JP2006042613A - Method for producing harmful heavy metal-eliminated food material - Google Patents
Method for producing harmful heavy metal-eliminated food material Download PDFInfo
- Publication number
- JP2006042613A JP2006042613A JP2004224125A JP2004224125A JP2006042613A JP 2006042613 A JP2006042613 A JP 2006042613A JP 2004224125 A JP2004224125 A JP 2004224125A JP 2004224125 A JP2004224125 A JP 2004224125A JP 2006042613 A JP2006042613 A JP 2006042613A
- Authority
- JP
- Japan
- Prior art keywords
- food
- extract
- acid
- heavy metals
- food material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Meat, Egg Or Seafood Products (AREA)
- Processing Of Solid Wastes (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Removal Of Specific Substances (AREA)
- Extraction Or Liquid Replacement (AREA)
Abstract
Description
本発明は有害な重金属を含む食品等から該重金属を除去する方法に関し、特に、それらの抽出液から該有害な重金属を除去して食品素材エキスを提供する方法に関する。 The present invention relates to a method for removing heavy metals from foods containing harmful heavy metals, and more particularly to a method for providing food material extracts by removing the harmful heavy metals from their extracts.
海産物食品や海産物食品を加工して発生する副産物、廃液、廃棄物等には、カドミウムをはじめ人体に有害な重金属を含むものがある。例えば、ホタテ貝の中腸線(ウロ)及びイカの内臓(ゴロ)等はカドミウム含量が高いことで知られている。これらの部位は食品素材として利用されないで廃棄処理されることもある。しかしながら、水分含量が高く腐敗・劣化しやすく、処理場所での環境汚染や処理経費の増大等深刻な問題が発生している。 By-products, waste liquids, wastes, etc. generated by processing marine foods and marine foods include cadmium and other heavy metals that are harmful to the human body. For example, scallop midgut (uro) and squid viscera (goro) are known to have high cadmium content. These parts may be discarded without being used as food materials. However, it has a high moisture content and tends to rot and deteriorate, causing serious problems such as environmental pollution at processing sites and increased processing costs.
そのため、環境への配慮と食の安全・安心をはかる上で、これらの有害な重金属の除去処理が必要になっている。タンパク質分解酵素によるメタロチオネインの分解や、燐酸や硫酸処理による塩の解離と電解操作による遊離金属元素の析出がその除去処理の例である。 For this reason, it is necessary to remove these harmful heavy metals in consideration of the environment and food safety and security. Examples of the removal treatment include decomposition of metallothionein by proteolytic enzymes, dissociation of salts by phosphoric acid or sulfuric acid treatment, and precipitation of free metal elements by electrolytic operation.
しかし、これらの方法では重金属の除去を完全に行うことはできず、残渣を肥料に用いた場合、残存した重金属が湧水から水道水へ混入する等の問題が発生している。また、焼却・炭化法による処理も行われているが、高コストでその費用を製品の価格に反映しにくいため生産活動を圧迫し、その継続を脅かしている。他方では、これらの海産物食品加工副産物は独特の香気や旨味成分を含んでおり、食品素材として有効利用及び再資源化することが望まれている。 However, these methods cannot completely remove heavy metals, and when the residue is used as a fertilizer, there are problems such as remaining heavy metals being mixed from spring water into tap water. Incineration and carbonization processes are also being carried out, but it is difficult to reflect the cost of the product in the price of the product, which puts pressure on production activities and threatens to continue. On the other hand, these marine food processing by-products contain unique aromas and umami ingredients, and it is desired to effectively use and recycle them as food materials.
特許文献1には重金属含有物質から重金属を除去する方法が記載されている。この方法は、重金属含有物にリン酸水溶液を接触させて当該重金属含有物に含まれる重金属を前記リン酸水溶液中に溶出させることを内容としている。固液を分離して得られる抽出液は重金属及びリン酸を含んでいる。その後、この抽出液は陽イオン交換樹脂カラムを通過させて重金属が除去されている。しかしながら、回収される抽出液はいまだにリン酸を含んでおり、食品素材エキスとして利用するにはリン酸を除去する工程が更に必要である。また、陽イオン交換樹脂は重金属の除去効率に劣り、処理に長時間を要する。
本発明は上記従来の問題を解決するものであり、その目的とするところは、食品や食品加工副産物、特に海産物食品等の抽出液から重金属を除去して食品素材エキスを得る効率的な方法を提供することにある。 The present invention solves the above-mentioned conventional problems, and the object of the present invention is to provide an efficient method for obtaining a food material extract by removing heavy metals from extracts of foods and food processing by-products, particularly marine foods. It is to provide.
本発明は、有害な重金属を含む食品又は食品加工副産物を0.1〜10%(w/v)の有機酸水溶液と混合する工程;
得られる混合物を60〜110℃に加熱する工程;
加熱した混合物から抽出液を分離する工程;及び
分離した抽出液をキレート樹脂に接触させる工程;
を包含する、該重金属が除去された食品素材エキスの製造方法を提供するものである。
The present invention comprises a step of mixing a food or food processing by-product containing harmful heavy metals with a 0.1 to 10% (w / v) organic acid aqueous solution;
Heating the resulting mixture to 60-110 ° C;
Separating the extract from the heated mixture; and contacting the separated extract with a chelating resin;
And a method for producing a food material extract from which the heavy metal has been removed.
また、本発明は、有害な重金属を含む食品又は食品加工副産物を0.1〜14%(w/v)の塩酸水溶液と混合する工程;
得られる混合物を60〜110℃に加熱する工程;
加熱した混合物から抽出液を分離する工程;
分離した抽出液を水酸化ナトリウムで中和する工程;及び
中和した抽出液をキレート樹脂に接触させる工程;
を包含する、該重金属が除去された食品素材エキスの製造方法を提供するものである。
The present invention also includes a step of mixing a food or food processing by-product containing a harmful heavy metal with a 0.1 to 14% (w / v) aqueous hydrochloric acid solution;
Heating the resulting mixture to 60-110 ° C;
Separating the extract from the heated mixture;
Neutralizing the separated extract with sodium hydroxide; and contacting the neutralized extract with a chelating resin;
And a method for producing a food material extract from which the heavy metal has been removed.
さらに、本発明は、有害な重金属を含む食品又は食品加工副産物を水と混合する工程;
得られる混合物を60〜110℃に加熱する工程;
加熱した混合物から抽出液を分離する工程;及び
分離した抽出液をキレート樹脂に接触させる工程;
を包含する、該重金属が除去された食品素材エキスの製造方法を提供するものである。
Furthermore, the present invention includes a step of mixing food or food processing by-products containing harmful heavy metals with water;
Heating the resulting mixture to 60-110 ° C;
Separating the extract from the heated mixture; and contacting the separated extract with a chelating resin;
And a method for producing a food material extract from which the heavy metal has been removed.
本発明の方法によれば、食品や食品加工副産物の抽出液をキレート樹脂に接触させる工程のみで有害な重金属をほぼ完全に除去することができ、処理後の抽出液は人体に有害な成分を含有しない。それゆえ、その抽出液は食品素材エキスとしてそのまま利用することができる。 According to the method of the present invention, harmful heavy metals can be almost completely removed only by contacting the extract of food or food processing by-product with a chelate resin, and the extract after treatment contains components harmful to the human body. Does not contain. Therefore, the extract can be used as it is as a food material extract.
本発明の方法の対象となるのは人体に有害な重金属を含有する食品や食品加工副産物である。このような重金属にはカドミウム、クロム、銅、錫、水銀、マンガン、モリブデン、ニッケル、鉛、亜鉛等が挙げられる。尚、本発明でいう重金属には、重金属単体及びこれらの化合物が含まれる。 The object of the method of the present invention is foods and food processing by-products containing heavy metals harmful to the human body. Such heavy metals include cadmium, chromium, copper, tin, mercury, manganese, molybdenum, nickel, lead, zinc and the like. The heavy metal referred to in the present invention includes a single heavy metal and a compound thereof.
食品としては、例えば、魚介類等の海産物、動物又は植物から選択される少なくとも1種が挙げられ、食品加工副産物としては、これまで廃棄されてきた魚介類の内臓等が挙げられる。例えば、ホタテ貝の中腸線(ウロ)及びイカの内臓(ゴロ)等は本発明の処理方法の対象になる。更に、食品や食品加工副産物を原料として更に加工をした際に出る副産物も、上記食品加工副産物に含まれる。例えば、魚介類の内臓、ホタテ貝のウロ、イカのゴロ等をボイルして香気成分や旨味成分等を抽出した残渣等も本発明の処理方法の対象となる。 Examples of the food include at least one selected from marine products such as fish and shellfish, animals and plants, and examples of the food processing by-product include the internal organs of fish and shellfish that have been discarded so far. For example, the midgut line of the scallop shell (uro) and the squid internal organs (goro) are the targets of the treatment method of the present invention. Furthermore, a by-product generated when the food or food processing by-product is further processed as a raw material is also included in the food processing by-product. For example, a residue obtained by boiling the internal organs of seafood, scallop shells, squid shells and the like to extract aroma components, umami components, and the like are also subject to the treatment method of the present invention.
本発明の方法においては、まず、このような食品等を有機酸水溶液と接触させる。有機酸は人体に無害なものを使用することが好ましい。人体に無害な有機酸であれば抽出液を食品素材エキスとして利用するために除去する必要がないからである。有機酸の例には酢酸、クエン酸、リンゴ酸、乳酸、マロン酸、酒石酸、コハク酸、アスコルビン酸等が挙げられる。特に好ましい有機酸はクエン酸である。これらは食品添加物として認定されている。なお、有機酸は単独で用いてもよく、複数を混合して用いてもよい。例えば、梅果汁を煮詰めて得られる梅エキスはクエン酸等の食用の有機酸を豊富に含んでおり、本発明でいう有機酸として使用することができる。 In the method of the present invention, first, such food or the like is brought into contact with an organic acid aqueous solution. It is preferable to use an organic acid that is harmless to the human body. This is because if the organic acid is harmless to the human body, it is not necessary to remove the extract in order to use it as a food material extract. Examples of organic acids include acetic acid, citric acid, malic acid, lactic acid, malonic acid, tartaric acid, succinic acid, ascorbic acid and the like. A particularly preferred organic acid is citric acid. These are certified as food additives. In addition, an organic acid may be used independently and may be used in mixture of multiple. For example, a plum extract obtained by boiling plum juice is rich in edible organic acids such as citric acid and can be used as the organic acid referred to in the present invention.
有機酸水溶液の濃度は0.1〜10%(w/v)、好ましくは0.1〜4%、より好ましくは1.0〜4.0%、更に好ましくは1.0〜2.0%とする。有機酸水溶液の濃度が0.1%未満であると食品等から重金属を抽出する効率が不十分となり、10%を越えると抽出液から重金属を除去する効率が低下する。 The concentration of the organic acid aqueous solution is 0.1 to 10% (w / v), preferably 0.1 to 4%, more preferably 1.0 to 4.0%, still more preferably 1.0 to 2.0%. And If the concentration of the aqueous organic acid solution is less than 0.1%, the efficiency for extracting heavy metals from foods and the like is insufficient, and if it exceeds 10%, the efficiency for removing heavy metals from the extract decreases.
有機酸水溶液の代わりに塩酸水溶液を使用してもよい。塩酸は水酸化ナトリウムで中和されて食塩となり、除去しなくても容易に人体に無害化できるからである。塩酸水溶液の濃度は0.1〜14%(w/v)、好ましくは0.6〜4.0%、より好ましくは1.0〜3.0%、更に好ましくは1.6〜2.3%とする。塩酸水溶液の濃度が0.6%未満であると食品等から重金属を抽出する効率が不十分となり、4.0%を越えると抽出液から重金属を除去する効率が低下する。 A hydrochloric acid aqueous solution may be used in place of the organic acid aqueous solution. This is because hydrochloric acid is neutralized with sodium hydroxide to form sodium chloride, which can be easily detoxified without removing it. The concentration of the aqueous hydrochloric acid solution is 0.1 to 14% (w / v), preferably 0.6 to 4.0%, more preferably 1.0 to 3.0%, and still more preferably 1.6 to 2.3. %. If the concentration of the hydrochloric acid aqueous solution is less than 0.6%, the efficiency of extracting heavy metals from foods and the like is insufficient, and if it exceeds 4.0%, the efficiency of removing heavy metals from the extract decreases.
食品等と酸水溶液との接触は、通常の形態のまま行ってもよいが、食品等を適当な大きさに切るか又は粉砕して酸水溶液と混合することが好ましい。金属の抽出効率が向上するからである。特に、金属の抽出効率の観点から、イカゴロのように油状成分が豊富に含まれている素材を処理する場合は、有機酸水溶液と接触させる前にこれらの油状成分を除去しておくことが好ましい。 The contact between the food or the like and the acid aqueous solution may be performed in a normal form, but it is preferable to cut the food or the like into an appropriate size or pulverize and mix with the acid aqueous solution. This is because the metal extraction efficiency is improved. In particular, from the viewpoint of metal extraction efficiency, when processing a material that is rich in oily components such as squid, it is preferable to remove these oily components before contacting with an organic acid aqueous solution. .
油状成分の除去は、対象物を水と混和性を有しない有機溶媒(例えばヘキサン、酢酸エチル等)と接触させて行い、次いで残渣を水と混和性を有する有機溶媒(例えばアセトン、エチルアルコール等)と接触させる二段階処理によって行うことができる。又は、対象物をそのまま水と混和性を有する有機溶媒(例えばアセトン、エチルアルコール等)と接触させる一段階処理によっても行うことができる。一般に食品等と酸水溶液との混合比は食品等の質量1に対して、1〜10倍程度の酸水溶液を用いるのが好ましい。 The oily component is removed by bringing the target into contact with an organic solvent that is not miscible with water (eg, hexane, ethyl acetate, etc.), and then the residue is mixed with water (eg, acetone, ethyl alcohol, etc.). )). Or it can also carry out by the one-step process which makes a target object contact the organic solvent (for example, acetone, ethyl alcohol, etc.) miscible with water as it is. In general, it is preferable to use an acid aqueous solution having a mixing ratio of food or the like to an acid aqueous solution of about 1 to 10 times the mass 1 of the food.
次いで、得られる混合物を加熱する。加熱は混合物を60〜110℃、好ましくは70〜90℃、より好ましくは75〜85℃に保持することにより行う。加熱温度は処理する食品等の種類に依存して、この範囲内で適宜決定される。一般には、加熱温度が60℃未満であると金属の抽出効率が低下するか処理に長時間を要する。加熱温度が110℃を越えると抽出液の着色性が顕著となる。加熱時間は加熱温度に依存して適宜決定される。作業効率の観点から、一般に加熱時間は5〜30分、好ましくは10〜20分、より好ましくは10〜15分である。例えば、加熱温度が80℃の場合は加熱時間は10〜12.5分程度で所望の抽出効率が得られる。 The resulting mixture is then heated. Heating is performed by maintaining the mixture at 60 to 110 ° C, preferably 70 to 90 ° C, more preferably 75 to 85 ° C. The heating temperature is appropriately determined within this range depending on the type of food to be treated. In general, when the heating temperature is less than 60 ° C., the metal extraction efficiency decreases or the treatment takes a long time. When the heating temperature exceeds 110 ° C., the colorability of the extract becomes remarkable. The heating time is appropriately determined depending on the heating temperature. From the viewpoint of work efficiency, the heating time is generally 5 to 30 minutes, preferably 10 to 20 minutes, and more preferably 10 to 15 minutes. For example, when the heating temperature is 80 ° C., the desired extraction efficiency can be obtained with a heating time of about 10 to 12.5 minutes.
加熱を行った後、混合物から固液を分離する。分離方法は特に限定されず、遠心分離法、ろ過法等を単独で又は組み合わせて用いればよい。分離した水溶液には重金属の抽出を補助するために添加した酸、処理前の食品等から抽出された重金属、香気成分や旨味成分等が含まれている。酸として塩酸を使用した場合は、この抽出液に当量の水酸化ナトリウムを加えて中和する。 After heating, the solid and liquid are separated from the mixture. The separation method is not particularly limited, and a centrifugal separation method, a filtration method, or the like may be used alone or in combination. The separated aqueous solution contains acids added to assist in the extraction of heavy metals, heavy metals extracted from foods before processing, aroma components, umami components, and the like. When hydrochloric acid is used as the acid, the extract is neutralized by adding an equivalent amount of sodium hydroxide.
食品等から重金属を抽出する効率が特に重要視されない場合は、有機酸や塩酸を使用しなくてもよい。食品エキスを得るためには必要量の旨味成分などを抽出すれば足りるからである。その場合は、食品等を水と混合して一定時間加熱し、加熱した混合物から抽出液を分離する。驚くべきことに、重金属を含む食品等は水でボイルするだけで、相当量の旨味成分及び重金属が溶出される。たとえば重金属の種類によっては、含有量の50〜70%程度が溶出されることがある。 If the efficiency of extracting heavy metals from food is not particularly important, organic acids and hydrochloric acid need not be used. This is because it is sufficient to extract a necessary amount of umami components and the like in order to obtain a food extract. In that case, food or the like is mixed with water and heated for a certain period of time, and the extract is separated from the heated mixture. Surprisingly, foods and the like containing heavy metals are eluted with a considerable amount of umami components and heavy metals only by boiling with water. For example, depending on the type of heavy metal, about 50 to 70% of the content may be eluted.
加熱温度および加熱時間は有機酸等を用いる場合と同様に決定すればよい。また、加熱後の混合物から固液を分離する方法も、有機酸等を用いる場合と同様に行えばよい。 The heating temperature and heating time may be determined in the same manner as in the case of using an organic acid or the like. The method for separating the solid and liquid from the heated mixture may be performed in the same manner as in the case of using an organic acid or the like.
食品等から抽出した液から重金属を除去するために、次いで、抽出液をキレート樹脂に接触させる。キレート樹脂としてはイミノジ酢酸基あるいはイミノジプロピオン酸基を有する樹脂であってカルボキシル基において重金属イオンとキレート結合することができるものであれば特に限定されない。例えば、多孔性の架橋ポリスチレン基体、スチレン・ジビニルベンゼン共重合体やカルバミン酸系樹脂等にイミノジ酢酸基やイミノジプロピオン酸基を結合させた樹脂のようなキレート樹脂が好ましい。イミノジ酢酸基を有するキレート樹脂の具体例としては、三菱化学株式会社製「ダイヤイオンCR11」、ローム&ハース社製「アンバーライトIRC748」、ミヨシ油脂株式会社製「エポラスMX-10」、イミノジプロピオン酸基を有するキレート樹脂の具体例としては、株式会社モリテックス製「エポラスMX-8,8C」、その他住化ケムテックス株式会社製「スミキレート」、旭硝子エンジニアリング株式会社製「アクリーンZ」、ユニチカテキスタイル株式会社製「ユニセレックUR-10S」、浦野株式会社製「ピュロライト、レバチット」が挙げられる。 In order to remove heavy metals from the liquid extracted from food or the like, the extract is then brought into contact with a chelate resin. The chelate resin is not particularly limited as long as it is a resin having an iminodiacetic acid group or an iminodipropionic acid group and can be chelate-bonded to a heavy metal ion at a carboxyl group. For example, a chelating resin such as a resin obtained by binding an iminodiacetic acid group or an iminodipropionic acid group to a porous cross-linked polystyrene substrate, a styrene / divinylbenzene copolymer, a carbamic acid resin, or the like is preferable. Specific examples of chelating resins having an iminodiacetic acid group include “Diaion CR11” manufactured by Mitsubishi Chemical Corporation, “Amberlite IRC748” manufactured by Rohm & Haas, “Eporus MX-10” manufactured by Miyoshi Oil & Fats Co., Ltd., and Iminodipropion. Specific examples of chelate resins having acid groups include "Epolas MX-8, 8C" manufactured by Moritex Co., Ltd., "Sumichel" manufactured by Sumika Chemtex Co., Ltd., "Aclean Z" manufactured by Asahi Glass Engineering Co., Ltd. “Uniselec UR-10S” manufactured by the company and “Purolite, Levacit” manufactured by Urano Co., Ltd. may be mentioned.
このようなキレート樹脂は金属イオン捕捉能という点においては、重金属イオン>アルカリ土類金属イオン>アルカリ金属イオンであり、重金属イオンに対して高い選択性を有している。これにより、抽出液中に有機酸や塩化ナトリウム由来のイオンが含まれていても重金属イオンを選択的に捕捉でき、有害な重金属が除去された抽出液を得ることが可能となる。 Such chelate resins are heavy metal ions> alkaline earth metal ions> alkali metal ions in terms of metal ion scavenging ability, and have high selectivity for heavy metal ions. Thereby, even if an organic acid or sodium chloride-derived ion is contained in the extract, it is possible to selectively capture heavy metal ions and obtain an extract from which harmful heavy metals have been removed.
接触させる方法は、抽出液が酸性を示す場合はアルカリでpH5.5〜6.5に中和後、キレート樹脂カラムを通過させればよい。尚、抽出工程において酸を使用しない場合は抽出液を中和する必要はない。回収された抽出液は人体に有害な成分を含有せず、そのまま食品素材エキスとして利用することができる。 When the extract is acidic, the method of contacting may be neutralized to pH 5.5 to 6.5 with an alkali and then passed through a chelate resin column. If no acid is used in the extraction process, it is not necessary to neutralize the extract. The recovered extract does not contain a component harmful to the human body and can be used as it is as a food material extract.
本明細書でいう食品素材エキスとは、その成分が将来人体に摂取される可能性がある液状の素材をいう。すなわち、加工食品、家畜用の飼料及び農産物用の肥料等の原料に使用される液体はその成分が将来人体に摂取される可能性が高く、本発明でいう食品素材エキスに含まれる。また、食品素材エキスを濃縮または乾燥させた半固体及び固体も食品素材として本発明の視野に含まれている。濃縮方法や乾燥方法には、例えば、エバポレータ、グローバル濃縮機を用いた減圧濃縮法、凍結乾燥、噴霧乾燥等がある。 The food material extract as used in the present specification refers to a liquid material that may be ingested by the human body in the future. That is, liquids used for raw materials such as processed foods, livestock feeds and agricultural fertilizers are likely to be ingested by the human body in the future, and are included in the food material extract referred to in the present invention. Further, semi-solids and solids obtained by concentrating or drying food material extracts are also included in the scope of the present invention as food materials. Examples of the concentration method and the drying method include an evaporator, a vacuum concentration method using a global concentrator, freeze drying, and spray drying.
以下の実施例により本発明を更に具体的に説明するが、本発明はこれらに限定されない。 The following examples further illustrate the present invention, but the present invention is not limited thereto.
釧路産のホタテ貝のウロを微細化せずそのまま5倍量の水に投入して混合し、80℃に昇温し、10分間加熱した。遠心分離法によって上澄み液を除去し、乾燥させて残渣を得た。得られたボイル残渣のカドミウム含有量をICP法によって測定したところ57.9ppm(対乾物重量)であった。 The scallop shells from Kushiro were poured into 5 times the amount of water without being refined, mixed, heated to 80 ° C. and heated for 10 minutes. The supernatant was removed by centrifugation and dried to obtain a residue. It was 57.9 ppm (vs dry matter weight) when the cadmium content of the obtained boil residue was measured by the ICP method.
このボイル残渣250mgを、表1に示す各有機酸の1%(w/v)水溶液5ml中に投入して混合し、80℃に昇温し、10分間加熱した。遠心分離法によって上澄み液を除去し、0.45μmのフィルターを通し、ろ過液及び残渣を得た。残渣は水道水5mlで3回洗浄した。ろ過液を集めpHを5.5に調整した。 250 mg of this boil residue was put into 5 ml of a 1% (w / v) aqueous solution of each organic acid shown in Table 1, mixed, heated to 80 ° C. and heated for 10 minutes. The supernatant was removed by centrifugation and passed through a 0.45 μm filter to obtain a filtrate and residue. The residue was washed 3 times with 5 ml of tap water. The filtrate was collected and the pH was adjusted to 5.5.
イミノジ酢酸基を有するキレート樹脂(三菱化学株式会社製「ダイアイオンCR-11」)4gを、直径1.0cm、長さ20cm、体積15.7cm3のガラス管に充填した。得られたろ過液約20mlを上記キレート樹脂カラムに添加し、水道水20mlで溶出した。ろ過液中及び、カラム通過液中のカドミウムの含量をそれぞれICP法により分析した。結果を表1に示す。
4 g of a chelate resin having an iminodiacetic acid group (“Diaion CR-11” manufactured by Mitsubishi Chemical Corporation) was filled into a glass tube having a diameter of 1.0 cm, a length of 20 cm, and a volume of 15.7 cm 3 . About 20 ml of the obtained filtrate was added to the chelate resin column and eluted with 20 ml of tap water. The cadmium contents in the filtrate and in the column passage liquid were analyzed by ICP method. The results are shown in Table 1.
[表1]
[Table 1]
カラム通過液中にはカドミウムはほとんど存在していなかった。また、この通過液の成分を分析した結果、旨味の主役であるイノシン酸、グルタミン酸が多く含まれ、また旨味の脇役であるタウリン、グリシン、アラニンも多く含まれていることが確認された。 Almost no cadmium was present in the column passing solution. Moreover, as a result of analyzing the components of the flow-through liquid, it was confirmed that a large amount of inosinic acid and glutamic acid, which are the main roles of umami, and taurine, glycine and alanine, which are the supporting roles of umami, were also included.
実施例1で用いたのと同じボイル残渣250mgを、表2に示す各濃度(w/v)のクエン酸水溶液5ml中に投入して混合し、80℃に昇温し、10分間加熱した。遠心分離法によって上澄み液を除去し、0.45μmのフィルターを通し、ろ過液及び残渣を得た。残渣は水道水5mlで3回洗浄した。ろ過液を集めpHを5.5に調整した。 250 mg of the same boil residue used in Example 1 was put into 5 ml of an aqueous citric acid solution having each concentration (w / v) shown in Table 2, mixed, heated to 80 ° C., and heated for 10 minutes. The supernatant was removed by centrifugation and passed through a 0.45 μm filter to obtain a filtrate and residue. The residue was washed 3 times with 5 ml of tap water. The filtrate was collected and the pH was adjusted to 5.5.
イミノジ酢酸基を有するキレート樹脂(三菱化学株式会社製「ダイアイオンCR-11」)4gを、直径1.0cm、長さ20cm、体積15.7cm3のガラス管に充填した。得られたろ過液約20mlを上記キレート樹脂カラムに添加し、水道水20mlで溶出した。ろ過液中及び、カラム通過液中のカドミウムの含量をそれぞれICP法により分析した。ろ過液中及び、カラム通過液中のカドミウムの含量をそれぞれICP法により分析した。結果を表2に示す。 4 g of a chelate resin having an iminodiacetic acid group (“Diaion CR-11” manufactured by Mitsubishi Chemical Corporation) was filled into a glass tube having a diameter of 1.0 cm, a length of 20 cm, and a volume of 15.7 cm 3 . About 20 ml of the obtained filtrate was added to the chelate resin column and eluted with 20 ml of tap water. The cadmium contents in the filtrate and in the column passage liquid were analyzed by ICP method. The cadmium contents in the filtrate and in the column passage liquid were analyzed by ICP method. The results are shown in Table 2.
[表2]
[Table 2]
カドミウムの除去効率はクエン酸の濃度によって影響されず、カラム通過液中にはカドミウムはほとんど存在していなかった。また、この通過液の成分を分析した結果、旨味の主役であるイノシン酸、グルタミン酸が多く含まれ、また旨味の脇役であるタウリン、グリシン、アラニンも多く含まれていることが確認された。 The removal efficiency of cadmium was not affected by the concentration of citric acid, and almost no cadmium was present in the column passing solution. Moreover, as a result of analyzing the components of the flow-through liquid, it was confirmed that a large amount of inosinic acid and glutamic acid, which are the main roles of umami, and taurine, glycine and alanine, which are the supporting roles of umami, were also included.
イミノジ酢酸基を有するキレート樹脂の代わりに陽イオン交換樹脂(三菱化学社製「ダイアイオンSK110」)を用いること以外は実施例2と同様にしてろ過液を樹脂に接触させて、カラム通過液を得た。ろ過液中及び、カラム通過液中のカドミウムの含量をそれぞれICP法により分析した。結果を表3に示す。 The filtrate was brought into contact with the resin in the same manner as in Example 2 except that a cation exchange resin (“Diaion SK110” manufactured by Mitsubishi Chemical Corporation) was used instead of the chelate resin having an iminodiacetic acid group. Obtained. The cadmium contents in the filtrate and in the column passage liquid were analyzed by ICP method. The results are shown in Table 3.
[表3]
[Table 3]
カドミウムの除去効率は0.02%以下であった。 The removal efficiency of cadmium was 0.02% or less.
実施例1で用いたのと同じボイル残渣250mgを、表4に示す各濃度(w/v)の塩酸水溶液5ml中に投入して混合し、80℃に昇温し、10分間加熱した。遠心分離法によって上澄み液を除去し、0.45μmのフィルターを通し、ろ過液及び残渣を得た。残渣は水道水5mlで3回洗浄した。 250 mg of the same boil residue as used in Example 1 was put into 5 ml of hydrochloric acid aqueous solution of each concentration (w / v) shown in Table 4, mixed, heated to 80 ° C. and heated for 10 minutes. The supernatant was removed by centrifugation and passed through a 0.45 μm filter to obtain a filtrate and residue. The residue was washed 3 times with 5 ml of tap water.
ろ過液を集め、これに0.1〜2.0Nの水酸化ナトリウム水溶液を添加して中和した。イミノジ酢酸基を有するキレート樹脂(三菱化学株式会社製「ダイアイオンCR-11」)4gを、直径1.0cm、長さ20cm、体積15.7cm3のガラス管に充填した。得られたろ過液約20mlを上記キレート樹脂カラムに添加し、水道水20mlで溶出した。ろ過液中及び、カラム通過液中のカドミウムの含量をそれぞれICP法により分析した。ろ過液(中和前)中及び、カラム通過液中のカドミウムの含量をICP法により分析した。結果を表4に示す。 The filtrate was collected and neutralized by adding 0.1 to 2.0 N aqueous sodium hydroxide solution thereto. 4 g of a chelate resin having an iminodiacetic acid group (“Diaion CR-11” manufactured by Mitsubishi Chemical Corporation) was filled into a glass tube having a diameter of 1.0 cm, a length of 20 cm, and a volume of 15.7 cm 3 . About 20 ml of the obtained filtrate was added to the chelate resin column and eluted with 20 ml of tap water. The cadmium contents in the filtrate and in the column passage liquid were analyzed by ICP method. The cadmium content in the filtrate (before neutralization) and in the column passage liquid was analyzed by the ICP method. The results are shown in Table 4.
[表4]
[Table 4]
カドミウムの除去効率は塩酸の濃度によって影響されず、カラム通過液中にカドミウムはほとんど存在していなかった。また、この通過液の成分を分析した結果、旨味の主役であるイノシン酸、グルタミン酸が多く含まれ、また旨味の脇役であるタウリン、グリシン、アラニンも多く含まれていることが確認された。 The removal efficiency of cadmium was not affected by the concentration of hydrochloric acid, and almost no cadmium was present in the column passing solution. Moreover, as a result of analyzing the components of the flow-through liquid, it was confirmed that a large amount of inosinic acid and glutamic acid, which are the main roles of umami, and taurine, glycine and alanine, which are the supporting roles of umami, were also included.
イミノジ酢酸基を有するキレート樹脂の代わりに陽イオン交換樹脂(三菱化学社製「ダイアイオンSK110」)を用いること以外は実施例3と同様にして中和したろ過液を樹脂に接触させて、カラム通過液を得た。ろ過液中及び、カラム通過液中のカドミウムの含量をそれぞれICP法により分析した。結果を表5に示す。 The neutralized filtrate was brought into contact with the resin in the same manner as in Example 3 except that a cation exchange resin ("Diaion SK110" manufactured by Mitsubishi Chemical Corporation) was used instead of the chelate resin having iminodiacetic acid groups, and the column was contacted. A passing liquid was obtained. The cadmium contents in the filtrate and in the column passage liquid were analyzed by ICP method. The results are shown in Table 5.
[表5]
[Table 5]
カドミウムの除去効率は0.04%以下であった。 The removal efficiency of cadmium was 0.04% or less.
和歌山県産のイカのゴロを3倍量(v/w)のアセトンに漬け、細かく砕き一夜放置した。1G3の濾紙を用いて濾過し、残渣を液が透明で、残渣が粉末になるまでアセトンで洗浄した。得られた残渣を5倍量の水に投入して混合し、80℃に昇温し、10分間加熱した。遠心分離法によって上澄み液を除去し、乾燥させて残渣を得た。得られたボイル残渣のカドミウム含有量をICP法によって測定したところ124.6ppm(対乾物重量)であった。 Squid goro from Wakayama Prefecture was dipped in 3 times the volume (v / w) of acetone, crushed finely and left overnight. The mixture was filtered using 1G3 filter paper, and the residue was washed with acetone until the liquid was clear and the residue became powder. The obtained residue was poured into 5 times the amount of water, mixed, heated to 80 ° C. and heated for 10 minutes. The supernatant was removed by centrifugation and dried to obtain a residue. It was 124.6 ppm (vs dry matter weight) when the cadmium content of the obtained boil residue was measured by the ICP method.
ホタテウロのボイル残渣の代わりに、得られたイカゴロのボイル残渣を用いること以外は実施例2と同様にしてろ過液を得、このろ過液をキレート樹脂に接触させて、カラム通過液を得た。ろ過液中及び、カラム通過液中のカドミウムの含量をそれぞれICP法により分析した。表6に示される通り、実施例2と同様な結果が得られた。 A filtrate was obtained in the same manner as in Example 2 except that the obtained Ikagoro boil residue was used in place of the scallop boil residue, and this filtrate was brought into contact with a chelate resin to obtain a column passing solution. The cadmium contents in the filtrate and in the column passage liquid were analyzed by ICP method. As shown in Table 6, the same results as in Example 2 were obtained.
[表6]
[Table 6]
ホタテウロのボイル残渣の代わりに、実施例4で得られたイカゴロのボイル残渣を用いること以外は実施例3と同様にして中和したろ過液を得、このろ過液をキレート樹脂に接触させて、カラム通過液を得た。ろ過液(中和前)中及び、カラム通過液中のカドミウムの含量をそれぞれICP法により分析した。表7に示される通り、実施例3と同様な結果が得られた。 A neutralized filtrate was obtained in the same manner as in Example 3 except that the squid goblet boil residue obtained in Example 4 was used instead of the scallop boil residue, and this filtrate was brought into contact with a chelate resin. A column passing solution was obtained. The cadmium content in the filtrate (before neutralization) and in the column passage liquid was analyzed by the ICP method. As shown in Table 7, the same results as in Example 3 were obtained.
[表7]
[Table 7]
釧路産のホタテ貝のウロを微細化せずそのまま5倍量の水に投入して混合し、80℃に昇温し、10分間加熱した。遠心分離法によって沈殿物を除去し、上澄み液を得た。得られた上澄み液のカドミウム含有量をICP法によって測定したところ145.0ppm(対乾物重量)であった。尚、この溶出量はホタテウロに含まれていた全カドミウム量の約半分の量に相当する。 The scallop shells from Kushiro were poured into 5 times the amount of water without being refined, mixed, heated to 80 ° C. and heated for 10 minutes. The precipitate was removed by centrifugation, and a supernatant was obtained. When the cadmium content of the obtained supernatant was measured by the ICP method, it was 145.0 ppm (weight to dry matter). This elution amount corresponds to about half of the total cadmium contained in scallops.
イミノジ酢酸基を有するキレート樹脂(三菱化学株式会社製「ダイアイオンCR-11」)4gを、直径1.0cm、長さ20cm、体積15.7cm3のガラス管に充填した。得られた上澄み液約20mlを上記キレート樹脂カラムに添加し、水道水20mlで溶出した。カラム通過液中のカドミウムの含量をICP法により分析した。結果は0.1ppm未満であった。 4 g of a chelate resin having an iminodiacetic acid group (“Diaion CR-11” manufactured by Mitsubishi Chemical Corporation) was filled into a glass tube having a diameter of 1.0 cm, a length of 20 cm, and a volume of 15.7 cm 3 . About 20 ml of the obtained supernatant was added to the chelate resin column and eluted with 20 ml of tap water. The cadmium content in the column passage liquid was analyzed by the ICP method. The result was less than 0.1 ppm.
カラム通過液中にはカドミウムはほとんど存在していなかった。また、この通過液の成分を分析した結果、旨味の主役であるイノシン酸、グルタミン酸が多く含まれ、また旨味の脇役であるタウリン、グリシン、アラニンも多く含まれていることが確認された。 Almost no cadmium was present in the column passing solution. Moreover, as a result of analyzing the components of the flow-through liquid, it was confirmed that a large amount of inosinic acid and glutamic acid, which are the main roles of umami, and taurine, glycine and alanine, which are the supporting roles of umami, were also included.
和歌山県産のイカのゴロを3倍量(v/w)のアセトンに漬け、細かく砕き一夜放置した。1G3の濾紙を用いて濾過し、残渣を液が透明で、残渣が粉末になるまでアセトンで洗浄した。得られた残渣を5倍量の水に投入して混合し、80℃に昇温し、10分間加熱した。遠心分離法によって沈殿物を除去し、上澄み液を得た。得られた上澄み液のカドミウム含有量をICP法によって測定したところ67.1ppm(対乾物重量)であった。尚、この溶出量はイカゴロに含まれていた全カドミウム量の約半分の量に相当する。 Squid goro from Wakayama Prefecture was dipped in 3 times the volume (v / w) of acetone, crushed finely and left overnight. The mixture was filtered using 1G3 filter paper, and the residue was washed with acetone until the liquid was clear and the residue became powder. The obtained residue was poured into 5 times the amount of water, mixed, heated to 80 ° C. and heated for 10 minutes. The precipitate was removed by centrifugation, and a supernatant was obtained. It was 67.1 ppm (vs dry matter weight) when the cadmium content of the obtained supernatant was measured by the ICP method. This amount of elution corresponds to about half of the total amount of cadmium contained in Ikagoro.
イミノジ酢酸基を有するキレート樹脂(三菱化学株式会社製「ダイアイオンCR-11」)4gを、直径1.0cm、長さ20cm、体積15.7cm3のガラス管に充填した。得られた上澄み液約20mlを上記キレート樹脂カラムに添加し、水道水20mlで溶出した。カラム通過液中のカドミウムの含量をICP法により分析した。結果は0.1ppm未満であった。 4 g of a chelate resin having an iminodiacetic acid group (“Diaion CR-11” manufactured by Mitsubishi Chemical Corporation) was filled into a glass tube having a diameter of 1.0 cm, a length of 20 cm, and a volume of 15.7 cm 3 . About 20 ml of the obtained supernatant was added to the chelate resin column and eluted with 20 ml of tap water. The cadmium content in the column passage liquid was analyzed by the ICP method. The result was less than 0.1 ppm.
カラム通過液中にはカドミウムはほとんど存在していなかった。また、この通過液の成分を分析した結果、旨味の主役であるイノシン酸、グルタミン酸が多く含まれ、また旨味の脇役であるタウリン、グリシン、アラニンも多く含まれていることが確認された。
Almost no cadmium was present in the column passing solution. Moreover, as a result of analyzing the components of this passing liquid, it was confirmed that a large amount of inosinic acid and glutamic acid, which are the main roles of umami, and a large amount of taurine, glycine and alanine, which are the supporting roles of umami, were also confirmed.
Claims (8)
得られる混合物を60〜110℃に加熱する工程;
加熱した混合物から抽出液を分離する工程;及び
分離した抽出液をキレート樹脂に接触させる工程;
を包含する、該重金属が除去された食品素材エキスの製造方法。 Mixing a food or food processing by-product containing harmful heavy metals with a 0.1-10% (w / v) aqueous organic acid solution;
Heating the resulting mixture to 60-110 ° C;
Separating the extract from the heated mixture; and contacting the separated extract with a chelating resin;
A method for producing a food material extract from which heavy metals have been removed.
得られる混合物を60〜110℃に加熱する工程;
加熱した混合物から抽出液を分離する工程;
分離した抽出液を水酸化ナトリウムで中和する工程;及び
中和した抽出液をキレート樹脂に接触させる工程;
を包含する、該重金属が除去された食品素材エキスの製造方法。 Mixing food or food processing by-products containing harmful heavy metals with 0.1 to 14% (w / v) aqueous hydrochloric acid;
Heating the resulting mixture to 60-110 ° C;
Separating the extract from the heated mixture;
Neutralizing the separated extract with sodium hydroxide; and contacting the neutralized extract with a chelating resin;
A method for producing a food material extract from which heavy metals have been removed.
得られる混合物を60〜110℃に加熱する工程;
加熱した混合物から抽出液を分離する工程;及び
分離した抽出液をキレート樹脂に接触させる工程;
を包含する、該重金属が除去された食品素材エキスの製造方法。 Mixing food or food processing by-products containing harmful heavy metals with water;
Heating the resulting mixture to 60-110 ° C;
Separating the extract from the heated mixture; and contacting the separated extract with a chelating resin;
A method for producing a food material extract from which heavy metals have been removed.
The method according to any one of claims 1 to 7, wherein the food or food processing by-product is scallop shell or squid shell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004224125A JP4624025B2 (en) | 2004-07-30 | 2004-07-30 | Method for producing food material extract from which harmful heavy metals have been removed |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004224125A JP4624025B2 (en) | 2004-07-30 | 2004-07-30 | Method for producing food material extract from which harmful heavy metals have been removed |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006042613A true JP2006042613A (en) | 2006-02-16 |
JP4624025B2 JP4624025B2 (en) | 2011-02-02 |
Family
ID=36021863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004224125A Expired - Fee Related JP4624025B2 (en) | 2004-07-30 | 2004-07-30 | Method for producing food material extract from which harmful heavy metals have been removed |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4624025B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007135491A (en) * | 2005-11-18 | 2007-06-07 | San Akuteisu:Kk | Apparatus for removing heavy metals |
JP2008012372A (en) * | 2006-07-03 | 2008-01-24 | Kumamoto Technology & Industry Foundation | Method of removing heavy metals from animal tissues, or animal organs |
WO2011021269A1 (en) * | 2009-08-18 | 2011-02-24 | 大成農材株式会社 | Method for producing organic fertilizer and organic feed |
CN106260499A (en) * | 2016-09-06 | 2017-01-04 | 南昌大学 | The cooperation-removal method of copper, hydrargyrum in zein |
CN106360261A (en) * | 2016-09-06 | 2017-02-01 | 南昌大学 | Method for removing copper and mercury in bitter apricot seed protein |
CN106359845A (en) * | 2016-09-06 | 2017-02-01 | 南昌大学 | Synergic removal method of copper and mercury in flax proteins |
CN106387620A (en) * | 2016-09-06 | 2017-02-15 | 南昌大学 | Method for removing copper and mercury in wheat protein |
CN114315565A (en) * | 2021-12-07 | 2022-04-12 | 河北科技大学 | Glycolic acid/alanine natural eutectic ionic liquid and preparation method and application thereof |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6181763A (en) * | 1984-09-28 | 1986-04-25 | T Hasegawa Co Ltd | Preparation of extract of shellfish meat |
JPH0716081A (en) * | 1993-06-30 | 1995-01-20 | Hokkaido Prefecture | Production of essence of fishes and shellfishes |
JPH08214841A (en) * | 1995-02-15 | 1996-08-27 | Mutsumi Shoji | Production of extract of fishes and shellfishes |
JPH11137219A (en) * | 1997-11-07 | 1999-05-25 | Marine Chemical Kenkyusho:Kk | Extraction of fatty oil from hepatopancreas of scallop |
JPH11276120A (en) * | 1998-03-30 | 1999-10-12 | Takayuki Ikeda | Production of cadmium-free extract of fishes and shellfishes |
JP2000053774A (en) * | 1998-08-05 | 2000-02-22 | Hitachi Plant Eng & Constr Co Ltd | Removal of heavy metals from marine organismal macromolecule, device therefor and marine organismal macromolecule |
JP2000166517A (en) * | 1998-12-11 | 2000-06-20 | Hitachi Plant Eng & Constr Co Ltd | Removal of heavy metal in biopolymer and device |
JP2000296389A (en) * | 1999-02-09 | 2000-10-24 | Shiro Yoshizaki | Method for removing heavy metals |
JP2001086958A (en) * | 1999-09-22 | 2001-04-03 | Tokai Bussan Kk | Production of extract having high quality |
JP2002336818A (en) * | 2001-05-17 | 2002-11-26 | Tamura Kagaku Kenkyusho:Kk | Method for treating processing residue of mollusk food, treatment process and treatment device used therefor |
-
2004
- 2004-07-30 JP JP2004224125A patent/JP4624025B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6181763A (en) * | 1984-09-28 | 1986-04-25 | T Hasegawa Co Ltd | Preparation of extract of shellfish meat |
JPH0716081A (en) * | 1993-06-30 | 1995-01-20 | Hokkaido Prefecture | Production of essence of fishes and shellfishes |
JPH08214841A (en) * | 1995-02-15 | 1996-08-27 | Mutsumi Shoji | Production of extract of fishes and shellfishes |
JPH11137219A (en) * | 1997-11-07 | 1999-05-25 | Marine Chemical Kenkyusho:Kk | Extraction of fatty oil from hepatopancreas of scallop |
JPH11276120A (en) * | 1998-03-30 | 1999-10-12 | Takayuki Ikeda | Production of cadmium-free extract of fishes and shellfishes |
JP2000053774A (en) * | 1998-08-05 | 2000-02-22 | Hitachi Plant Eng & Constr Co Ltd | Removal of heavy metals from marine organismal macromolecule, device therefor and marine organismal macromolecule |
JP2000166517A (en) * | 1998-12-11 | 2000-06-20 | Hitachi Plant Eng & Constr Co Ltd | Removal of heavy metal in biopolymer and device |
JP2000296389A (en) * | 1999-02-09 | 2000-10-24 | Shiro Yoshizaki | Method for removing heavy metals |
JP2001086958A (en) * | 1999-09-22 | 2001-04-03 | Tokai Bussan Kk | Production of extract having high quality |
JP2002336818A (en) * | 2001-05-17 | 2002-11-26 | Tamura Kagaku Kenkyusho:Kk | Method for treating processing residue of mollusk food, treatment process and treatment device used therefor |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007135491A (en) * | 2005-11-18 | 2007-06-07 | San Akuteisu:Kk | Apparatus for removing heavy metals |
JP2008012372A (en) * | 2006-07-03 | 2008-01-24 | Kumamoto Technology & Industry Foundation | Method of removing heavy metals from animal tissues, or animal organs |
WO2011021269A1 (en) * | 2009-08-18 | 2011-02-24 | 大成農材株式会社 | Method for producing organic fertilizer and organic feed |
US8911810B2 (en) | 2009-08-18 | 2014-12-16 | Taisei Nozai Co., Ltd. | Method for producing organic fertilizer and organic feed |
CN106260499A (en) * | 2016-09-06 | 2017-01-04 | 南昌大学 | The cooperation-removal method of copper, hydrargyrum in zein |
CN106360261A (en) * | 2016-09-06 | 2017-02-01 | 南昌大学 | Method for removing copper and mercury in bitter apricot seed protein |
CN106359845A (en) * | 2016-09-06 | 2017-02-01 | 南昌大学 | Synergic removal method of copper and mercury in flax proteins |
CN106387620A (en) * | 2016-09-06 | 2017-02-15 | 南昌大学 | Method for removing copper and mercury in wheat protein |
CN114315565A (en) * | 2021-12-07 | 2022-04-12 | 河北科技大学 | Glycolic acid/alanine natural eutectic ionic liquid and preparation method and application thereof |
CN114315565B (en) * | 2021-12-07 | 2023-12-19 | 河北科技大学 | Glycolic acid/alanine natural eutectic ionic liquid and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4624025B2 (en) | 2011-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4199496A (en) | Process for the recovery of chemicals from the shells of crustacea | |
JP4491612B2 (en) | Preparation of phosphorus-containing aqueous solution from livestock manure-based incineration ash, removal of heavy metals, and recovery method of hydroxyapatite and / or calcium hydrogen phosphate | |
CN105126773B (en) | It is a kind of using shrimp and crab shells as renewable heavy-metal adsorption material of raw material and preparation method thereof and regeneration method and application | |
JP4624025B2 (en) | Method for producing food material extract from which harmful heavy metals have been removed | |
CN107779258B (en) | Preparation method of krill oil with low arsenic content | |
JP2007135491A (en) | Apparatus for removing heavy metals | |
CN103757080A (en) | Fish collagen peptide and preparation method thereof | |
JP2005328797A (en) | Method for removing heavy metal from food, or the like | |
JP5250814B2 (en) | Production method of organic fertilizer from fishery processing residue | |
JP2557015B2 (en) | Method for producing fish and shellfish extract | |
Sato et al. | Iodine identification in major edible seaweed Kappaphycus alvarezii and establishment of an iodine reduction method for its protein extract for utilization as a protein source | |
US3044876A (en) | Treatment of mustard seed | |
JP4405139B2 (en) | Processing method of scallop internal organs | |
JP4698792B2 (en) | Method for removing heavy metals from mushroom extract | |
JP2009254274A (en) | Method of removing heavy metals from fish sauce | |
JP2011236411A (en) | Method of manufacturing soil conditioner | |
CN106745196A (en) | A kind of production method of zinc sulfate | |
JP4512948B2 (en) | Useful amino acid composition, food or food compounding agent containing the same, and method for producing the same | |
JP2002045823A (en) | Method for removing heavy metals | |
JP2005112819A (en) | Method for production of phospholipid derived from fish and shellfish | |
JP3497205B2 (en) | Processing method of coffee extract residue | |
JPS5973561A (en) | Preparation of natural taurine | |
JP2000069946A (en) | Extract of bamboo grass and its production | |
JP2696485B2 (en) | Extraction method of fish and shellfish algae extract containing large amount of mineral components | |
RU2200424C2 (en) | Method for obtaining pectin-containing product out of sea grasses of zosteraceae species |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070727 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090722 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091006 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091204 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101019 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101102 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131112 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |