JP2006041308A - Semiconductor apparatus - Google Patents

Semiconductor apparatus Download PDF

Info

Publication number
JP2006041308A
JP2006041308A JP2004221160A JP2004221160A JP2006041308A JP 2006041308 A JP2006041308 A JP 2006041308A JP 2004221160 A JP2004221160 A JP 2004221160A JP 2004221160 A JP2004221160 A JP 2004221160A JP 2006041308 A JP2006041308 A JP 2006041308A
Authority
JP
Japan
Prior art keywords
trench
layer
semiconductor
region
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004221160A
Other languages
Japanese (ja)
Inventor
Shinichi Jinbo
信一 神保
Naoto Fujishima
直人 藤島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2004221160A priority Critical patent/JP2006041308A/en
Publication of JP2006041308A publication Critical patent/JP2006041308A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor apparatus capable of increasing a breakdown strength and lowering an on-resistance. <P>SOLUTION: The semiconductor apparatus is composed of P-wells 35 as p-well regions formed on a semiconductor substrate 1, a P-off 5 as a p-offset region formed on the surface layers of the P-wells 35, a trench 19 formed so as to reach the P-wells 35 from the surface of the P-off 5, and a gate electrode 21 formed on the side wall of the trench 19 through a gate oxide film 20. The semiconductor apparatus is further composed of an N-body 6 as an extended drain region formed on the bottom of the trench, an n-epitaxial layer 30 as a drain region formed towards an upper section in the trench 19 so as to be brought into contact with the N-body 6, and an n<SP>+</SP>region 8 in an upper section as a source region formed on the surface layer of the P wells 35. In the constitution, since the n-epitaxial layer 30 as the drain region is formed at a place where a tungsten layer 23 is formed, a space between the gate electrode 21 and the epitaxial layer 30 as the drain region can be widened without broadening the trench 19. Consequently, the breakdown strength can be increased and the on-resistance lowered. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、トレンチ横型パワーMISFETなどの半導体装置に関する。   The present invention relates to a semiconductor device such as a trench lateral power MISFET.

近年、横型パワーMISFETは、低抵抗化を狙いとして様々な構造のものが開発されてきている。
図19は、従来のトレンチ横型パワーMISFETの要部断面図である。このトレンチ横型MISFETは特許文献1に開示されている。以下の説明ではトレンチ横型パワーMISFETをN−MISFET(Nはnチャネル型のこと)と称す。
N−MISFET115は、半導体基板101上形成されたpウエル領域であるP−well135と、このP−well135の表面層に形成したpオフセット領域であるP−off105と、P−off105の表面からP−well135に達するように形成したトレンチ119と、このトレンチ119の側壁にゲート酸化膜120を介して形成したゲート電極121と、トレンチ底に形成した拡張ドレイン領域であるN−body106およびドレイン領域となる下部のn+ 領域108と、P−well135の表面層に形成したソース領域となる上部のn+ 領域108と、で構成される。
In recent years, various lateral power MISFETs have been developed with the aim of reducing resistance.
FIG. 19 is a cross-sectional view of a main part of a conventional trench lateral power MISFET. This trench lateral MISFET is disclosed in Patent Document 1. In the following description, the trench lateral power MISFET is referred to as an N-MISFET (N is an n-channel type).
The N-MISFET 115 includes a P-well 135 that is a p-well region formed on the semiconductor substrate 101, a P-off 105 that is a p-off region formed on the surface layer of the P-well 135, and a P-off 105 from the surface of the P-off 105. A trench 119 formed so as to reach the well 135, a gate electrode 121 formed on the side wall of the trench 119 via a gate oxide film 120, an N-body 106 that is an extended drain region formed at the bottom of the trench, and a lower portion that becomes a drain region N + region 108 and an upper n + region 108 serving as a source region formed in the surface layer of P-well 135.

尚、図中の113は選択酸化膜、122はCVD(Chemical Vapor Deposition)で形成する酸化膜、123はタングステン膜(プラグ)、124はアルミ−シリコン−銅の合金からなる金属電極である。
このN−MISFET115は、チャネル領域(上部のn+ 層とN−body106に挟まれたP−off105とP−well135)とドリフト領域となるN−body106が垂直方向に形成され、セル数を増やせるために、図20で示す従来のプレーナ横型パワーMISFET114よりもオン抵抗を低減できる特長がある。
尚、図20の中で、104はN−well、109はp+ 領域、111は裏面電極である。
図19のN−MISFET115では、ゲート酸化膜120の膜厚が20nm程度の場合、ドレイン−ソース間に電圧を印加していくと、図中の○印で示したゲート電極近傍の拡張ドレイン領域(N−body106)内に電界が最も高くなる箇所が発生し、その箇所でアバランシェ電流が流れ始める。また、ドレイン−ソース間にサージ電圧が印加されたときに、ゲート近傍が高電界になり、低いサージ電圧(ESD電圧など)で破壊する。例えば、N−MISFETの面積が200μm2 程度の場合には、5kV程度と低いサージ耐量(ESD耐量)となる。
In the figure, 113 is a selective oxide film, 122 is an oxide film formed by CVD (Chemical Vapor Deposition), 123 is a tungsten film (plug), and 124 is a metal electrode made of an aluminum-silicon-copper alloy.
In this N-MISFET 115, the channel region (P-off 105 and P-well 135 sandwiched between the upper n + layer and N-body 106) and the N-body 106 serving as a drift region are formed in the vertical direction to increase the number of cells. In addition, the on-resistance can be reduced as compared with the conventional planar lateral power MISFET 114 shown in FIG.
In FIG. 20, 104 is an N-well, 109 is a p + region, and 111 is a back electrode.
In the N-MISFET 115 of FIG. 19, when the gate oxide film 120 has a thickness of about 20 nm, when a voltage is applied between the drain and source, an extended drain region (in the vicinity of the gate electrode indicated by a circle in the figure) ( A portion where the electric field is highest is generated in the N-body 106), and an avalanche current begins to flow there. In addition, when a surge voltage is applied between the drain and source, the vicinity of the gate becomes a high electric field, and the device is destroyed by a low surge voltage (ESD voltage or the like). For example, when the area of the N-MISFET is about 200 μm 2 , the surge resistance (ESD resistance) is as low as about 5 kV.

また、このN−MISFET115の電気的特性は、トレンチ深さ2μm、トレンチ幅3μm程度の構造では、耐圧が20V程度、RonAが20mΩmm2 程度である。このように図19の従来のトレンチ横型MISFETでは高耐圧化は困難である。
さらに高耐圧化を必要とする場合は、ドレイン領域となる下部のn+ 領域108をゲート電極121から離して電界を緩和する方法がある。
図21は下部のn+ 領域108の寸法を小さくする方法であり、図22はトレンチ幅を広げる方法である。
また、電界を緩和するために、特許文献2に開示されている図23は、トレンチ底に選択酸化膜140を形成する方法である。
特開平8−181313号公報 特開2003−249650号公報
The electrical characteristics of the N-MISFET 115 are a breakdown voltage of about 20 V and a RonA of about 20 mΩmm 2 in a structure having a trench depth of about 2 μm and a trench width of about 3 μm. Thus, it is difficult to increase the breakdown voltage in the conventional trench lateral MISFET of FIG.
When a higher breakdown voltage is required, there is a method of relaxing the electric field by separating the lower n + region 108 serving as the drain region from the gate electrode 121.
21 shows a method of reducing the size of the lower n + region 108, and FIG. 22 shows a method of increasing the trench width.
In order to alleviate the electric field, FIG. 23 disclosed in Patent Document 2 is a method of forming a selective oxide film 140 at the bottom of the trench.
JP-A-8-181313 JP 2003-249650 A

しかし、図21の方法では下部のn+ 領域108の寸法は、もともと低オン抵抗を狙いとして小さく設計されており、そのため高耐圧化には限界がある。
図22の方法ではトレンチ幅を広げて高耐圧化を図ることは容易であるが、低オン抵抗化が困難になる。
図23の方法ではトレンチ底に選択酸化膜140を形成するが、トレンチ底で選択酸化のマスクになる例えば窒化膜のパターンを形成することがプロセス上困難という問題がある。
この発明の目的は、前記の課題を解決して、高耐圧化と低オン抵抗化を図ることができる半導体装置を提供することにある。
However, in the method of FIG. 21, the size of the lower n + region 108 is originally designed to be small with the aim of low on-resistance, and therefore there is a limit to increasing the breakdown voltage.
In the method of FIG. 22, it is easy to increase the breakdown voltage by widening the trench width, but it is difficult to reduce the on-resistance.
In the method of FIG. 23, the selective oxide film 140 is formed at the bottom of the trench. However, there is a problem in that it is difficult to form a nitride film pattern, for example, which serves as a selective oxidation mask at the bottom of the trench.
An object of the present invention is to provide a semiconductor device capable of solving the above-described problems and achieving high breakdown voltage and low on-resistance.

前記の目的を達成するために、第1導電型の半導体基板と、前記半導体基板の表面から内部に向けて形成されたトレンチと、前記半導体基板表面に形成された第2導電型のソース領域と、前記トレンチ内にゲート絶縁膜を介して形成されたゲート電極と、前記トレンチ内に形成された第2導電型の半導体層からなるドレイン領域とを有する構成とする。
また、前記半導体層に接して、前記トレンチの底から側壁に渡って前記半導体基板に形成された第2導電型の半導体領域を有するとよい。
また、第1導電型の半導体基板と、前記半導体基板上に形成された第1導電型の第1のエピタキシャル層と、該第1のエピタキシャル層の表面から内部に向けて形成されたトレンチと、前記第1のエピタキシャル層表面に形成された第2導電型のソース領域と、前記トレンチ内にゲート絶縁膜を介して形成されたゲート電極と、前記トレンチ内に形成された第2導電型の半導体層からなるドレイン領域と、前記トレンチの底から側壁に渡って前記第1のエピタキシャル層に形成され、前記半導体基板と接する第2導電型の半導体領域とを有する構成とする。
To achieve the above object, a first conductivity type semiconductor substrate, a trench formed inward from the surface of the semiconductor substrate, a second conductivity type source region formed on the surface of the semiconductor substrate, And a gate electrode formed in the trench through a gate insulating film, and a drain region made of a second conductivity type semiconductor layer formed in the trench.
In addition, the semiconductor layer may have a second conductivity type semiconductor region formed on the semiconductor substrate from the bottom to the side wall of the trench in contact with the semiconductor layer.
A first conductivity type semiconductor substrate; a first conductivity type first epitaxial layer formed on the semiconductor substrate; a trench formed from the surface of the first epitaxial layer toward the inside; A second conductivity type source region formed on the surface of the first epitaxial layer, a gate electrode formed in the trench through a gate insulating film, and a second conductivity type semiconductor formed in the trench A drain region composed of a layer and a semiconductor region of a second conductivity type formed in the first epitaxial layer from the bottom to the side wall of the trench and in contact with the semiconductor substrate.

また、前記半導体層が第2のエピタキシャル層もしくはポリシリコン層であるとよい。 また、前記半導体層が、前記トレンチ内に形成されたドレイン電極と電気的に接触するとよい。
また、前記ドレイン領域と前記ソース領域の間の耐圧が、前記半導体領域と前記半導体基板との間に形成された前記トレンチ直下のpn接合のアバランシェ降伏によって決定されるとよい。
また、前記第1のエピタキシャル層と前記半導体基板の間に、第2導電型の埋め込み層が形成されているとよい。
また、前記ドレイン領域と前記ソース領域の間の耐圧が、前記埋め込み層と前記半導体基板との間に形成されたpn接合のアバランシェ降伏によって決定されるとよい。
The semiconductor layer may be a second epitaxial layer or a polysilicon layer. The semiconductor layer may be in electrical contact with a drain electrode formed in the trench.
The breakdown voltage between the drain region and the source region may be determined by an avalanche breakdown of a pn junction formed immediately below the trench formed between the semiconductor region and the semiconductor substrate.
Further, a second conductivity type buried layer may be formed between the first epitaxial layer and the semiconductor substrate.
The breakdown voltage between the drain region and the source region may be determined by an avalanche breakdown of a pn junction formed between the buried layer and the semiconductor substrate.

また、前記トレンチの平面形状が、ループ状であるとよい。   The planar shape of the trench may be a loop shape.

この発明によれば、トレンチ横型パワーMISFETの高濃度のドレイン領域をトレンチ内のエピタキシャル層に形成することによって、トレンチ幅を広げることなく、従来よりもゲート電極と高濃度のドレイン領域との距離を大きくできるため、ドレイン−ソース間に電圧をかけたときのゲート電極下の電界を緩和することができて、高耐圧化することができる。
また、トレンチ幅を広げないので、低オン抵抗を維持できる。つまり、高耐圧化と低オン抵抗化を実現できる。
さらに、MISFETの拡張ドレイン領域であるトレンチ底の拡散領域(N−body6)が半導体基板と接して形成されるpn接合でアバランシェ降伏するように設計する(pn接合の耐圧が、MISFETの耐圧を決定するように各領域の濃度を調整する)ことによって、アバランシェ電流を半導体基板に向けて流すことができるため、サージ破壊耐量を向上させることができる。
According to the present invention, by forming the high concentration drain region of the trench lateral power MISFET in the epitaxial layer in the trench, the distance between the gate electrode and the high concentration drain region can be made larger than before without increasing the trench width. Since it can be increased, the electric field under the gate electrode when a voltage is applied between the drain and the source can be relaxed, and a high breakdown voltage can be achieved.
Further, since the trench width is not increased, a low on-resistance can be maintained. That is, high breakdown voltage and low on-resistance can be realized.
Furthermore, the diffusion region (N-body 6) at the bottom of the trench, which is the extended drain region of the MISFET, is designed to avalanche breakdown at the pn junction formed in contact with the semiconductor substrate (the breakdown voltage of the pn junction determines the breakdown voltage of the MISFET). By adjusting the concentration of each region so that the avalanche current can flow toward the semiconductor substrate, surge breakdown resistance can be improved.

また、トレンチの平面形状を切れ目なくループ状に繋がった形状にすることによって、電界が集中しやすいトレンチ端部がなくなり、高耐圧化、高サージ耐量化を実現することができる。   Further, by making the planar shape of the trench connected in a loop shape without a break, there is no end of the trench where the electric field tends to concentrate, and high breakdown voltage and high surge resistance can be realized.

実施するための最良の形態は、トレンチ横型パワーMISFETのゲート電極とドレイン領域の間隔を広くして、ゲート電極近傍のN−body内に発生する高電界を緩和することである。本来プラグが形成される箇所にドレイン領域を形成することで、トレンチの幅を広げることをせずに、ゲート電極とドレイン領域の間隔を広げた点である。こうすることで、高耐圧化と低オン抵抗化を実現する。以下に本発明の実施例を図を用いて説明する。   The best mode for carrying out is to widen the distance between the gate electrode and the drain region of the trench lateral power MISFET to alleviate the high electric field generated in the N-body near the gate electrode. By forming the drain region where the plug is originally formed, the gap between the gate electrode and the drain region is increased without increasing the width of the trench. In this way, high breakdown voltage and low on-resistance are realized. Embodiments of the present invention will be described below with reference to the drawings.

図1は、この発明の第1実施例の半導体装置の要部断面図である。本実施例は前記の特許文献1において開示される、トレンチ横型パワーMISFETの構造を高耐圧化のために改良したものである。
N−MISFET15は、半導体基板1上に形成されたpウエル領域であるP−well35と、このP−well35の表面層に形成されるpオフセット領域であるP−off5と、P−off5の表面からP−well35に達するように形成したトレンチ19と、このトレンチ19の側壁にゲート酸化膜20を介して形成したゲート電極21と、トレンチ底に形成した拡張ドレイン領域である拡張ドレイン領域であるN−body6と、このN−body6と接するようにトレンチ19内部上方に向かって形成されたドレイン領域となるnエピタキシャル層30と、P−well35の表面層に形成したソース領域となる上部のn+ 領域8と、で構成される。
FIG. 1 is a cross-sectional view of a main part of a semiconductor device according to a first embodiment of the present invention. In the present embodiment, the structure of the trench lateral power MISFET disclosed in the above-mentioned Patent Document 1 is improved in order to increase the breakdown voltage.
The N-MISFET 15 includes a P-well 35 that is a p-well region formed on the semiconductor substrate 1, a P-off 5 that is a p-offset region formed on the surface layer of the P-well 35, and a surface of the P-off 5. A trench 19 formed to reach the P-well 35, a gate electrode 21 formed on the side wall of the trench 19 via a gate oxide film 20, and an N− which is an extended drain region which is an extended drain region formed at the bottom of the trench body 6, an n epitaxial layer 30 serving as a drain region formed in contact with the N-body 6 toward the inside of the trench 19, and an upper n + region 8 serving as a source region formed in the surface layer of the P-well 35. And.

尚、図中の13は選択酸化膜、22はCVDで形成する酸化膜、23はタングステン層(プラグ)、24はアルミ−シリコン−銅の合金からなる金属電極である。
本実施例において、図19との違いは、ドレイン領域となる下部のn+ 領域108の代わりに、トレンチ19の底からトレンチ内部上方に向かって厚さ0.3μm程度のnエピタキシャル層30をドレイン領域として形成した点である。nエピタキシャル層30は、金属配線との境界近くでは不純物濃度を高めてオーミック接触が取れるようにする。図示したタングステン層23は電極の埋め込み層であるプラグであり、エピタキシャル層30との界面には図示していないTi/TiNのバリアメタル層が存在する。前記したゲート電極は、高濃度のn型不純物をドープしたポリシリコンで形成される。
この構造では、従来例の図19で示したように、ゲート電極とドレイン領域の間隔が狭いために、ゲート電極近傍のN−body106内に発生する高電界を、ゲート電極とドレイン領域の間隔を広くすることで、緩和させることができて、高電圧化を図ることが容易になる。また、本来、タングステン層23を形成する箇所にドレイン領域となるnエピタキシャル層30を形成するために、トレンチ19を広げることなく、ゲート電極とドレイン領域の間隔を広げることができるために、トレンチを広げる場合に比べて低オン抵抗化を図ることができる。
In the figure, 13 is a selective oxide film, 22 is an oxide film formed by CVD, 23 is a tungsten layer (plug), and 24 is a metal electrode made of an aluminum-silicon-copper alloy.
In this embodiment, the difference from FIG. 19 is that the n epitaxial layer 30 having a thickness of about 0.3 μm is drained from the bottom of the trench 19 toward the upper part inside the trench instead of the lower n + region 108 serving as the drain region. This is a point formed as a region. The n epitaxial layer 30 increases the impurity concentration near the boundary with the metal wiring so that ohmic contact can be obtained. The illustrated tungsten layer 23 is a plug which is a buried layer of an electrode, and a Ti / TiN barrier metal layer (not shown) exists at the interface with the epitaxial layer 30. The gate electrode is formed of polysilicon doped with a high concentration of n-type impurities.
In this structure, as shown in FIG. 19 of the conventional example, since the distance between the gate electrode and the drain region is narrow, a high electric field generated in the N-body 106 near the gate electrode is generated. By making it wide, it can be relaxed and it becomes easy to achieve a high voltage. In addition, in order to form the n epitaxial layer 30 serving as the drain region at the place where the tungsten layer 23 is originally formed, the gap between the gate electrode and the drain region can be increased without increasing the trench 19, so that the trench is formed. The on-resistance can be reduced as compared with the case of widening.

例えば、トレンチ深さ1.5μm、トレンチ幅3μmの構造で、耐圧30V程度、RonAが20mΩmm2 程度のN−MISFETを実現することができる。また、図23のようにトレンチ底に選択酸化膜を形成する従来の方法に比べ、エピタキシャル成長技術を利用することで比較的容易に形成できる。
図2は、図1の半導体装置のトレンチ形状の要部平面図である。トレンチが、切れ目なく連続的に形成されていることが特徴で、電界集中が起き易いトレンチ終端部がないため、電流集中が起きにくい。
図3から図14は、図1の半導体装置の製造方法を示す図であり、工程順に示した要部製造工程断面図である。
半導体基板1としては、例えばp型不純物(例えばボロン)濃度が2×1015cm-3程度の基板を用いる(図3)。
For example, an N-MISFET having a trench depth of 1.5 μm and a trench width of 3 μm, a breakdown voltage of about 30 V, and RonA of about 20 mΩmm 2 can be realized. Further, as compared with the conventional method of forming a selective oxide film on the trench bottom as shown in FIG. 23, it can be formed relatively easily by using an epitaxial growth technique.
2 is a plan view of the main part of the trench shape of the semiconductor device of FIG. A feature of the trench is that it is continuously formed without a break, and since there is no trench termination portion where electric field concentration tends to occur, current concentration hardly occurs.
3 to 14 are views showing a method of manufacturing the semiconductor device of FIG. 1, and are cross-sectional views of main part manufacturing steps shown in the order of steps.
As the semiconductor substrate 1, for example, a substrate having a p-type impurity (for example, boron) concentration of about 2 × 10 15 cm −3 is used (FIG. 3).

ドーズ量5×1012cm-2程度のボロンのイオン注入をN−MISFET15形成部に行い、1150℃4時間程度のドライブによりP−well35を形成し、続いて、ドーズ量1×1013cm-2程度のボロンのイオン注入をN−MISFET15形成部に行い、1150℃1時間程度のドライブを行なってP−off5を形成する(図4)。
つぎに、深さ1.5μm程度のトレンチ19を形成する(図5)。
つぎに、トレンチ19底部にドーズ量2×1013cm-2程度のリン(P)のイオン注入を行い、1150℃1時間程度のドライブを行なって、N−body6を形成する(図6)。ここで、P−off5とN−body6を形成するドライブは同時に行っても構わない。
つぎに、ウエハ表面に選択酸化膜13を成長させる(図7)。
Boron ion implantation with a dose of about 5 × 10 12 cm −2 is performed on the N-MISFET 15 forming portion to form P-well 35 by driving at 1150 ° C. for about 4 hours, followed by a dose of 1 × 10 13 cm −. Boron ion implantation of about 2 is performed in the N-MISFET 15 forming portion, and driving is performed at 1150 ° C. for about 1 hour to form P-off 5 (FIG. 4).
Next, a trench 19 having a depth of about 1.5 μm is formed (FIG. 5).
Next, phosphorus (P) is implanted into the bottom of the trench 19 with a dose of about 2 × 10 13 cm −2 and driven at 1150 ° C. for about 1 hour to form N-body 6 (FIG. 6). Here, the drive forming P-off 5 and N-body 6 may be performed simultaneously.
Next, a selective oxide film 13 is grown on the wafer surface (FIG. 7).

つぎに、ゲート酸化膜20を形成し、その上に高濃度のn型不純物をドープしたポリシリコン21を0.3μm成長する(図8)。
つぎに、ポリシリコンを異方性エッチングによりトレンチの側壁だけに残し、これをN−MISFET15のゲート電極21とする(図9)。
つぎに、P−off5の表面層にn型不純物(例えば砒素)をドーズ量3×1015cm-2の条件でイオン注入し、900℃30分程度のアニール処理を行い、ソース領域となる上部のn+ 領域8を形成する(図10)。
つぎに、層間絶縁膜としてBPSGなどのCVD成長による酸化膜22を形成した後、ウエハ表面をCMPで平坦化する(図11)。
つぎに、酸化膜22をエッチングしてまずトレンチ底のコンタクト部を開口する(図12)。
Next, a gate oxide film 20 is formed, and a polysilicon 21 doped with high-concentration n-type impurities is grown thereon by 0.3 μm (FIG. 8).
Next, the polysilicon is left only on the sidewall of the trench by anisotropic etching, and this is used as the gate electrode 21 of the N-MISFET 15 (FIG. 9).
Next, an n-type impurity (for example, arsenic) is ion-implanted into the surface layer of P-off 5 under the condition of a dose amount of 3 × 10 15 cm −2 , and an annealing process is performed at 900 ° C. for about 30 minutes to form an upper portion that becomes a source region N + region 8 is formed (FIG. 10).
Next, after forming an oxide film 22 by CVD growth such as BPSG as an interlayer insulating film, the wafer surface is planarized by CMP (FIG. 11).
Next, the oxide film 22 is etched to first open the contact portion at the bottom of the trench (FIG. 12).

つぎに、nエピタキシャル層30を開口したコンタクト部に成長させてドレイン領域を形成する。このとき、ドレイン領域がドレイン電極となるタングステン層23とオーミック接触するようにnエピタキシャル層30の表面層の濃度を高濃度とする(図13)。
つぎに、ウエハ表面の上部のn+ 領域8上の酸化膜22をエッチングで開口したのち、nエピタキシャル層30上と上部のn+ 領域8上に図示しないTi/TiNをスパッタで成膜したのち、タングステン層23を埋め込み、その上にアルミ−シリコン−銅の合金でソース電極、ドレイン電極となる金属電極24を形成してN−MISFET15が完成する。このようにすることで、製造方法が比較的容易で高耐圧、低オン抵抗の半導体装置を製造することができる。
尚、前記のエピタキシャル層30の代わりにポリシリコン層を形成しても構わない。また、このポリシリコン層をアニール処理して単結晶層としてもよい。
Next, the n epitaxial layer 30 is grown in the opened contact portion to form a drain region. At this time, the concentration of the surface layer of the n epitaxial layer 30 is set high so that the drain region is in ohmic contact with the tungsten layer 23 serving as the drain electrode (FIG. 13).
Next, the oxide film 22 on the n + region 8 on the upper surface of the wafer is opened by etching, and Ti / TiN (not shown) is formed on the n epitaxial layer 30 and the upper n + region 8 by sputtering. Then, the tungsten layer 23 is buried, and a metal electrode 24 serving as a source electrode and a drain electrode is formed thereon with an aluminum-silicon-copper alloy, thereby completing the N-MISFET 15. In this way, a semiconductor device with a relatively easy manufacturing method and high breakdown voltage and low on-resistance can be manufactured.
A polysilicon layer may be formed instead of the epitaxial layer 30. The polysilicon layer may be annealed to form a single crystal layer.

図15は、この発明の第2実施例の半導体装置の要部断面図である。実施例2は、実施例1の構造をP−MISFET16(pチャネル型のトレンチ横型パワーMISFET)に適用したものである。
実施例1のP−well35、N−body6、P−off5、ソースn+ 領域8、nエピタキシャル層30をそれぞれ、N−well4、P−body11、N−off10、p+ 領域9、pエピタキシャル層32に置き換えるとP−MISFET16になる。
FIG. 15 is a fragmentary cross-sectional view of the semiconductor device according to the second embodiment of the present invention. In Example 2, the structure of Example 1 is applied to a P-MISFET 16 (p-channel type trench lateral power MISFET).
The P-well 35, N-body 6, P-off 5, source n + region 8, and n epitaxial layer 30 of Example 1 are replaced with N-well 4, P-body 11, N-off 10, p + region 9, and p epitaxial layer 32, respectively. Is replaced with P-MISFET16.

図16は、この発明の第3実施例の半導体装置の要部断面図である。実施例1の半導体装置とは基板構造が異なる。すなわち実施例3では、半導体基板1上に、pエピタキシャル層3を積んだ構造とし、半導体基板1の濃度を例えば1×1019cm-3と高濃度にし、pエピタキシャル層3の濃度を例えば1×1016cm-3とする。
また、図16に示すようにウエハ裏面電極の電位をN−MISFET17のソース電極(上部のn+ 領域8上の金属電極24)およびpエピタキシャル層3と共通の最低電位(GND)にする。トレンチ底のN−body6は半導体基板1と接するようにし、N−MISFET17の耐圧が、上記半導体基板1とN−body6との間に形成されるpn接合で決定されるようにする。つまり、アバランシェ降伏を半導体基板1とN−body6のpn接合で起こるようにする。
FIG. 16 is a fragmentary cross-sectional view of the semiconductor device according to the third embodiment of the present invention. The substrate structure is different from the semiconductor device of the first embodiment. That is, in Example 3, a structure in which the p epitaxial layer 3 is stacked on the semiconductor substrate 1, the concentration of the semiconductor substrate 1 is set to a high concentration of 1 × 10 19 cm −3 , for example, and the concentration of the p epitaxial layer 3 is set to, for example, 1 × 10 16 cm -3
Further, as shown in FIG. 16, the potential of the wafer back electrode is set to the lowest potential (GND) common to the source electrode (the metal electrode 24 on the upper n + region 8) and the p epitaxial layer 3 of the N-MISFET 17. The N-body 6 at the bottom of the trench is in contact with the semiconductor substrate 1 so that the breakdown voltage of the N-MISFET 17 is determined by a pn junction formed between the semiconductor substrate 1 and the N-body 6. That is, the avalanche breakdown is caused to occur at the pn junction between the semiconductor substrate 1 and N-body 6.

これによって、N−MISFET17のドレイン−ソース間にサージ電圧がかかる場合に縦方向のダイオード38に電流を流すことでN−MISFET17の破壊耐量を向上させることができる。
例として、従来構造で5kV程度であったサージ耐量を倍程度に向上させることが可能である。
As a result, when a surge voltage is applied between the drain and source of the N-MISFET 17, the breakdown resistance of the N-MISFET 17 can be improved by passing a current through the vertical diode 38.
As an example, it is possible to improve the surge resistance, which was about 5 kV in the conventional structure, to about twice.

図17は、この発明の第4実施例の半導体装置の要部断面図である。実施例3とは、n埋め込み層37が半導体基板1とpエピタキシャル層3の間に設けられている点が異なる。縦方向のダイオード39は実施例3のダイオードよりもpn接合面積が大きいため、N−MISFET18のドレイン−ソース間のサージ電圧に対する破壊耐量をN−MISFET17よりも高くすることができる。   FIG. 17 is a sectional view showing the principal part of a semiconductor device according to the fourth embodiment of the present invention. The third embodiment is different from the third embodiment in that an n buried layer 37 is provided between the semiconductor substrate 1 and the p epitaxial layer 3. Since the vertical diode 39 has a larger pn junction area than the diode of the third embodiment, the breakdown resistance against the surge voltage between the drain and source of the N-MISFET 18 can be made higher than that of the N-MISFET 17.

図18は、この発明の第5実施例の半導体装置の要部断面図である。この実施例は、N−MISFET40がSOI基板に形成された場合に、部分SOI基板を用いて縦型ダイオード41を形成したものである。これは、埋め込まれた酸化膜42が部分的に開口され(部分SOI基板)、その開口部にN−body6の下部を形成し、半導体基板1と接続することで縦型ダイオード41を形成することができる。この場合も第1実施例と同様の効果が得られる。   FIG. 18 is a fragmentary cross-sectional view of the semiconductor device according to the fifth embodiment of the present invention. In this embodiment, when the N-MISFET 40 is formed on an SOI substrate, a vertical diode 41 is formed using a partial SOI substrate. This is because the buried oxide film 42 is partially opened (partial SOI substrate), the lower portion of the N-body 6 is formed in the opening, and the vertical diode 41 is formed by connecting to the semiconductor substrate 1. Can do. In this case, the same effect as that of the first embodiment can be obtained.

この発明の第1実施例の半導体装置の要部断面図Sectional drawing of the principal part of the semiconductor device of 1st Example of this invention. 図1の半導体装置のトレンチ形状の要部平面図1 is a plan view of the main part of the trench shape of the semiconductor device of FIG. 図1の半導体装置の要部製造工程断面図FIG. 1 is a cross-sectional view of the main part manufacturing process of the semiconductor device of FIG. 図3に続く、図1の半導体装置の要部製造工程断面図FIG. 3 is a cross-sectional view of the main part manufacturing process of the semiconductor device of FIG. 図4に続く、図1の半導体装置の要部製造工程断面図FIG. 4 is a cross-sectional view of the main part manufacturing process of the semiconductor device of FIG. 図5に続く、図1の半導体装置の要部製造工程断面図FIG. 5 is a cross-sectional view of the main part manufacturing process of the semiconductor device of FIG. 図6に続く、図1の半導体装置の要部製造工程断面図FIG. 6 is a cross-sectional view of the main part manufacturing process of the semiconductor device of FIG. 図7に続く、図1の半導体装置の要部製造工程断面図FIG. 7 is a cross-sectional view of the main part manufacturing process of the semiconductor device of FIG. 図8に続く、図1の半導体装置の要部製造工程断面図FIG. 8 is a cross-sectional view of the main part manufacturing process of the semiconductor device of FIG. 図9に続く、図1の半導体装置の要部製造工程断面図FIG. 9 is a cross-sectional view of the main part manufacturing process of the semiconductor device of FIG. 図10に続く、図1の半導体装置の要部製造工程断面図FIG. 10 is a cross-sectional view of the main part manufacturing process of the semiconductor device of FIG. 図11に続く、図1の半導体装置の要部製造工程断面図FIG. 11 is a cross-sectional view of the main part manufacturing process of the semiconductor device of FIG. 図12に続く、図1の半導体装置の要部製造工程断面図FIG. 12 is a cross-sectional view of the main part manufacturing process of the semiconductor device of FIG. 図13に続く、図1の半導体装置の要部製造工程断面図FIG. 13 is a cross-sectional view of the essential part manufacturing process of the semiconductor device of FIG. この発明の第2実施例の半導体装置の要部断面図Sectional drawing of the principal part of the semiconductor device of 2nd Example of this invention この発明の第3実施例の半導体装置の要部断面図Sectional drawing of the principal part of the semiconductor device of 3rd Example of this invention. この発明の第4実施例の半導体装置の要部断面図Sectional drawing of the principal part of the semiconductor device of 4th Example of this invention. この発明の第5実施例の半導体装置の要部断面図Sectional drawing of the principal part of the semiconductor device of 5th Example of this invention 従来のトレンチ横型パワーMISFETの要部断面図Sectional view of the main part of a conventional trench lateral power MISFET 従来のプレーナ横型パワーMISFETの要部断面図Sectional view of the main part of a conventional planar lateral power MISFET 従来の別のトレンチ横型パワーMISFETの要部断面図Sectional view of the main part of another conventional trench lateral power MISFET 従来の別のトレンチ横型パワーMISFETの要部断面図Sectional view of the main part of another conventional trench lateral power MISFET 従来の別のトレンチ横型パワーMISFETの要部断面図Sectional view of the main part of another conventional trench lateral power MISFET

符号の説明Explanation of symbols

1 半導体基板(p型)
3 pエピタキシャル層
4 N−well(nウエル領域)
5 P−off(pオフセット領域)
6 N−body(拡張ドレイン領域)
8 n+ 領域(nソース領域)
10 N−off(nオフセット領域)
13 選択酸化膜
15、17、18、40 N−MISFET(nチャネル型MISFET)
16 P−MISFET(pチャネル型MISFET)
19 トレンチ
20 ゲート酸化膜
21 ポリシリコン
22 酸化膜
23 タングステン層(プラグ)
24 金属電極
25 裏面電極
30 nエピタキシャル層(nドレイン領域)
32 pエピタキシャル層
35 P−well(pウエル領域)
37 n埋め込み層
38、39、41 縦型ダイオード
42 埋め込み酸化膜
1 Semiconductor substrate (p-type)
3 p epitaxial layer 4 N-well (n-well region)
5 P-off (p offset region)
6 N-body (extended drain region)
8 n + region (n source region)
10 N-off (n offset region)
13 Selective oxide films 15, 17, 18, 40 N-MISFET (n-channel MISFET)
16 P-MISFET (p-channel MISFET)
19 trench 20 gate oxide film 21 polysilicon 22 oxide film 23 tungsten layer (plug)
24 Metal electrode 25 Back electrode 30 n Epitaxial layer (n drain region)
32 p epitaxial layer 35 P-well (p well region)
37 n buried layer 38, 39, 41 Vertical diode 42 buried oxide film

Claims (9)

第1導電型の半導体基板と、前記半導体基板の表面から内部に向けて形成されたトレンチと、前記半導体基板表面に形成された第2導電型のソース領域と、前記トレンチ内にゲート絶縁膜を介して形成されたゲート電極と、前記トレンチ内に形成された第2導電型の半導体層からなるドレイン領域とを有することを特徴とする半導体装置。 A first conductivity type semiconductor substrate; a trench formed from the surface of the semiconductor substrate toward the inside; a second conductivity type source region formed on the surface of the semiconductor substrate; and a gate insulating film in the trench. And a drain region made of a second conductivity type semiconductor layer formed in the trench. 前記半導体層に接して、前記トレンチの底から側壁に渡って前記半導体基板に形成された第2導電型の半導体領域を有することを特徴とする請求項1に記載の半導体装置。 2. The semiconductor device according to claim 1, further comprising a second conductivity type semiconductor region formed on the semiconductor substrate in contact with the semiconductor layer from the bottom to the side wall of the trench. 第1導電型の半導体基板と、前記半導体基板上に形成された第1導電型の第1のエピタキシャル層と、該第1のエピタキシャル層の表面から内部に向けて形成されたトレンチと、前記第1のエピタキシャル層表面に形成された第2導電型のソース領域と、前記トレンチ内にゲート絶縁膜を介して形成されたゲート電極と、前記トレンチ内に形成された第2導電型の半導体層からなるドレイン領域と、前記トレンチの底から側壁に渡って前記第1のエピタキシャル層に形成され、前記半導体基板と接する第2導電型の半導体領域とを有することを特徴とする半導体装置。 A first conductivity type semiconductor substrate; a first conductivity type first epitaxial layer formed on the semiconductor substrate; a trench formed from the surface of the first epitaxial layer toward the inside; A source region of a second conductivity type formed on the surface of one epitaxial layer, a gate electrode formed in the trench via a gate insulating film, and a semiconductor layer of the second conductivity type formed in the trench And a second conductivity type semiconductor region formed in the first epitaxial layer from the bottom to the side wall of the trench and in contact with the semiconductor substrate. 前記半導体層が第2のエピタキシャル層もしくはポリシリコン層であることを特徴とする請求項1〜3のいずれか一項に記載の半導体装置。 The semiconductor device according to claim 1, wherein the semiconductor layer is a second epitaxial layer or a polysilicon layer. 前記半導体層が、前記トレンチ内に形成されたドレイン電極と電気的に接触することを特徴とする請求項1〜4のいずれか一項に記載の半導体装置。 The semiconductor device according to claim 1, wherein the semiconductor layer is in electrical contact with a drain electrode formed in the trench. 前記ドレイン領域と前記ソース領域の間の耐圧が、前記半導体領域と前記半導体基板との間に形成された前記トレンチ直下のpn接合のアバランシェ降伏によって決定されることを特徴とする請求項2または3に記載の半導体装置。 4. The breakdown voltage between the drain region and the source region is determined by an avalanche breakdown of a pn junction formed immediately below the trench formed between the semiconductor region and the semiconductor substrate. A semiconductor device according to 1. 前記第1のエピタキシャル層と前記半導体基板の間に、第2導電型の埋め込み層が形成されていることを特徴とする請求項3に記載の半導体装置。 4. The semiconductor device according to claim 3, wherein a buried layer of a second conductivity type is formed between the first epitaxial layer and the semiconductor substrate. 前記ドレイン領域と前記ソース領域の間の耐圧が、前記埋め込み層と前記半導体基板との間に形成されたpn接合のアバランシェ降伏によって決定されることを特徴とする請求項7に記載の半導体装置。 8. The semiconductor device according to claim 7, wherein a breakdown voltage between the drain region and the source region is determined by an avalanche breakdown of a pn junction formed between the buried layer and the semiconductor substrate. 前記トレンチの平面形状が、ループ状であることを特徴とする請求項1または3に記載の半導体装置。 The semiconductor device according to claim 1, wherein a planar shape of the trench is a loop shape.
JP2004221160A 2004-07-29 2004-07-29 Semiconductor apparatus Withdrawn JP2006041308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004221160A JP2006041308A (en) 2004-07-29 2004-07-29 Semiconductor apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004221160A JP2006041308A (en) 2004-07-29 2004-07-29 Semiconductor apparatus

Publications (1)

Publication Number Publication Date
JP2006041308A true JP2006041308A (en) 2006-02-09

Family

ID=35905961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004221160A Withdrawn JP2006041308A (en) 2004-07-29 2004-07-29 Semiconductor apparatus

Country Status (1)

Country Link
JP (1) JP2006041308A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108514A (en) * 2004-10-07 2006-04-20 Fuji Electric Holdings Co Ltd Semiconductor device and its manufacturing method
JP2007201391A (en) * 2005-12-28 2007-08-09 Sanyo Electric Co Ltd Semiconductor device
JP2007324408A (en) * 2006-06-01 2007-12-13 Fuji Electric Device Technology Co Ltd Semiconductor device and method of manufacturing the same
JP2012212923A (en) * 2012-07-02 2012-11-01 Fuji Electric Co Ltd Semiconductor device manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108514A (en) * 2004-10-07 2006-04-20 Fuji Electric Holdings Co Ltd Semiconductor device and its manufacturing method
JP2007201391A (en) * 2005-12-28 2007-08-09 Sanyo Electric Co Ltd Semiconductor device
JP2007324408A (en) * 2006-06-01 2007-12-13 Fuji Electric Device Technology Co Ltd Semiconductor device and method of manufacturing the same
JP2012212923A (en) * 2012-07-02 2012-11-01 Fuji Electric Co Ltd Semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
JP5530602B2 (en) Semiconductor device and manufacturing method thereof
US7187033B2 (en) Drain-extended MOS transistors with diode clamp and methods for making the same
US7335949B2 (en) Semiconductor device and method of fabricating the same
US10263070B2 (en) Method of manufacturing LV/MV super junction trench power MOSFETs
JP4851694B2 (en) Manufacturing method of semiconductor device
US8174066B2 (en) Semiconductor device and method of manufacturing semiconductor device
US11594613B2 (en) Sawtooh electric field drift region structure for planar and trench power semiconductor devices
JP4813762B2 (en) Semiconductor device and manufacturing method thereof
JP6092749B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP5298565B2 (en) Semiconductor device and manufacturing method thereof
CN105321824B (en) Method for manufacturing semiconductor device
JP2005285913A (en) Semiconductor device and manufacturing method thereof
CN102834919B (en) High voltage silicon controlled rectifier metal-oxide semiconductor (MOS) in BiCMOS technique technology
JP4061711B2 (en) MOS transistor and manufacturing method thereof
JP2016127245A (en) Semiconductor device and semiconductor device manufacturing method
JP2011204808A (en) Semiconductor device and method of manufacturing the same
JP2021002623A (en) Semiconductor device
JP2009246225A (en) Semiconductor device
JP4874736B2 (en) Semiconductor device
KR101469343B1 (en) Vertical power mosfet and methods of forming the same
JP2010118622A (en) Semiconductor device and method of manufacturing the same
JP2009141185A (en) Semiconductor device, and manufacturing method thereof
JP2005116651A (en) Semiconductor device and its manufacturing method
JP2006041308A (en) Semiconductor apparatus
JP5172223B2 (en) Semiconductor device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081016

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110714