JP2557015B2 - Method for producing fish and shellfish extract - Google Patents

Method for producing fish and shellfish extract

Info

Publication number
JP2557015B2
JP2557015B2 JP5187134A JP18713493A JP2557015B2 JP 2557015 B2 JP2557015 B2 JP 2557015B2 JP 5187134 A JP5187134 A JP 5187134A JP 18713493 A JP18713493 A JP 18713493A JP 2557015 B2 JP2557015 B2 JP 2557015B2
Authority
JP
Japan
Prior art keywords
extract
shellfish
fish
ultrafiltration
internal organs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5187134A
Other languages
Japanese (ja)
Other versions
JPH0716081A (en
Inventor
洋 野俣
忠志 大堀
幸司 蛯谷
健司 橋本
忠明 武田
博実 金子
智樹 太田
紘平 西
稔 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Prefecture
Original Assignee
Hokkaido Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Prefecture filed Critical Hokkaido Prefecture
Priority to JP5187134A priority Critical patent/JP2557015B2/en
Publication of JPH0716081A publication Critical patent/JPH0716081A/en
Application granted granted Critical
Publication of JP2557015B2 publication Critical patent/JP2557015B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、魚貝類の内臓あるいは
その抽出液から魚貝類エキスを製造する方法に関する。
さらに詳しく言えば、重金属成分が除去された魚貝類エ
キスの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fish and shellfish extract from the internal organs of fish and shellfish or an extract thereof.
More specifically, it relates to a method for producing a fish and shellfish extract from which heavy metal components have been removed.

【0002】[0002]

【従来技術】魚貝類の加工に際しては、内臓部分や各工
程において使用・排出された蒸煮水等、多量の加工副生
物が発生する。例えば、ホタテガイやイカの加工では、
それぞれ年間数万トンに及ぶ内臓部分が廃出されている
と推定される。
2. Description of the Related Art During the processing of fish and shellfish, a large amount of processing by-products such as the internal organs and the boiling water used and discharged in each process are generated. For example, in the processing of scallops and squid,
It is estimated that tens of thousands of tonnes of viscera are discarded each year.

【0003】このうち、蒸煮水等の加工工程水について
は、遠心分離やろ過により固液分離し、エキス分を含有
する透過液をそのまま、あるいは濃縮して天然調味料原
料として利用する方法が提案されている。一方、内臓部
分は、一部が塩辛等として利用されているものの、大半
は産業廃棄物として水産加工業者の費用負担の下で埋設
・焼却処理されているのが現状である。
Of these, for processing water such as steamed water, a method is proposed in which solid-liquid separation is carried out by centrifugation or filtration, and the permeate containing the extract is used as it is or as a raw material for natural seasonings. Has been done. On the other hand, most of the internal organs are used as salt and salt, but most of them are buried and incinerated as industrial waste at the expense of the fishery processor.

【0004】しかし、内臓部分にも各種アミノ酸や核酸
関連物質(例えば、イノシン酸)等の呈味成分やエイコ
サペンタエン酸(EPA)やカロチノイド等の有用物質
が多量に含まれており、優れた呈味性を活かして天然調
味料の原料として、また、農作物や家畜に対して肥育効
果があることから肥・飼料の原料としての利用が期待で
きる。したがって、資源の有効利用を図るためにも、処
理経費の低減を通して水産加工業の振興を図るために
も、魚介類内臓を有効に利用することが望ましい。
However, the visceral portion also contains a large amount of taste components such as various amino acids and nucleic acid-related substances (for example, inosinic acid) and useful substances such as eicosapentaenoic acid (EPA) and carotenoids, which is excellent. It can be expected to be used as a raw material for natural seasonings by utilizing its taste, and also as a raw material for fertilizer and feed because it has a fattening effect on agricultural crops and livestock. Therefore, it is desirable to effectively use the internal organs of fish and shellfish for effective use of resources and promotion of the fishery processing industry through reduction of processing costs.

【0005】ところが、魚貝類の内臓には食物連鎖にし
たがって環境中の重金属が濃縮されやすいという問題が
ある。しかし、天然調味料等の食品については直接に、
また肥料、飼料については農作物や畜肉を介して、その
成分が人体に摂取されるものだけに安全性に対する要求
も高く、人体には生理的影響を及ぼすおそれのない程度
に少量の重金属を含む原料であっても製品イメ−ジを損
なう懸念がある。このため、魚貝類内臓の有効利用を図
るためには、内臓中に含まれている重金属、特にカドミ
ウム(Cd)をいかに効果的にかつ低コストで除去する
かが課題となっている。
However, the internal organs of fish and shellfish have a problem that heavy metals in the environment are easily concentrated according to the food chain. However, for foods such as natural seasonings,
In addition, fertilizers and feeds are raw materials containing a small amount of heavy metals to the extent that there is no risk of physiological effects on the human body, as only those ingredients that are ingested by the human body through agricultural products and livestock are highly demanded. However, there is a concern that the image of the product may be damaged. Therefore, in order to effectively use the internal organs of fish and shellfish, how to effectively remove heavy metals contained in the internal organs, particularly cadmium (Cd), at low cost is a problem.

【0006】重金属の除去は、鉱工業廃水については種
々の方法、例えば、イオン交換樹脂による吸着分離法、
キレート剤や有機溶媒による抽出法が多数提案されてい
る。しかし、これらの方法を魚貝類内臓からの抽出液に
応用しても、各種アミノ酸やイノシン酸等の旨味成分の
回収率が不十分である。また、肥料や飼料あるいは天然
調味料の原料に用いるためには安全性やコストの点で問
題が残る。
Removal of heavy metals can be carried out by various methods for industrial wastewater, for example, adsorption separation method using ion exchange resin,
Many extraction methods using chelating agents and organic solvents have been proposed. However, even if these methods are applied to the extract from the internal organs of fish and shellfish, the recovery of umami components such as various amino acids and inosinic acid is insufficient. In addition, there are problems in safety and cost when used as raw materials for fertilizers, feeds and natural seasonings.

【0007】一方、魚貝類加工時の不純物分離に関して
は、固液分離に先立って蛋白質分解酵素を添加して収率
を高めたり(特開平1-187065号)、限外ろ過膜や逆浸透
膜を用いた工程を加えて、高分子ペプチドやコラーゲン
あるいは余剰の塩分を除去する方法(特開昭60-27359
号、特開平1-128763号)が提案されている。しかし、こ
れらの先行技術文献には、系内に溶存する重金属の除去
については、特別の記載はない。
On the other hand, regarding the separation of impurities during the processing of fish and shellfish, a proteolytic enzyme may be added prior to solid-liquid separation to increase the yield (Japanese Patent Laid-Open No. 1-187065), an ultrafiltration membrane or a reverse osmosis membrane. To remove high-molecular peptides, collagen, or excess salt by adding a process using the method described in JP-A-60-27359.
Japanese Patent Laid-Open No. 1-128763). However, there is no specific description in these prior art documents regarding the removal of heavy metals dissolved in the system.

【0008】[0008]

【発明が解決しようとする課題】本発明は、従来廃棄処
分されてきた魚貝類内臓を有効利用するため、魚貝類内
臓中に含有されている微量重金属を経済的な方法で除去
し、肥料・飼料あるいは天然調味料の原料として有用な
エキス分を抽出してエキス分含有製品を製造方法を提供
することを目的とする。
DISCLOSURE OF THE INVENTION The present invention effectively utilizes the internal organs of fish and shellfish that have been conventionally disposed of. Therefore, trace amounts of heavy metals contained in the internal organs of fish and shellfish are removed by an economical method, and fertilizer An object is to provide a method for producing an extract-containing product by extracting an extract that is useful as a raw material for feed or natural seasonings.

【0009】[0009]

【問題を解決するための手段】本発明者らは、魚貝類内
臓中の重金属の除去方法について種々検討した結果、魚
貝類内臓に含まれる重金属はその大部分が水溶性タンパ
ク質と結合して存在していることに着目して、内臓抽出
液を特定のpH領域で限外ろ過を行えば効果的にその除
去が実現されることを見出し本発明を完成するに至っ
た。
[Means for Solving the Problem] As a result of various studies on the method for removing heavy metals in the internal organs of fish and shellfish, the present inventors found that most of the heavy metals contained in the internal organs of fish and shellfish are bound to water-soluble proteins. Focusing on this fact, they have found that the removal of the visceral extract can be effectively achieved by performing ultrafiltration in a specific pH range, and the present invention has been completed.

【0010】[0010]

【発明の構成】すなわち、本発明は、(1) 魚貝類の内臓
抽出液をpH 3.5〜9に調整して限外ろ過を行ない重金
属成分を除去することを特徴とする魚貝類エキスの製造
方法、(2) 限外ろ過に先立ち加熱処理と固液分離を行な
うことを特徴とする上記の方法、(3) 固液分離に先立ち
抽出液を蛋白分解酵素で処理することを特徴とする上記
の各方法、(4) 魚貝類内臓がホタテガイ中腸腺である上
記の各方法、および(5) 魚貝類内臓がイカ肝臓である上
記の各方法を提供する。
BEST MODE FOR CARRYING OUT THE INVENTION That is, the present invention is: (1) A method for producing a fish and shellfish extract, characterized in that the visceral extract of fish and shellfish is adjusted to pH 3.5 to 9 to carry out ultrafiltration to remove heavy metal components. , (2) The above method characterized by performing heat treatment and solid-liquid separation prior to ultrafiltration, (3) The above-mentioned method characterized in that the extract is treated with a proteolytic enzyme prior to solid-liquid separation. Each method, (4) each of the above methods in which the fish and shellfish viscera are scallop midgut glands, and (5) each of the above methods in which the fish and shellfish viscera is squid liver are provided.

【0011】本発明で内臓を有効利用する原料魚貝類の
種類に制限はないが、特に核酸やアミノ酸などの有効成
分含有率が高く、かつ重金属成分の蓄積が多いとされて
いる魚貝類が好ましい対象となる。具体的にはホタテガ
イ中腸腺、イカ肝臓などが挙げられる。内臓の抽出液
は、魚・貝肉製品の製造工程で副生したものでもよい
が、内臓を取り出した後、これを処理することによって
調製した抽出液でもよい。後者の場合、原料となる魚介
類内臓をそのまま破砕するか、あるいは重量で10倍量
まで、好ましくは、5倍量までの水を加えて破砕する。
水に代えて塩水や後記のpH範囲の緩衝液を用いてもよ
い。
In the present invention, there is no limitation on the kind of raw material fish and shellfish which makes effective use of the internal organs, but fish and shellfish which have a high content of active ingredients such as nucleic acids and amino acids and a large accumulation of heavy metal components are preferred. Be the target. Specific examples include scallop midgut gland and squid liver. The extract of the internal organs may be a by-product of the fish / shellfish product manufacturing process, or may be an extract prepared by treating the internal organs after taking them out. In the latter case, the internal organs of seafood, such as seafood, is crushed as it is, or crushed by adding water up to 10 times by weight, preferably up to 5 times by weight.
Instead of water, salt water or a buffer solution having a pH range described below may be used.

【0012】得られた液は、必要に応じて固液分離を行
なう。例えば、貝殻や骨等、後記の限外ろ過において膜
を損傷する可能性のある硬質異物を含む場合は、この工
程は必須である。固液分離は、遠心分離、ろ布によるろ
過等、既知の種々の方法を用いて行なうことができる。
The obtained liquid is subjected to solid-liquid separation if necessary. For example, when a hard foreign substance such as a shell or a bone that may damage the membrane in the ultrafiltration described later is contained, this step is essential. Solid-liquid separation can be performed using various known methods such as centrifugation and filtration with a filter cloth.

【0013】得られた抽出液は限外ろ過してエキス成分
含有液を得る。魚貝類内臓の重金属結合性タンパク質の
分子量は、数千〜数万であり、エキス成分の分子量は数
十〜数百であることから、エキス成分の回収を妨げるこ
となく重金属の除去を行なうためには、数千〜五万程度
の分画分子量を有する膜を用いる。上記分画分子量の範
囲内であれば限外ろ過膜の材質や形態は特に限定されな
い。例えば、チュブラ−型、プレートアンドフレーム
型、スパイラル型、中空繊維型のいずれであってもよ
い。
The obtained extract is ultrafiltered to obtain an extract-containing solution. The molecular weight of the heavy metal binding protein in the viscera of fish and shellfish is several thousand to several tens of thousands, and the molecular weight of the extract component is several tens to several hundreds. Therefore, in order to remove the heavy metal without hindering the recovery of the extract component. Uses a membrane having a molecular weight cutoff of several thousands to 50,000. The material and form of the ultrafiltration membrane are not particularly limited as long as they are within the above range of molecular weight cutoff. For example, it may be a tuber type, a plate and frame type, a spiral type, or a hollow fiber type.

【0014】重金属結合性タンパク質は、酸性側で重金
属を遊離する。また、アルカリ側では加水分解が進行す
る。以上のことから、抽出液のpHを限外ろ過前に中性
域、具体的にはpH 3.5〜9、好ましくはpH5〜8の
範囲内に調整する必要がある。
Heavy metal-binding proteins release heavy metals on the acidic side. In addition, hydrolysis proceeds on the alkaline side. From the above, it is necessary to adjust the pH of the extract to a neutral range, specifically pH 3.5 to 9, preferably pH 5 to 8, before ultrafiltration.

【0015】また、本発明者らの知見によれば、限外ろ
過に先立って加熱処理を行なうこと、及び固液分離に先
だって酵素による蛋白分解を行なうことが重金属、特に
カドミウムの除去に極めて有効である。加熱処理は、上
記固液分離と組み合わせてその前に行なうことが好まし
い。特にカドミウムにおける除去効果は大きく、加熱処
理をしない場合と比べて(限外ろ過の後の比較で)30
%程度除去率を高めることができる。具体的には、60
〜100℃の温度範囲で5分〜1時間抽出液を加熱処理
する。
Further, according to the knowledge of the present inventors, it is extremely effective to remove heavy metals, especially cadmium, that heat treatment is performed prior to ultrafiltration, and that proteolysis with an enzyme is performed prior to solid-liquid separation. Is. The heat treatment is preferably carried out before the solid-liquid separation in combination. Especially, the removal effect of cadmium is large, and compared to the case without heat treatment (comparison after ultrafiltration) 30
The removal rate can be increased by about%. Specifically, 60
The extract is heat-treated at a temperature range of -100 ° C for 5 minutes to 1 hour.

【0016】酵素による蛋白分解は重金属濃度に特異な
影響を与える。すなわち、抽出液中の亜鉛や鉄の濃度
は、酵素分解処理によってむしろ増加する傾向を示す
(限外ろ過後の比較。以下、この段において同じ)。こ
れに対し、カドミウムや銅の濃度は、酵素分解によって
一旦減少するが、酵素による分解が過度に進行すると増
加に転じ減少前のレベルにまで戻る。したがって、酵素
分解の進行を制御することにより、カドミウムや銅の除
去効率を高めることが可能である。具体的な分解度の制
御は、使用する酵素及びその濃度、反応温度、原料中の
タンパク質濃度等の個々の条件にしたがって行なう必要
があるが、例えば、条件既知の試料について試験を行っ
て得たデータに基づいて酵素反応の終結時期を制御すれ
ばよい。
Enzymatic proteolysis has a unique effect on heavy metal concentrations. That is, the concentrations of zinc and iron in the extract tend to rather increase due to the enzymatic decomposition treatment (comparison after ultrafiltration. The same applies to the following stage). On the other hand, the concentrations of cadmium and copper are temporarily reduced by enzymatic decomposition, but when the enzymatic decomposition progresses excessively, the concentration starts to increase and returns to the level before the decrease. Therefore, it is possible to increase the removal efficiency of cadmium and copper by controlling the progress of enzymatic decomposition. Specific control of the degree of decomposition needs to be carried out according to individual conditions such as the enzyme to be used and its concentration, reaction temperature, protein concentration in the raw material, etc. The termination time of the enzyme reaction may be controlled based on the data.

【0017】なお、本発明で使用する蛋白分解酵素(プ
ロテアーゼ)は、抽出液の種類、pH、処理温度に合わ
せて市販のものから適宜選択すればよい。これらの蛋白
分解酵素を用いることによって、重金属濃度の制御が可
能となるばかりでなく、製品中のアミノ酸量も増加し、
また、その組成比をも変えることができる。
The proteolytic enzyme (protease) used in the present invention may be appropriately selected from commercially available ones according to the type of extract, pH and treatment temperature. By using these proteolytic enzymes, not only the concentration of heavy metals can be controlled, but also the amount of amino acids in the product is increased,
Also, the composition ratio can be changed.

【0018】[0018]

【実施例】以下、原料をホタテガイの中腸腺(内臓塊、
通常、「ウロ」と呼ばれる)とした場合の例によって本
発明をさらに具体的に説明するが、他の原料についても
基本的には同様である。
[Examples] In the following, the raw materials of the scallop midgut gland
The present invention will be described in more detail by way of an example of the case (usually referred to as "uro"), but the same applies to other raw materials.

【0019】[0019]

【実施例1】ホタテガイ中腸腺50gに50mMトリス
緩衝液(pH7.2)150mlを加え、高速ホモジナイザ
−により1分間ホモジナイズした。得られた懸濁液を3
0分間室温で放置後、ステンレス製遠沈管に移し沸騰水
中で15分間加熱処理し、これを10,000rpm で15分間
遠心分離し、上澄みをろ紙でろ過して抽出液とした。上
記抽出液150mlを小型限外ろ過装置(アドバンテッ
ク社製)を用い、液温25℃、圧力2 kg/cm2 で濃縮液
側が50mlになるまで限外ろ過した。なお、限外ろ過
膜は、膜面積 78.5/cm2 、分画分子量10,000のポリスル
ホン製平膜を用いた。分析試料を105℃で乾燥後、混
酸(硝酸・硫酸)と過塩素酸により湿式分解して試料液
を調製し、試料液のZn、Cd、Cu及びFe濃度を原
子吸光分光光度計(日立株式会社製偏光ゼーマン式測定
器Z6000 )による直接吸引法により測定した。
Example 1 To 50 g of scallop midgut gland, 150 ml of 50 mM Tris buffer (pH 7.2) was added and homogenized for 1 minute by a high-speed homogenizer. The resulting suspension is 3
After leaving it at room temperature for 0 minutes, it was transferred to a stainless centrifuge tube and heat-treated in boiling water for 15 minutes. This was centrifuged at 10,000 rpm for 15 minutes, and the supernatant was filtered with a filter paper to obtain an extract. 150 ml of the above extract was ultrafiltered using a small ultrafilter (manufactured by Advantech) at a liquid temperature of 25 ° C. and a pressure of 2 kg / cm 2 until the concentrated liquid side became 50 ml. As the ultrafiltration membrane, a polysulfone flat membrane having a membrane area of 78.5 / cm 2 and a molecular weight cutoff of 10,000 was used. After the analytical sample is dried at 105 ° C, it is wet decomposed with mixed acid (nitric acid / sulfuric acid) and perchloric acid to prepare a sample solution, and the Zn, Cd, Cu and Fe concentrations of the sample solution are measured by an atomic absorption spectrophotometer (Hitachi stock It was measured by a direct suction method using a company-made polarized Zeeman measuring instrument Z6000).

【0020】抽出過程における残渣及び限外ろ過濃縮液
についても同様の分析を行ない、結果を合計したとこ
ろ、ホタテガイ50g中の重金属の含有量は、Zn:153
0 μg、Cd:1077 μg、Cu:227μg、Fe:15,900
μgであった。また、この数値を分母として計算した本
方法における各段階での重金属除去率は、抽出液中でそ
れぞれ、Zn:88.7 %、Cd:79.8 %、Cu:65.6
%、Fe:89.7 %、限外ろ過液中でそれぞれZn:99.3
%、Cd:99.1 %以上(限外ろ液中の濃度が0.1ppm以
下)、Cu:91.2 %、Fe:99.3 %であった。
The same analysis was performed on the residue in the extraction process and the ultrafiltration concentrate, and when the results were summed up, the content of heavy metals in 50 g of scallop was Zn: 153.
0 μg, Cd: 1077 μg, Cu: 227 μg, Fe: 15,900
It was μg. The heavy metal removal rate at each step in the present method calculated using this value as the denominator was Zn: 88.7%, Cd: 79.8%, Cu: 65.6% in the extract, respectively.
%, Fe: 89.7%, Zn: 99.3 in ultrafiltrate, respectively
%, Cd: 99.1% or more (concentration in ultrafiltrate: 0.1 ppm or less), Cu: 91.2%, Fe: 99.3%.

【0021】[0021]

【実施例2】遠心分離前の加熱処理を行なわなかった他
は、実施例1と同様に分離抽出、重金属分析を行なっ
た。抽出液段階における重金属除去率は、それぞれ、Z
n:71.6 %、Cd:45.7 %、Cu:40.5 %、Fe:87.4
%であった。
Example 2 Separation and extraction and heavy metal analysis were carried out in the same manner as in Example 1 except that the heat treatment before centrifugation was not carried out. The heavy metal removal rate in the extraction liquid stage is Z
n: 71.6%, Cd: 45.7%, Cu: 40.5%, Fe: 87.4
%Met.

【0022】[0022]

【実施例3】遠心分離前の懸濁液に蛋白分解酵素(天野
製薬株式会社製プロテアーゼA−アマノ)0.1 %を加え
て、37℃で最長120分間放置した他は実施例と同様
の方法により、分離抽出、限外ろ過を行ない、フェニル
イソチオシアネートによりプレラベル化するPTCアミ
ノ酸分析法により各段階でのアミノ酸量を測定した。こ
の際、常法により試料をエタノール処理してタンパク成
分を除き遊離アミノ酸量を測定し、また6N規定塩酸に
より加水分解(110℃、20時間)した試料により全
アミノ酸量を測定した。
Example 3 By the same method as in Example 1, except that 0.1% of a protease (Protease A-Amano manufactured by Amano Pharmaceutical Co., Ltd.) was added to the suspension before centrifugation and the mixture was allowed to stand at 37 ° C. for up to 120 minutes. Separated extraction and ultrafiltration were performed, and the amount of amino acid at each stage was measured by the PTC amino acid analysis method in which prelabeling was performed with phenylisothiocyanate. At this time, the sample was treated with ethanol to remove the protein component and the amount of free amino acid was measured by a conventional method, and the total amount of amino acid was measured by the sample hydrolyzed with 6N normal hydrochloric acid (110 ° C., 20 hours).

【0023】酵素反応0分での抽出液の全アミノ酸濃度
は約1200mg/100ml、遊離アミノ酸濃度は約630mg/1
00ml であった。アミノ酸の組成は、全アミノ酸では、
タウリン、グリシン、グルタミン酸及びアスパラギン
酸、遊離アミノ酸としてはタウリン、グリシン、アラニ
ン及びグルタミン酸が多く、ホタテガイ貝柱とほぼ類似
した組成であった。抽出液のアミノ酸濃度は、酵素分解
の進行にともなって増加し、酵素反応120 分では、全ア
ミノ酸が約2800mg/100ml、遊離アミノ酸が約1600mg/100
mlとなり、タウリンとグリシンを除く全てのアミノ酸
が、全アミノ酸では約3〜4倍に、遊離アミノ酸では約
4〜20倍に増加した。
The total amino acid concentration of the extract at 0 minutes of the enzyme reaction was about 1200 mg / 100 ml, and the free amino acid concentration was about 630 mg / 1.
It was 00 ml. The composition of amino acids is
Taurine, glycine, glutamic acid and aspartic acid, and free amino acids contained a large amount of taurine, glycine, alanine and glutamic acid, and the composition was almost similar to that of the scallop scallop. The amino acid concentration in the extract increased with the progress of enzymatic degradation. At 120 minutes of enzymatic reaction, total amino acids were approximately 2800 mg / 100 ml and free amino acids were approximately 1600 mg / 100 ml.
All amino acids except taurine and glycine increased about 3 to 4 times for all amino acids and about 4 to 20 times for free amino acids.

【0024】限外ろ過液の遊離アミノ酸濃度は、抽出液
と同様、酵素分解にともなって増加し、抽出液との差は
ほとんど見られなかった。また、その組成は抽出液中の
組成と大きな差はなかった。全アミノ酸濃度は、抽出液
と比較し、酵素反応0分で約40%、同120 分間で約1
5%低い値を示した。
The concentration of free amino acids in the ultrafiltrate increased with enzymatic decomposition as in the case of the extract, and there was almost no difference with the extract. The composition was not significantly different from that in the extract. The total amino acid concentration was about 40% at 0 minutes and about 1 at 120 minutes in comparison with the extract.
The value was 5% lower.

【0025】 また、限外ろ過前の抽出液と限外ろ過液
のそれぞれについて、実施例1と同様の方法で重金属分
析を行なった。結果を図1〜4に示す。図1(抽出液)
と図2(限外ろ過液)に示す通り、重金属濃度(pp
m)の酵素反応の進行度(反応時間)に対する関係は、
ZnとFeではほぼ比例的であるが、CdとCuではU
字型となり、反応途中で極小値を有することが分かる。
この特異な挙動は特に全アミノ酸1mg当たりの重金属
量の減少を示す図3(抽出液)と図4(限外ろ過液)で
より明瞭であり、CdとCuでは逆J字型となり、限外
ろ過液中の値(図4)では、最小値が初期値のそれぞれ
約1/5、1/3と顕著な減少を示している。
Heavy metal analysis was performed on each of the extract before ultrafiltration and the ultrafiltrate in the same manner as in Example 1. The results are shown in FIGS. Figure 1 (extract)
As shown in Fig. 2 (ultrafiltrate), the heavy metal concentration (pp
The relationship of m) to the progress of the enzymatic reaction (reaction time) is
Zn and Fe are almost proportional, but Cd and Cu are U
It turns out to be a letter shape and has a minimum value in the middle of the reaction.
This peculiar behavior is especially due to heavy metals per mg of total amino acids.
It is clearer in Fig. 3 (extract) and Fig. 4 (ultrafiltrate) showing the decrease in the amount , and the C- and Cu-like J-shapes, and the value in the ultrafiltrate (Fig. 4) is the smallest. The values are remarkably reduced to about 1/5 and 1/3 of the initial values, respectively.

【0026】[0026]

【発明の効果】本発明で重金属の除去に用いる限外ろ過
法は、熱エネルギ−を必要とせず、膜モジュールと高圧
液送ポンプをとを組み合わせることにより連続処理やス
ケ−ルアップが容易に行なえるため低コストである。ま
た、限外ろ過と加熱処理および/または酵素分解を組み
合わせることにより、エキス成分を損することなく重金
属の大部分を除去することが可能であり、肥料や飼料あ
るいは天然調味料の原料として安全性の高い魚貝類エキ
スを得ることができる。
INDUSTRIAL APPLICABILITY The ultrafiltration method used in the present invention for removing heavy metals does not require heat energy, and continuous treatment and scale-up can be easily performed by combining a membrane module and a high-pressure liquid feed pump. Therefore, the cost is low. In addition, by combining ultrafiltration and heat treatment and / or enzymatic decomposition, it is possible to remove most of the heavy metals without damaging the extract components, making it safe as a raw material for fertilizers, feeds or natural seasonings. A high fish and shellfish extract can be obtained.

【0027】以上のように、本発明により、魚貝類内臓
から比較的安価に、しかも、肥料や飼料あるいは天然調
味料の原料として安全性の高い魚貝類エキスを製造する
ことは、魚貝類内臓の有効利用や水産加工経営の安定、
さらには水産加工地域の環境保全を図る上で寄与すると
ころが大きいと言える。
As described above, according to the present invention, it is possible to produce fish shellfish extract from fish shellfish relatively inexpensively and highly safe as a raw material for fertilizer, feed or natural seasoning. Stable use of fishery and stable fishery processing management,
Furthermore, it can be said that it contributes greatly to the environmental protection of the seafood processing area.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法において蛋白分解酵素処理を行な
った場合の抽出液(限外ろ過前)における反応時間
(分)と重金属濃度(ppm)との関係を示すグラフで
ある。
FIG. 1 is a graph showing the relationship between reaction time (min) and heavy metal concentration (ppm) in an extract (before ultrafiltration) when a protease treatment is performed in the method of the present invention.

【図2】本発明の方法において蛋白分解酵素処理を行な
った場合の限外ろ過液における反応時間(分)と重金属
濃度(ppm)との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the reaction time (minutes) and the heavy metal concentration (ppm) in the ultrafiltrate when the protease treatment is performed in the method of the present invention.

【図3】本発明の方法において酵素処理を行なった場合
の抽出液(限外ろ過前)における反応時間(分)と全ア
ミノ酸に対する重金属濃度(μg/mg)との関係を示
すグラフである。
FIG. 3 is a graph showing the relationship between the reaction time (min) in the extract (before ultrafiltration) and the heavy metal concentration (μg / mg) relative to all amino acids when the enzyme treatment was performed in the method of the present invention.

【図4】 本発明の方法において蛋白分解酵素処理を行
なった場合の限外ろ過液における反応時間(分)と全ア
ミノ酸に対する重金属濃度(g/mg)との関係を示
すグラフである。ク゛
It is a graph showing the relationship between the reaction time in ultrafiltrate frames that have undergone proteolytic enzyme treatment and (minute) and the heavy metal concentration to total amino acids (n g / mg) in the method of the present invention; FIG. G

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金子 博実 北海道紋別市花園町5丁目7番34号 (72)発明者 太田 智樹 北海道江別市対雁124番32号 (72)発明者 西 紘平 北海道紋別市南が丘4丁目2番17号 (72)発明者 木村 稔 北海道紋別市花園町3丁目8番2号 (56)参考文献 特開 昭52−125665(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiromi Kaneko 5-734 Hanazono-cho, Monbetsu-shi, Hokkaido (72) Inventor Tomoki Ota 124-32 (32) Inferior Ebetsu, Hokkaido (72) Nishi Kohei, Monbetsu, Hokkaido Minami-gaoka 4-2-117 (72) Inventor Minoru Kimura 3-8-2 Hanazono-cho, Monbetsu-shi, Hokkaido (56) Reference JP-A-52-125665 (JP, A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 魚貝類の内臓抽出液をpH 3.5〜9に調
整して限外ろ過を行ない重金属成分を除去することを特
徴とする魚貝類エキスの製造方法。
1. A method for producing a fish and shellfish extract, characterized in that the visceral extract of fish and shellfish is adjusted to pH 3.5 to 9 and ultrafiltration is performed to remove heavy metal components.
【請求項2】 限外ろ過に先立ち加熱処理と固液分離を
行なうことを特徴とする請求項1に記載の方法。
2. The method according to claim 1, wherein heat treatment and solid-liquid separation are performed before ultrafiltration.
【請求項3】 固液分離に先立ち抽出液を蛋白分解酵素
で処理することを特徴とする請求項1または2に記載の
方法。
3. The method according to claim 1 or 2, wherein the extract is treated with a proteolytic enzyme prior to solid-liquid separation.
【請求項4】 魚貝類内臓がホタテガイ中腸腺である請
求項1乃至3のいずれかの項に記載の方法。
4. The method according to claim 1, wherein the internal organs of the fish and shellfish are scallop midgut glands.
【請求項5】 魚貝類内臓がイカ肝臓である請求項1乃
至4のいずれかの項に記載の方法。
5. The method according to any one of claims 1 to 4, wherein the internal organs of fish and shellfish is squid liver.
JP5187134A 1993-06-30 1993-06-30 Method for producing fish and shellfish extract Expired - Fee Related JP2557015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5187134A JP2557015B2 (en) 1993-06-30 1993-06-30 Method for producing fish and shellfish extract

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5187134A JP2557015B2 (en) 1993-06-30 1993-06-30 Method for producing fish and shellfish extract

Publications (2)

Publication Number Publication Date
JPH0716081A JPH0716081A (en) 1995-01-20
JP2557015B2 true JP2557015B2 (en) 1996-11-27

Family

ID=16200723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5187134A Expired - Fee Related JP2557015B2 (en) 1993-06-30 1993-06-30 Method for producing fish and shellfish extract

Country Status (1)

Country Link
JP (1) JP2557015B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4624025B2 (en) * 2004-07-30 2011-02-02 株式会社サンアクティス Method for producing food material extract from which harmful heavy metals have been removed
JP4858828B2 (en) * 2006-07-03 2012-01-18 亮太 篠原 Methods for removing heavy metals from animal tissues or organs
JP5555950B2 (en) * 2009-09-04 2014-07-23 株式会社共生資源研究所 Heavy metal removing apparatus and heavy metal removing method
CN103120275B (en) * 2012-04-17 2014-07-02 杭州百山祖生物科技有限公司 Method for removing heavy metals in edible fungi polysaccharide
IL247522A0 (en) * 2016-08-29 2016-11-30 Technion Res & Dev Foundation Removal of contaminant from organic mass

Also Published As

Publication number Publication date
JPH0716081A (en) 1995-01-20

Similar Documents

Publication Publication Date Title
JP2798390B2 (en) Method for treating vegetable protein-containing meal
US4199496A (en) Process for the recovery of chemicals from the shells of crustacea
JP2843669B2 (en) Method for producing astaxanthin and related carotenoids, astaxanthin esters, chitin, proteins and meat from plants, seaweeds, bacteria, krill, shrimp and other crayfish and crustaceans
JP2557015B2 (en) Method for producing fish and shellfish extract
JPH05125100A (en) High-purity pepsin soluble scale collagen and its production
US5393318A (en) Method of producing organic fertilizer by using fish as raw material
JP5142126B2 (en) Method for producing antioxidant dipeptide
JPS6070037A (en) Biomass treating method
JP4624025B2 (en) Method for producing food material extract from which harmful heavy metals have been removed
JP6884345B2 (en) How to separate selenoneine
JPH0593000A (en) Production of high-purity fish scale collagen soluble in acid
JP3108346B2 (en) Treatment method of fish broth extract
JPH05155900A (en) High-purity acid-insoluble fish scale collagen and its production
JPH08280394A (en) Production of gamma-aminobutyric acid
JP4405139B2 (en) Processing method of scallop internal organs
JP2003092996A (en) Method for producing composition containing imidazole dipeptides
Rubin et al. Ultrafiltration in rapeseed processing
JP2001292741A (en) Oyster meat extract and method of producing the same
JPH0212467B2 (en)
JP2005112819A (en) Method for production of phospholipid derived from fish and shellfish
JP3497205B2 (en) Processing method of coffee extract residue
JP2005328797A (en) Method for removing heavy metal from food, or the like
JP5429468B2 (en) Method for separating crude tyrosine or crude leucine from potato protein
JP2793158B2 (en) How to separate tyrosine from fibroin
JP2696485B2 (en) Extraction method of fish and shellfish algae extract containing large amount of mineral components

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees