80 has an L-shaped cross section that is substantially the same shape as the L-shaped spacer 70 of the first embodiment. The spacer 82 of the insulating piece 80 is formed with a collar accommodating hole 82c for the pull screw member 60 (not shown) (FIGS. 8A and 8B), and the washer 64 (not shown) of the push screw member 63. There are two types, one in which an accommodation recess 82d is formed (FIGS. 8C and 8D). In the drawing, “A” is added to the end of the reference numerals of the insulating piece 80 for the pull screw and the spacer 82, and “B” is added to the end of the reference numerals of the insulating piece 80 for the push screw and the spacer 82.

絶縁ピース80ひいては背部絶縁部81の長さは、例えば20〜30cm程度である。この背部絶縁部81が、電極31の背面に宛がわれている。図6に示すように、隣り合う絶縁ピース80の背部絶縁部81どうしは、互いに突き当てられている。電極31の全長にわたる複数(数個〜十数個)の絶縁ピース80の背部絶縁部81が、一列に連なることによって「背部絶縁部材」が構成されている。言い換えると、背部絶縁部材が、長手方向に複数の背部絶縁部81に分割されている。   The length of the insulating piece 80 and the back insulating portion 81 is, for example, about 20 to 30 cm. The back insulating portion 81 is assigned to the back surface of the electrode 31. As shown in FIG. 6, the back insulating portions 81 of adjacent insulating pieces 80 are abutted against each other. A “back insulating member” is configured by the back insulating portions 81 of a plurality (several to several dozen) insulating pieces 80 extending over the entire length of the electrode 31 in a row. In other words, the back insulating member is divided into a plurality of back insulating portions 81 in the longitudinal direction.

図7並びに図8(b)及び(d)に示すように、各背部絶縁部81の下端部は、前記第1実施形態の背部絶縁部材43と同様にL字状に折曲され、電極31の角部が載せられるようになっている。
また、各背部絶縁部81には、挿通孔81cが形成されている。この挿通孔81cに樹脂製のボルト(図示せず)を挿通して電極31にねじ込むようになっている。これにより、絶縁ピース80を電極31に固定するようになっている。図8(a)及び(b)に示すように、引きネジ部材用の絶縁ピース80Aの背部絶縁部81には、スペーサ82のカラー収容孔82cに連なる引きネジ部材挿通孔81dが形成されている。
なお、図示は省略するが、電極31の両端部のうち一方には、給電端子接続ポートを有する絶縁ピースが配置され、他方の端部には、電極31の温調路30c(図3参照)への温調管接続ポートを有する絶縁ピースが配置されるようになっている。
As shown in FIG. 7 and FIGS. 8B and 8D, the lower end portion of each back insulating portion 81 is bent in an L shape like the back insulating member 43 of the first embodiment, and the electrode 31 The corner of can be put on.
Each back insulating portion 81 is formed with an insertion hole 81c. A resin bolt (not shown) is inserted into the insertion hole 81 c and screwed into the electrode 31. Thereby, the insulating piece 80 is fixed to the electrode 31. As shown in FIGS. 8A and 8B, a pull screw member insertion hole 81d connected to the collar accommodating hole 82c of the spacer 82 is formed in the back insulating portion 81 of the pull screw member insulating piece 80A. .
In addition, although illustration is abbreviate | omitted, the insulation piece which has an electric power feeding terminal connection port is arrange | positioned at one of the both ends of the electrode 31, and the temperature control path 30c (refer FIG. 3) of the electrode 31 is arranged at the other end. An insulating piece having a temperature control pipe connection port is arranged.

第2実施形態によれば、同一寸法の絶縁ピース80を数個〜十数個並べることにより、背部絶縁部材を電極31の背面の全長に行き渡らせることができる。長さの異なる電極31に対しても、絶縁ピース80の個数を調節することにより対応できる。これによって、電極31の長さにかかわらず絶縁ピース80の共通化を図ることができ、コストの削減を図ることができる。
また、スペーサ82が背部絶縁部81と一体になっているので、両者間に接触面が存在せず、組立精度を向上させることができる。
According to the second embodiment, the back insulating member can be spread over the entire length of the back surface of the electrode 31 by arranging several to ten or more insulating pieces 80 of the same size. It is possible to cope with the electrodes 31 having different lengths by adjusting the number of the insulating pieces 80. As a result, the insulating piece 80 can be shared regardless of the length of the electrode 31, and the cost can be reduced.
Further, since the spacer 82 is integrated with the back insulating portion 81, there is no contact surface between them, and the assembly accuracy can be improved.

本発明は、上記実施形態に限定されず、種々の改変が可能である。
例えば、第1実施形態において、電極31の背部の絶縁部材43を省き、L形スペーサ70の第1側部71が、電極31に直接当たるとともに、L形スペーサ70の配置場所以外の部位では、電極31とフレーム部材22が絶縁空間49を介して対面するようになっていてもよい。
接地側については、スペーサ70Xや背部絶縁部材43や導電部材50が無くてもよく、電極32とフレーム部材22Rが直接接していたり、一体になっていたりしていてもよい。
第2実施形態において、相対的に長い(例えば80〜100cmの)絶縁ピースと、相対的に短い(例えば20〜30cm)絶縁ピース80とを用意し、主に長いほうの絶縁ピースを電極31の長手方向に数個並べ、この長いほうの絶縁ピースでは長さが余る部分を短いほうの絶縁ピースで埋めることにしてもよい。
本発明は、常圧下だけでなく、減圧下でのプラズマ処理にも適用でき、グロー放電だけでなく、コロナ放電や沿面放電によるプラズマ処理にも適用でき、洗浄、成膜、表面改質、エッチング、アッシング等の種々のプラズマ処理に遍く適用できる。
The present invention is not limited to the above embodiment, and various modifications can be made.
For example, in the first embodiment, the insulating member 43 on the back portion of the electrode 31 is omitted, the first side portion 71 of the L-shaped spacer 70 directly contacts the electrode 31, and at a portion other than the location where the L-shaped spacer 70 is disposed, The electrode 31 and the frame member 22 may face each other through the insulating space 49.
On the ground side, the spacer 70X, the back insulating member 43, and the conductive member 50 may not be provided, and the electrode 32 and the frame member 22R may be in direct contact with each other or may be integrated.
In the second embodiment, a relatively long (for example, 80 to 100 cm) insulating piece and a relatively short (for example, 20 to 30 cm) insulating piece 80 are prepared, and the longer insulating piece is mainly used as the electrode 31. Several pieces may be arranged in the longitudinal direction, and the longer insulating piece may be filled with the shorter insulating piece.
The present invention can be applied not only to atmospheric pressure but also to plasma treatment under reduced pressure, and not only to glow discharge, but also to plasma treatment by corona discharge or creeping discharge, cleaning, film formation, surface modification, etching It can be applied to various plasma treatments such as ashing.

本発明の第1実施形態に係る常圧プラズマ処理装置の電極部分を示す側面図である。It is a side view which shows the electrode part of the atmospheric pressure plasma processing apparatus which concerns on 1st Embodiment of this invention. 上記電極部分の一部を示す斜視図である。It is a perspective view which shows a part of said electrode part. 図1のIII-III線に沿う、上記常圧プラズマ処理装置の正面断面図である。It is front sectional drawing of the said normal pressure plasma processing apparatus which follows the III-III line of FIG. 図1のIV-IV線に沿う、上記常圧プラズマ処理装置の正面断面図である。It is front sectional drawing of the said normal pressure plasma processing apparatus which follows the IV-IV line of FIG. 図1のV-V線に沿う、上記常圧プラズマ処理装置の正面断面図である。It is front sectional drawing of the said normal pressure plasma processing apparatus which follows the VV line of FIG. 本発明の第2実施形態に係る常圧プラズマ処理装置の電極部分を示す側面図である。It is a side view which shows the electrode part of the atmospheric pressure plasma processing apparatus which concerns on 2nd Embodiment of this invention. 図6の2種類の絶縁ピースを外側(フレーム部材の側)から見た斜視図である。It is the perspective view which looked at two types of insulation pieces of Drawing 6 from the outside (frame member side). 上記2種類の絶縁ピースを内側(電極の側)から見た斜視図である。It is the perspective view which looked at the above-mentioned two kinds of insulating pieces from the inside (electrode side). 引きネジ部材用の絶縁ピースの平面断面図である。It is a plane sectional view of an insulating piece for a drawing screw member. 図8(a)のB−B線に沿う、上記引きネジ部材用の絶縁ピースの縦断面図である。It is a longitudinal cross-sectional view of the said insulation piece for pulling screw members which follows the BB line of Fig.8 (a). 押しネジ部材用の絶縁ピースの平面断面図である。It is a plane sectional view of an insulating piece for a push screw member. 図8(c)のD−D線に沿う、上記押しネジ部材用の絶縁ピースの縦断面図である。It is a longitudinal cross-sectional view of the said insulating piece for set screw members which follows the DD line | wire of FIG.8 (c).

符号の説明Explanation of symbols

1 プラズマノズルヘッド
20 放電処理部
22L ホット電極の背部のフレーム部材
30a プラズマ化空間
31 ホット電極
43 背部絶縁部材
49 絶縁空間
49a 第1絶縁空間部
49b 第2絶縁空間部
50 導電部材
60 引きネジ部材
63 押しネジ部材
70 L形スペーサ
71 第1側部
72 第2側部
75 平スペーサ
80 絶縁ピース
80A 引きネジ部材用の絶縁ピース
80B 押しネジ部材用の絶縁ピース
81 背部絶縁部
82 スペーサ
82A 引きネジ用のスペーサ
82B 押しネジ用のスペーサ
DESCRIPTION OF SYMBOLS 1 Plasma nozzle head 20 Discharge process part 22L Frame member 30a of hot electrode back part Plasmaization space 31 Hot electrode 43 Back part insulation member 49 Insulation space 49a First insulation space part 49b Second insulation space part 50 Conductive member 60 Pulling screw member 63 Push screw member 70 L-shaped spacer 71 First side portion 72 Second side portion 75 Flat spacer 80 Insulation piece 80A Insulation piece 80B for pull screw member Insulation piece 81 for push screw member Back insulation portion 82 Spacer 82A For pull screw Spacer 82B Spacer for set screw

Claims (6)

プロセスガスをプラズマ化空間に通してプラズマ化し、基材が配置されるべき位置へ吹出すプラズマ処理装置において、
前記プラズマ化空間を形成するとともにこのプラズマ化空間から前記基材配置位置へ向かう方向とは直交する方向に延びる電極と、
前記電極のプラズマ化空間を形成する側とは逆側に設けられた金属製のフレーム部材と、
前記電極とフレーム部材の間に介在されるとともに、前記電極の長手方向に間欠的に配置された複数の絶縁性のスペーサと、
を備え、前記スペーサの隣り合うものどうしの間には、前記電極とフレームを絶縁する絶縁空間が形成されていることを特徴とするプラズマ処理装置。
In a plasma processing apparatus in which a process gas is converted into plasma through a plasma generation space and blown out to a position where a substrate is to be disposed,
An electrode that forms the plasmatized space and extends in a direction orthogonal to the direction from the plasmatized space toward the substrate arrangement position;
A metal frame member provided on the side opposite to the side that forms the plasma space of the electrode;
A plurality of insulating spacers interposed between the electrodes and the frame member and intermittently disposed in the longitudinal direction of the electrodes;
And an insulating space for insulating the electrode and the frame is formed between adjacent ones of the spacers.
前記電極と基材配置位置との間に介在され、電気的に接地された導電部材を、更に備え、
前記複数のスペーサの少なくとも一部が、前記電極とフレーム部材の間に介在される第1側部と、前記電極と導電部材の間に介在される第2側部を一体に有して大略L形をなし、
前記電極とフレーム部材の間だけでなく電極と導電部材の間にも絶縁空間が形成されていることを特徴とする請求項1に記載のプラズマ処理装置。
A conductive member interposed between the electrode and the substrate arrangement position and electrically grounded;
At least a part of the plurality of spacers has a first side portion interposed between the electrode and the frame member and a second side portion interposed between the electrode and the conductive member, and is generally L. Shape,
The plasma processing apparatus according to claim 1, wherein an insulating space is formed not only between the electrode and the frame member but also between the electrode and the conductive member.
前記電極と導電部材の間の開口には、これを塞ぐとともに前記プラズマ化空間に連なる吹出し路を形成する吹出し路形成部材が設けられており、前記L形スペーサの第2側部が、前記吹出し路形成部材よりフレーム部材の側に配置されていることを特徴とする請求項2に記載のプラズマ処理装置。   The opening between the electrode and the conductive member is provided with a blow-off path forming member that closes the opening and forms a blow-off path that is continuous with the plasma space, and the second side portion of the L-shaped spacer is connected to the blow-out path. The plasma processing apparatus according to claim 2, wherein the plasma processing apparatus is disposed closer to the frame member than the path forming member. 前記スペーサと同じ長手方向位置には、前記フレーム部材に係着されて電極を押し又は引き可能なネジ部材が配置されていることを特徴とする請求項1〜3の何れかに記載のプラズマ処理装置。   The plasma processing according to any one of claims 1 to 3, wherein a screw member that is engaged with the frame member and can push or pull an electrode is disposed at the same longitudinal position as the spacer. apparatus. 前記電極の前記フレーム部材側を向く背面に、電極の略全長にわたって延びる絶縁性の背部絶縁部材を宛がい、この背部絶縁部材と前記フレーム部材の間に前記スペーサを挟み、これら背部絶縁部材とフレーム部材とスペーサによって前記絶縁空間が画成されていることを特徴とする請求項1〜4の何れかに記載のプラズマ処理装置。   An insulating back insulating member extending over substantially the entire length of the electrode is applied to the back surface of the electrode facing the frame member, and the spacer is sandwiched between the back insulating member and the frame member, and the back insulating member and the frame The plasma processing apparatus according to claim 1, wherein the insulating space is defined by a member and a spacer. 前記電極と前記フレームの間に、複数の絶縁材料からなる絶縁ピースが電極長手方向に並べられており、各絶縁ピースが、電極の背面に宛がわれる背部絶縁部と、この背部絶縁部の背面に凸設された前記スペーサとを一体に含み、複数の絶縁ピースの背部絶縁部が連なることにより前記背部絶縁部材が構成されていることを特徴とする請求項5に記載のプラズマ処理装置。   Insulation pieces made of a plurality of insulating materials are arranged in the longitudinal direction of the electrode between the electrode and the frame, and each insulation piece is directed to the back surface of the electrode, and the back surface of the back insulation portion The plasma processing apparatus according to claim 5, wherein the back insulating member is configured by integrally including the spacer projecting on the back and connecting back insulating portions of a plurality of insulating pieces.
JP2004344779A 2004-07-06 2004-11-29 Plasma processing equipment Expired - Fee Related JP4541114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004344779A JP4541114B2 (en) 2004-07-06 2004-11-29 Plasma processing equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004198777 2004-07-06
JP2004344779A JP4541114B2 (en) 2004-07-06 2004-11-29 Plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2006049262A true JP2006049262A (en) 2006-02-16
JP4541114B2 JP4541114B2 (en) 2010-09-08

Family

ID=36027547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004344779A Expired - Fee Related JP4541114B2 (en) 2004-07-06 2004-11-29 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP4541114B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007323836A (en) * 2006-05-30 2007-12-13 Sekisui Chem Co Ltd Plasma processing device
CN105208761A (en) * 2015-09-11 2015-12-30 大连民族大学 Uniform barometric pressure micro-plasma discharge device with flow equalizing system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01163328U (en) * 1988-04-30 1989-11-14
JPH0577259U (en) * 1992-03-31 1993-10-22 株式会社島津製作所 Vacuum film forming equipment
JPH09246705A (en) * 1996-03-12 1997-09-19 Seiko Epson Corp Electronic part, mounting method thereof and electronic device
JP2001237220A (en) * 2000-02-21 2001-08-31 Seiko Epson Corp Local treatment device
JP2003100646A (en) * 2001-09-27 2003-04-04 Sekisui Chem Co Ltd Electric discharge plasma processing system
JP2004111385A (en) * 2002-08-30 2004-04-08 Sekisui Chem Co Ltd Plasma treatment device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01163328U (en) * 1988-04-30 1989-11-14
JPH0577259U (en) * 1992-03-31 1993-10-22 株式会社島津製作所 Vacuum film forming equipment
JPH09246705A (en) * 1996-03-12 1997-09-19 Seiko Epson Corp Electronic part, mounting method thereof and electronic device
JP2001237220A (en) * 2000-02-21 2001-08-31 Seiko Epson Corp Local treatment device
JP2003100646A (en) * 2001-09-27 2003-04-04 Sekisui Chem Co Ltd Electric discharge plasma processing system
JP2004111385A (en) * 2002-08-30 2004-04-08 Sekisui Chem Co Ltd Plasma treatment device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007323836A (en) * 2006-05-30 2007-12-13 Sekisui Chem Co Ltd Plasma processing device
CN105208761A (en) * 2015-09-11 2015-12-30 大连民族大学 Uniform barometric pressure micro-plasma discharge device with flow equalizing system

Also Published As

Publication number Publication date
JP4541114B2 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
KR101087445B1 (en) Plasma processing apparatus
WO2006043420A1 (en) Plasma generator
JP2006244938A (en) Plasma generator and plasma generating method
CN113179676A (en) Active gas generating device
JP5725993B2 (en) Surface treatment equipment
KR101098083B1 (en) Plasma processing apparatus and method for producing same
JP4541114B2 (en) Plasma processing equipment
KR101254342B1 (en) Plasma generating device
JP2005302681A (en) Plasma processing device
JP4714557B2 (en) Plasma processing equipment
JP4861387B2 (en) Plasma processing equipment
JP4331117B2 (en) Electrode structure of plasma processing equipment
JP3853803B2 (en) Plasma processing apparatus and manufacturing method thereof
JP2008248281A (en) Plasma generator and thin film deposition apparatus using the same
JP2008077857A (en) Utilization method of ion gun and vacuum processing device equipped with ion gun
JP4871028B2 (en) Plasma processing equipment
JP4401928B2 (en) Plasma processing equipment
JP4564874B2 (en) Plasma processing equipment
JP4942360B2 (en) Electrode structure of plasma processing equipment
JP2008257920A (en) Plasma treatment device
JP2008235161A (en) Plasma treatment device
KR20070007621A (en) Ion source section for ion implantation equipment
JP2005243600A (en) Plasma processing apparatus
JP2005243724A (en) Plasma processing apparatus
WO2019054111A1 (en) Ion source, ion injection device and ion source operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100623

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees