JP2004324513A - Combined cycle power generation plant and its starting method - Google Patents

Combined cycle power generation plant and its starting method Download PDF

Info

Publication number
JP2004324513A
JP2004324513A JP2003119666A JP2003119666A JP2004324513A JP 2004324513 A JP2004324513 A JP 2004324513A JP 2003119666 A JP2003119666 A JP 2003119666A JP 2003119666 A JP2003119666 A JP 2003119666A JP 2004324513 A JP2004324513 A JP 2004324513A
Authority
JP
Japan
Prior art keywords
steam
main steam
temperature
reheat
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003119666A
Other languages
Japanese (ja)
Other versions
JP4481586B2 (en
Inventor
Shoichiro Fujioka
昭一郎 藤岡
Yoshiaki Sakai
義明 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003119666A priority Critical patent/JP4481586B2/en
Publication of JP2004324513A publication Critical patent/JP2004324513A/en
Application granted granted Critical
Publication of JP4481586B2 publication Critical patent/JP4481586B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Abstract

<P>PROBLEM TO BE SOLVED: To restrain a vain thermal energy consumption by reducing a starting operation time till each temperature of main steam and reheat steam generated from one train becomes respectively equal to each temperature of a main steam and reheat steam generated from the other train when the one train is in operation and the other train is made to start actuating. <P>SOLUTION: This combined power generation plant is constituted such that a steam turbine plant 3 is combined to the plurality of trains constituted by gas turbine plants 1a, 1b and exhaust heat recovery boilers 2a, 2b. Among the plurality of trains, a second main steam desuperheater 41b for connecting a second high pressure superheater 9b of the second exhaust heat recovery boiler 2b in the second train B<SB>0</SB>to a first main steam system, a first high temperature reheated steam desuperheater 50a for connecting a first reheater 10a of the first exhaust heat recovery boiler in the first train to an intermediate pressure turbine 23, and a second high pressure reheated steam desuperheater 50b in the second train are provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、コンバインドサイクル発電プラントのうち、ガスタービンプラントと排熱回収ボイラとで構成する系列を複数系列にし、この複数系列に対し、蒸気タービンプラントを別軸として組み合わせたコンバインドサイクル発電プラントおよびその起動方法に関する。
【0002】
【従来の技術】
最近の火力発電プラントでは、プラント熱効率のより一層の向上を図るため、ガスタービンプラントと排熱回収ボイラとで構成する系列を複数系列にし、この複数系列に対し、1台の蒸気タービンプラントを別軸として組み合わせた、いわゆる多軸コンバインドサイクル発電プラントが出現している。
【0003】
この多軸コンバインドサイクル発電プラントは、蒸気タービンプラントを主体に置き、蒸気タービンプラントの持つ大容量化(高出力化)を巧みに利用するものであり、容量が大きくなっている分だけ定格運転時のプラント熱効率がガスタービンと蒸気タービンとを軸結合させた、いわゆる一軸タイプに較べて高く、有利になっている。
【0004】
このように、定格運転時のプラント熱効率が一軸タイプに較べて高い多軸コンバインドサイクル発電プラントでも、より一層のプラント熱効率の向上を求めてガスタービン入口燃焼ガス温度の高温化が図られている。このガスタービン入口燃焼ガス温度の高温化に対処して多軸コンバインドサイクル発電プラントでは、構成部品の強度保証の点から蒸気による冷却が試行錯誤を繰り返しながら進められており、例えば、特開平10−339109号公報(特許文献1)、特開平11−62515号公報(特許文献2)等、数多くの発明が開示されている。
【0005】
【特許文献1】
特開平10−339109号公報
【0006】
【特許文献2】
特開平11−62515号公報
【0007】
【発明が解決しようとする課題】
多軸コンバインドサイクル発電プラントは、上述の特許公報に開示されているように、蒸気冷却技術の進展に伴ってガスタービン入口燃焼ガスの高温化を図り、プラント熱効率をより一層向上させることができるものの、それでも幾つかの問題を抱えており、その1つに第1系列の排熱回収ボイラから発生した主蒸気および再熱蒸気のそれぞれに第2系列の排熱回収ボイラから発生した主蒸気および再熱蒸気のそれぞれを合流させて蒸気タービンプラントに供給する際、主蒸気温度の等温化および再熱蒸気温度の等温化がある。
【0008】
従来、例えば、第1系列が運転中であり、第2系列が起動運転または再起動運転に入る場合、多軸コンバインドサイクル発電プラントは、第1系列の排熱回収ボイラから発生する主蒸気および再熱蒸気のそれぞれと、第2系列の排熱回収ボイラから発生する主蒸気および再熱蒸気のそれぞれとの間の温度差が大きいと、各機器に過大な熱応力を発生させ、強度低下等の要因になることを考慮して第1系列の負荷(出力)を強制的に低下して待機させ、第2系列の排熱回収ボイラから発生する主蒸気および再熱蒸気のそれぞれの温度が予め定められた温度差の範囲に収まったとき、第1系列の排熱回収ボイラから発生した主蒸気および再熱蒸気のそれぞれと第2系列の排熱回収ボイラから発生した主蒸気および再熱蒸気のそれぞれとを合流させて蒸気タービンプラントに供給していた。
【0009】
しかし、このような運転手法は、第1系列から発生する主蒸気および再熱蒸気のそれぞれの温度を、第2系列から発生する主蒸気および再熱蒸気のそれぞれの温度とに合わせる場合に、長時間を要するとともに無駄な熱エネルギを消費する等の不都合があった。
【0010】
また、第1系列から発生する主蒸気および再熱蒸気のそれぞれの温度を第2系列から発生する主蒸気および再熱蒸気のそれぞれの温度に合わせるために、第1系列の負荷を低下して待機させておくことは、その分だけ熱エネルギを無駄に消費することになり、結局、プラント熱効率低下の要因にもなっていた。
【0011】
このため、多軸コンバインドサイクル発電プラントでは、例えば、第1系列運転中に、例えば、第2系列に起動または再起動運転を開始させる場合、第1系列から発生する主蒸気温度および再熱蒸気温度のそれぞれと、第2系列から発生する主蒸気温度および再熱蒸気温度のそれぞれとが同温になるまでの運転時間をより一層短くする何らかの新たな改善が求められていた。
【0012】
本発明は、このような事情に基づいてなされたもので、一方の系列が運転中で、他方の系列が起動する場合、一方の系列から発生する主蒸気および再熱蒸気のそれぞれの温度と、他方の系列から発生する主蒸気および再熱蒸気のそれぞれの温度とが同温になるまでの運転時間をより一層短くして無駄な熱エネルギの消費を抑制するコンバインドサイクル発電プラントおよびその起動方法を提案することを目的とする。
【0013】
【課題を解決するための手段】
本発明に係るコンバインドサイクル発電プラントは、上述の目的を達成するために、請求項1に記載したように、ガスタービンプラントと排熱回収ボイラとで構成する系列を複数系列にして備え、これら複数系列に蒸気タービンプラントを組み合わせたコンバインドサイクル発電プラントにおいて、前記複数系列のうち、第1系列における第1排熱回収ボイラの第1高圧過熱器を前記蒸気タービンプラントの高圧蒸気タービンに接続させる第1主蒸気系に設けた第1主蒸気減温器と、前記複数系列のうち、第2系列における第2排熱回収ボイラの第2高圧過熱器を前記第1主蒸気系に接続させる第2主蒸気系に設けた第2主蒸気減温器と、前記第1系列における第1排熱回収ボイラの第1再熱器を前記蒸気タービンプラントの中圧蒸気タービンに接続させる第1高温再熱系に設けた第1高温再熱蒸気減温器と、前記第2系列における第2排熱回収ボイラの第2再熱器を前記第1高温再熱系に接続させる第2高温再熱系に設けた第2高温再熱蒸気減温器とを備えたものである。
【0014】
また、本発明に係るコンバインドサイクル発電プラントは、上述の目的を達成するために、請求項2に記載したように、第1主蒸気減温器は、第1排熱回収ボイラの第1高圧給水系に接続する第1主蒸気減温系を設けるとともに、この第1主蒸気減温系に第1主蒸気減温調節弁を備えたものである。
【0015】
また、本発明に係るコンバインドサイクル発電プラントは、上述の目的を達成するために、請求項3に記載したように、第2主蒸気減温器は、第2排熱回収ボイラの第2高圧給水系に接続する第2主蒸気減温系を設けるとともに、この第2主蒸気減温系に第2主蒸気減温調節弁を備えたものである。
【0016】
また、本発明に係るコンバインドサイクル発電プラントは、上述の目的を達成するために、請求項4に記載したように、第1高温再熱蒸気減温器は、第1排熱回収ボイラの第1高圧給水系に接続する第1主蒸気減温系から分岐して第1高温再熱蒸気減温系を設けるとともに、この第1高温再熱蒸気減温系に第1高温再熱蒸気減温調節弁を備えたものである。
【0017】
また、本発明に係るコンバインドサイクル発電プラントは、上述の目的を達成するために、請求項5に記載したように、第2高温再熱蒸気減温器、第2排熱回収ボイラの第2高圧給水系に接続する第2主蒸気減温系から分岐して第2高温再熱蒸気減温系を設けるとともに、この第2高温再熱蒸気減温系に第2高温再熱蒸気減温調節弁を備えたものである。
【0018】
また、本発明に係るコンバインドサイクル発電プラントは、上述の目的を達成するために、請求項6に記載したように、第1主蒸気減温調節弁は、第1主蒸気系を流れる主蒸気の温度と、前記第1主蒸気系を流れる主蒸気と第2主蒸気系を流れる主蒸気との合流主蒸気の温度とに基づいて弁開閉信号を演算する第1主蒸気制御装置を備えたものである。
【0019】
また、本発明に係るコンバインドサイクル発電プラントは、上述の目的を達成するために、請求項7に記載したように、第2主蒸気減温調節弁は、第2主蒸気系を流れる主蒸気の温度と、前記第2主蒸気系を流れる主蒸気と第1主蒸気系を流れる主蒸気との合流主蒸気の温度とに基づいて弁開閉信号を演算する第2主蒸気制御装置を備えたものである。
【0020】
また、本発明に係るコンバインドサイクル発電プラントは、上述の目的を達成するために、請求項8に記載したように、第1高温再熱蒸気減温調節弁は、第1高温再熱系を流れる高温再熱蒸気と、前記第1高温再熱系を流れる高温再熱蒸気と第2高温再熱系を流れる高温再熱蒸気との合流再熱蒸気の温度とに基づいて弁開閉信号を演算する第1高温再熱蒸気制御装置を備えたものである。
【0021】
また、本発明に係るコンバインドサイクル発電プラントは、上述の目的を達成するために、請求項9に記載したように、第2高温再熱蒸気減温調節弁は、第2高温再熱系を流れる高温再熱蒸気と、前記第2高温再熱系を流れる高温再熱蒸気と第1高温再熱系を流れる高温再熱蒸気との合流再熱蒸気の温度とに基づいて弁開閉信号を演算する第2高温再熱蒸気制御装置を備えたものである。
【0022】
また、本発明に係るコンバインドサイクル発電プラントの起動方法は、上述の目的を達成するために、請求項10に記載したように、ガスタービンプラントと排熱回収ボイラとで構成する系列を複数系列にして備え、これら複数系列に蒸気タービンプラントを組み合わせるとともに、前記複数系列のうち、第1系列が運転中で、第2系列を起動させるコンバインドサイクル発電プラントの起動方法において、前記第1系列における第1排熱回収ボイラの第1高圧過熱器からの主蒸気に、前記第2系列における第2排熱回収ボイラの第2高圧過熱器からの主蒸気を合流させて前記蒸気タービンプラントの高圧蒸気タービンに供給する一方、前記第1系列における前記第1排熱回収ボイラの第1再熱器からの高温再熱蒸気に、前記第2系列における前記第2排熱回収ボイラの第2再熱器からの高温再熱蒸気を合流させて前記蒸気タービンプラントの中圧蒸気タービンに供給するとき、前記第1高圧過熱器の下流側に設けた第1主蒸気減温器に冷却媒体を供給し、前記第1主蒸気減温器からの主蒸気と、前記第1主蒸気減温器からの主蒸気と前記第2高圧過熱器からの主蒸気との合流主蒸気の温度差が予め定められた温度差の範囲に入ったとき、前記第1主蒸気減温器に供給する冷却媒体を断つとともに、前記第1再熱器の下流側に設けた第1高温再熱蒸気減温器に冷却媒体を供給し、前記第1高温再熱蒸気減温器からの高温再熱蒸気と、前記第1高温再熱蒸気減温器からの高温再熱蒸気と前記第2再熱器からの高温再熱蒸気との合流再熱蒸気の温度差とが予め定められた温度差の範囲に入ったとき、前記第1高温再熱蒸気減温器に供給する冷却媒体を断つ方法である。
【0023】
【発明の実施の形態】
以下、本発明に係るコンバインドサイクル発電プラントおよびその起動方法の実施形態を図面および図面に付した符号を引用して説明する。
【0024】
図1は、本発明に係るコンバインドサイクル発電プラントおよびその起動方法を多軸型に適用した実施形態を示す概略系統図である。
【0025】
なお、本実施形態に係るコンバインドサイクル発電プラントは、蒸気タービンプラントを、ガスタービンプラントおよび排熱回収ボイラで構成する系列に組み合わせた例示として表わしている。
【0026】
本実施形態に係るコンバインドサイクル発電プラントは、第1ガスタービンプラント1aと、第1排熱回収ボイラ2aを備える第1系列Aと、第1系列Aから切り離して別軸とする蒸気タービンプラント3と、さらに蒸気タービンプラント3から切り離して別軸とする第2ガスタービンプラント1bと、第2排熱回収ボイラ2bとを備える第2系列Bとで構成される。
【0027】
第1ガスタービンプラント1aは、発電機4a、空気圧縮機5a、ガスタービン燃焼器6a、ガスタービン7aを備え、空気圧縮機5aで吸い込んだ空気を圧縮して高圧化し、その高圧空気をガスタービン燃焼器6aに供給し、ここで高圧空気とともに燃料を加えて燃焼ガスを生成し、その燃焼ガスをガスタービン7aに供給して膨張仕事をさせ、その際に発生する動力で発電機4aを回転駆動するとともに、膨張仕事を終えたガスタービン排気(排熱)を第1排熱回収ボイラ2aに供給し、蒸気発生の熱源として使用している。
【0028】
なお、第2ガスタービンプラント1bは、各構成部品が第1ガスタービンプラント1aのそれと同一なので、部品に同一番号を付した部品番号に添字bを付し、その重複説明を省略する。
【0029】
また、第1排熱回収ボイラ2aは、例えば横長筒状のケーシング8a内を流れるガスタービン7aからの排ガスの流れに沿って順に、第1高圧過熱器9a、第1再熱器10a、第1高圧ドラム11aに接続する第1高圧蒸発器12a、第1中圧過熱器13a、第1高圧節炭器14a、第1低圧過熱器15a、第1中圧ドラム16aに接続する第1中圧蒸発器17a、第1中圧節炭器18a、第1低圧ドラム19aに接続する第1低圧蒸発器20a、第1低圧節炭器21aを収容し、高,中,低の各蒸発器12a,17a,20aで蒸発した飽和蒸気を高,中,低の各ドラム11a,16a,19aで気液分離を行った後、第1高圧過熱器9aで過熱蒸気にして蒸気タービンプラント3に供給している。
【0030】
なお、第2排熱回収ボイラ2bは、各構成部品が第1排熱回収ボイラ1bのそれと同一なので、部品に同一番号を付した構成部品番号に添字bを付し、その重複説明を省略する。
【0031】
また、蒸気タービンプラント3は、互いを軸結合させた高圧蒸気タービン22、中圧蒸気タービン23、低圧蒸気タービン24、発電機25を備え、第1排熱回収ボイラ1aの第1高圧過熱器9aから第1主蒸気系26aを介して供給される過熱蒸気に、第2排熱回収ボイラ1bの第1高圧過熱器9bから第2主蒸気系26bを介して供給される過熱蒸気を点Aで合流させ、合流させた過熱蒸気を合流主蒸気系26の高圧加減弁27を介して高圧蒸気タービン22に供給し、ここで膨張仕事をさせている。
【0032】
また、蒸気タービンプラント3は、第1排熱回収ボイラ2aの第1再熱器10aに接続する第1低温再熱系29aと第2排熱回収ボイラ2bの第2再熱器10bに接続する第2低温再熱系29bとのそれぞれを備え、高圧蒸気タービン22で膨張仕事を終えたタービン排気を共用低温再熱系29の点Bで分流させ、分流させた一方のタービン排気を第1低温再熱系29aを介して第1排熱器10aに供給し、ここで再び過熱させて再熱蒸気にし、その再熱蒸気を第1高温再熱系30aと第2高温再熱系30bとの合流点Cで第2再熱器10bからの再熱蒸気と合流させ、その合流再熱蒸気を合流高温再熱系30のインターセプト弁28を介して中圧蒸気タービン23に供給している。
【0033】
中圧蒸気タービン23は、合流再熱蒸気に膨張仕事をさせ、膨張仕事を終えたタービン排気を中圧蒸気タービン排気系31を介して低圧蒸気タービン24に供給している。
【0034】
低圧蒸気タービン24は、第1排熱回収ボイラ2aの第1低圧過熱器15aに接続する第1低圧蒸気系32aと第2排熱回収ボイラ2bの第2低圧過熱器15bに接続する第2低圧蒸気系32bとのそれぞれを備え、点Dで第1低圧過熱器15aからの低圧蒸気を第2低圧過熱器15bからの低圧蒸気に合流させ、その合流低圧蒸気を低圧加減弁33を介して点Eで再び中圧蒸気タービン排気系31からのタービン排気に合流させた後、その合流蒸気に膨張仕事をさせている。
【0035】
また、低圧蒸気タービン24は、復水器34、低圧給水ポンプ35を備える共用低圧給水系36、点Fで給水を分流させ、分流させた一方の給水を第1排熱回収ボイラ2aの第1低圧節炭器21aに供給する第1低圧給水系36aと、分流させた他方の給水を第2排熱回収ボイラ2bの第2低圧節炭器21bに供給する第2低圧給水系36bとを備え、膨張仕事を終えたタービン排気を復水器34で凝縮して復水にし、低圧給水ポンプ35で昇圧して給水にし、その給水を共用低圧給水系36の点Fで分流させ、分流させた給水の一方を第1低圧節炭器21aに供給するとともに、分流させた給水の残りを第2低圧節炭器21bに供給している。
【0036】
第1低圧節炭器21aは、第1低圧給水系36aから供給された給水を第1ガスタービンプラント1aからの排ガスを熱源として加熱させた後、第1低圧ドラム19aから第1中圧給水ポンプ37aを備える第1中圧給水系38aを介して第1中圧節炭器18aに供給するとともに、第1高圧給水ポンプ39aを備える第1高圧給水系40aを介して第1高圧節炭器14aにそれぞれ供給している。
【0037】
なお、第2低圧節炭器21bも、第1低圧節炭器21aと同様の系統を備えているので、系統を構成する部品に同一番号を付した部品番号に添字bを付し、その重複説明を省略する。
【0038】
一方、第1主蒸気系26aは、第1主蒸気減温器41a、第1主蒸気逆止弁42a、第1主蒸気止め弁43aを備えて第2主蒸気系26bの点Aに接続するとともに、第1主蒸気減温器41aの出口から分岐し、途中に第1高圧タービンバイパス弁44aを介装して第1低温再熱系29aに接続する第1高圧タービンバイパス系45aを備え、定格運転時、第1排熱回収ボイラ2aの第1高圧過熱器9aから出る過熱蒸気(主蒸気)を第1主蒸気減温器41aで適温、適圧にして、蒸気タービンプラント3の高圧加減弁27を介して高圧蒸気タービン22に供給する一方、起動運転時、第1高圧過熱器9aから出る蒸気の温度・圧力が予め定められた設定値よりも低いとき、第1高圧タービンバイパス系45aの第1高圧タービンバイパス弁44aを介して第1低温再熱系29aに供給している。
【0039】
また、第1主蒸気減温器41aは、途中に第1主蒸気減温調節弁46aを介装する第1主蒸気減温系47aを備え、この第1主蒸気減温系47aを第1排熱回収ボイラ2aにおける第1高圧給水系40aの第1高圧給水ポンプ39aの出口側に接続し、第1主蒸気系26aの過熱蒸気(主蒸気)の減温・減圧を行っている。
【0040】
なお、第2主蒸気系26bも第1主蒸気系26aと同様の系統を備えているので、系統を構成する部品に同一番号を付した部品番号に添字bを付し、その重複説明を省略する。
【0041】
他方、蒸気タービンプラント3の高圧蒸気タービン22の出口から共用低温再熱系29、第1低温再熱蒸気止め弁48aおよび第1低温再熱逆止弁49aを備えた第1低温再熱系29aを介して接続する第1排熱回収ボイラ2aの第1再熱器10aは、第1高温再熱系30a、第1高温再熱蒸気減温器50a、第1高温再熱逆止弁51a、第1高温再熱蒸気止め弁52a、点Cで第2高温再熱系30bからの再熱蒸気と合流させる合流高温再熱系30、インターセプト弁28を介して中圧蒸気タービン23に接続している。
【0042】
また、第1高温再熱蒸気減温器50aは、途中に第1高温再熱蒸気減温調節弁53aを介装する第1主蒸気減温系47aから分岐する第1高温再熱蒸気減温系54aを備えている。
【0043】
また、第1高温再熱蒸気減温器50aは、その出口側から分岐し、途中に第1高温再熱蒸気タービンバイパス弁55aを介して蒸気タービンプラント3の復水器34に接続する第1高温再熱蒸気タービンバイパス系56aを備えている。
【0044】
なお、第2高温再熱蒸気減温器50bも、第1高温再熱蒸気減温器50aと同様の系統を備えているので、系統を構成する部品に同一番号を付した部品番号に添字bを付し、その重複説明を省略する。
【0045】
図2は、第1排熱回収ボイラ2aの第1主蒸気系26aに設けた第1主蒸気減温器41aに第1主蒸気減温系47aの第1主蒸気減温調節弁46aから供給される冷却媒体(給水)と、第2排熱回収ボイラ2bの第2主蒸気系26bに設けた第2主蒸気減温器41bに第2主蒸気減温系47bの第2主蒸気減温調節弁46bから供給される冷却媒体(給水)とのそれぞれを制御する制御系統図である。
【0046】
本実施形態は、第1主蒸気系26aの第1主蒸気減温器41aの下流側に第1主蒸気温度センサ57aと第1主蒸気圧力センサ58aとを備えるとともに、点Aで第1主蒸気系26aからの主蒸気に第2主蒸気系26bからの主蒸気を合流させ、その合流主蒸気を高圧加減弁27に供給する合流主蒸気系26に合流主蒸気温度センサ59と合流主蒸気圧力センサ60とを備える一方、第1主蒸気温度センサ57aから検出する温度信号と合流主蒸気温度センサ59aから検出する温度信号とに基づいて第1主蒸気減温器41aに第1主蒸気減温系47aからの冷却媒体を供給する第1主蒸気減温調節弁46aの弁開閉信号を演算する第1主蒸気制御装置61aを備えている。
【0047】
また、本実施形態は、第1主蒸気系26aの構成と同様に、第2主蒸気系26bの第2主蒸気減温器41bの後流側に第2主蒸気温度センサ57bと第1主蒸気圧力センサ58bとを備えるとともに、第2主蒸気温度センサ57bから検出する温度信号と合流主蒸気温度センサ59bから検出する温度信号とに基づいて第2主蒸気減温器41bに第2主蒸気減温系47bからの冷却媒体を供給する第2主蒸気減温調節弁46bの弁開閉信号を演算する第2主蒸気制御装置61bを備えている。
【0048】
なお、第1高温再熱系30aおよび第2高温再熱系30bも第1主蒸気系26aおよび第2主蒸気系26bの構成と同一なので、図1に示した部品番号と同一番号を採るとともに括弧内の部品番号に添字aまたはbを付すだけにとどめ、その重複説明を省略する。
【0049】
次に、上述の構成を備えるコンバインドサイクル発電プラントの起動方法を説明する。
【0050】
本実施形態に係るコンバインドサイクル発電プラントの起動方法は、例えば、第1ガスタービンプラント1aと第1排熱回収ボイラ2aとで構成される第1系列Aが定格運転中で、例えば、第2ガスタービンプラント1bと第2排熱回収ボイラ2bとで構成される第2系列Bが起動または再起動を開始する例示として説明する。
【0051】
第2系列Bは、第2排熱回収ボイラ2bの起動または再起動に先立ち、まず、第2高圧タービンバイパス系45bの第2高圧タービンバイパス弁44bと第2高温再熱蒸気タービンバイパス系56bの第2高温再熱蒸気タービンバイパス弁55bとを開弁させている。
【0052】
次に、第2系列Bは、第2排熱回収ボイラ2bの第2高圧過熱器9bから発生する蒸気の圧力が高まってくると、図2に示す第1主蒸気圧力センサ58a、第1高温再熱圧力センサ63aのそれぞれから検出する圧力と、第2主蒸気圧力センサ58b、第2高温再熱圧力センサ63bのそれぞれから検出する圧力とが予め定められた圧力差の範囲内に入ると、図1および図2に示す第2主蒸気系26bの第2主蒸気止め弁43b、第2高圧再熱系30bの第2高温再熱蒸気止め弁52b、第2低温再熱系29bの第2低温再熱蒸気止め弁48bを開弁させ、第2高圧タービンバイパス弁44b、第2高温再熱蒸気タービンバイパス弁55bを閉弁させる。
【0053】
第2高圧タービンバイパス弁44b、第2高温再熱蒸気タービンバイパス弁55bが閉弁すると、第1系列Aの第1主蒸気制御装置61aは、図2に示すように、第1主蒸気系26aの第1主蒸気温度センサ57aで検出した主蒸気温度信号と合流主蒸気温度センサ59aで検出した合流主蒸気温度信号とに基づいて弁開閉信号を演算し、主蒸気温度信号と合流主蒸気温度信号とが予め定められた温度差の範囲に入ったとき、その演算信号を第1主蒸気減温系47aの第1主蒸気減温調節弁46aに与えて第1主蒸気減温調節弁46aを開弁させる。
【0054】
また、同時に、第1系列Aの第1高温再熱制御装置64aは、第1高温再熱系30aの第1高温再熱温度センサ62aで検出した主蒸気温度信号と合流再熱蒸気温度センサ59bで検出した合流再熱蒸気温度信号とに基づいて弁開閉信号を演算し、再熱蒸気温度信号と合流再熱蒸気温度信号とが予め定められた温度差の範囲に入ったとき、その演算信号を第1高温再熱蒸気減温系54aの第1高温再熱蒸気減温調節弁53aに与えて第1高温再熱蒸気減温調節弁53aを開弁させる。
【0055】
第1主蒸気減温系47aの第1主蒸気減温調節弁46aを開弁させ、図1に示す第1高圧給水系40aから抽水し、第1主蒸気減温系47aの第1主蒸気減温調節弁46aを介して第1主蒸気減温器41aに供給される冷却媒体は、ここで第1主蒸気系26aからの主蒸気(過熱蒸気)を減温、減圧し、高圧加減弁27を介して高圧蒸気タービン22に供給される。
【0056】
第1主蒸気減温器41aで減温、減圧させた主蒸気を、第2主蒸気系26bからの主蒸気に点Aで合流させ、その合流主蒸気を合流主蒸気系26を介して高圧蒸気タービン22に流している間、第1主蒸気系26aからの主蒸気と第2主蒸気系26bからの主蒸気とが同温になると、第1系列Aの第1主蒸気制御装置61aは、第1主蒸気温度センサ57aからの温度信号と合流主蒸気系26の合流主蒸気温度センサ59aからの温度信号とに基づいて弁開閉信号を演算し、その演算信号を第1主蒸気減温調節弁46aに与えて第1主蒸気減温調節弁46aを閉弁させる。
【0057】
また、第1高温再熱蒸気減温器50aで減温、減圧させた再熱蒸気を、第2高温再熱系30bからの再熱蒸気に点Cで合流させ、その合流再熱蒸気を合流高温再熱系30を介して中圧蒸気タービン23に流している間に、第1高温再熱系30aからの再熱蒸気と第2高温再熱系30bからの再熱蒸気とが同温になると、第1系列Aの第1高温再熱蒸気制御装置64aは、第1高温再熱蒸気温度センサ62aからの温度信号と合流高温再熱系30の合流再熱蒸気センサ59bからの温度信号とに基づいて弁開閉信号を演算し、その演算信号を第1高温再熱蒸気減温調節弁53aに与えて第1高温再熱蒸気減温調節弁53aを閉弁させる。
【0058】
このように、本実施形態は、例えば、第1系列Aの第1排熱回収ボイラ2aが運転中で、第2系列Bの第2排熱回収ボイラ2bが起動または再起動の運転を開始させる際、第1排熱回収ボイラ2aから発生する主蒸気と再熱蒸気とのそれぞれが第2排熱回収ボイラ2bから発生する主蒸気と再熱蒸気とのそれぞれとほぼ同温になるまで第1排熱回収ボイラ2aから発生する主蒸気と再熱蒸気とのそれぞれを減温・減圧させるので、従来のように第1系列Aの負荷(出力)を強制的に低下させてエネルギを無駄に使用することもなく、従来に較べてより一層高いプラント熱効率を維持させることができる。
【0059】
【発明の効果】
以上のとおり、本発明に係るコンバインドサイクル発電プラントおよびその起動方法は、複数系列のうち、一方の系列の排熱回収ボイラが運転中で、他方の系列の排熱回収ボイラを起動または再起動の運転を開始させる際、一方の系列の排熱回収ボイラから発生する主蒸気および再熱蒸気のそれぞれに一方の系列の排熱回収ボイラにおける高圧給水系から抽水する冷却媒体を加えて減温・減圧させ、他方の系列の排熱回収ボイラから発生する主蒸気および再熱蒸気のそれぞれの温度が一方の系列の排熱回収ボイラから発生する主蒸気および再熱蒸気のそれぞれの温度と予め定められ温度差範囲内に入ったとき、一方の系列の排熱回収ボイラから発生する主蒸気および再熱蒸気のそれぞれの減温・減圧を停止させるので、従来のように一方の系列の排熱回収ボイラの負荷(出力)を強制的に低下させて一方の系列の排熱回収ボイラから発生する主蒸気および再熱蒸気のそれぞれの温度を他方の系列の排熱回収ボイラから発生する主蒸気および再熱蒸気のそれぞれの温度とほぼ同温になるまで待機させて無駄なエネルギを消費することがなく、プラント熱効率を高く維持させた運転を行うことができる。
【図面の簡単な説明】
【図1】本発明に係るコンバインドサイクル発電プラントの実施形態を示す概略系統図。
【図2】本発明に係るコンバインドサイクル発電プラントおよびその起動方法の実施形態を示す制御系統図。
【符号の説明】
1a…第1ガスタービンプラント、1b…第2ガスタービンプラント、2a…第1排熱回収ボイラ、2b…第2排熱回収ボイラ、3…蒸気タービンプラント、4a,4b…発電機、5a,5b…空気圧縮機、6a,6b…ガスタービン燃焼器、7a,7b…ガスタービン、8a,8b…ケーシング、9a…第1高圧過熱器、9b…第2高圧過熱器、10a…第1再熱器、10b…第2再熱器、11a…第1高圧ドラム、11b…第2高圧ドラム、12a…第1高圧蒸発器、12b…第2高圧蒸発器、13a…第1中圧過熱器、13b…第2中圧過熱器、14a…第1高圧節炭器、14b…第2高圧節炭器、15ab…第1低圧過熱器、15b…第2低圧過熱器、16a…第1中圧ドラム、16b…第2中圧ドラム、17a…第1中圧蒸発器、17b…第2中圧蒸発器、18a…第1中圧節炭器、18b…第2中圧節炭器、19a…第1低圧ドラム、19b…第2低圧ドラム、20a…第1低圧蒸発器、20b…第2低圧蒸発器、21a…第1低圧節炭器、21b…第2低圧節炭器、22…高圧蒸気タービン、23…中圧蒸気タービン、24…低圧蒸気タービン、25…発電機、26a,26b…合流主蒸気系、27…高圧加減弁、28…インターセプト弁、29…共用低温再熱系、29a…第1低温再熱系、29b…第2低温再熱系、30…合流高温再熱系、30a…第1合流高温再熱系、30b…第2合流高温再熱系、31…中圧蒸気タービン排気系、32a…第1低圧蒸気系、32b…第2低圧蒸気系、33…低圧加減弁、34…復水器、35…低圧給水ポンプ、36a…第1共用低圧給水系、36b…第2共用低圧給水系、37b…第1中圧給水ポンプ、37b…第2中圧給水ポンプ、38a…第1中圧給水系、38b…第2中圧給水系、39a…第1高圧給水ポンプ、39b…第2高圧給水ポンプ、40a…第1高圧給水系、40b…第2高圧給水系、41a…第1主蒸気減温器、41b…第2主蒸気減温器、42a…第1主蒸気逆止弁、42b…第2主蒸気逆止弁、43a…第1主蒸気止め弁、43b…第2主蒸気止め弁、44a…第1高圧タービンバイパス弁、44b…第2高圧タービンバイパス弁、45a…第1高圧タービンバイパス弁、45b…第2高圧タービンバイパス弁、46a…第1主蒸気減温調節弁、46b…第2主蒸気減温調節弁、47a…第1主蒸気減温系、47b…第2主蒸気減温系、48a…第1低温再熱蒸気止め弁、48b…第2低温再熱蒸気止め弁、49a…第1低温再熱逆止弁、49b…第2低温再熱逆止弁、50a…第1高温再熱蒸気減温器、50b…第2高温再熱蒸気減温器、51a…第1高温再熱逆止弁、51b…第2高温再熱逆止弁、52a…第1高温再熱蒸気止め弁、52b…第2高温再熱蒸気止め弁、53a…第1高温再熱蒸気減温調節弁、53b…第2高温再熱蒸気減温調節弁、54a…第1高温再熱蒸気減温系、54b…第2高温再熱蒸気減温系、55a…第1高温再熱蒸気タービンバイパス弁、55b…第2高温再熱蒸気タービンバイパス弁、56a…第1高温再熱蒸気タービンバイパス系、56b…第2高温再熱蒸気タービンバイパス系、57a…第1主蒸気温度センサ、57b…第2主蒸気温度センサ、58a…第1主蒸気圧力センサ、58b…第2主蒸気圧力センサ、59a…合流主蒸気温度センサ、59b…合流再熱蒸気温度センサ、60a…合流主蒸気圧力センサ、60b…合流主蒸気圧力センサ、61a…第1主蒸気制御装置、61b…第2主蒸気制御装置、62a…第1高温再熱蒸気温度センサ、62b…第2高温再熱蒸気温度センサ、63a…第1高温再熱蒸気圧力センサ、63b…第2高温再熱蒸気圧力センサ、64a…第1高温再熱蒸気制御装置、64b…第2高温再熱蒸気制御装置。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a combined cycle power plant in which a gas turbine plant and an exhaust heat recovery boiler are combined into a plurality of series, and the combined cycle power plant is combined with a steam turbine plant as a separate axis. Regarding how to start.
[0002]
[Prior art]
In recent thermal power plants, in order to further improve plant thermal efficiency, a gas turbine plant and a waste heat recovery boiler are divided into multiple lines, and one steam turbine plant is separated from the multiple lines. So-called multi-shaft combined cycle power plants combined as shafts have emerged.
[0003]
This multi-shaft combined cycle power plant mainly uses a steam turbine plant and skillfully utilizes the large capacity (high output) of the steam turbine plant. Is higher and more advantageous than a so-called single-shaft type in which a gas turbine and a steam turbine are axially connected.
[0004]
As described above, even in a multi-shaft combined cycle power generation plant in which the plant thermal efficiency at the time of rated operation is higher than that of the single-shaft type, the combustion gas temperature at the inlet of the gas turbine has been increased in order to further improve the thermal efficiency of the plant. In order to cope with the increase in the combustion gas temperature at the inlet of the gas turbine, in a multi-shaft combined cycle power plant, cooling with steam is being performed by trial and error in order to guarantee the strength of components. Many inventions have been disclosed, such as 339109 (Patent Document 1) and JP-A-11-62515 (Patent Document 2).
[0005]
[Patent Document 1]
JP-A-10-339109
[0006]
[Patent Document 2]
JP-A-11-62515
[0007]
[Problems to be solved by the invention]
As disclosed in the above-mentioned patent publication, the multi-shaft combined cycle power plant can increase the temperature of the combustion gas at the gas turbine inlet with the progress of steam cooling technology, and can further improve the plant thermal efficiency. However, there are still some problems, one of which is that the main steam and the reheat steam generated from the first series of waste heat recovery boilers are respectively replaced with the main steam generated from the second series of heat recovery steam generators and the reheat steam. When each of the hot steams is combined and supplied to the steam turbine plant, there are isothermal main steam temperatures and reheat steam temperatures.
[0008]
Conventionally, for example, when the first series is in operation and the second series enters the start-up operation or the restart operation, the multi-shaft combined cycle power plant uses the main steam generated from the exhaust heat recovery boiler of the first series and the recycle steam. If the temperature difference between each of the hot steam and each of the main steam and the reheat steam generated from the second series of waste heat recovery boiler is large, excessive heat stress is generated in each device, and the strength is reduced. Considering becoming a factor, the load (output) of the first series is forcibly reduced and put on standby, and the temperatures of the main steam and the reheat steam generated from the exhaust heat recovery boiler of the second series are predetermined. The main steam and the reheat steam generated from the first series of exhaust heat recovery boilers and the main steam and the reheat steam generated from the second series of exhaust heat recovery boilers, respectively, when the temperature falls within the range of the set temperature difference. And merge It was supplied to the steam turbine plant.
[0009]
However, such an operation method requires a long time when the respective temperatures of the main steam and the reheat steam generated from the first series are matched with the respective temperatures of the main steam and the reheat steam generated from the second series. There are inconveniences such as the time required and wasteful heat energy being consumed.
[0010]
Further, in order to match the respective temperatures of the main steam and the reheat steam generated from the first stream with the respective temperatures of the main steam and the reheat steam generated from the second stream, the load of the first stream is reduced and the standby is performed. Leaving it unnecessarily consumes thermal energy, and eventually causes a reduction in plant thermal efficiency.
[0011]
For this reason, in the multi-shaft combined cycle power plant, for example, when starting or restarting the second line during the first line operation, for example, the main steam temperature and the reheat steam temperature generated from the first line And some new improvements have been required to further shorten the operation time until the main steam temperature and the reheat steam temperature generated from the second series become the same.
[0012]
The present invention has been made based on such circumstances, and when one system is in operation and the other system is started, the respective temperatures of main steam and reheat steam generated from one system, A combined cycle power plant that suppresses wasteful heat energy consumption by further shortening the operation time until the respective temperatures of the main steam and the reheat steam generated from the other series become the same temperature, and a start-up method thereof The purpose is to propose.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the combined cycle power plant according to the present invention includes, as described in claim 1, a plurality of series including a gas turbine plant and an exhaust heat recovery boiler. In a combined cycle power plant in which a steam turbine plant is combined with a series, a first high-pressure superheater of a first exhaust heat recovery boiler in a first series of the plurality of series is connected to a high-pressure steam turbine of the steam turbine plant. A first main steam desuperheater provided in a main steam system, and a second main steamer for connecting a second high-pressure superheater of a second exhaust heat recovery boiler in a second series of the plurality of series to the first main steam system. A second main steam desuperheater provided in the steam system, and a first reheater of the first exhaust heat recovery boiler in the first series, which is a medium-pressure steam turbine of the steam turbine plant. A first high-temperature reheat steam dehumidifier provided in a first high-temperature reheat system connected to a first high-temperature reheat system, and a second reheater of a second exhaust heat recovery boiler in the second series connected to the first high-temperature reheat system And a second high-temperature reheat steam dehumidifier provided in the second high-temperature reheat system to be operated.
[0014]
Further, in the combined cycle power plant according to the present invention, in order to achieve the above object, as described in claim 2, the first main steam desuperheater is provided with the first high-pressure feedwater of the first exhaust heat recovery boiler. A first main steam cooling system connected to the system is provided, and the first main steam cooling system is provided with a first main steam cooling control valve.
[0015]
Further, in the combined cycle power plant according to the present invention, in order to achieve the above object, as described in claim 3, the second main steam desuperheater is provided with a second high-pressure feedwater of the second exhaust heat recovery boiler. The system is provided with a second main steam cooling system connected to the system, and the second main steam cooling system is provided with a second main steam cooling control valve.
[0016]
Further, in order to achieve the above object, the combined cycle power plant according to the present invention is configured such that the first high-temperature reheat steam desuperheater is provided with the first exhaust heat recovery boiler. A first high-temperature reheat steam decooling system is provided by branching from the first main steam deheater connected to the high-pressure water supply system, and the first high-temperature reheat steam deheater is provided in the first high-temperature reheat steam deheater. It is equipped with a valve.
[0017]
Further, in order to achieve the above object, the combined cycle power plant according to the present invention, as described in claim 5, has a second high-temperature reheat steam desuperheater and a second high-pressure reheat steam generator. A second high-temperature reheat steam decooling system is provided branching from a second main steam deheater connected to the water supply system, and a second high-temperature reheat steam deheat control valve is provided in the second high-temperature reheat steam deheater. It is provided with.
[0018]
Further, in the combined cycle power plant according to the present invention, in order to achieve the above object, as described in claim 6, the first main steam deceleration control valve is provided with a main steam degassing control valve for the main steam flowing through the first main steam system. A first main steam control device for calculating a valve opening / closing signal based on a temperature and a temperature of a combined main steam of the main steam flowing through the first main steam system and the main steam flowing through the second main steam system It is.
[0019]
Further, in the combined cycle power plant according to the present invention, in order to achieve the above-described object, as described in claim 7, the second main steam deceleration control valve is configured to control the main steam flowing through the second main steam system. A second main steam control device for calculating a valve opening / closing signal based on a temperature and a temperature of a combined main steam of the main steam flowing through the second main steam system and the main steam flowing through the first main steam system It is.
[0020]
Further, in the combined cycle power plant according to the present invention, in order to achieve the above-described object, as described in claim 8, the first high-temperature reheat steam deceleration control valve flows through the first high-temperature reheat system. A valve opening / closing signal is calculated based on the high-temperature reheat steam and the temperature of the combined reheat steam of the high-temperature reheat steam flowing through the first high-temperature reheat system and the high-temperature reheat steam flowing through the second high-temperature reheat system. It has a first high-temperature reheat steam control device.
[0021]
Further, in the combined cycle power plant according to the present invention, in order to achieve the above object, as described in claim 9, the second high-temperature reheat steam deceleration control valve flows through the second high-temperature reheat system. A valve opening / closing signal is calculated based on the high-temperature reheat steam and the temperature of the combined reheat steam of the high-temperature reheat steam flowing through the second high-temperature reheat system and the high-temperature reheat steam flowing through the first high-temperature reheat system. A second high-temperature reheat steam control device is provided.
[0022]
In addition, in order to achieve the above-described object, the method for starting a combined cycle power plant according to the present invention includes, as described in claim 10, dividing a gas turbine plant and a waste heat recovery boiler into a plurality of systems. A steam turbine plant is combined with the plurality of lines, and the first line of the plurality of lines is in operation, and the start-up method of the combined cycle power generation plant for starting the second line is the first line in the first line. The main steam from the second high-pressure superheater of the second exhaust heat recovery boiler in the second series is combined with the main steam from the first high-pressure superheater of the exhaust heat recovery boiler to form a high-pressure steam turbine of the steam turbine plant. In the second series, high-temperature reheat steam from the first reheater of the first exhaust heat recovery boiler in the first series is supplied to the high-temperature reheat steam in the second series. When the high-temperature reheated steam from the second reheater of the second exhaust heat recovery boiler is combined and supplied to the medium-pressure steam turbine of the steam turbine plant, a second reheater is provided downstream of the first high-pressure superheater. A cooling medium is supplied to the first main steam desuperheater, the main steam from the first main steam desuperheater, the main steam from the first main steam desuperheater, and the main steam from the second high-pressure superheater When the temperature difference of the main steam merged with the temperature falls within a predetermined temperature difference range, the cooling medium to be supplied to the first main steam desuperheater is cut off, and the cooling medium is provided downstream of the first reheater. Supplying a cooling medium to the first high-temperature reheat steam desuperheater, the high-temperature reheat steam from the first high-temperature reheat steam deheater, and the high-temperature reheat from the first high-temperature reheat steam deheater. The temperature difference between the combined reheated steam and the high-temperature reheated steam from the second reheater falls within a predetermined temperature difference range. When Tsu, a method of cutting off the cooling medium supplied to the first high-temperature reheat steam desuperheater.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a combined cycle power plant and a method for starting the same according to the present invention will be described with reference to the drawings and reference numerals attached to the drawings.
[0024]
FIG. 1 is a schematic system diagram showing an embodiment in which a combined cycle power plant according to the present invention and a startup method thereof are applied to a multi-shaft type.
[0025]
In addition, the combined cycle power plant according to the present embodiment is illustrated as an example in which a steam turbine plant is combined with a system including a gas turbine plant and an exhaust heat recovery boiler.
[0026]
The combined cycle power plant according to the present embodiment is a first series A including a first gas turbine plant 1a and a first exhaust heat recovery boiler 2a. 0 And the first series A 0 A second series B including a steam turbine plant 3 separated from the steam turbine and having a separate axis, a second gas turbine plant 1b separated from the steam turbine plant 3 and having a separate axis, and a second exhaust heat recovery boiler 2b 0 It is composed of
[0027]
The first gas turbine plant 1a includes a power generator 4a, an air compressor 5a, a gas turbine combustor 6a, and a gas turbine 7a. The air sucked by the air compressor 5a is compressed to a high pressure, and the high-pressure air is converted into a gas turbine. The fuel is supplied to the combustor 6a, where fuel is added together with the high-pressure air to generate combustion gas. The combustion gas is supplied to the gas turbine 7a to perform expansion work, and the generator 4a is rotated by the power generated at that time. The gas turbine exhaust (exhaust heat) that has been driven and has completed the expansion work is supplied to the first exhaust heat recovery boiler 2a and used as a heat source for generating steam.
[0028]
In the second gas turbine plant 1b, since each component is the same as that of the first gas turbine plant 1a, a subscript "b" is added to a component number having the same number assigned to the component, and the overlapping description is omitted.
[0029]
Further, the first exhaust heat recovery boiler 2a includes, for example, a first high-pressure superheater 9a, a first reheater 10a, and a first reheater 10a along a flow of exhaust gas from a gas turbine 7a flowing in a horizontally long cylindrical casing 8a. First high-pressure evaporator 12a connected to high-pressure drum 11a, first medium-pressure superheater 13a, first high-pressure economizer 14a, first low-pressure superheater 15a, and first medium-pressure evaporation connected to first medium-pressure drum 16a Housing 17a, a first medium-pressure economizer 18a, a first low-pressure evaporator 20a connected to the first low-pressure drum 19a, and a first low-pressure economizer 21a, and high, medium, and low evaporators 12a, 17a. , 20a are subjected to gas-liquid separation by high, medium, and low drums 11a, 16a, and 19a, and then superheated by a first high-pressure superheater 9a and supplied to the steam turbine plant 3. .
[0030]
In addition, since each component of the second heat recovery steam generator 2b is the same as that of the first heat recovery steam generator 1b, the same component number is assigned to the component with the suffix b, and redundant description is omitted. .
[0031]
Further, the steam turbine plant 3 includes a high-pressure steam turbine 22, a medium-pressure steam turbine 23, a low-pressure steam turbine 24, and a power generator 25 which are axially connected to each other, and the first high-pressure superheater 9a of the first exhaust heat recovery boiler 1a. The superheated steam supplied from the first high-pressure superheater 9b of the second exhaust heat recovery boiler 1b to the superheated steam supplied through the first main steam system 26a through the second main steam system 26b at a point A. The combined superheated steam is supplied to the high-pressure steam turbine 22 via the high-pressure control valve 27 of the combined main steam system 26, where the expansion work is performed.
[0032]
Further, the steam turbine plant 3 is connected to a first low-temperature reheat system 29a connected to the first reheater 10a of the first exhaust heat recovery boiler 2a and to a second reheater 10b of the second exhaust heat recovery boiler 2b. The turbine exhaust having the second low-temperature reheating system 29b and having completed the expansion work in the high-pressure steam turbine 22 is diverted at the point B of the common low-temperature reheating system 29, and one of the diverted turbine exhausts is supplied to the first low-temperature reheating system 29b. The reheat steam is supplied to the first exhaust unit 10a via the reheat system 29a, where it is superheated again to reheat steam, and the reheat steam is supplied to the first high temperature reheat system 30a and the second high temperature reheat system 30b. At the confluence point C, the reheat steam from the second reheater 10 b is merged, and the merged reheat steam is supplied to the intermediate-pressure steam turbine 23 via the intercept valve 28 of the merged high-temperature reheat system 30.
[0033]
The medium-pressure steam turbine 23 causes the combined reheat steam to perform expansion work, and supplies the turbine exhaust having completed the expansion work to the low-pressure steam turbine 24 via the medium-pressure steam turbine exhaust system 31.
[0034]
The low-pressure steam turbine 24 has a first low-pressure steam system 32a connected to the first low-pressure superheater 15a of the first exhaust heat recovery boiler 2a and a second low-pressure steam system connected to the second low-pressure superheater 15b of the second exhaust heat recovery boiler 2b. And the low-pressure steam from the first low-pressure superheater 15a is merged with the low-pressure steam from the second low-pressure superheater 15b at a point D, and the merged low-pressure steam is supplied through the low-pressure control valve 33 to the point D. After being joined again to the turbine exhaust from the intermediate pressure steam turbine exhaust system 31 at E, the combined steam is allowed to expand.
[0035]
Further, the low-pressure steam turbine 24 is provided with a condenser 34, a common low-pressure water supply system 36 including a low-pressure water supply pump 35, and diverts the water supply at the point F, and supplies one of the divided waters to the first exhaust heat recovery boiler 2a. A first low-pressure water supply system 36a for supplying the low-pressure economizer 21a, and a second low-pressure water supply system 36b for supplying the other divided water supply to the second low-pressure economizer 21b of the second exhaust heat recovery boiler 2b. The turbine exhaust having completed the expansion work is condensed by a condenser 34 to be condensed water, and the pressure is increased by a low-pressure water supply pump 35 to supply water. The water is divided at a point F of a common low-pressure water supply system 36 and divided. One of the supply water is supplied to the first low-pressure economizer 21a, and the remainder of the diverted feedwater is supplied to the second low-pressure economizer 21b.
[0036]
The first low-pressure economizer 21a heats water supplied from the first low-pressure water supply system 36a using exhaust gas from the first gas turbine plant 1a as a heat source, and then supplies the first medium-pressure water supply pump from the first low-pressure drum 19a. The first high-pressure economizer 18a is supplied to the first medium-pressure economizer 18a via a first medium-pressure ecosystem 38a provided with a first high-pressure water supply system 40a including a first high-pressure water supply pump 39a. Respectively.
[0037]
Since the second low-pressure economizer 21b also has the same system as that of the first low-pressure economizer 21a, the same reference numerals are given to the same component numbers as those of the components constituting the system, and the same reference numerals are used. Description is omitted.
[0038]
On the other hand, the first main steam system 26a includes a first main steam desuperheater 41a, a first main steam check valve 42a, and a first main steam stop valve 43a, and is connected to a point A of the second main steam system 26b. A first high-pressure turbine bypass system 45a that branches off from the outlet of the first main steam desuperheater 41a and is connected to the first low-temperature reheating system 29a with a first high-pressure turbine bypass valve 44a interposed on the way; At the time of rated operation, superheated steam (main steam) from the first high-pressure superheater 9a of the first exhaust heat recovery boiler 2a is adjusted to an appropriate temperature and an appropriate pressure by the first main steam desuperheater 41a, and the high-pressure control of the steam turbine plant 3 is performed. On the other hand, when the steam is supplied to the high-pressure steam turbine 22 through the valve 27 and the temperature and pressure of the steam discharged from the first high-pressure superheater 9a are lower than a predetermined set value during the start-up operation, the first high-pressure turbine bypass system 45a First high pressure turbine bypass valve It is supplied to the first cold reheat system 29a via 4a.
[0039]
Further, the first main steam desuperheater 41a includes a first main steam decooling system 47a in which a first main steam decooling control valve 46a is interposed. The first high-pressure water supply system 40a of the exhaust heat recovery boiler 2a is connected to the outlet side of the first high-pressure water supply pump 39a to reduce and depressurize superheated steam (main steam) of the first main steam system 26a.
[0040]
Since the second main steam system 26b also has the same system as that of the first main steam system 26a, the components constituting the system are given the same reference numerals with the same reference numerals, and the subscripts b are added thereto, and redundant description is omitted. I do.
[0041]
On the other hand, a common low-temperature reheat system 29, a first low-temperature reheat steam stop valve 48a, and a first low-temperature reheat system 29a provided with a first low-temperature reheat check valve 49a from the outlet of the high-pressure steam turbine 22 of the steam turbine plant 3. The first reheater 10a of the first exhaust heat recovery boiler 2a connected via a first high temperature reheat system 30a, a first high temperature reheat steam deheater 50a, a first high temperature reheat check valve 51a, A first high-temperature reheat steam stop valve 52a, a merging high-temperature reheat system 30 that joins the reheat steam from the second high-temperature reheat system 30b at point C, and a connection to the medium-pressure steam turbine 23 via an intercept valve 28; I have.
[0042]
Further, the first high-temperature reheat steam desuperheater 50a is a first high-temperature reheat steam deheater that branches off from a first main steam deheater system 47a in which a first high-temperature reheat steam deheat control valve 53a is interposed. A system 54a is provided.
[0043]
The first high-temperature reheat steam desuperheater 50a branches from the outlet side, and connects to the condenser 34 of the steam turbine plant 3 on the way via the first high-temperature reheat steam turbine bypass valve 55a. A high temperature reheat steam turbine bypass system 56a is provided.
[0044]
The second high-temperature reheat steam desuperheater 50b also has the same system as the first high-temperature reheat steam deheater 50a. And the duplicated description is omitted.
[0045]
FIG. 2 shows a state in which the first main steam desuperheater 41a provided in the first main steam system 26a of the first exhaust heat recovery boiler 2a is supplied from the first main steam deheat control valve 46a of the first main steam deheat system 47a. Cooling medium (supply water) to be supplied to the second main steam desuperheater 41b provided in the second main steam system 26b of the second exhaust heat recovery boiler 2b, and the second main steam deheat system 47b It is a control system diagram which controls each of the cooling medium (water supply) supplied from the control valve 46b.
[0046]
In the present embodiment, a first main steam temperature sensor 57a and a first main steam pressure sensor 58a are provided on the downstream side of the first main steam desuperheater 41a of the first main steam system 26a. The main steam from the second main steam system 26b is combined with the main steam from the steam system 26a, and the combined main steam is supplied to the high-pressure control valve 27. While the pressure sensor 60 is provided, the first main steam desuperheater 41a supplies the first main steam desuperheater 41a based on the temperature signal detected from the first main steam temperature sensor 57a and the temperature signal detected from the combined main steam temperature sensor 59a. A first main steam control device 61a is provided for calculating a valve opening / closing signal of the first main steam deceleration control valve 46a for supplying a cooling medium from the temperature system 47a.
[0047]
Further, in the present embodiment, similarly to the configuration of the first main steam system 26a, the second main steam temperature sensor 57b and the first main steam temperature sensor 57b are provided downstream of the second main steam desuperheater 41b of the second main steam system 26b. And a second main steam desuperheater 41b based on a temperature signal detected from the second main steam temperature sensor 57b and a temperature signal detected from the combined main steam temperature sensor 59b. A second main steam control device 61b is provided for calculating a valve opening / closing signal of the second main steam decooling control valve 46b for supplying a cooling medium from the temperature reduction system 47b.
[0048]
Note that the first high-temperature reheating system 30a and the second high-temperature reheating system 30b also have the same configuration as the first main steam system 26a and the second main steam system 26b, and therefore have the same numbers as the part numbers shown in FIG. Only the subscripts a or b are added to the part numbers in parentheses, and a duplicate description thereof will be omitted.
[0049]
Next, a starting method of the combined cycle power plant having the above-described configuration will be described.
[0050]
The method for starting up the combined cycle power plant according to the present embodiment includes, for example, a first system A including a first gas turbine plant 1a and a first exhaust heat recovery boiler 2a. 0 Is in rated operation, for example, in the second system B including the second gas turbine plant 1b and the second exhaust heat recovery boiler 2b. 0 Will be described as an example of starting or restarting.
[0051]
Second series B 0 Before starting or restarting the second exhaust heat recovery boiler 2b, first, the second high-pressure turbine bypass valve 44b of the second high-pressure turbine bypass system 45b and the second high-temperature re-heating steam turbine bypass system 56b The hot steam turbine bypass valve 55b is opened.
[0052]
Next, the second series B 0 When the pressure of the steam generated from the second high-pressure superheater 9b of the second exhaust heat recovery boiler 2b increases, each of the first main steam pressure sensor 58a and the first high temperature reheating pressure sensor 63a shown in FIG. 1 and FIG. 2 when the pressure detected from the pressure sensor and the pressure detected from each of the second main steam pressure sensor 58b and the second high temperature reheat pressure sensor 63b fall within a predetermined pressure difference range. The second main steam stop valve 43b of the second main steam system 26b, the second high temperature reheat steam stop valve 52b of the second high pressure reheat system 30b, the second low temperature reheat steam stop valve 48b of the second low temperature reheat system 29b And the second high-pressure turbine bypass valve 44b and the second high-temperature reheat steam turbine bypass valve 55b are closed.
[0053]
When the second high-pressure turbine bypass valve 44b and the second high-temperature reheat steam turbine bypass valve 55b are closed, the first series A 0 As shown in FIG. 2, the first main steam control device 61a of the first main steam controller 61a has a main steam temperature signal detected by a first main steam temperature sensor 57a of the first main steam system 26a and a merging main detected by a main steam temperature sensor 59a. A valve opening / closing signal is calculated based on the steam temperature signal, and when the main steam temperature signal and the combined main steam temperature signal fall within a predetermined temperature difference range, the calculated signal is sent to the first main steam cooling system. The first main steam deceleration control valve 46a is provided to the first main steam deceleration control valve 46a to open it.
[0054]
At the same time, the first series A 0 The first high-temperature reheat control device 64a of the first high-temperature reheat system 30a, the main steam temperature signal detected by the first high-temperature reheat temperature sensor 62a of the first high-temperature reheat system 30a and the combined reheat steam temperature detected by the combined reheat steam temperature sensor 59b A valve opening / closing signal is calculated based on the signals, and when the reheat steam temperature signal and the combined reheat steam temperature signal fall within a predetermined temperature difference range, the calculated signal is reduced by the first high temperature reheat steam reduction. The temperature is supplied to the first high-temperature reheat steam deceleration control valve 53a of the temperature system 54a to open the first high-temperature reheat steam deceleration control valve 53a.
[0055]
The first main steam cooling system 47a of the first main steam cooling system 47a is opened to extract water from the first high pressure water supply system 40a shown in FIG. 1, and the first main steam of the first main steam cooling system 47a. The cooling medium supplied to the first main steam desuperheater 41a via the temperature reduction control valve 46a here cools and depressurizes the main steam (superheated steam) from the first main steam system 26a, and the high pressure control valve The high-pressure steam turbine 22 is supplied to the high-pressure steam turbine 22.
[0056]
The main steam whose temperature has been reduced and decompressed by the first main steam desuperheater 41a is merged with the main steam from the second main steam system 26b at a point A, and the merged main steam is subjected to high pressure through the merged main steam system 26. When the main steam from the first main steam system 26a and the main steam from the second main steam system 26b have the same temperature while flowing through the steam turbine 22, the first series A 0 The first main steam controller 61a calculates a valve opening / closing signal based on the temperature signal from the first main steam temperature sensor 57a and the temperature signal from the merged main steam temperature sensor 59a of the merged main steam system 26, The operation signal is supplied to the first main steam decooling control valve 46a to close the first main steam decooling control valve 46a.
[0057]
Further, the reheat steam whose temperature has been reduced and reduced by the first high temperature reheat steam desuperheater 50a is joined at point C to the reheat steam from the second high temperature reheat system 30b, and the combined reheat steam is joined. While flowing to the intermediate-pressure steam turbine 23 via the high-temperature reheat system 30, the reheat steam from the first high-temperature reheat system 30a and the reheat steam from the second high-temperature reheat system 30b have the same temperature. Then, the first series A 0 The first high-temperature reheat steam control device 64a generates a valve opening / closing signal based on the temperature signal from the first high-temperature reheat steam temperature sensor 62a and the temperature signal from the merged reheat steam sensor 59b of the merged high-temperature reheat system 30. Is given to the first high-temperature reheat steam deceleration control valve 53a to close the first high-temperature reheat steam detemperature control valve 53a.
[0058]
As described above, in the present embodiment, for example, the first stream A 0 Of the first exhaust heat recovery boiler 2a of the second series B 0 When the second waste heat recovery boiler 2b starts the operation of starting or restarting, the main steam and the reheat steam generated from the first waste heat recovery boiler 2a are generated from the second waste heat recovery boiler 2b. Each of the main steam and the reheat steam generated from the first exhaust heat recovery boiler 2a is depressurized and decompressed until the temperature becomes substantially the same as that of each of the main steam and the reheat steam. A 0 Without forcibly lowering the load (output) of the fuel cell and wastefully using energy, thereby maintaining a higher plant thermal efficiency than before.
[0059]
【The invention's effect】
As described above, the combined cycle power plant and the method for starting the same according to the present invention provide a method for starting or restarting the exhaust heat recovery boiler of one of the multiple systems while the other system is operating. At the start of operation, the cooling medium extracted from the high-pressure water supply system in the waste heat recovery boiler of one series is added to each of the main steam and reheat steam generated from the waste heat recovery boiler of one series to reduce the temperature and pressure. The temperature of the main steam and the reheat steam generated from the waste heat recovery boiler of the other series is set to the predetermined temperature of the main steam and the reheat steam generated from the waste heat recovery boiler of the one series. When the temperature falls within the difference range, the temperature reduction and decompression of the main steam and the reheat steam generated from the exhaust heat recovery boiler of one system are stopped. The load (output) of the waste heat recovery boiler is forcibly reduced, and the temperatures of the main steam and the reheat steam generated from one of the waste heat recovery boilers are generated from the other heat recovery steam generator. It is possible to perform operation while maintaining high plant thermal efficiency without waiting until the temperature of the main steam and the reheated steam becomes substantially the same as each other, and consuming unnecessary energy.
[Brief description of the drawings]
FIG. 1 is a schematic system diagram showing an embodiment of a combined cycle power plant according to the present invention.
FIG. 2 is a control system diagram showing an embodiment of a combined cycle power plant and a start-up method thereof according to the present invention.
[Explanation of symbols]
1a: First gas turbine plant, 1b: Second gas turbine plant, 2a: First heat recovery steam generator, 2b: Second heat recovery steam generator, 3 ... Steam turbine plant, 4a, 4b ... Generator, 5a, 5b ... air compressor, 6a, 6b ... gas turbine combustor, 7a, 7b ... gas turbine, 8a, 8b ... casing, 9a ... 1st high pressure superheater, 9b ... 2nd high pressure superheater, 10a ... 1st reheater 10b: second reheater, 11a: first high-pressure drum, 11b: second high-pressure drum, 12a: first high-pressure evaporator, 12b: second high-pressure evaporator, 13a: first medium-pressure superheater, 13b ... 2nd medium pressure superheater, 14a: 1st high pressure economizer, 14b ... 2nd high pressure economizer, 15ab ... 1st low pressure superheater, 15b ... 2nd low pressure superheater, 16a ... 1st intermediate pressure drum, 16b ... a second medium pressure drum, 17a ... a first medium pressure evaporator, 7b: 2nd medium pressure evaporator, 18a: 1st medium pressure economizer, 18b: 2nd medium pressure economizer, 19a: 1st low pressure drum, 19b: 2nd low pressure drum, 20a: 1st low pressure evaporator , 20b: second low-pressure evaporator, 21a: first low-pressure economizer, 21b: second low-pressure economizer, 22: high-pressure steam turbine, 23: medium-pressure steam turbine, 24: low-pressure steam turbine, 25: generator 26a, 26b ... main steam system, 27 ... high pressure control valve, 28 ... intercept valve, 29 ... common low temperature reheating system, 29a ... first low temperature reheating system, 29b ... second low temperature reheating system, 30 ... confluence High temperature reheating system, 30a: first combined high temperature reheating system, 30b: second combined high temperature reheating system, 31: medium pressure steam turbine exhaust system, 32a: first low pressure steam system, 32b: second low pressure steam system, 33 ... Low pressure control valve, 34 ... Condenser, 35 ... Low pressure feed pump, 36a ... First Low-pressure water supply system, 36b: second common low-pressure water supply system, 37b: first medium-pressure water supply pump, 37b: second medium-pressure water supply pump, 38a: first medium-pressure water supply system, 38b: second medium-pressure water supply system, 39a: first high-pressure water supply pump, 39b: second high-pressure water supply pump, 40a: first high-pressure water supply system, 40b: second high-pressure water supply system, 41a: first main steam cooler, 41b: second main steam cooler , 42a ... first main steam check valve, 42b ... second main steam check valve, 43a ... first main steam stop valve, 43b ... second main steam stop valve, 44a ... first high pressure turbine bypass valve, 44b ... second high-pressure turbine bypass valve, 45a ... first high-pressure turbine bypass valve, 45b ... second high-pressure turbine bypass valve, 46a ... first main steam de-cooling control valve, 46b ... second main steam de-cooling control valve, 47a ... First main steam cooling system, 47b... Second main steam cooling system, 48 a ... first low temperature reheat steam stop valve, 48b ... second low temperature reheat steam stop valve, 49a ... first low temperature reheat check valve, 49b ... second low temperature reheat check valve, 50a ... first high temperature reheat valve Hot steam desuperheater, 50b: second high temperature reheat steam deheater, 51a: first high temperature reheat check valve, 51b: second high temperature reheat check valve, 52a: first high temperature reheat steam stop valve 52b: second high-temperature reheat steam stop valve, 53a: first high-temperature reheat steam temperature control valve, 53b: second high-temperature reheat steam temperature control valve, 54a: first high-temperature reheat steam temperature control system, 54b: second high-temperature reheat steam cooling system, 55a: first high-temperature reheat steam turbine bypass valve, 55b: second high-temperature reheat steam turbine bypass valve, 56a: first high-temperature reheat steam turbine bypass system, 56b ... Second high-temperature reheat steam turbine bypass system, 57a: first main steam temperature sensor, 57b: second main steam temperature sensor , 58a: first main steam pressure sensor, 58b: second main steam pressure sensor, 59a: combined main steam temperature sensor, 59b: combined reheat steam temperature sensor, 60a: combined main steam pressure sensor, 60b: combined main steam Pressure sensor, 61a: first main steam controller, 61b: second main steam controller, 62a: first high-temperature reheat steam temperature sensor, 62b: second high-temperature reheat steam temperature sensor, 63a: first high-temperature reheat Steam pressure sensor, 63b: second high temperature reheat steam pressure sensor, 64a: first high temperature reheat steam control device, 64b: second high temperature reheat steam control device.

Claims (10)

ガスタービンプラントと排熱回収ボイラとで構成する系列を複数系列にして備え、これら複数系列に蒸気タービンプラントを組み合わせたコンバインドサイクル発電プラントにおいて、前記複数系列のうち、第1系列における第1排熱回収ボイラの第1高圧過熱器を前記蒸気タービンプラントの高圧蒸気タービンに接続させる第1主蒸気系に設けた第1主蒸気減温器と、前記複数系列のうち、第2系列における第2排熱回収ボイラの第2高圧過熱器を前記第1主蒸気系に接続させる第2主蒸気系に設けた第2主蒸気減温器と、前記第1系列における第1排熱回収ボイラの第1再熱器を前記蒸気タービンプラントの中圧蒸気タービンに接続させる第1高温再熱系に設けた第1高温再熱蒸気減温器と、前記第2系列における第2排熱回収ボイラの第2再熱器を前記第1高温再熱系に接続させる第2高温再熱系に設けた第2高温再熱蒸気減温器とを備えたことを特徴とするコンバインドサイクル発電プラント。In a combined cycle power plant in which a gas turbine plant and a waste heat recovery boiler are provided in a plurality of lines, and a steam turbine plant is combined with the plurality of lines, a first exhaust heat in a first line among the plurality of lines is provided. A first main steam desuperheater provided in a first main steam system for connecting a first high-pressure superheater of the recovery boiler to a high-pressure steam turbine of the steam turbine plant, and a second exhaust system in a second series of the plurality of series. A second main steam desuperheater provided in a second main steam system for connecting a second high pressure superheater of the heat recovery boiler to the first main steam system, and a first exhaust heat recovery boiler in the first series. A first high-temperature reheat steam desuperheater provided in a first high-temperature reheat system for connecting a reheater to a medium-pressure steam turbine of the steam turbine plant; and a second exhaust heat recovery boiler in the second series. Combined cycle power plant, characterized in that a provided 2 reheater second hot reheat system that is connected to the first hot reheat system second hot reheat steam desuperheater. 第1主蒸気減温器は、第1排熱回収ボイラの第1高圧給水系に接続する第1主蒸気減温系を設けるとともに、この第1主蒸気減温系に第1主蒸気減温調節弁を備えたことを特徴とする請求項1記載のコンバインドサイクル発電プラント。The first main steam desuperheater is provided with a first main steam decooling system connected to the first high pressure water supply system of the first exhaust heat recovery boiler, and the first main steam deheater is provided in the first main steam deheater. The combined cycle power plant according to claim 1, further comprising a control valve. 第2主蒸気減温器は、第2排熱回収ボイラの第2高圧給水系に接続する第2主蒸気減温系を設けるとともに、この第2主蒸気減温系に第2主蒸気減温調節弁を備えたことを特徴とする請求項1記載のコンバインドサイクル発電プラント。The second main steam desuperheater is provided with a second main steam deheater connected to the second high-pressure water supply system of the second exhaust heat recovery boiler, and the second main steam deheater is provided with the second main steam deheater. The combined cycle power plant according to claim 1, further comprising a control valve. 第1高温再熱蒸気減温器は、第1排熱回収ボイラの第1高圧給水系に接続する第1主蒸気減温系から分岐して第1高温再熱蒸気減温系を設けるとともに、この第1高温再熱蒸気減温系に第1高温再熱蒸気減温調節弁を備えたことを特徴とする請求項1記載のコンバインドサイクル発電プラント。The first high-temperature reheat steam desuperheater is provided with a first high-temperature reheat steam deheat system that branches off from a first main steam deheat system connected to the first high-pressure water supply system of the first exhaust heat recovery boiler, The combined cycle power plant according to claim 1, wherein the first high-temperature reheat steam deheating system includes a first high-temperature reheat steam deheat control valve. 第2高温再熱蒸気減温器、第2排熱回収ボイラの第2高圧給水系に接続する第2主蒸気減温系から分岐して第2高温再熱蒸気減温系を設けるとともに、この第2高温再熱蒸気減温系に第2高温再熱蒸気減温調節弁を備えたことを特徴とする請求項1記載のコンバインドサイクル発電プラント。A second high-temperature reheat steam deheater, a second high-temperature reheat steam deheater branched from a second main steam deheater connected to the second high-pressure water supply system of the second exhaust heat recovery boiler, and 2. The combined cycle power plant according to claim 1, wherein the second high-temperature reheat steam deheating system includes a second high-temperature reheat steam deheat control valve. 3. 第1主蒸気減温調節弁は、第1主蒸気系を流れる主蒸気の温度と、前記第1主蒸気系を流れる主蒸気と第2主蒸気系を流れる主蒸気との合流主蒸気の温度とに基づいて弁開閉信号を演算する第1主蒸気制御装置を備えたことを特徴とする請求項3記載のコンバインドサイクル発電プラント。The first main steam deceleration control valve is configured to control a temperature of the main steam flowing through the first main steam system and a temperature of a combined main steam of the main steam flowing through the first main steam system and the main steam flowing through the second main steam system. The combined cycle power plant according to claim 3, further comprising a first main steam control device that calculates a valve opening / closing signal based on the first and the second main steam control devices. 第2主蒸気減温調節弁は、第2主蒸気系を流れる主蒸気の温度と、前記第2主蒸気系を流れる主蒸気と第1主蒸気系を流れる主蒸気との合流主蒸気の温度とに基づいて弁開閉信号を演算する第2主蒸気制御装置を備えたことを特徴とする請求項4記載のコンバインドサイクル発電プラント。The second main steam deceleration control valve is configured to control a temperature of the main steam flowing through the second main steam system, and a temperature of a main steam that is a combination of the main steam flowing through the second main steam system and the main steam flowing through the first main steam system. The combined cycle power plant according to claim 4, further comprising a second main steam control device that calculates a valve opening / closing signal based on the following. 第1高温再熱蒸気減温調節弁は、第1高温再熱系を流れる高温再熱蒸気と、前記第1高温再熱系を流れる高温再熱蒸気と第2高温再熱系を流れる高温再熱蒸気との合流再熱蒸気の温度とに基づいて弁開閉信号を演算する第1高温再熱蒸気制御装置を備えたことを特徴とするコンバインドサイクル発電プラント。The first high-temperature reheat steam deceleration control valve includes a high-temperature reheat steam flowing through the first high-temperature reheat system, a high-temperature reheat steam flowing through the first high-temperature reheat system, and a high-temperature reheat steam flowing through the second high-temperature reheat system. A combined cycle power plant comprising: a first high-temperature reheat steam control device that calculates a valve opening / closing signal based on a temperature of reheat steam combined with hot steam. 第2高温再熱蒸気減温調節弁は、第2高温再熱系を流れる高温再熱蒸気と、前記第2高温再熱系を流れる高温再熱蒸気と第1高温再熱系を流れる高温再熱蒸気との合流再熱蒸気の温度とに基づいて弁開閉信号を演算する第2高温再熱蒸気制御装置を備えたことを特徴とするコンバインドサイクル発電プラント。The second high-temperature reheat steam deceleration control valve includes a high-temperature reheat steam flowing through the second high-temperature reheat system, a high-temperature reheat steam flowing through the second high-temperature reheat system, and a high-temperature reheat steam flowing through the first high-temperature reheat system. A combined cycle power plant including a second high-temperature reheat steam control device that calculates a valve opening / closing signal based on the temperature of reheat steam combined with hot steam. ガスタービンプラントと排熱回収ボイラとで構成する系列を複数系列にして備え、これら複数系列に蒸気タービンプラントを組み合わせるとともに、前記複数系列のうち、第1系列が運転中で、第2系列を起動させるコンバインドサイクル発電プラントの起動方法において、前記第1系列における第1排熱回収ボイラの第1高圧過熱器からの主蒸気に、前記第2系列における第2排熱回収ボイラの第2高圧過熱器からの主蒸気を合流させて前記蒸気タービンプラントの高圧蒸気タービンに供給する一方、前記第1系列における前記第1排熱回収ボイラの第1再熱器からの高温再熱蒸気に、前記第2系列における前記第2排熱回収ボイラの第2再熱器からの高温再熱蒸気を合流させて前記蒸気タービンプラントの中圧蒸気タービンに供給するとき、前記第1高圧過熱器の下流側に設けた第1主蒸気減温器に冷却媒体を供給し、前記第1主蒸気減温器からの主蒸気と、前記第1主蒸気減温器からの主蒸気と前記第2高圧過熱器からの主蒸気との合流主蒸気の温度差が予め定められた温度差の範囲に入ったとき、前記第1主蒸気減温器に供給する冷却媒体を断つとともに、前記第1再熱器の下流側に設けた第1高温再熱蒸気減温器に冷却媒体を供給し、前記第1高温再熱蒸気減温器からの高温再熱蒸気と、前記第1高温再熱蒸気減温器からの高温再熱蒸気と前記第2再熱器からの高温再熱蒸気との合流再熱蒸気の温度差とが予め定められた温度差の範囲に入ったとき、前記第1高温再熱蒸気減温器に供給する冷却媒体を断つことを特徴とするコンバインドサイクル発電プラントの起動方法。A plurality of lines composed of a gas turbine plant and an exhaust heat recovery boiler are provided, a steam turbine plant is combined with the plurality of lines, a first line of the plurality of lines is in operation, and a second line is started. In the method for starting a combined cycle power plant, the main steam from the first high-pressure superheater of the first exhaust heat recovery boiler in the first series is supplied to the second high-pressure superheater of the second waste heat recovery boiler in the second series. From the first reheater of the first waste heat recovery boiler in the first series while the second steam is supplied to the high pressure steam turbine of the steam turbine plant. When the high-temperature reheated steam from the second reheater of the second waste heat recovery boiler in the series is combined and supplied to the medium-pressure steam turbine of the steam turbine plant Supplying a cooling medium to a first main steam desuperheater provided downstream of the first high-pressure superheater, and supplying a main steam from the first main steam desuperheater and a first main steam desuperheater from the first main steam desuperheater. When the temperature difference between the combined main steam of the main steam and the main steam from the second high-pressure superheater falls within a predetermined temperature difference range, the cooling medium supplied to the first main steam desuperheater is Along with the disconnection, a cooling medium is supplied to a first high-temperature reheat steam desuperheater provided downstream of the first reheater, and the high-temperature reheat steam from the first high-temperature reheat steam deheater, The temperature difference of the combined reheat steam between the high-temperature reheat steam from the first high-temperature reheat steam desuperheater and the high-temperature reheat steam from the second reheater falls within a predetermined temperature difference range. A method of starting a combined cycle power plant, wherein a cooling medium supplied to the first high-temperature reheat steam desuperheater is cut off.
JP2003119666A 2003-04-24 2003-04-24 Combined cycle power plant and starting method thereof Expired - Fee Related JP4481586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003119666A JP4481586B2 (en) 2003-04-24 2003-04-24 Combined cycle power plant and starting method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003119666A JP4481586B2 (en) 2003-04-24 2003-04-24 Combined cycle power plant and starting method thereof

Publications (2)

Publication Number Publication Date
JP2004324513A true JP2004324513A (en) 2004-11-18
JP4481586B2 JP4481586B2 (en) 2010-06-16

Family

ID=33498831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003119666A Expired - Fee Related JP4481586B2 (en) 2003-04-24 2003-04-24 Combined cycle power plant and starting method thereof

Country Status (1)

Country Link
JP (1) JP4481586B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101519984A (en) * 2008-02-29 2009-09-02 通用电气公司 Systems and methods for channeling steam into turbines
JP2012107570A (en) * 2010-11-17 2012-06-07 Mitsubishi Heavy Ind Ltd Combined cycle power generation plant, and control device
JP2013137185A (en) * 2011-11-29 2013-07-11 General Electric Co <Ge> Steam generation system and method for controlling operation of steam generation system
JP2014219011A (en) * 2014-07-18 2014-11-20 三菱日立パワーシステムズ株式会社 Combined cycle power generation plant and control device
WO2015147143A1 (en) * 2014-03-28 2015-10-01 三菱日立パワーシステムズ株式会社 Multi-shaft combined cycle plant, and control device and operation method thereof
CN109763869A (en) * 2019-02-02 2019-05-17 华电电力科学研究院有限公司 A kind of accumulation of heat coupling steam extraction integrated system and its operation method for combined cycle energy cascade utilization
JP2020023943A (en) * 2018-08-08 2020-02-13 川崎重工業株式会社 Combined cycle power plant

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101519984A (en) * 2008-02-29 2009-09-02 通用电气公司 Systems and methods for channeling steam into turbines
JP2009209931A (en) * 2008-02-29 2009-09-17 General Electric Co <Ge> System and method for channeling steam into turbine
JP2012107570A (en) * 2010-11-17 2012-06-07 Mitsubishi Heavy Ind Ltd Combined cycle power generation plant, and control device
JP2013137185A (en) * 2011-11-29 2013-07-11 General Electric Co <Ge> Steam generation system and method for controlling operation of steam generation system
CN106460572A (en) * 2014-03-28 2017-02-22 三菱日立电力系统株式会社 Multi-shaft combined cycle plant, and control device and operation method thereof
WO2015147143A1 (en) * 2014-03-28 2015-10-01 三菱日立パワーシステムズ株式会社 Multi-shaft combined cycle plant, and control device and operation method thereof
US10196942B2 (en) 2014-03-28 2019-02-05 Mitsubishi Hitachi Power Systems, Ltd. Multi-shaft combined cycle plant, and control device and operation method thereof
JP2014219011A (en) * 2014-07-18 2014-11-20 三菱日立パワーシステムズ株式会社 Combined cycle power generation plant and control device
JP2020023943A (en) * 2018-08-08 2020-02-13 川崎重工業株式会社 Combined cycle power plant
KR20210031976A (en) * 2018-08-08 2021-03-23 카와사키 주코교 카부시키 카이샤 Combined Cycle Power Plant
JP7137398B2 (en) 2018-08-08 2022-09-14 川崎重工業株式会社 Combined cycle power plant
KR102512440B1 (en) * 2018-08-08 2023-03-21 카와사키 주코교 카부시키 카이샤 Combined Cycle Power Plant
CN109763869A (en) * 2019-02-02 2019-05-17 华电电力科学研究院有限公司 A kind of accumulation of heat coupling steam extraction integrated system and its operation method for combined cycle energy cascade utilization
CN109763869B (en) * 2019-02-02 2023-09-08 华电电力科学研究院有限公司 Heat accumulation coupling steam extraction integrated system for cascade utilization of combined cycle energy and operation method thereof

Also Published As

Publication number Publication date
JP4481586B2 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
US7367192B2 (en) Combined cycle plant
JP3913328B2 (en) Operation method of combined cycle power plant and combined cycle power plant
KR101594323B1 (en) Power plant with integrated fuel gas preheating
JP2001271612A (en) Apparatus and method for reheating gas turbine cooling steam and high-pressure steam turbine exhaust steam in combined cycle power generating apparatus
JPH06264763A (en) Combined plant system
US6519927B2 (en) Method for operating a combined cycle power plant, and combined cycle power plant
US8327615B2 (en) Combined cycle powered generating plant having reduced start-up time
JP2005163628A (en) Reheat steam turbine plant and method for operating the same
JP4481586B2 (en) Combined cycle power plant and starting method thereof
JP2017172580A (en) Composite cycle power generation plant and method for operating this composite cycle power generation plant
JPH074210A (en) Steam-cooled gas turbine combined plant
JP4004800B2 (en) Combined cycle power generation system
WO1999037889A1 (en) Combined cycle power plant
JP2000154704A (en) Combined cycle power generation plant
JP2005146876A (en) Combined cycle power plant and method for starting the same
JP2005344528A (en) Combined cycle power generating plant and method for starting the same
JP2002213208A (en) Combined cycle power generating equipment and operating method thereof
JP4051322B2 (en) Combined power plant
JPH11148315A (en) Combined cycle power plant
JP2642954B2 (en) How to start a reheat combined plant
JP4090584B2 (en) Combined cycle power plant
JPH09280010A (en) Gas turbine, combined cycle plant provided with the gas turbine, and driving method thereof
JPH1193618A (en) Steam pressure control method for gas turbine steam cooling system
JP5475315B2 (en) Combined cycle power generation system
JP2001289009A (en) Single-shaft combined turbine equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4481586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees