JP2006041384A - プラズマ処理装置 - Google Patents

プラズマ処理装置 Download PDF

Info

Publication number
JP2006041384A
JP2006041384A JP2004222214A JP2004222214A JP2006041384A JP 2006041384 A JP2006041384 A JP 2006041384A JP 2004222214 A JP2004222214 A JP 2004222214A JP 2004222214 A JP2004222214 A JP 2004222214A JP 2006041384 A JP2006041384 A JP 2006041384A
Authority
JP
Japan
Prior art keywords
plasma
electric field
gas flow
discharge
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004222214A
Other languages
English (en)
Inventor
Kazuhiro Nishikawa
和宏 西川
Daisuke Takahashi
大輔 高橋
Shozo Yoshimoto
尚三 芳本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2004222214A priority Critical patent/JP2006041384A/ja
Publication of JP2006041384A publication Critical patent/JP2006041384A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

【課題】 大気圧プラズマ処理装置において、比較的大型の基板に対してプラズマ処理を行なう際にも支障がなく、活性種の利用効率を高くすることを可能とし、高速のプラズマ処理を可能とする。
【解決手段】 プラズマ処理装置は、大気圧近傍でプラズマを発生させるためのプラズマ発生空間13に対する露出面6aを有する放電禁止部6と、放電禁止部6を介して電界を発生させることによってプラズマ発生空間13のうち露出面6a近傍にプラズマを発生させるための電界発生手段とを備える。放電禁止部6は、プラズマ発生空間13に所望のガスを供給するためのガス流経路7を有する。ガス流経路7の断面形状は、上記電界発生手段によって形成される電界の方向の寸法が、電界が形成されてもガス流経路7内でのプラズマ発生を抑制できる程度に小さい。
【選択図】 図1

Description

本発明は、大気圧下でプラズマを発生させ、プラズマによる化学反応を利用して、各種基板に代表される被処理物へのプラズマ処理を行なうためのプラズマ処理装置に関する。プラズマ処理とは、たとえば、基板への薄膜形成、基板もしくは基板上に形成された薄膜の加工、基板もしくは基板上に形成された薄膜への表面処理などである。
近年、大気圧すなわち略1気圧程度の圧力下においてプラズマを生成し、該プラズマによる化学反応を利用して、各種基板上への薄膜形成、基板の加工、基板の表面処理などのプラズマ処理を行なうプラズマ処理装置(「大気圧プラズマ処理装置」ともいう。)が種々提案されている。大気圧近傍の圧力下でプラズマ処理を行なうことが可能であれば、反応容器内を高真空に排気する必要がないので、装置構成を簡略化することができる。
いくつかの分野では、年々大型化する基板を処理するために、従来方式の真空を要するプラズマ処理装置にはこれに応じた大型の真空排気設備が要求され、プラズマ処理装置の製造コストの増加につながっていた。しかし、大気圧プラズマ処理装置では、真空排気設備が不要な分だけ、プラズマ処理装置の製造コストを大幅に削減できるという利点があり、これが各分野において大気圧プラズマ処理装置を導入する大きな要因となっている。
大気圧プラズマ処理装置の一つの処理形態として、プラズマ生成領域中に基板を挿入し、被処理面を直接プラズマに曝すことによって所望の処理を行なうという処理形態が挙げられる。特開平10−88372号公報(特許文献1)にはその処理形態を行なう装置構成が示されている。この構成においては、上下方向に互いに近接して対向させた電極間にプラズマを発生させ、この電極間に基板を配置することによって所望のプラズマ処理を行なっている。しかし、このような処理形態は以下に述べる問題を有する。
大気圧近傍の圧力下でプラズマ処理を行なう場合、電界方向に沿って微小な火花放電またはストリーマ放電がしばしば生じる。一方、従来の大気圧プラズマ処理装置においては安定なグロー放電を維持するために電極間のギャップは数ミリ以下程度に設定される。電極間のギャップがこのように狭いため、処理基板は必然的に電極の表面に対して略平行に配置される。すなわち、処理基板面は、電極間に形成される電界方向と略垂直に配置される。このような状況で上述したような電界方向に沿った火花放電またはストリーマ放電が起こると、ギャップ間に挿入した基板に略垂直に筋状の形状を有する火花放電或いはストリーマ放電が起こり、たちどころに基板にダメージを与えるという問題が生じる。
これに対して、別の処理形態として、プラズマ生成領域が基板面から離れていて、プラズマ中に生成した活性種が拡散、あるいは積極的に形成されたガス流などによって基板面に到達することにより所望の処理を行なう形態が知られている。特開平5−275191号公報(特許文献2)にこの処理形態にて処理を行なう装置構成が示されている。
上記の処理形態では、プラズマを生成維持する領域が基板面と離れている。このため荷電粒子はプラズマ生成領域に捕獲されていまい、基板へ到達する確率は極めて低くなる。したがって、荷電粒子が電界によって加速されて基板面に衝突することによって生じるダメージはほとんど生じない。また、プラズマ生成領域で微小な火花放電やストリーマ放電が生じたとしても、基板に直接的にダメージを与えることはない。
しかし、このようにプラズマ生成領域に対して基板面が離れて配置されていると、活性種が基板面に至るまでに反応性に乏しい状態へと失活する割合も大きく、一般に処理速度は遅い。特に大気圧近傍の圧力では、活性種が周囲のガス分子と衝突する頻度が高く、エネルギーの授受が行なわれてエネルギー的平衡状態へと速やかに至る。ガス雰囲気中に高いエネルギーを有する活性種はごく一部であるが、上述のことはこれらの活性種が速やかに失活してしまうことを意味する。そして、しばしばこの処理速度の遅さのために、この処理形態のものは極めて軽微の処理にしか適用できないという問題がある。したがって、この処理形態においては、より高速度の処理を可能とする手法が求められている。
さらに、この処理形態ではプラズマ放電維持に要するエネルギー量に対する処理速度が小さいため、所望の処理を行なうためには大電力投入が要求され、高出力電源が必要となる。その結果、装置コスト、ランニングコストともに高くなるという問題がある。
以上から、望ましい形態の条件としては、
(1)火花放電またはストリーマ放電が発生しても直接基板へのダメージが生じないように、プラズマ発生のために形成する電界方向を基板面と略平行とし、
(2)高速の処理が可能となるように、極力プラズマと基板とを近づける、あるいは接触させる、
ということが挙げられる。
特開2001−44180号公報(特許文献3)には左右方向に互いに近接して並べた電極間のギャップを絶縁体で埋めてそのギャップ内における放電を禁止し、絶縁体の下面となる絶縁体端面近傍でプラズマを発生させる装置構成が開示されている。この構成によれば、電極間のギャップ内ではなく電極の端面に対向して処理基板を配置することとなるため、比較的大型の基板であってもプラズマ近傍に配置することが可能となる。また、電界方向は基板面と略平行となるため、火花放電またはストリーマ放電による基板へのダメージを抑制することが可能である。
特開平10−88372号公報 特開平5−275191号公報 特開2001−44180号公報
特許文献3に開示されている構成のように電極間のギャップを絶縁体で埋めて放電を禁止したのみでは、以下の問題が生じる。すなわち、放電空間に所望のガスを供給するためのガス供給口はプラズマ空間の側方に配置され、ガス流は基板面に略平行に形成される。したがって、活性種はガス流に乗って基板面と略平行に移動することとなり、基板面と垂直な方向へ移動する運動量は与えられない。その結果、特許文献2に示されたような装置構成では可能であったガス流による基板面への活性種移送の効果がない装置となる。
このため、この処理形態では、プラズマ放電が生じる空間のうち基板面近傍で生成した活性種はプラズマ処理に寄与しやすいが、絶縁体近傍で生成した活性種は基板面に到達する前に失活し、プラズマ処理に寄与できない。その結果、プラズマ処理速度は格段には向上できないという問題があった。
なお、当然ながら、何ら特別の工夫なく絶縁体の内部を通過するようにガス流経路を形成すれば、プラズマが発生する位置は絶縁体内部のガス流経路中となってしまう。これは、結局、特許文献2と本質的に同一の処理形態となる。その場合の問題は既に述べた。
そこで、本発明は、比較的大型の基板に対してプラズマ処理を行なう際にも支障がなく、活性種の利用効率を高くすることができ、高速のプラズマ処理を可能とする大気圧プラズマ処理装置を提供することを目的とする。
上記目的を達成するため、本発明に基づくプラズマ処理装置の一つの局面では、大気圧近傍でプラズマ処理を行なうための第1の領域および上記第1の領域に上記プラズマ処理を行なうためのガスを供給する、あるいは上記第1の領域から上記ガスを排気する経路である第2の領域を有し、上記第1の領域と上記第2の領域とに同時に電界を発生させたときに上記第1の領域ではプラズマが発生し、上記第2の領域ではプラズマの発生が抑制されるように、上記第2の領域の断面形状が設定されている。
上記目的を達成するため、本発明に基づくプラズマ処理装置の他の局面は、大気圧近傍でプラズマを発生させるためのプラズマ発生空間に対する露出面を有する放電禁止部と、上記放電禁止部を介して電界を発生させることによって上記プラズマ発生空間のうち上記露出面近傍にプラズマを発生させるための電界発生手段とを備え、上記放電禁止部は、上記プラズマ発生空間に所望のガスを供給するためのガス流経路を有し、上記ガス流経路の断面形状は、上記電界発生手段によって形成される電界の方向の寸法が、上記電界が形成されても上記ガス流経路内でのプラズマ発生を抑制できる程度に小さい。
本発明によれば、プラズマを発生させるための電界は、対象物の表面と略平行な方向に生じるため、筋状の火花放電やストリーマ放電が発生しても直接的に基板にダメージを与えることは避けられる。本発明によれば、プラズマ発生空間に面してガス流経路の出口を配置することにより、プラズマ発生空間に対する大気の混入量を低く抑え、プラズマ中の活性種を迅速に対象物の表面へと移送することができる。したがって、比較的大型の基板に対してプラズマ処理を行なう際にも支障がなく、活性種の利用効率を高くすることができ、高速のプラズマ処理が可能となる。
(実施の形態1)
(構成)
図1、図2を参照して、本発明に基づく実施の形態1におけるプラズマ処理装置について説明する。このプラズマ処理装置は、図1に示すように、大気圧近傍でプラズマを発生させるためのプラズマ発生空間13を内部に規定する反応容器1を備える。さらに、このプラズマ処理装置は、このプラズマ発生空間13内に所望のガスを供給するためのガス供給源であるガスボンベ2と、電源4とを備える。ガスボンベ2と反応容器1との間をつなぐガス配管15の途中には、供給するガス流量をモニタし、制御するためのガス流量計3が配置されている。反応容器1の上側には電極5および放電禁止部6が配置されている。放電禁止部6は絶縁体であり、プラズマ発生空間13に対する露出面6aを有する。
電極5は、断面が略四角形となった棒状の金属部材であり、表面にはセラミックスなどの誘電体材料が溶射法などによってコーティングされていることが望ましい。具体的な誘電体材料としては、アルミナ、窒化アルミニウム、マグネシア、ムライトなどが挙げられる。電極5は一対すなわち2本あり、それぞれ電源4に電気的に接続されており、電極5同士の間に電界を発生させることができるようになっている。これら2本の電極5は、放電禁止部6を挟むようにして、互いに略平行に配置されている。すなわち、2本の電極5および電源4は、放電禁止部6を介して電界を発生させることによってプラズマ発生空間13のうち露出面6a近傍にプラズマを発生させるための電界発生手段となっている。
放電禁止部6は、プラズマ発生空間13に所望のガスを供給するためのガス流経路7を有する。露出面6aは、ガス流経路7の出口を有する。図1におけるガス流経路7の出口近傍を露出面6aの側から見たところを図2に示す。図2に明らかなように、このプラズマ処理装置では、ガス流経路7の出口はスリット状であり、ガス流経路7の断面形状は、電極5による電界発生方向14に略垂直な方向に延びる扁平な形状となっている。このガス流経路7の断面形状の厚みGは、上述の電界発生手段による電界が形成されてもガス流経路7内でのプラズマ発生を抑制できる程度に小さなものとなっている。
さらに、このプラズマ処理装置は、被処理物である基板8を搬送するための基板搬送装置を備えている。図1には、基板搬送装置としては構成部品であるコロ9のみが図示されている。
ガスボンベ2から供給された所望のガスは、ガス流量計3によって所定のガス流量に制御され、ガス配管15を通してガス流経路7に導かれ、さらに反応容器1の内側のプラズマ発生空間13へと導入される。
放電禁止部6は、電気的絶縁性を有し、上述のように厚みの小さいガス流経路7を内部に形成できる程度に加工しやすい材料で形成すればよい。また、放電禁止部6はその露出面6aの近傍にプラズマが発生し、結果的に加熱されることとなるため、放電禁止部6の材料には、耐熱性のある材料を選定することが望ましい。放電禁止部6の材料としては、たとえば、ポリカーボネート(PC)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)などに代表される耐熱性に優れたエンジニアリングプラスチックや、石英ガラス、アルミナ、窒化アルミニウムなどが好適である。
ガス流経路7の厚みGは、100μm以下であることが望ましい。厚みGを100μm以下とすることによって、大気圧すなわち略1気圧の圧力において容易に放電することが知られるヘリウム(He)ガスであっても、ガス流経路7内での放電を禁止することができる。
なお、厚みGの値は、ガス流経路7を通じてプラズマ処理に必要な十分な流量のガスを流すことが可能である限り特に下限はない。たとえば厚みGを10μmとしても十分な流量のガスを供給可能である。
放電禁止部6の内部にガス流経路7を形成する際には以下の方法を用いることができる。すなわち、放電禁止部6は、2つの構成部材を組み合わせてなる。この2つの構成部材において互いに張り合わせられる箇所には、少なくとも一方の構成部材に微小な深さの凹みが設けられている。2つの構成部材は、凹み以外の部分の面で他方の構成部材と接するように張り合わされ、放電禁止部6という1つの部材となる。この凹みによって扁平な形状のガス流経路7が放電禁止部6の内部に形成されることとなる。一方の構成部材に凹みを設けて、他方の構成部材は平坦とする組合せでもよいが、両方の構成部材に凹みを設けてもよい。また、両方の構成部材に凹みではなく単なる段差を設けて、両方の構成部材を張り合わせることで、ガス流経路7が形成されるようにしてもよい。
放電禁止部6の構成部材にこのような微小な深さの凹みまたは段差を付与するためには、所望の形状が形成できさえすれば、どのような加工方法を採用してもよい。機械的な切削加工または研磨加工を用いてもよいし、ウェットエッチングなどの化学的な加工法を用いてもよい。また、プラスチック材料であれば、射出成形法により放電禁止部6の構成部品を成形してもよい。
なお、ガス流経路は、断面形状が細長く扁平な形状に限定されない。たとえば、図3に示すガス流経路7iのように、複数の狭い管路を設けた構成であってもよい。
(プラズマ処理を行なうための手順)
本実施の形態におけるプラズマ処理装置において、所望のプラズマ処理を行なうための手順は以下の通りである。
まず、プラズマ放電を容易に安定維持できるようにするための希ガスと、所望のプラズマ処理を行なうための反応ガスとを、反応容器1内に導入する。これらのガスの導入は、ガス供給源であるガスボンベ2から、ガス流量計3により適当量、適当比に混合して行なわれ、プラズマ発生を抑制できる大きさに形成されているガス流経路7を通して行なわれる。希ガスは、たとえばHeあるいはArが用いられる。特に、準安定状態での寿命が長いHeが好適であるが、希ガスとしてはこれらのほかにNe,Kr,Xeであってもよい。また、反応ガスのみで安定放電、維持が可能であれば、上記希ガスは混合しなくてもよい。
反応ガスは、処理を行なう対象材料によって適宜変更すればよい。たとえばガラス基板表面の濡れ性改善のための表面処理を行なう場合や、有機物を除去する場合には、酸素を用いればよい。また、Siあるいは酸化Siをエッチング処理するのであれば、CF4,SF6その他ハロゲンを含むガスを選択すればよい。もちろん、これらに酸素、水その他のガスを添加してもよく、適宜適切なガスを選択すればよい。
図1に示す反応容器1はその両端が大気に開放された系である。その一方の開放口16から基板8が反応容器1内に搬入される。このような系では大気、すなわち酸素、窒素を主要素とするガスが、反応容器1内へと混入するが、反応容器1の両端の開放口の面積を極力小さくするとともに、上述の希ガスと反応ガスとの混合ガスを十分な量供給することにより、概ね大気の混入の影響を抑えることも可能である。
(作用・効果)
このプラズマ処理装置においては、プラズマ発生空間13に面してガス流経路7の出口が配置されている。したがって、ガス流経路7の出口から放出される混合ガスの流れによって、プラズマ発生空間13に対する大気の混入量は低く抑えることができる。
上述のように、反応容器1内、特にプラズマ発生空間13内を所望のガス雰囲気とした後に、電源4を用いて一対の電極5間に電位差が与えられることによって、一対の電極5の周りに電界が形成される。安定なプラズマ放電を得るためには、電源は1kHz以上の周波数で動作する高周波電源が好ましい。また、1kHz以上の周期を有するパルス電源を使用してもよい。なお、動作周波数が高くなるに従って、安定なプラズマ放電を実現させるための電極間間隔が狭くなる傾向があることや、電気的回路形成が難しくなることを考慮し、これらの問題を避けるために100MHz以下程度の周波数を選定することが望ましい。
電極5間に電界が形成されたとき、電極5間にもし十分な空間があればその空間内においてプラズマが形成されるところであるが、一対の電極5の間には放電禁止部6が挟まれているのでここではプラズマは形成できない。さらに、放電禁止部6の内部にあるわずかな空間としてガス流経路7があるが、ガス流経路7はプラズマ発生を抑制できる大きさに形成されているため、ガス流経路7内ではプラズマは形成されない。その代わりにプラズマ発生空間13のうち放電禁止部6の露出面6a近傍の領域にプラズマが形成される。
なお、放電開始のために必要であれば、プラズマ発生空間13の近傍に放電トリガとなる点火プラグなどを配置してもよい。
ところで、基板8が導体からなる場合には、放電禁止部6の露出面6a近傍ではなく、電極5直下の、電極5と基板8とが対向する空間でプラズマ放電が起きる場合がある。これは、高電位側の電極5より、基板8を通して、接地側の電極5へと電気経路が形成されるためである。このようなプラズマ放電は、電極5と基板8とが近すぎるなどの理由により、電極5間で形成される電界強度に比べて電極5と基板8との間で形成される電界強度の方が大きくなってしまった場合に起こる。
プラズマ中の活性種をガス流によって基板8に向けて移送するためには、電極5と基板8とが対向する空間ではなく、放電禁止部6の露出面6a近傍にプラズマが形成されることが好ましい。それを実現するには、電極5間の間隔を狭くする、あるいは、電極5と基板8との間隔を拡げることによって可能となる。なお、ここでは、基板8自体が導体からなる場合を例示したが、基板8表面に金属薄膜が形成されている場合や、金属製の基板ホルダー上に基板8を載置し、この基板ホルダーを搬送する場合においても同様である。
こうして生じたプラズマ放電を安定に維持した状態で、基板搬送装置のコロ9上に被処理物である基板8を載置し、基板8を移動させることにより、基板8表面の所望領域もしくは全面に順次プラズマを作用させて、プラズマ処理が行なわれる。
本実施の形態におけるプラズマ処理装置では、プラズマを発生させるための電界は、基板8の表面と略平行な方向に生じるため、筋状の火花放電やストリーマ放電が発生しても直接的に基板にダメージを与えることは避けられる。
本実施の形態におけるプラズマ処理装置では、放電禁止部6の内部にガス流経路7が設けられていることによって、プラズマ放電によって加熱される放電禁止部6を、ガス流によって冷却する効果も得られる。また、このことは、裏を返せば、プラズマ発生空間13へと供給される直前の混合ガスが放電禁止部6を通じて加熱されるということである。こうして、プラズマ発生空間13に到達した時点で混合ガスは既にある程度昇温しているのでプラズマ放電を容易にすることができるという好都合な効果も得られる。
ガス流経路7の断面積は小さいため、ガス流経路7を通じてプラズマ発生空間13に送り込まれる混合ガスの流速は高速になる。
図1に示したプラズマ装置におけるプラズマ発生時の電極5近傍領域を拡大したところを図4に示す。プラズマ発生空間13のうち露出面6aの近傍の領域においてプラズマ10が発生している。高速でプラズマ発生空間13へと供給された混合ガスは、粘性流となってプラズマ中の活性種を巻き込みつつ、基板8に向けて移動する。したがって、プラズマ10中の活性種を迅速に基板8表面へと移送することができる。もちろん、プラズマ発生空間13に供給された反応ガスの一部は、自ら活性種となり、プラズマ処理に寄与する。
なお、図1のプラズマ処理装置では電極5は一対のみ配置されているが、本発明はこれに限定されるものではなく、複数対の電極を並列に配置してもよい。また、図1の例では、電極5は基板8の上側にのみ配置されていたが、基板8を上下から挟むように基板8の上下に電極対を配置して、さらに上下から混合ガスを供給する構成としてもよい。
ガス流経路は基板8表面に対して略垂直である必要はなく、図5に示す放電禁止部6jに設けられたガス流経路7jのように傾斜させて、ガス噴出方向を基板8表面に対して斜めとなるように設定してもよい。この場合、ガス流経路7jの配置に対応して電極5jは略三角柱の形状となっている。図5に示した例のように基板8表面に対して斜めとなるように混合ガスを供給すれば、プラズマ発生空間13の少なくとも基板8表面近傍においてガス流の乱れを抑制できる。あるいはまた、図6に示すように、放電禁止部6kに設けられた複数のガス流経路7kからガスを噴出してガス流を合流させる構成としてもよい。この場合、ガス流経路7kの配置に対応して電極5kは略三角柱の形状で3本設けられている。
本実施の形態では、プラズマ処理装置は、大気圧近傍でプラズマ処理を行なうための第1の領域および前記第1の領域にプラズマ処理を行なうためのガスを供給する、あるいは上記第1の領域から上記ガスを排気する経路である第2の領域を有する。第1,第2の領域に同時に電界を発生させたときに第1の領域ではプラズマが発生し、上記第2の領域ではプラズマの発生が抑制されるように、第2の領域の断面形状が設定されている。本実施の形態では、第2の領域の放電を抑制するために放電禁止部6が設けられ、なおかつその内部に設けられたガス流経路においても厚みが十分に狭くされている例を示したが、第2の領域の放電を抑制するための構成はこのようなものに限定されない。たとえば、固体からなる放電禁止部6の代わりに反応容器1内に導入される混合ガスに比べて放電(絶縁破壊)が困難なガスで満たされた空間をもって、放電禁止部としてもよい。あるいは、十分に高圧、または、十分に高真空な空間をもって、放電禁止部としてもよい。
本実施の形態におけるプラズマ処理装置は、プラズマ処理の対象となる被処理物の被処理領域が、プラズマ発生空間を挟んでガス流経路の出口と対向するように、前記被処理物を配置することが可能となっている。このようになっていれば、プラズマ中に発生した反応活性種を効率良く被処理領域へと移送でき、処理速度を上げることができる。
(プラズマ処理実験)
図1に示した本発明の実施の形態1における高周波プラズマ処理装置を用いて実施するプラズマ処理の一例として、ガラス基板の表面改質処理の実験を行なった。
(実験条件)
まず、実施したプラズマ処理の主要条件を以下に記す。
電極5は1辺が15mmの略角型形状を有したアルミニウム合金であり、内部には冷却用水路が設けられている。側面は溶射法によって250μmのアルミナがコーティングされている。電極5間の間隔は5mmに設定し、放電禁止部6は電極5間を埋めるように配置されている。放電禁止部6は、絶縁体であり、上述した方法により所定のスリット幅を形成した。なお、スリット幅は、顕微鏡による端面の観察、もしくは、厚みが既知であるすき間ゲージの挿入などの方法によって確認を行なっている。また、スリット内でのプラズマ放電の有無を確認するため、放電禁止部6の材料としては透明材料であるポリカーボネートを用いた。スリット幅を30μmから1mmまでいく通りかの値にそれぞれ設定した複数個の放電禁止部6を準備し、それぞれを用いてプラズマ処理実験を行なった。なお、スリットの長さは100mmである。
供給するガスは、ヘリウムと酸素との混合ガスとした。ガス流量計3によって、ヘリウムに対して酸素を適当量添加して、反応容器1内へと供給した。
電源4としては最大15kVまで印加可能な、パルス電源を使用した。周波数は10kHz、波形は矩形であり、デューティ比40%にて実験を行なった。
ガラス基板は、プラズマ処理前の初期状態において、純水の接触角が50°である基板を選び、小片に切り分けて複数の試験片を準備した。接触角は各試験片に対し5箇所測定を行ない、その平均をもって測定値とした。
上述の混合ガスを供給しつつ、高電圧を印加してプラズマを発生させ、基板を50mm/秒の速度で搬送しつつプラズマ処理を行なった。
(実験結果1)
まず、供給する混合ガスの流量を10slm(standard liter per minute)に固定し、スリット幅を変えて実施したプラズマ放電実験の結果を表1に示す。
Figure 2006041384
表1からは、放電開始場所は、スリット幅に大きく依存することがわかる。スリット幅が100μm以下であれば、スリット内で放電することなく、放電禁止部6下面すなわち露出面6a近傍で放電した。さらに、プラズマ放電開始後、印加電圧を7kV程度まで上昇させても、露出面6a近傍でのプラズマ放電の発光が強まるのみで、スリット内での放電は確認されなかった。
なお、上記実験において、放電開始に要する電圧は、ヘリウムに対する酸素添加量に大きく依存し、ヘリウムのみの場合はおよそ1.5kV以下程度で放電が開始した。また、酸素添加量が増加するに従い、放電開始電圧は上昇する傾向がある。
以上の結果から、100μm以下でスリット幅を形成することにより、スリット内の放電は抑制できると判断できる。
(実験結果2)
次に、プラズマ処理による表面処理効果の程度を比較した表2を参照して、スリット幅の効果について説明する。ここでいう表面処理とは、ガラス基板の表面の親水化処理を意味する。親水化の達成された度合いは、純水の接触角によって評価することができる。本実験における共通の条件は以下の通りである。
(1)電極5下面と、基板8上面との間の距離 3.6mm
(2)ヘリウムに対する酸素添加量 1体積%
(3)印加電圧 4kV
(4)ガラス基板の初期接触角 50°
Figure 2006041384
実験No.101〜104に示したスリット幅1000μmの条件では、表1で説明したようにスリット内で放電が起きている。これは背景技術の欄で説明した特開平5−275191号公報(特許文献2)と同様のタイプである。これに対し、実験No.105〜107に示したスリット幅50μmの条件が、スリット内での放電を抑止した本発明に係る大気圧プラズマ処理装置である。
いずれのタイプにおいても、ガス流量を増加するに従い、接触角は低下する傾向にあるが、同一のガス流量同士で比較すれば明らかにスリット幅50μmとした方がプラズマ処理後の接触角が小さいことがわかる。すなわち、スリット幅50μmとした方がスリット幅1000μmとした場合よりプラズマ処理速度が速いといえる。なお、所望とする接触角は、5°以下であり、実験No.107でのみ、所望の処理が終了できている。
(実験結果3)
図7は、図1に示したプラズマ処理装置において、電極5側方にガス流経路11を追加した構造のプラズマ処理装置である。このプラズマ処理装置は、実験結果2に比べたときのガス流経路の違いによる影響を検証するために用意したものである。表3には、このプラズマ処理装置を用い、スリットであるガス流経路7からはガスを供給せず、電極5側方に設けられたガス流経路11よりガスを供給して実施したプラズマ処理の結果を示している。ガス流経路以外は実験結果2の条件と同様である。
Figure 2006041384
表3からは、電極5側方に設けられたガス流経路11よりガスを供給した場合、接触角は約40°にまで低下しており、プラズマ処理を行なったこと自体による若干の表面改質効果は認められるものの、その程度が十分ではないことがわかる。さらに、表面改質効果の程度についてはガス流量への依存が認められないことがわかる。図7に示した装置構成においては、ガスは基板面と平行に流れるため、活性種を基板表面へと移送することが十分効果的に行なえていないと推測される。
(実施の形態2)
(構成)
図8、図9を参照して、本発明に基づく実施の形態2におけるプラズマ処理装置について説明する。本実施の形態におけるプラズマ処理装置においては、図1に示した一対の電極5に代えて、図8に示すように、電源4にはコイル12が接続されている。コイル12は、放電禁止部6nの周りを取り囲むように配置されている。放電禁止部6nの内部にはガス流経路7nが形成されている。
図9は、図8に示したプラズマ処理装置において、コイル12の近傍を下方から見たところの部分拡大図である。図9に示すように、断面が円形のコイル12に対し、ガス流経路7nは、コイル中心から放射状方向に伸びた複数のスリットとして形成されている。ガス流経路7nをこのように配置することにより、コイル12に高周波電流が流れたときに生じる高周波磁界によって誘起される誘導電界方向すなわち図9でいう円周方向に関して、ガス流経路7nの1つ1つのスリットの断面形状は、ガス流経路7n内でのプラズマ発生を抑制できる程度に十分に小さい厚みを有していることとなる。
(作用・効果)
このコイル12に高周波の電流を流すことにより、コイル12は高周波磁界を形成し、この高周波磁界に基づいて、誘導結合型プラズマが誘起される。コイル12内部は高周波磁界が形成されるものの、放電禁止部6nおよびガス流経路7nの内部には、プラズマ放電が発生できないので、反応容器1内のプラズマ発生空間13の中の放電禁止部6nの露出面6na近傍にプラズマが生成されることとなる。
なお、本実施の形態においては、効果的に誘導結合を行なうために、電源4としては1MHz程度以上の高周波電源を用いることが望ましい。
コイル12としては断面形状が円形のものを示したが、コイルの断面形状は円形に限定されず、楕円形状や、長円形状など、適当に選択すればよい。また、コイルの内側に配置されるガス流経路は、選択するコイル断面形状に合わせて、形成される誘導電界方向にはプラズマ発生を抑制する程度に断面寸法が小さい形状に形成しておけばよい。
なお、今回開示した上記実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更を含むものである。
本発明に基づく実施の形態1におけるプラズマ処理装置の断面図である。 本発明に基づく実施の形態1におけるプラズマ処理装置のガス流経路の出口近傍の下面図である。 ガス流経路を複数の狭い管路の集合として形成した場合のガス流経路の出口近傍の下面図である。 本発明に基づく実施の形態1におけるプラズマ装置におけるプラズマ発生時の電極近傍領域の拡大断面図である。 本発明に基づく実施の形態1におけるプラズマ装置においてガス流経路を傾斜させた例のプラズマ発生時の電極近傍領域の拡大断面図である。 本発明に基づく実施の形態1におけるプラズマ装置において複数のガス流経路からガスを噴出してガス流を合流させるようにした例のプラズマ発生時の電極近傍領域の拡大断面図である。 本発明に基づく実施の形態1におけるプラズマ装置において比較実験のために電極側方にガス流経路を追加した構造の断面図である。 本発明に基づく実施の形態2におけるプラズマ処理装置の断面図である。 本発明に基づく実施の形態2におけるプラズマ処理装置のガス流経路の出口近傍の下面図である。
符号の説明
1 反応容器、2 ガスボンベ、3 ガス流量計、4 電源、5,5j,5k 電極、6,6j,6k 放電禁止部、6a,6na 露出面、7,7i,7j,7k ガス流経路、8 基板、9 ローラ、10 プラズマ、11 (電極の側方に設けられた)ガス流経路、12 コイル、13 プラズマ発生空間、14 電界発生方向、15 ガス配管、16 開放口。

Claims (8)

  1. 大気圧近傍でプラズマ処理を行なうための第1の領域および前記第1の領域に前記プラズマ処理を行なうためのガスを供給する、あるいは前記第1の領域から前記ガスを排気する経路である第2の領域を有し、
    前記第1の領域と前記第2の領域とに同時に電界を発生させたときに前記第1の領域ではプラズマが発生し、前記第2の領域ではプラズマの発生が抑制されるように、前記第2の領域の断面形状が設定されている、プラズマ処理装置。
  2. 前記第2の領域の断面形状を前記電界の方向に狭く設定することによって、前記第2の領域でのプラズマ発生が抑止されている、請求項1に記載のプラズマ処理装置。
  3. 大気圧近傍でプラズマを発生させるためのプラズマ発生空間に対する露出面を有する放電禁止部と、
    前記放電禁止部を介して電界を発生させることによって前記プラズマ発生空間のうち前記露出面近傍にプラズマを発生させるための電界発生手段とを備え、
    前記放電禁止部は、前記プラズマ発生空間に所望のガスを供給するためのガス流経路を有し、
    前記ガス流経路の断面形状は、前記電界発生手段によって形成される電界の方向の寸法が、前記電界が形成されても前記ガス流経路内でのプラズマ発生を抑制できる程度に小さい、プラズマ処理装置。
  4. 前記電界発生手段は、前記放電禁止部のうちガス流経路のある部分を挟むように配置された電極対である、請求項3に記載のプラズマ処理装置。
  5. 前記電界発生手段は、前記放電禁止部のうちガス流経路のある部分を取り囲むように配置されたコイルである、請求項3に記載のプラズマ処理装置。
  6. 前記ガス流経路の前記電界発生手段によって形成される電界の方向の寸法が100μm以下である、請求項3から5のいずれかに記載のプラズマ処理装置。
  7. 前記露出面は、前記ガス流経路の出口を有する、請求項3から6のいずれかに記載のプラズマ処理装置。
  8. 前記プラズマ処理の対象となる被処理物の被処理領域が、前記プラズマ発生空間を挟んで前記ガス流経路の出口と対向するように、前記被処理物を配置することが可能な、請求項3から7のいずれかに記載のプラズマ処理装置。
JP2004222214A 2004-07-29 2004-07-29 プラズマ処理装置 Pending JP2006041384A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004222214A JP2006041384A (ja) 2004-07-29 2004-07-29 プラズマ処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004222214A JP2006041384A (ja) 2004-07-29 2004-07-29 プラズマ処理装置

Publications (1)

Publication Number Publication Date
JP2006041384A true JP2006041384A (ja) 2006-02-09

Family

ID=35906023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004222214A Pending JP2006041384A (ja) 2004-07-29 2004-07-29 プラズマ処理装置

Country Status (1)

Country Link
JP (1) JP2006041384A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008257958A (ja) * 2007-04-03 2008-10-23 Sekisui Chem Co Ltd プラズマ処理装置
JP2008277774A (ja) * 2007-04-03 2008-11-13 Sekisui Chem Co Ltd プラズマ処理装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213497A (ja) * 1996-02-05 1997-08-15 Seiko Epson Corp 表面処理方法及び装置、カラーフィルタ及びその製造方法、並びに液晶パネル及びその製造方法
JP2000349051A (ja) * 1993-05-14 2000-12-15 Seiko Epson Corp 表面処理方法及びその装置、半導体装置の製造方法及びその装置、並びに液晶ディスプレイの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349051A (ja) * 1993-05-14 2000-12-15 Seiko Epson Corp 表面処理方法及びその装置、半導体装置の製造方法及びその装置、並びに液晶ディスプレイの製造方法
JPH09213497A (ja) * 1996-02-05 1997-08-15 Seiko Epson Corp 表面処理方法及び装置、カラーフィルタ及びその製造方法、並びに液晶パネル及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008257958A (ja) * 2007-04-03 2008-10-23 Sekisui Chem Co Ltd プラズマ処理装置
JP2008277774A (ja) * 2007-04-03 2008-11-13 Sekisui Chem Co Ltd プラズマ処理装置

Similar Documents

Publication Publication Date Title
US6670766B2 (en) Plasma treatment apparatus and plasma treatment method
JP4077704B2 (ja) プラズマ処理装置
JP4092937B2 (ja) プラズマ処理装置及びプラズマ処理方法
US20080149273A1 (en) Plasma processing apparatus
TW200407455A (en) Oxide film forming method and oxide film forming apparatus
KR20020093869A (ko) 하향 플라즈마를 이용한 유전체 에칭의 향상된 레지스트스트립
TW201015653A (en) Plasma processing apparatus and plasma processing method
JP2005095744A (ja) 絶縁部材の表面処理方法及び絶縁部材の表面処理装置
JP4372918B2 (ja) プラズマ処理装置及びプラズマ処理方法
JP2002299331A (ja) プラズマ処理装置
JP2009004157A (ja) プラズマ発生装置
US8961888B2 (en) Plasma generator
US20210233748A1 (en) Active gas generation apparatus and deposition processing apparatus
JP4103565B2 (ja) 表面処理装置及び表面処理方法
JP2003318000A (ja) 放電プラズマ処理装置
JP2003317998A (ja) 放電プラズマ処理方法及びその装置
JP2006041384A (ja) プラズマ処理装置
JP2006318762A (ja) プラズマプロセス装置
JP3768854B2 (ja) プラズマジェット発生装置
JP2002008895A (ja) プラズマ処理装置及びプラズマ処理方法
JP2011108615A (ja) プラズマ処理装置
JP2006024442A (ja) 大気圧プラズマ処理装置及び処理方法
JP3846303B2 (ja) 表面処理装置及び表面処理方法
JP2007027187A (ja) プラズマ処理装置およびそれを用いたプラズマ処理方法
JP2004111949A (ja) プラズマ処理方法及び装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091124