JP2006046088A - Steam turbine plant - Google Patents

Steam turbine plant Download PDF

Info

Publication number
JP2006046088A
JP2006046088A JP2004224828A JP2004224828A JP2006046088A JP 2006046088 A JP2006046088 A JP 2006046088A JP 2004224828 A JP2004224828 A JP 2004224828A JP 2004224828 A JP2004224828 A JP 2004224828A JP 2006046088 A JP2006046088 A JP 2006046088A
Authority
JP
Japan
Prior art keywords
pressure turbine
steam
turbine
section
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004224828A
Other languages
Japanese (ja)
Inventor
Katsuya Yamashita
勝也 山下
Yukio Shinozaki
幸雄 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004224828A priority Critical patent/JP2006046088A/en
Publication of JP2006046088A publication Critical patent/JP2006046088A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steam turbine plant having a high-medium-pressure integral type structure which accommodates high-pressure and medium-pressure turbines in a turbine casing, wherein the realization of the high temperature of reheating steam supplied to the medium-pressure turbine is achieved. <P>SOLUTION: In the steam turbine plant which has a high-medium-pressure integral type structure for accommodating a high-pressure turbine part 2 and a medium-pressure turbine part 3 in a turbine casing 1, when steam reversed from an outlet in a high-pressure turbine first stage 9a of a high-pressure turbine part 2 is supplied to wheels 18a, 18b in a medium-pressure turbine first stage 14a in the medium-pressure turbine part 3 through the medium of an intermediate gland part 16 provided so as to straddle the high-pressure turbine nozzle box 5 and the high-pressure and medium-pressure turbine parts 2, 3, a cooling steam supply means 23 for supplying cooling steam to the steam reversed from the outlet in the high-pressure turbine first stage 9a of the high pressure turbine part 2 to be mixed is provided to the intermediate gland part 16. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、蒸気タービンプラントに係り、特に高圧タービンと中圧タービンとを一つのタービンケーシングに収容する高中圧一体型構造にし、高中圧一体型構造のうち、中圧タービンに供給する再熱蒸気の温度を高温化させる構造の蒸気タービンプラントに関する。   The present invention relates to a steam turbine plant, and more particularly, to a high-medium pressure integrated structure in which a high-pressure turbine and an intermediate-pressure turbine are accommodated in a single turbine casing. The present invention relates to a steam turbine plant having a structure for increasing the temperature of the steam generator.

最近の蒸気タービンプラントでは、プラント熱効率のより一層の向上を図るとともに、プラント熱効率のより一層の向上の下、燃料消費を少なくさせ、結果として環境汚染源であるCOガス、SOxガス、NOxガス等の公害ガスの発生量を少なくさせることができる一つの策として計画されている。このため蒸気のより一層の高温化の取り組みが行われている。 In recent steam turbine plants, while further improving the plant thermal efficiency, fuel consumption is reduced under further improvements in plant thermal efficiency, resulting in CO 2 gas, SOx gas, NOx gas, etc. as environmental pollution sources. It is planned as one measure that can reduce the amount of pollutant gas generated. For this reason, efforts have been made to further increase the temperature of steam.

従来、蒸気タービンプラントは、取扱う蒸気の温度が600℃前後であり、このような高温蒸気に対し、蒸気タービンの主要構成要素であるタービンノズル、タービン動翼、タービンロータ等にフェライト系の耐熱鋼を使用し、高い強度を維持させていた。   Conventionally, a steam turbine plant has a steam temperature of about 600 ° C., and for such high-temperature steam, a ferritic heat-resistant steel is used for turbine nozzles, turbine blades, turbine rotors and the like, which are main components of the steam turbine. Used to maintain high strength.

しかし、高温化の下、蒸気温度を650℃以上に増加させた場合、CrMoV鋼や12Cr鋼等のフェライト系の材料では、水蒸気酸化等が現われ、もはや、今までの高い強度維持の保証にも限界をきたし、Ni基合金やCo基合金等のオーステナイト系の材料への変更が検討されている。   However, when the steam temperature is increased to 650 ° C or higher under high temperatures, ferritic materials such as CrMoV steel and 12Cr steel show steam oxidation, which is no longer a guarantee of maintaining high strength. Limitations have been made, and changes to austenitic materials such as Ni-based alloys and Co-based alloys are being studied.

例えば、特開平7−247806号公報(特許文献1)では、高圧タービンの一部分と中圧タービンの一部分とを一つのタービンケーシングに収容する高中圧一体型構造とし、蒸気温度が650℃以上になる高中圧一体型構造の構成要素にオーステナイト系の材料を使用し、残りの蒸気タービンの構成要素に、従来のフェライト系の材料を使用し、温度の高低によってオーステナイト系、フェライト系の各材料を使い分ける提案がなされている。   For example, in Japanese Patent Application Laid-Open No. 7-247806 (Patent Document 1), a high-medium pressure integrated structure in which a part of a high-pressure turbine and a part of an intermediate-pressure turbine are accommodated in one turbine casing, the steam temperature becomes 650 ° C. or higher. Austenitic materials are used for the components of the high-medium pressure integrated structure, conventional ferrite materials are used for the remaining steam turbine components, and austenitic and ferrite materials are used separately depending on the temperature. Proposals have been made.

また、特開2000−282808号公報(特許文献2)では、蒸気タービンの構成要素を分割し、分割した構成要素のうち、温度650℃以上の蒸気を扱う構成要素にオーステナイト系の材料を使用し、蒸気温度が600℃前後の場合、フェライト系の材料を使用する提案がなされている。   JP 2000-282808 A (Patent Document 2) divides the components of the steam turbine and uses austenitic materials for the components that handle steam at a temperature of 650 ° C. or higher among the divided components. When the steam temperature is around 600 ° C., a proposal has been made to use a ferrite-based material.

また、特開2001−82109号公報(特許文献3)では、コンベンショナル(一般的)な蒸気タービンに別置きの高圧タービンを設け、この別置きの高圧タービンにオーステナイト系の材料を使用し、コンベンショナルな蒸気タービンにフェライト系の材料を使用する提案がなされている。
特開平7−247806号公報 特開2000−282808号公報 特開2001−82109号公報
In Japanese Patent Laid-Open No. 2001-82109 (Patent Document 3), a separate high pressure turbine is provided in a conventional (general) steam turbine, and an austenitic material is used for the separate high pressure turbine. Proposals have been made to use ferritic materials for steam turbines.
JP-A-7-247806 JP 2000-282808 A JP 2001-82109 A

特許文献1〜特許文献3は、ともに、蒸気温度が650℃以上の蒸気タービンの構成要素にオーステナイト系の材料を使用し、蒸気温度が600℃前後の蒸気タービンの構成要素に従来からのフェライト系の材料を使用し、蒸気温度の高温化に対処させたものであるが、それでも蒸気温度が650℃以上の蒸気タービンの構成要素にオーステナイト系の材料を使用することにいくつかの不安が残されている。   Patent Documents 1 to 3 both use an austenitic material for a steam turbine component having a steam temperature of 650 ° C. or higher, and a conventional ferrite system for a steam turbine component having a steam temperature of around 600 ° C. However, there are still some concerns about using austenitic materials for components of steam turbines with steam temperatures of 650 ° C or higher. ing.

オーステナイト系の材料は、温度650℃以上の蒸気に対し、充分に高い強度を維持保証ができるものの、熱伝導が小さく、温度差に基づく熱伸びが大きく、高い肉厚の部分に過大な熱応力が発生する。このため、ひび割れ等の心配がある。   Austenitic materials can maintain and guarantee a sufficiently high strength against steam at a temperature of 650 ° C or higher, but have low thermal conductivity, large thermal expansion due to temperature differences, and excessive thermal stress in high-thickness parts. Occurs. For this reason, there is a concern about cracks and the like.

また、オーステナイト系の材料は、製造の際、偏析や巣等の不良部分の発生のおそれがある。このため、製造量に自ずと限界が出、コスト高になる一方、不良部分を考慮すると鍛造化や鋳造化に一抹の不安が残る。   In addition, austenite-based materials may cause segregation and defects such as nests during production. For this reason, the production amount is naturally limited and the cost is increased. On the other hand, when the defective portion is taken into consideration, there is a certain amount of anxiety about forging and casting.

このような、いくつかの問題点を抱えるオーステナイト系の材料を使用することなく従来から使用され、実績の高いフェライト系の材料をそのまま使用して蒸気温度の高温化に充分対処できる技術が、開発途上の中で模索されている。   A technology that can be used to cope with the high steam temperature has been developed without using the austenitic material that has some problems like this. It is being sought on the way.

蒸気温度の高温化への模索中、蒸気タービンプラントを子細に観察、考察してみると、タービン初段落で、タービンノズルボックスから供給され膨張仕事を終えた蒸気の一部が反転し、タービンノズルボックスの外周側から中間グランド部を経て中圧タービンのホイール(タービンディスク)に流れ、タービン動翼のホイール(植込部)を冷却していることが確認されている。   During the search for higher steam temperatures, a detailed observation and discussion of the steam turbine plant revealed that in the first stage of the turbine, a portion of the steam supplied from the turbine nozzle box and finished the expansion work was inverted, and the turbine nozzle It has been confirmed that it flows from the outer peripheral side of the box to the intermediate pressure turbine wheel (turbine disk) through the intermediate ground portion to cool the turbine blade wheel (implanted portion).

この冷却技術を蒸気タービンプラントに取り入れれば、蒸気温度の高温化に充分対処できると考えられる。   If this cooling technology is incorporated into a steam turbine plant, it is considered that the steam temperature can be sufficiently increased.

特に、中圧タービンは、従来から蒸気圧力が比較的低いため、フェライト系の材料の肉厚が薄く、過大な熱応力が発生しにくい構造になっているので、高圧タービンに温度650℃以上の蒸気を供給するよりも、中圧タービンに供給する方が実現性が高いと考えられる。   In particular, since the intermediate pressure turbine has a relatively low steam pressure, the thickness of the ferrite-based material is thin, and it is difficult to generate excessive thermal stress. It is considered more feasible to supply the medium pressure turbine than to supply steam.

本発明は、このような観察、考察に基づいてなされたもので、高圧タービンと中圧タービンとを一つのタービンケーシングに収容して高中圧一体型構造にし、高中圧一体型構造のうち、中圧タービンに冷却技術を取り入れて高い強度を維持、保証させ、供給する蒸気温度の高温化を図る蒸気タービンプラントを提供することを目的とする。   The present invention has been made based on such observations and considerations. The high-pressure turbine and the intermediate-pressure turbine are accommodated in one turbine casing to form a high-medium-pressure integrated structure. An object of the present invention is to provide a steam turbine plant that incorporates a cooling technology into a pressure turbine to maintain and guarantee high strength and to increase the temperature of the supplied steam.

本発明に係る蒸気タービンプラントは、上述の目的を達成するために、請求項1に記載したように、高圧タービン部と中圧タービン部を一つのタービンケーシング内に収容する高中圧一体型構造の蒸気タービンプラントにおいて、前記高圧タービン部の高圧タービン初段落の出口から反転した蒸気を、高圧タービンノズルボックスおよび前記高圧タービン部と前記中圧タービン部とに跨って設けた中間グランド部分を介して前記中圧タービン部における中圧タービン初段落のホイールに供給する際、前記高圧タービン部の高圧タービン初段落の出口から反転した蒸気に冷却蒸気を供給して混合させる冷却蒸気供給手段を前記中間グランド部に設けたものである。   In order to achieve the above object, a steam turbine plant according to the present invention has a high and medium pressure integrated structure in which a high pressure turbine section and an intermediate pressure turbine section are accommodated in one turbine casing as described in claim 1. In the steam turbine plant, the steam reversed from the outlet of the first stage of the high-pressure turbine of the high-pressure turbine section is passed through the high-pressure turbine nozzle box and the intermediate ground portion provided across the high-pressure turbine section and the intermediate-pressure turbine section. When supplying to the wheel of the first stage of the intermediate pressure turbine in the intermediate pressure turbine section, the cooling ground supply means for supplying and mixing the cooling steam to the steam inverted from the outlet of the first stage of the high pressure turbine of the high pressure turbine section is the intermediate ground section Is provided.

また、本発明に係る蒸気タービンプラントは、上述の目的を達成するために、請求項2に記載したように、冷却蒸気供給手段は、冷却蒸気供給管であり、この冷却蒸気供給管を高圧タービン部の高圧タービン段落に設けた抽気管に接続させる構成にしたものである。   Further, in order to achieve the above-mentioned object, the steam turbine plant according to the present invention is the cooling steam supply means as the cooling steam supply pipe as described in claim 2, and the cooling steam supply pipe is connected to the high-pressure turbine. This is configured to be connected to a bleed pipe provided in the high-pressure turbine stage of the section.

また、本発明に係る蒸気タービンプラントは、上述の目的を達成するために、請求項3に記載したように、抽気管は、高圧タービン部の高圧タービン最終段落に設けたものである。   Moreover, in order to achieve the above-described object, the steam turbine plant according to the present invention is provided with a bleed pipe in the final stage of the high-pressure turbine in the high-pressure turbine section.

また、本発明に係る蒸気タービンプラントは、上述の目的を達成するために、請求項4に記載したように、冷却蒸気供給手段は、冷却蒸気供給管であり、この冷却蒸気供給管を高圧タービン部の高圧タービン排気室に設けた低温再熱蒸気管に接続させる構成にしたものである。   In order to achieve the above-mentioned object, the steam turbine plant according to the present invention is the cooling steam supply means, which is a cooling steam supply pipe as described in claim 4, and the cooling steam supply pipe is connected to the high-pressure turbine. It connects with the low-temperature reheat steam pipe provided in the high pressure turbine exhaust chamber of the part.

また、本発明に係る蒸気タービンプラントは、上述の目的を達成するために、請求項5に記載したように、高圧タービン部と中圧タービン部を一つのタービンケーシング内に収容する高中圧一体型構造の蒸気タービンプラントにおいて、前記高圧タービン部の高圧タービン初段落の出口から反転した蒸気を、高圧タービンノズルボックスおよび前記高圧タービン部と前記中圧タービン部とに跨って設けた中間グランド部分を介して前記中圧タービン部における中圧タービン初段落のホイールに供給する際、前記高圧タービン部の高圧タービン初段落の出口から反転した蒸気の一部を抽気する蒸気回収手段を前記中間グランド部に設けるとともに、残りの蒸気に冷却蒸気を供給して混合させる冷却蒸気供給手段を前記中間グランド部に設けたものである。   Moreover, in order to achieve the above-mentioned object, the steam turbine plant according to the present invention is a high and medium pressure integrated type housing a high pressure turbine section and an intermediate pressure turbine section in one turbine casing as described in claim 5. In the steam turbine plant having the structure, the steam reversed from the outlet of the first stage of the high pressure turbine of the high pressure turbine section is provided via a high pressure turbine nozzle box and an intermediate ground portion provided across the high pressure turbine section and the intermediate pressure turbine section. When the intermediate pressure turbine section is supplied to the first-stage wheel of the intermediate-pressure turbine, steam recovery means for extracting a part of the inverted steam from the outlet of the first-stage high-pressure turbine of the high-pressure turbine section is provided in the intermediate ground section. In addition, cooling steam supply means for supplying and mixing cooling steam to the remaining steam is provided in the intermediate ground portion. It is.

また、本発明に係る蒸気タービンプラントは、上述の目的を達成するために、請求項6に記載したように、蒸気回収手段は、蒸気回収管であり、この蒸気回収管を高圧タービン部の高圧タービン段落に設けた抽気管に接続させる構成にしたものである。   In the steam turbine plant according to the present invention, in order to achieve the above-described object, the steam recovery means is a steam recovery pipe, and the steam recovery pipe is used as a high-pressure turbine section high-pressure turbine section. It is configured to be connected to a bleed pipe provided in the turbine stage.

また、本発明に係る蒸気タービンプラントは、上述の目的を達成するために、請求項7に記載したように、蒸気回収手段は、蒸気回収管であり、この蒸気回収管を高圧タービン部の高圧タービン排気室に設けた低温再熱蒸気管に接続させる構成にしたものである。   In order to achieve the above object, the steam turbine plant according to the present invention has a steam recovery pipe as a steam recovery pipe as described in claim 7, and this steam recovery pipe is used as a high pressure turbine section. It is configured to be connected to a low-temperature reheat steam pipe provided in the turbine exhaust chamber.

また、本発明に係る蒸気タービンプラントは、上述の目的を達成するために、請求項8に記載したように、冷却蒸気供給手段は、負荷変動に応じて開閉制御させる冷却蒸気供給用調整弁を備えたものである。   Further, in order to achieve the above-mentioned object, the steam turbine plant according to the present invention includes a cooling steam supply adjusting valve that is controlled to open and close in accordance with load fluctuations. It is provided.

また、本発明に係る蒸気タービンプラントは、上述の目的を達成するために、請求項9に記載したように、蒸気回収手段は、負荷変動に応じて開閉制御させる蒸気回収用調整弁を備えたものである。   Moreover, in order to achieve the above-mentioned object, the steam turbine plant according to the present invention includes, as described in claim 9, the steam recovery means includes a steam recovery adjustment valve that is controlled to open and close in accordance with load fluctuations. Is.

また、本発明に係る蒸気タービンプラントは、上述の目的を達成するために、請求項10に記載したように、高圧タービン部と中圧タービン部を一つのタービンケーシング内に収容する高中圧一体型構造の蒸気タービンプラントにおいて、前記高圧タービン部に設け高圧タービンノズルボックスの外側から前記高圧タービン部と前記中圧タービン部とに跨って設けた中間グランド部分を介して前記中圧タービン部における中圧タービン段落のホイールに冷却蒸気を供給する冷却蒸気供給手段を前記高圧タービンノズルボックスに設けたものである。   Moreover, in order to achieve the above-mentioned object, the steam turbine plant according to the present invention is a high-medium pressure integrated type housing a high-pressure turbine part and an intermediate-pressure turbine part in one turbine casing as described in claim 10. In the steam turbine plant having a structure, the intermediate pressure in the intermediate pressure turbine section is provided through an intermediate ground portion provided across the high pressure turbine section and the intermediate pressure turbine section from outside the high pressure turbine nozzle box provided in the high pressure turbine section. Cooling steam supply means for supplying cooling steam to the wheel of the turbine stage is provided in the high-pressure turbine nozzle box.

また、本発明に係る蒸気タービンプラントは、上述の目的を達成するために、請求項11に記載したように、高圧タービン部と中圧タービン部を一つのタービンケーシング内に収容する高中圧一体型構造の蒸気タービンプラントにおいて、前記高圧タービン部と前記中圧タービン部とに跨って設けた中間グランド部分から前記高圧タービン部に設け高圧タービンノズルボックスと前記中圧タービン部における中圧タービン段落のホイールとのそれぞれに分流させて冷却蒸気を供給する冷却蒸気供給手段を前記中間グランド部に設けたものである。   Moreover, in order to achieve the above-mentioned object, the steam turbine plant according to the present invention is a high-medium-pressure integrated type housing a high-pressure turbine part and an intermediate-pressure turbine part in one turbine casing as described in claim 11. In a steam turbine plant having a structure, a high-pressure turbine nozzle box and a medium-pressure turbine stage wheel in the intermediate-pressure turbine section are provided in the high-pressure turbine section from an intermediate ground portion provided across the high-pressure turbine section and the intermediate-pressure turbine section. And a cooling steam supply means for supplying the cooling steam in a divided manner to each of the first and second intermediate ground portions.

また、本発明に係る蒸気タービンプラントは、上述の目的を達成するために、請求項12に記載したように、冷却蒸気供給手段は、冷却蒸気供給管であり、この冷却蒸気供給管をボイラの過熱器の中間部分に接続させる構成にしたものである。   In order to achieve the above-mentioned object, the steam turbine plant according to the present invention is the cooling steam supply means as described in claim 12, wherein the cooling steam supply pipe is connected to the boiler. It is configured to be connected to the middle part of the superheater.

また、本発明に係る蒸気タービンプラントは、上述の目的を達成するために、請求項13に記載したように、冷却蒸気供給手段は、冷却蒸気供給管であり、この冷却蒸気供給管をボイラの過熱器の入口側に接続させる構成にしたものである。   In order to achieve the above-mentioned object, in the steam turbine plant according to the present invention, the cooling steam supply means is a cooling steam supply pipe, and the cooling steam supply pipe is connected to the boiler. It is configured to be connected to the inlet side of the superheater.

本発明に係る蒸気タービンプラントは、高圧タービン排気を冷却蒸気として中間グランド部を介して中圧タービン部の中圧タービン段落に供給する冷却蒸気供給手段と、高圧タービン部の高圧タービンノズルボックスの外側から中間グラント部に流れる蒸気を回収する蒸気回収手段とを備え、高中圧一体型構造の中圧タービンに温度650℃以上の再熱蒸気を供給しても高い強度保証を維持させて従来から実績の高いフェライト系の材料をそのまま適用してタービン構成要素に適用して中圧タービン部の高温化を図ることができ、高圧タービンノズルボックスの外側を流れる蒸気を有効に回収させることができる。   The steam turbine plant according to the present invention includes a cooling steam supply means for supplying high-pressure turbine exhaust as cooling steam to an intermediate-pressure turbine section through an intermediate gland section, and an outer side of a high-pressure turbine nozzle box of the high-pressure turbine section. With steam recovery means that recovers the steam flowing from the middle to the intermediate grant section, and has a proven record of maintaining high strength even if reheat steam at a temperature of 650 ° C or higher is supplied to a medium-pressure turbine with a high-medium pressure integrated structure. High ferritic material can be applied as it is to turbine components to increase the temperature of the intermediate pressure turbine section, and steam flowing outside the high pressure turbine nozzle box can be effectively recovered.

以下、本発明に係る蒸気タービンプラントの実施形態を図面および図面に付した符号を引用して説明する。   Hereinafter, an embodiment of a steam turbine plant according to the present invention will be described with reference to the drawings and reference numerals attached to the drawings.

図1は、本発明に係る蒸気タービンプラントの第1実施形態を示す一部切欠き、一部破断概略縦断面図である。なお、図1は、上半部分だけを示し、下半部分を省略している。   FIG. 1 is a partially cutaway, partially broken schematic longitudinal sectional view showing a first embodiment of a steam turbine plant according to the present invention. FIG. 1 shows only the upper half portion and omits the lower half portion.

本実施形態に係る蒸気タービンプラントは、一つのタービンケーシング1に高圧タービン部2と中圧タービン部3とを収容する高中圧一体型構造になっている。   The steam turbine plant according to the present embodiment has a high-medium pressure integrated structure in which a high-pressure turbine section 2 and an intermediate-pressure turbine section 3 are accommodated in one turbine casing 1.

高中圧一体型構造のうち、高圧タービン部2は、主蒸気管4に連通させた高圧タービンノズルボックス(蒸気室)5と、タービンロータ6の軸方向に向って配置され、タービンノズル7とタービン動翼8とを組とするタービン段落9と、高圧タービン排気室10とを備え、主蒸気管4を介してボイラ(図示せず)から供給された主蒸気を高圧タービンノズルボックス5に案内し、ここで供給される主蒸気を高圧タービン段落9で膨張仕事をさせて動力を発生させ、膨張仕事を終えた主蒸気の高圧タービン排気を高圧タービン排気室10に案内し、ここからボイラの再熱器(図示せず)に供給する構成になっている。   In the high-medium pressure integrated structure, the high-pressure turbine section 2 is arranged in the axial direction of the high-pressure turbine nozzle box (steam chamber) 5 that communicates with the main steam pipe 4 and the turbine rotor 6. A turbine stage 9 including a moving blade 8 and a high-pressure turbine exhaust chamber 10 are provided, and main steam supplied from a boiler (not shown) via a main steam pipe 4 is guided to a high-pressure turbine nozzle box 5. The main steam supplied here is subjected to expansion work in the high-pressure turbine stage 9 to generate power, and the high-pressure turbine exhaust of the main steam that has finished the expansion work is guided to the high-pressure turbine exhaust chamber 10, from which the boiler is restarted. It is configured to supply to a heater (not shown).

なお、タービン段落9は、多数段を備え、最初(タービンノズルボックス側)をタービンノズル7a、タービン動翼8aを組とする高圧タービン初段落9aと称し、最後(タービン排気室側)をタービンノズル7b、タービン動翼8bを組とする高圧タービン最終段落9bと称する。   The turbine stage 9 includes a plurality of stages. The first (turbine nozzle box side) is referred to as the turbine nozzle 7a and the turbine blade 8a as a set, and the last (turbine exhaust chamber side) is referred to as the turbine nozzle 7a. 7b and the high-pressure turbine final stage 9b including the turbine rotor blade 8b.

また、中圧タービン部3も、高圧タービン部2の構成と同様に、再熱蒸気管10に連通させた中圧タービンノズルボックス11と、タービンロータ6の軸方向に向って配置され、タービンノズル12とタービン動翼13とを組とする中圧タービン段落14と、中圧タービン排気室15とを備え、再熱蒸気管17を介してボイラの再熱器から供給された再熱蒸気を中圧タービンノズルボックス11に案内し、ここで供給される再熱供給を、中圧タービン段落14で膨張仕事をさせて動力を発生させ、膨張仕事を終えた再熱蒸気の中圧タービン排気を中圧タービン排気室15に案内し、ここから低圧タービン(図示せず)に供給する構成になっている。   Similarly to the configuration of the high-pressure turbine unit 2, the intermediate-pressure turbine unit 3 is also disposed in the axial direction of the intermediate-pressure turbine nozzle box 11 communicated with the reheat steam pipe 10 and the turbine rotor 6. 12 and an intermediate pressure turbine stage 14 having a turbine rotor blade 13 as a set, and an intermediate pressure turbine exhaust chamber 15. The reheat steam supplied from the boiler reheater via the reheat steam pipe 17 The reheat supply that is guided to the pressure turbine nozzle box 11 is expanded by the intermediate pressure turbine stage 14 to generate power, and the medium pressure turbine exhaust of the reheat steam that has completed the expansion work is discharged into the medium. The pressure turbine exhaust chamber 15 is guided and supplied to a low pressure turbine (not shown) from here.

なお、中圧タービン段落14は、高圧タービン部2の場合と同様に、多数段を備え、最初をタービンノズル12aとタービン動翼13aを組とする中圧タービン初段落14aと称し、最後をタービンノズル12bとタービン動翼13bを組とするタービン最終段落14bと称する。   As in the case of the high pressure turbine section 2, the intermediate pressure turbine stage 14 includes a plurality of stages, the first being referred to as an intermediate pressure turbine first stage 14 a in which the turbine nozzle 12 a and the turbine rotor blade 13 a are combined, and the last being the turbine. This is referred to as a turbine final stage 14b in which the nozzle 12b and the turbine rotor blade 13b are combined.

一方、高圧タービン部2と中圧タービン部3とにまたがって、中間グランド部16が設けられている。この中間グランド部16は、高圧タービン部2の高圧タービンノズルボックス5から噴出され、高圧タービン初段落9aで膨張仕事を終えた蒸気の一部が反転し、反転後、高圧タービンノズルボックス5の外側を経て流れくる蒸気を減圧させるもので、減圧後の蒸気を中圧タービンノズルボックス11の外側を経て中圧タービン初段落14aや中圧タービン第2段落に設けたホイール18a,18bのバランスホール19a,19bに冷却用として供給する。   On the other hand, an intermediate ground part 16 is provided across the high-pressure turbine part 2 and the intermediate-pressure turbine part 3. This intermediate gland part 16 is ejected from the high-pressure turbine nozzle box 5 of the high-pressure turbine part 2 and part of the steam that has finished the expansion work in the first stage 9a of the high-pressure turbine is inverted. The decompressed steam passes through the outside of the intermediate pressure turbine nozzle box 11 and the balance hole 19a of the wheels 18a, 18b provided in the intermediate pressure turbine first stage 14a and the intermediate pressure turbine second stage. , 19b for cooling.

しかし、ホイール18a,18bのバランスホール19a,19bに供給される冷却用の蒸気は、試算した結果、再熱蒸気管17から中圧タービンノズルボックス11を経て中圧タービン初段落14a等に供給される再熱蒸気の温度の割合には温度が高すぎて冷却用に適していないことがわかった。   However, as a result of the trial calculation, the cooling steam supplied to the balance holes 19a and 19b of the wheels 18a and 18b is supplied from the reheat steam pipe 17 to the intermediate pressure turbine first stage 14a through the intermediate pressure turbine nozzle box 11. It was found that the temperature of the reheated steam is too high to be suitable for cooling.

このため、本実施形態は、高圧タービン部2の高圧タービン排気室10に設けられ、ボイラの再熱器(図示せず)に接続する低温再熱蒸気管20から分岐させ、途中に、負荷変動に応じて開閉制御させる冷却蒸気供給用調整弁21を介装させて中間グランド部16の噴出口22に接続する冷却蒸気供給管23を設けたものである。   For this reason, the present embodiment is provided in the high-pressure turbine exhaust chamber 10 of the high-pressure turbine section 2 and is branched from a low-temperature reheat steam pipe 20 connected to a boiler reheater (not shown). A cooling steam supply pipe 23 that is connected to the jet port 22 of the intermediate gland portion 16 with a cooling steam supply adjusting valve 21 that is controlled to open and close in accordance with is provided.

また、本実施形態は、高圧タービン部2の高圧タービンノズルボックス5の外側から、中間グランド部16に流れてくる蒸気の温度が高いことを考慮して、中間グランド部16の吸込口24に設けられ、途中に、負荷変動に応じて開閉制御させる蒸気回収用調整弁25を介装して低温再熱蒸気管20の逆止弁26の出口側に接続する蒸気回収管27を設けたものである。   Further, in the present embodiment, in consideration of the high temperature of the steam flowing from the outside of the high-pressure turbine nozzle box 5 of the high-pressure turbine unit 2 to the intermediate gland unit 16, the present embodiment is provided at the suction port 24 of the intermediate gland unit 16. In the middle, a steam recovery pipe 27 is provided which is connected to the outlet side of the check valve 26 of the low temperature reheat steam pipe 20 via a steam recovery adjustment valve 25 which is controlled to open and close according to load fluctuations. is there.

ここで、冷却蒸気供給管23に冷却蒸気供給用調整弁21を、また蒸気回収管27に蒸気回収用調整弁25を設けたのは、次の理由に基づく。   Here, the reason why the cooling steam supply adjusting valve 21 is provided in the cooling steam supply pipe 23 and the steam recovery adjusting valve 25 is provided in the steam recovery pipe 27 is as follows.

温度650℃以上の再熱蒸気を中圧タービン部3に供給する高中圧一体型構造の蒸気タービンプラントでは、部分負荷運転時、高圧タービン部2および中圧タービン部3のそれぞれに供給される主蒸気および再熱蒸気は、流量、圧力が減少するものの、温度はほとんど減少しない。例えば、50%負荷運転の場合、主蒸気、再熱蒸気ともに10℃程度の温度しか低下していない。このため、高圧タービン部2の高圧タービンノズルボックス5の外側から中間グランド部16に供給された蒸気の減温幅も著しく少く、中圧タービン部3への冷却としては適しない。   In a steam turbine plant having a high-medium pressure integrated structure that supplies reheat steam having a temperature of 650 ° C. or higher to the intermediate pressure turbine unit 3, main steam supplied to each of the high pressure turbine unit 2 and the intermediate pressure turbine unit 3 during partial load operation. Steam and reheated steam are reduced in flow rate and pressure, but the temperature hardly decreases. For example, in the case of 50% load operation, both the main steam and the reheat steam are reduced only by about 10 ° C. For this reason, the temperature reduction range of the steam supplied from the outside of the high-pressure turbine nozzle box 5 of the high-pressure turbine unit 2 to the intermediate gland unit 16 is extremely small, and is not suitable for cooling the intermediate-pressure turbine unit 3.

本実施形態は、このような事象を考慮したもので、高圧タービンノズルボックス5の外側から中間グランド部16に流れる蒸気の温度が高いとき、冷却蒸気供給用調整弁21および蒸気回収用調整弁25を開閉制御させ、中間グランド部16の吸込口24で高温蒸気をより多く吸込ませ、また、その噴出口22で冷却蒸気をより多く噴出させ、負荷運転の全域にわたって適正な温度にして冷却蒸気をバランスホール19a,19bに供給するので、ホイール18a,18bを良好に冷却させることができる。   The present embodiment considers such an event, and when the temperature of the steam flowing from the outside of the high-pressure turbine nozzle box 5 to the intermediate gland portion 16 is high, the cooling steam supply adjustment valve 21 and the steam recovery adjustment valve 25. The high-temperature steam is sucked in at the suction port 24 of the intermediate gland part 16 and more cooling steam is ejected at the jet port 22 so that the cooling steam is brought to an appropriate temperature over the entire load operation. Since it supplies to balance hole 19a, 19b, wheel 18a, 18b can be cooled favorably.

このように、本実施形態は、高圧タービン排気室10の低温再熱蒸気管20から分岐し、途中で冷却蒸気供給用調整弁21を介装して中間グランド部16の噴出口22に接続する冷却蒸気供給管26と、中間グランド部16の吸込口24から低温再熱蒸気管20に接続し、途中で蒸気回収用調整弁25を介装させた蒸気回収管27を備え、高圧タービン排気室10からの高圧タービン排気を冷却蒸気として中圧タービン部3の中圧タービン初段落14a、タービン第2段落のバランスホール19a,19bに供給し、ホイール18a,18bを冷却させるとともに、高圧タービンノズルボックス5から高圧タービン初段落9aに供給され、膨張仕事を終えた蒸気の一部が反転し、反転蒸気の温度が高いとき、中間グランド部16の吸込口24から吸込んで低温再熱蒸気管20に回収させる構成にしているので、高中圧一体型構造の中圧タービン部3に温度650℃以上の再熱蒸気を供給しても高い強度保証を維持させて従来から高い実績のあるフェライト系の材料をタービンロータ6、タービンノズル12,12a,12b、タービン動翼13,13a,13b等にそのまま適用して、中圧タービン部3の高温化を図ることができ、高圧タービンノズルボックス5からの反転蒸気を有効に回収することができる。   Thus, this embodiment branches from the low-temperature reheat steam pipe 20 of the high-pressure turbine exhaust chamber 10, and is connected to the jet outlet 22 of the intermediate ground portion 16 via the cooling steam supply adjustment valve 21 on the way. A high-pressure turbine exhaust chamber is provided with a cooling steam supply pipe 26 and a steam recovery pipe 27 connected to the low-temperature reheat steam pipe 20 from the suction port 24 of the intermediate gland 16 and a steam recovery adjustment valve 25 in the middle. The high pressure turbine exhaust from 10 is supplied as cooling steam to the medium pressure turbine first stage 14a and the second stage balance holes 19a and 19b of the intermediate pressure turbine section 3 to cool the wheels 18a and 18b, and the high pressure turbine nozzle box When a part of the steam supplied from 5 to the first stage 9a of the high-pressure turbine and finished the expansion work is inverted and the temperature of the inverted steam is high, the suction port 24 of the intermediate gland part 16 The high temperature guarantee is maintained even if reheat steam having a temperature of 650 ° C. or higher is supplied to the medium pressure turbine section 3 having a high and medium pressure integrated structure. It is possible to increase the temperature of the intermediate pressure turbine section 3 by applying a ferritic material having a proven record in the past to the turbine rotor 6, the turbine nozzles 12, 12a, 12b, the turbine blades 13, 13a, 13b, and the like as they are. Inverted steam from the high pressure turbine nozzle box 5 can be effectively recovered.

図2および図3は、本発明に係る蒸気タービンプラントの第2実施形態を示す一部切欠き、一部破断概略縦断面図である。なお、図中、図2は、全体概略縦断面を示し、図3は、図2のA部の部分拡大を示す。   2 and 3 are partially cutaway, partially broken schematic longitudinal sectional views showing a second embodiment of the steam turbine plant according to the present invention. In addition, in the figure, FIG. 2 shows the whole general | schematic longitudinal cross-section, and FIG. 3 shows the partial expansion of the A section of FIG.

本実施形態に係る蒸気タービンプラントは、高圧タービン部2の高圧タービン最終段落9bから給水加熱器(図示せず)に接続する抽気管28を分岐し、途中で冷却蒸気供給用調整弁21を介装して、中間グランド部16の噴出口22に接続する冷却蒸気供給管23と、中間グランド部16の吸込口24から抽気管28の逆止弁26の出口側に接続し、途中で蒸気回収用調整弁25を介装させた蒸気回収管27を備えたものである。   The steam turbine plant according to the present embodiment branches the extraction pipe 28 connected to the feed water heater (not shown) from the high-pressure turbine final stage 9b of the high-pressure turbine section 2 and passes the adjustment valve 21 for cooling steam supply on the way. And connected to the outlet side of the check valve 26 of the extraction pipe 28 from the suction port 24 of the intermediate gland part 16 and the cooling steam supply pipe 23 connected to the jet outlet 22 of the intermediate gland part 16. A steam recovery pipe 27 with a control valve 25 is provided.

なお、他の構成要素は、第1実施形態の構成要素と同一であるから、同一符号を付すにとどめ、重複説明を省略する。   Since the other constituent elements are the same as the constituent elements of the first embodiment, only the same reference numerals are given, and redundant description is omitted.

このような構成を備える高中圧一体型構造の蒸気タービンプラントは、図3に示すように、高圧タービン部2の高圧タービン初段落9aから反転した蒸気を高圧タービンノズルボックス5の外側を経て中間グランド部16に流し、ここで冷却蒸気供給管23から中間グランド部16の噴出口22に噴出する冷却蒸気と合流させ、合流蒸気を中圧タービン部3の中圧タービン初段落14aのバランスホール19aに供給し、ホイール18aを冷却する。なお、高圧タービンノズルボックス5の外側を流れる反転蒸気の温度が高いとき、中間グランド部16の吸込口24を介して蒸気回収管27に回収させる。   As shown in FIG. 3, the steam turbine plant having a high-medium pressure integrated structure having such a configuration has an intermediate ground through the outside of the high-pressure turbine nozzle box 5 with the steam inverted from the high-pressure turbine first stage 9 a of the high-pressure turbine section 2. The combined steam is caused to flow into the balance hole 19a of the intermediate pressure turbine first stage 14a of the intermediate pressure turbine section 3 by flowing into the section 16 where it is combined with the cooling steam ejected from the cooling steam supply pipe 23 to the ejection port 22 of the intermediate ground section 16. Supply and cool the wheel 18a. When the temperature of the reversing steam flowing outside the high-pressure turbine nozzle box 5 is high, the steam recovery pipe 27 collects the reverse steam through the suction port 24 of the intermediate gland portion 16.

このように、本実施形態は、高圧タービン部2の高圧タービン最終段9bの周辺から抽気する抽気蒸気を、中圧タービン部3のホイール18等に冷却蒸気として供給し、ホイール18等を冷却させる構成にしているので、高中圧一体型構造の中圧タービン部3に温度650℃以上の再熱蒸気を供給しても高い強度保証を維持させて、従来から多くの実績のあるフェライト系の材料をタービンロータ6等のタービン構成要素にそのまま適用して中圧タービン部3の高温化を図ることができる。   Thus, this embodiment supplies the extraction steam extracted from the periphery of the high-pressure turbine final stage 9b of the high-pressure turbine section 2 as cooling steam to the wheel 18 or the like of the intermediate-pressure turbine section 3 to cool the wheel 18 or the like. Because of the construction, high strength assurance is maintained even when reheat steam at a temperature of 650 ° C. or higher is supplied to the medium pressure turbine section 3 having a high and medium pressure integrated structure, and a ferritic material that has been proven in the past. Can be applied to turbine components such as the turbine rotor 6 as they are to increase the temperature of the intermediate pressure turbine section 3.

図4および図5は、本発明に係る蒸気タービンプラントの第3実施形態を示す一部切欠き、一部破断概略縦断面図である。なお、図中、図4は、全体概略縦断面を示し、図5は、図4のB部の部分拡大を示す。   4 and 5 are partially cutaway and partially broken schematic longitudinal sectional views showing a third embodiment of the steam turbine plant according to the present invention. 4 shows an overall schematic longitudinal section, and FIG. 5 shows a partial enlargement of a portion B in FIG.

本実施形態に係る蒸気タービンプラントは、ボイラ29の過熱器28の中間部分から高圧タービン部2の高圧タービンノズルボックス5の外周側に接続し、途中に調整弁32を設けた冷却蒸気供給管31を備えたものである。   The steam turbine plant according to the present embodiment is connected to the outer peripheral side of the high-pressure turbine nozzle box 5 of the high-pressure turbine section 2 from an intermediate portion of the superheater 28 of the boiler 29 and is provided with a regulating valve 32 in the middle. It is equipped with.

なお、他の構成要素は、第1実施形態の構成要素と同一であるから、同一符号を付すにとどめ、重複説明を省略する。   Since the other constituent elements are the same as the constituent elements of the first embodiment, only the same reference numerals are given, and redundant description is omitted.

このような構成を備える高中圧一体型構造の蒸気タービンプラントは、ボイラ29の過熱器30の中間部分から抽気した過熱蒸気(この蒸気は過熱器30の入口側から抽気してもよい)を冷却蒸気として冷却蒸気供給管31から、図5に示すように、高圧タービン部2の高圧タービンノズルボックス5に供給し、高圧タービンノズルボックス5を冷却させた後、中間グランド部16を経て中圧タービン部3の中圧タービン初段落14a、中圧タービン第2段落のバランスホール19a,19bに順次供給し、ホイール18a,18bを冷却させる。   The steam turbine plant having a high-medium pressure integrated structure having such a configuration cools superheated steam extracted from an intermediate portion of the superheater 30 of the boiler 29 (this steam may be extracted from the inlet side of the superheater 30). As shown in FIG. 5, the steam is supplied from the cooling steam supply pipe 31 to the high-pressure turbine nozzle box 5 of the high-pressure turbine section 2, and after cooling the high-pressure turbine nozzle box 5, the intermediate-pressure turbine passes through the intermediate gland section 16. The intermediate pressure turbine first stage 14a of the section 3 and the intermediate pressure turbine second stage balance holes 19a and 19b are sequentially supplied to cool the wheels 18a and 18b.

このように、本実施形態は、ボイラ29の過熱器30の中間部分または入口側から抽気した過熱蒸気を冷却蒸気として冷却蒸気供給管31を介して高圧タービン部2の高圧タービンノズルボックス5の外側に供給し、高圧タービンノズルボックス5を冷却後、中間グランド部16を経て中圧タービン部3のホイール18a,18bを順次冷却させる構成にしたので、高中圧一体型構造の中圧タービン部3に温度650℃以上の再熱蒸気を供給しても高い強度保証を維持させて、従来から多くの実績のあるフェライトの材料をタービンロータ6等のタービン構成要素にそのまま適用して中圧タービン部2の高温化を図ることができる。   As described above, in the present embodiment, the superheated steam extracted from the intermediate portion or the inlet side of the superheater 30 of the boiler 29 is used as the cooling steam, and the outside of the high pressure turbine nozzle box 5 of the high pressure turbine section 2 through the cooling steam supply pipe 31. After the high pressure turbine nozzle box 5 is cooled, the wheels 18a and 18b of the intermediate pressure turbine section 3 are sequentially cooled through the intermediate gland section 16, so that the intermediate pressure turbine section 3 having a high and intermediate pressure integrated structure is provided. Even if reheat steam having a temperature of 650 ° C. or higher is supplied, a high strength guarantee is maintained, and a ferritic material having a proven record in the past is applied to turbine components such as the turbine rotor 6 as it is, so that the intermediate pressure turbine section 2 The temperature can be increased.

なお、本実施形態は、ボイラ29の過熱器30から抽気した過熱蒸気を冷却蒸気として高圧タービン部2の高圧タービンノズルボックス5の外側に供給したが、この例に限ることなく、例えば、図6に示すように、ボイラ29の過熱器30の中間部分または入口側からの過熱蒸気を、中間グランド部16の噴出口22から高圧タービン部2の高圧タービンノズルボックス5側と、中圧タービン部3の中圧タービン初段落14aおよび中圧タービン第2段落のそれぞれのホイール18a,18b側とに分流させてもよい。   In the present embodiment, the superheated steam extracted from the superheater 30 of the boiler 29 is supplied as the cooling steam to the outside of the high-pressure turbine nozzle box 5 of the high-pressure turbine section 2, but the present invention is not limited to this example. As shown in FIG. 3, superheated steam from the intermediate part or inlet side of the superheater 30 of the boiler 29 is transferred from the jet port 22 of the intermediate ground part 16 to the high pressure turbine nozzle box 5 side of the high pressure turbine part 2 and the intermediate pressure turbine part 3. The intermediate pressure turbine first stage 14a and the intermediate pressure turbine second stage may be divided into the respective wheels 18a and 18b.

本発明に係る蒸気タービンプラントの第1実施形態を示す一部切欠き、一部破断概略縦断面図。1 is a partially cutaway, partially broken schematic longitudinal sectional view showing a first embodiment of a steam turbine plant according to the present invention. 本発明に係る蒸気タービンプラントの第2実施形態を示す一部切欠き、一部破断概略縦断面図。The partially notched and partially broken schematic longitudinal cross-sectional view which shows 2nd Embodiment of the steam turbine plant which concerns on this invention. 図2のA部の部分拡大図。The elements on larger scale of the A section of FIG. 本発明に係る蒸気タービンプラントの第3実施形態を示す一部切欠き、一部破断概略縦断面図。The partially cutaway and partially broken schematic longitudinal sectional view showing a third embodiment of the steam turbine plant according to the present invention. 図4のB部の部分拡大図。The elements on larger scale of the B section of FIG. 本発明に係る蒸気タービンプラントの第4実施形態を示す一部切欠き、一部破断概略縦断面図。The partially notched and partially broken schematic longitudinal cross-sectional view which shows 4th Embodiment of the steam turbine plant which concerns on this invention.

符号の説明Explanation of symbols

1 タービンケーシング
2 高圧タービン部
3 中圧タービン部
4 主蒸気管
5 高圧タービンノズルボックス
6 タービンロータ
7,7a,7b タービンノズル
8,8a,8b タービン動翼
9 高圧タービン段落
9a 高圧タービン初段落
9b 高圧タービン最終段落
10 高圧タービン排気室
11 中圧タービンノズルボックス
12,12a,12b タービンノズル
13,13a,13b タービン動翼
14 中圧タービン段落
14a 中圧タービン初段落
14b 中圧タービン最終段落
15 中圧タービン排気室
16 中間グランド部
17 再熱蒸気管
18a,18b ホイール
19a,19b バランスホール
20 低温再熱蒸気管
21 冷却蒸気供給用調整弁
22 噴出口
23 冷却蒸気供給管
24 吸込口
25 蒸気回収用調整弁
26 逆止弁
27 蒸気回収管
28 抽気管
29 ボイラ
30 過熱器
31 冷却蒸気供給管
32 調整弁
DESCRIPTION OF SYMBOLS 1 Turbine casing 2 High pressure turbine part 3 Medium pressure turbine part 4 Main steam pipe 5 High pressure turbine nozzle box 6 Turbine rotor 7, 7a, 7b Turbine nozzle 8, 8a, 8b Turbine blade 9 High pressure turbine stage 9a High pressure turbine first stage 9b High pressure Turbine final stage 10 High-pressure turbine exhaust chamber 11 Medium-pressure turbine nozzle box 12, 12a, 12b Turbine nozzles 13, 13a, 13b Turbine blades 14 Medium-pressure turbine stage 14a Intermediate-pressure turbine first stage 14b Intermediate-pressure turbine final stage 15 Medium-pressure turbine Exhaust chamber 16 Intermediate ground portion 17 Reheat steam pipes 18a and 18b Wheels 19a and 19b Balance hole 20 Low temperature reheat steam pipe 21 Cooling steam supply adjustment valve 22 Outlet 23 Cooling steam supply pipe 24 Suction port 25 Steam recovery adjustment valve 26 Check valve 27 Steam recovery pipe 28 Trachea 29 boiler 30 superheater 31 cooling steam supply pipe 32 regulating valve

Claims (13)

高圧タービン部と中圧タービン部を一つのタービンケーシング内に収容する高中圧一体型構造の蒸気タービンプラントにおいて、前記高圧タービン部の高圧タービン初段落の出口から反転した蒸気を、高圧タービンノズルボックスおよび前記高圧タービン部と前記中圧タービン部とに跨って設けた中間グランド部分を介して前記中圧タービン部における中圧タービン初段落のホイールに供給する際、前記高圧タービン部の高圧タービン初段落の出口から反転した蒸気に冷却蒸気を供給して混合させる冷却蒸気供給手段を前記中間グランド部に設けたことを特徴とする蒸気タービンプラント。 In a steam turbine plant having a high-medium pressure integrated structure in which a high-pressure turbine section and an intermediate-pressure turbine section are accommodated in a single turbine casing, steam reversed from the outlet of the first stage of the high-pressure turbine of the high-pressure turbine section is supplied to a high-pressure turbine nozzle box and When supplying to the wheel of the first stage of the intermediate pressure turbine in the intermediate pressure turbine section through the intermediate ground portion provided across the high pressure turbine section and the intermediate pressure turbine section, the first stage of the high pressure turbine of the high pressure turbine section A steam turbine plant characterized in that a cooling steam supply means for supplying and mixing cooling steam to the inverted steam from the outlet is provided in the intermediate ground portion. 冷却蒸気供給手段は、冷却蒸気供給管であり、この冷却蒸気供給管を高圧タービン部の高圧タービン段落に設けた抽気管に接続させる構成にしたことを特徴とする請求項1記載の蒸気タービンプラント。 2. The steam turbine plant according to claim 1, wherein the cooling steam supply means is a cooling steam supply pipe, and the cooling steam supply pipe is connected to an extraction pipe provided in a high-pressure turbine stage of the high-pressure turbine section. . 抽気管は、高圧タービン部の高圧タービン最終段落に設けたことを特徴とする請求項2記載の蒸気タービンプラント。 The steam turbine plant according to claim 2, wherein the extraction pipe is provided in a final stage of the high-pressure turbine in the high-pressure turbine section. 冷却蒸気供給手段は、冷却蒸気供給管であり、この冷却蒸気供給管を高圧タービン部の高圧タービン排気室に設けた低温再熱蒸気管に接続させる構成にしたことを特徴とする請求項1記載の蒸気タービンプラント。 The cooling steam supply means is a cooling steam supply pipe, and the cooling steam supply pipe is connected to a low temperature reheat steam pipe provided in a high pressure turbine exhaust chamber of the high pressure turbine section. Steam turbine plant. 高圧タービン部と中圧タービン部を一つのタービンケーシング内に収容する高中圧一体型構造の蒸気タービンプラントにおいて、前記高圧タービン部の高圧タービン初段落の出口から反転した蒸気を、高圧タービンノズルボックスおよび前記高圧タービン部と前記中圧タービン部とに跨って設けた中間グランド部分を介して前記中圧タービン部における中圧タービン初段落のホイールに供給する際、前記高圧タービン部の高圧タービン初段落の出口から反転した蒸気の一部を抽気する蒸気回収手段を前記中間グランド部に設けるとともに、残りの蒸気に冷却蒸気を供給して混合させる冷却蒸気供給手段を前記中間グランド部に設けたことを特徴とする蒸気タービンプラント。 In a steam turbine plant having a high-medium pressure integrated structure in which a high-pressure turbine section and an intermediate-pressure turbine section are accommodated in a single turbine casing, steam reversed from the outlet of the first stage of the high-pressure turbine of the high-pressure turbine section is supplied to a high-pressure turbine nozzle box and When supplying to the wheel of the first stage of the intermediate pressure turbine in the intermediate pressure turbine section through the intermediate ground portion provided across the high pressure turbine section and the intermediate pressure turbine section, the first stage of the high pressure turbine of the high pressure turbine section A steam recovery means for extracting a part of the steam inverted from the outlet is provided in the intermediate gland part, and a cooling steam supply means for supplying and mixing the cooling steam to the remaining steam is provided in the intermediate gland part. A steam turbine plant. 蒸気回収手段は、蒸気回収管であり、この蒸気回収管を高圧タービン部の高圧タービン段落に設けた抽気管に接続させる構成にしたことを特徴とする請求項5記載の蒸気タービンプラント。 6. The steam turbine plant according to claim 5, wherein the steam recovery means is a steam recovery pipe, and the steam recovery pipe is connected to an extraction pipe provided in a high-pressure turbine stage of the high-pressure turbine section. 蒸気回収手段は、蒸気回収管であり、この蒸気回収管を高圧タービン部の高圧タービン排気室に設けた低温再熱蒸気管に接続させる構成にしたことを特徴とする請求項5記載の蒸気タービンプラント。 6. The steam turbine according to claim 5, wherein the steam recovery means is a steam recovery pipe, and the steam recovery pipe is connected to a low temperature reheat steam pipe provided in a high pressure turbine exhaust chamber of the high pressure turbine section. plant. 冷却蒸気供給手段は、負荷変動に応じて開閉制御させる冷却蒸気供給用調整弁を備えたことを特徴とする請求項1記載の蒸気タービンプラント。 The steam turbine plant according to claim 1, wherein the cooling steam supply means includes a cooling steam supply adjusting valve that is controlled to open and close in accordance with load fluctuations. 蒸気回収手段は、負荷変動に応じて開閉制御させる蒸気回収用調整弁を備えたことを特徴とする請求項5記載の蒸気タービンプラント。 The steam turbine plant according to claim 5, wherein the steam recovery means includes a steam recovery adjustment valve that is controlled to open and close in accordance with a load fluctuation. 高圧タービン部と中圧タービン部を一つのタービンケーシング内に収容する高中圧一体型構造の蒸気タービンプラントにおいて、前記高圧タービン部に設け高圧タービンノズルボックスの外側から前記高圧タービン部と前記中圧タービン部とに跨って設けた中間グランド部分を介して前記中圧タービン部における中圧タービン段落のホイールに冷却蒸気を供給する冷却蒸気供給手段を前記高圧タービンノズルボックスに設けたことを特徴とする蒸気タービンプラント。 In a steam turbine plant having a high and intermediate pressure integrated structure in which a high pressure turbine section and an intermediate pressure turbine section are accommodated in one turbine casing, the high pressure turbine section and the intermediate pressure turbine are provided from the outside of the high pressure turbine nozzle box provided in the high pressure turbine section. The high-pressure turbine nozzle box is provided with cooling steam supply means for supplying cooling steam to a wheel of an intermediate-pressure turbine stage in the intermediate-pressure turbine section through an intermediate ground portion provided across the section. Turbine plant. 高圧タービン部と中圧タービン部を一つのタービンケーシング内に収容する高中圧一体型構造の蒸気タービンプラントにおいて、前記高圧タービン部と前記中圧タービン部とに跨って設けた中間グランド部分から前記高圧タービン部に設け高圧タービンノズルボックスと前記中圧タービン部における中圧タービン段落のホイールとのそれぞれに分流させて冷却蒸気を供給する冷却蒸気供給手段を前記中間グランド部に設けたことを特徴とする蒸気タービンプラント。 In a steam turbine plant having a high-medium pressure integrated structure in which a high-pressure turbine portion and an intermediate-pressure turbine portion are accommodated in a single turbine casing, the high-pressure turbine portion and the intermediate-pressure turbine portion are provided with the high-pressure from an intermediate ground portion provided across the high-pressure turbine portion and the intermediate-pressure turbine portion. Cooling steam supply means for supplying cooling steam by diverting to each of the high pressure turbine nozzle box provided in the turbine section and the wheel of the intermediate pressure turbine stage in the intermediate pressure turbine section is provided in the intermediate ground section. Steam turbine plant. 冷却蒸気供給手段は、冷却蒸気供給管であり、この冷却蒸気供給管をボイラの過熱器の中間部分に接続させる構成にしたことを特徴とする請求項10または11記載の蒸気タービンプラント。 The steam turbine plant according to claim 10 or 11, wherein the cooling steam supply means is a cooling steam supply pipe, and the cooling steam supply pipe is connected to an intermediate portion of a superheater of the boiler. 冷却蒸気供給手段は、冷却蒸気供給管であり、この冷却蒸気供給管をボイラの過熱器の入口側に接続させる構成にしたことを特徴とする請求項10または11記載の蒸気タービンプラント。 The steam turbine plant according to claim 10 or 11, wherein the cooling steam supply means is a cooling steam supply pipe, and the cooling steam supply pipe is connected to an inlet side of a superheater of the boiler.
JP2004224828A 2004-07-30 2004-07-30 Steam turbine plant Pending JP2006046088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004224828A JP2006046088A (en) 2004-07-30 2004-07-30 Steam turbine plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004224828A JP2006046088A (en) 2004-07-30 2004-07-30 Steam turbine plant

Publications (1)

Publication Number Publication Date
JP2006046088A true JP2006046088A (en) 2006-02-16

Family

ID=36024977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004224828A Pending JP2006046088A (en) 2004-07-30 2004-07-30 Steam turbine plant

Country Status (1)

Country Link
JP (1) JP2006046088A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009057966A (en) * 2007-08-29 2009-03-19 General Electric Co <Ge> Method and device for cooling steam turbine constituent element
JP2010038101A (en) * 2008-08-07 2010-02-18 Toshiba Corp Steam turbine and steam turbine plant system
WO2010097983A1 (en) * 2009-02-25 2010-09-02 三菱重工業株式会社 Method and device for cooling steam turbine generating equipment
CN102695850A (en) * 2009-12-21 2012-09-26 三菱重工业株式会社 Cooling method and device in single-flow turbine
JP2017525887A (en) * 2014-08-20 2017-09-07 シーメンス アクティエンゲゼルシャフト Steam turbine and method of operating steam turbine
KR20190102366A (en) 2018-02-26 2019-09-04 미르산업 주식회사 Electrofusion type socket

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5881301U (en) * 1981-11-30 1983-06-02 株式会社東芝 Steam turbine cooling system
JPS58187501A (en) * 1982-04-28 1983-11-01 Toshiba Corp Cooling device for rotor of steam turbine
JPS6388209A (en) * 1986-09-30 1988-04-19 Toshiba Corp Cooling device for super-high temperature/high pressure turbine
JPS63186905A (en) * 1987-01-27 1988-08-02 Toshiba Corp Rotor cooling device of reheat turbine
JPH01113101U (en) * 1988-01-27 1989-07-31
JPH09250306A (en) * 1996-03-12 1997-09-22 Toshiba Corp Cooling device of steam turbine
JPH11350914A (en) * 1998-06-05 1999-12-21 Mitsubishi Heavy Ind Ltd Outer casing cooling structure of steam turbine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5881301U (en) * 1981-11-30 1983-06-02 株式会社東芝 Steam turbine cooling system
JPS58187501A (en) * 1982-04-28 1983-11-01 Toshiba Corp Cooling device for rotor of steam turbine
JPS6388209A (en) * 1986-09-30 1988-04-19 Toshiba Corp Cooling device for super-high temperature/high pressure turbine
JPS63186905A (en) * 1987-01-27 1988-08-02 Toshiba Corp Rotor cooling device of reheat turbine
JPH01113101U (en) * 1988-01-27 1989-07-31
JPH09250306A (en) * 1996-03-12 1997-09-22 Toshiba Corp Cooling device of steam turbine
JPH11350914A (en) * 1998-06-05 1999-12-21 Mitsubishi Heavy Ind Ltd Outer casing cooling structure of steam turbine

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009057966A (en) * 2007-08-29 2009-03-19 General Electric Co <Ge> Method and device for cooling steam turbine constituent element
US8424281B2 (en) 2007-08-29 2013-04-23 General Electric Company Method and apparatus for facilitating cooling of a steam turbine component
JP2010038101A (en) * 2008-08-07 2010-02-18 Toshiba Corp Steam turbine and steam turbine plant system
US8858158B2 (en) 2008-08-07 2014-10-14 Kabushiki Kaisha Toshiba Steam turbine and steam turbine plant system
CN102325964A (en) * 2009-02-25 2012-01-18 三菱重工业株式会社 Method and device for cooling steam turbine generating equipment
EP3054111A1 (en) * 2009-02-25 2016-08-10 Mitsubishi Hitachi Power Systems, Ltd. Method and device for cooling steam turbine generating equipment
JP5294356B2 (en) * 2009-02-25 2013-09-18 三菱重工業株式会社 Method and apparatus for cooling steam turbine power generation facility
JP2013209989A (en) * 2009-02-25 2013-10-10 Mitsubishi Heavy Ind Ltd Method and device for cooling steam turbine power generation facility
KR101318487B1 (en) * 2009-02-25 2013-10-16 미츠비시 쥬고교 가부시키가이샤 Method and device for cooling steam turbine generating equipment
WO2010097983A1 (en) * 2009-02-25 2010-09-02 三菱重工業株式会社 Method and device for cooling steam turbine generating equipment
EP2402565A4 (en) * 2009-02-25 2015-06-03 Mitsubishi Hitachi Power Sys Method and device for cooling steam turbine generating equipment
US9074480B2 (en) 2009-02-25 2015-07-07 Mitsubishi Hitachi Power Systems, Ltd. Method and device for cooling steam turbine generating facility
US9759091B2 (en) 2009-02-25 2017-09-12 Mitsubishi Hitachi Power Systems, Ltd. Method and device for cooling steam turbine generating facility
CN102695850A (en) * 2009-12-21 2012-09-26 三菱重工业株式会社 Cooling method and device in single-flow turbine
CN102695850B (en) * 2009-12-21 2015-10-21 三菱日立电力系统株式会社 The cooling means of single-flow turbine and device
US9085993B2 (en) 2009-12-21 2015-07-21 Mitsubishi Hitachi Power Systems, Ltd. Cooling method and cooling device for a single-flow turbine
JP2017525887A (en) * 2014-08-20 2017-09-07 シーメンス アクティエンゲゼルシャフト Steam turbine and method of operating steam turbine
US10436030B2 (en) 2014-08-20 2019-10-08 Siemens Aktiengesellschaft Steam turbine and method for operating a steam turbine
KR20190102366A (en) 2018-02-26 2019-09-04 미르산업 주식회사 Electrofusion type socket

Similar Documents

Publication Publication Date Title
JP5317833B2 (en) Steam turbine power generation equipment
US8424281B2 (en) Method and apparatus for facilitating cooling of a steam turbine component
JP2008248822A (en) Thermal power plant
JP2007291966A (en) Steam turbine and turbine rotor
JP2011085133A (en) Reheat gas turbine
US20070065273A1 (en) Methods and apparatus for double flow turbine first stage cooling
Sasaki et al. Development of turbine and combustor for a semi-closed recuperated Brayton cycle of supercritical carbon dioxide
Retzlaff et al. Steam turbines for ultrasupercritical power plants
JP2006046088A (en) Steam turbine plant
US20110179792A1 (en) Steam power unit
US6851265B2 (en) Steam cooling control for a combined cycle power plant
JP4509759B2 (en) Steam turbine overload operation apparatus and steam turbine overload operation method
JP2005315122A (en) Steam turbine
JPH074210A (en) Steam-cooled gas turbine combined plant
EP2752566B1 (en) Gas turbine cooling system, and gas turbine cooling method
CN110925036B (en) Low-pressure cylinder flexible output cooling system under steam extraction heat supply working condition and operation method thereof
JP4488787B2 (en) Steam turbine plant and method for cooling intermediate pressure turbine thereof
JP2010249050A (en) Steam turbine and steam turbine installation
Sanz et al. Qualitative and quantitative comparison of two promising oxy-fuel power cycles for CO2 capture
JP2004324513A (en) Combined cycle power generation plant and its starting method
JP2006097544A (en) Steam turbine plant and cooling method of steam turbine plant
JP2000282805A (en) Steam turbine equipment
JP4074208B2 (en) Steam turbine power plant
JPH10339109A (en) Multi-shaft combined cycle power generation plant
JP4304006B2 (en) Steam turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130