JP2006040813A - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery Download PDF

Info

Publication number
JP2006040813A
JP2006040813A JP2004222311A JP2004222311A JP2006040813A JP 2006040813 A JP2006040813 A JP 2006040813A JP 2004222311 A JP2004222311 A JP 2004222311A JP 2004222311 A JP2004222311 A JP 2004222311A JP 2006040813 A JP2006040813 A JP 2006040813A
Authority
JP
Japan
Prior art keywords
resin layer
insulating tape
positive electrode
battery
electrolyte battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004222311A
Other languages
Japanese (ja)
Inventor
Tetsuya Murai
村井  哲也
Morihiko Okuda
守彦 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo GS Soft Energy Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo GS Soft Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo GS Soft Energy Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004222311A priority Critical patent/JP2006040813A/en
Publication of JP2006040813A publication Critical patent/JP2006040813A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte battery which prevents a problem from occurring, where the problem is deterioration in shelf life caused by a reaction with an adhesive, or the like, and which can improve safety by being insulated with reliability. <P>SOLUTION: A non-aqueous electrolyte battery 1 has a positive electrode 4 capable of storing/emitting lithium ions, a negative electrode 3, a separator 5, an insulating tape 11, and an electrolyte, where the insulating tape 11 in contact with the electrolyte has a second resin layer with a melting point higher than a first resin layer, and a part or the whole of the surface on the first resin layer side of the insulating tape 11 are welded to the positive electrode 4 by thermal welding or ultrasonic welding. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、リチウムイオンを吸蔵放出することが可能な正極、負極、セパレータ、絶縁テープ、及び電解質を有する非水電解質電池に関する。   The present invention relates to a nonaqueous electrolyte battery having a positive electrode, a negative electrode, a separator, an insulating tape, and an electrolyte capable of occluding and releasing lithium ions.

リチウムイオン電池などの極板の金属露出部分を覆う接着絶縁テープとしては、ポリプロピレンフィルム(PP)、ポリフェニレンサルファイドフィルム(PPS)、ポリイミドフィルム(PI)、ポリエーテルイミドフィルム(PEI)、又はシンジオタクチックポリスチレンなどの電気絶縁性フィルムを基材とし、ゴム系、アクリル酸系、シリコーン系、又はエポキシ系の接着剤が使用されている。   Adhesive insulating tape that covers exposed metal parts of electrodes such as lithium ion batteries can be polypropylene film (PP), polyphenylene sulfide film (PPS), polyimide film (PI), polyetherimide film (PEI), or syndiotactic A rubber-based, acrylic acid-based, silicone-based, or epoxy-based adhesive is used with an electrically insulating film such as polystyrene as a base material.

しかし、接着絶縁テープは粘着性を有するため、絶縁テープを貼り着ける際の取扱が困難であったり、また、絶縁テープの接着剤が電解液中に溶解し、電池の放置特性又は充放電サイクル特性を低下させるという問題がある。さらに、極板の金属露出部分同士の接触を完全に防止するために、製造工程における絶縁テープの貼り着け位置のズレなどを考慮し、金属露出部分だけでなく、金属露出部分に隣接する活物質層まで絶縁テープで覆う場合が多い。この場合、活物質層に絶縁テープの接着剤層が直接接触し、接触部分で活物質と接着剤とが反応することにより、電池の放置特性を極端に低下させるという問題がある。また、電解質にシクロヘキシルベンゼン、2,4ジフルオロアニソール、又はビフェニル等の芳香族化合物が添加されている場合、上記反応が更に加速されるという問題もある。   However, since the adhesive insulating tape is sticky, it is difficult to handle when attaching the insulating tape, or the adhesive of the insulating tape dissolves in the electrolyte, leaving the battery standing characteristics or charge / discharge cycle characteristics. There is a problem of lowering. Furthermore, in order to completely prevent contact between the exposed metal parts of the electrode plate, considering the displacement of the position where the insulating tape is applied in the manufacturing process, not only the exposed metal part but also the active material adjacent to the exposed metal part Often the layers are covered with insulating tape. In this case, the adhesive layer of the insulating tape is in direct contact with the active material layer, and the active material and the adhesive agent react at the contact portion, thereby causing a problem that the battery standing characteristics are extremely deteriorated. In addition, when an aromatic compound such as cyclohexylbenzene, 2,4 difluoroanisole, or biphenyl is added to the electrolyte, there is a problem that the above reaction is further accelerated.

接着剤を使用せずに絶縁テープを電極に着ける方法として、ポリエチレン、ポリプロピレン、又はポリエチレンテレフタラートなどのポリオレフィンフィルムを熱溶着するという方法がある(例えば、特許文献1参照)。熱溶着を行う場合、接着剤を使用しないため、上述した放置特性の低下などの接着剤に関係する問題の発生を防止することができる。
特開平10−289696号公報
As a method of attaching an insulating tape to an electrode without using an adhesive, there is a method of thermally welding a polyolefin film such as polyethylene, polypropylene, or polyethylene terephthalate (see, for example, Patent Document 1). When performing the heat welding, since no adhesive is used, it is possible to prevent the occurrence of problems related to the adhesive such as the deterioration of the leaving characteristics described above.
Japanese Patent Laid-Open No. 10-289696

しかし、熱溶着の場合、絶縁テープを熱溶着する際に、絶縁テープの一部分が融解して金属部分が露出するなど、絶縁が不完全になるという問題がある。また、ポリエチレンテレフタラートなどのポリオレフィンフィルムを用いた場合、ポリエチレンテレフタラートは高温で電解液に溶解し易く、また負極と反応し易いため、電池の放電特性が低下するという問題がある。   However, in the case of heat welding, there is a problem that when the insulating tape is heat-welded, insulation is incomplete, for example, a part of the insulating tape is melted and a metal part is exposed. Further, when a polyolefin film such as polyethylene terephthalate is used, polyethylene terephthalate easily dissolves in the electrolyte solution at a high temperature and easily reacts with the negative electrode, so that there is a problem that the discharge characteristics of the battery are deteriorated.

本発明は斯かる事情に鑑みてなされたものであり、第1樹脂層、及び、該第1樹脂層よりも融点が高い第2樹脂層を有する絶縁テープの前記第1樹脂層側の表面の一部又は全部を正極に溶着した構成とすることにより、接着剤との反応による放置特性の低下などの問題の発生を防止できると共に、確実に絶縁を行って安全性を高めることができる非水電解質電池を提供することを目的とする。   This invention is made | formed in view of such a situation, The surface of the said 1st resin layer side surface of the insulating tape which has a 1st resin layer and the 2nd resin layer whose melting | fusing point is higher than this 1st resin layer is provided. By adopting a structure in which part or all is welded to the positive electrode, it is possible to prevent the occurrence of problems such as deterioration in standing characteristics due to the reaction with the adhesive, and also to ensure safety and improve safety. An object is to provide an electrolyte battery.

また、本発明は、前記第1樹脂層は、ポリエチレン樹脂及びポリプロピレン樹脂からなる群より選択される1又は複数種類の合成樹脂を含み、前記第2樹脂層は、ポリプロピレン樹脂、ポリフェニレンサルファイド樹脂、及びポリイミド樹脂からなる群より選択される1又は複数種類の合成樹脂を含むことにより、絶縁テープの第2樹脂層に穴が開くなどの悪影響を与えずに、第1樹脂層の溶着を行うことができる非水電解質電池を提供することを他の目的とする。   In the present invention, the first resin layer includes one or more kinds of synthetic resins selected from the group consisting of polyethylene resin and polypropylene resin, and the second resin layer includes polypropylene resin, polyphenylene sulfide resin, and By including one or more kinds of synthetic resins selected from the group consisting of polyimide resins, the first resin layer can be welded without adversely affecting the second resin layer of the insulating tape, such as opening a hole. Another object is to provide a non-aqueous electrolyte battery.

また、本発明は、正極の活物質層に覆われていない金属部分と、該金属部分周辺の活物質層とを覆うように絶縁テープを溶着した構成とすることにより、製造工程において絶縁テープがずれた場合であっても、前記金属部分の絶縁を保つことができる非水電解質電池を提供することを他の目的とする。   Further, the present invention provides a structure in which an insulating tape is welded so as to cover a metal part not covered with the active material layer of the positive electrode and an active material layer around the metal part. It is another object of the present invention to provide a nonaqueous electrolyte battery that can maintain insulation of the metal portion even when it is displaced.

また、本発明は、前記正極に、組成式Lix MO2 もしくはLiy 2 4 (ただし、Mは1種類以上の遷移金属、0≦x≦1、0≦y≦2)で表される複合酸化物、トンネル構造もしくは層状構造の金属カルコゲン化物、又は、トンネル構造もしくは層状構造の金属酸化物を含む場合であっても、接着剤との反応による放置特性の低下などの問題の発生を防止できる非水電解質電池を提供することを他の目的とする。 In the present invention, the positive electrode is represented by the composition formula Li x MO 2 or Li y M 2 O 4 (where M is one or more transition metals, 0 ≦ x ≦ 1, 0 ≦ y ≦ 2). Even if it contains complex oxide, tunnel structure or layer structure metal chalcogenide, or tunnel structure or layer structure metal oxide, problems such as degradation of standing characteristics due to reaction with adhesives may occur. Another object is to provide a non-aqueous electrolyte battery that can be prevented.

また、本発明は、電解質に芳香族化合物を含む場合であっても、接着剤との反応による放置特性の低下などの問題の発生を防止できる非水電解質電池を提供することを他の目的とする。   Another object of the present invention is to provide a non-aqueous electrolyte battery that can prevent the occurrence of problems such as deterioration in standing characteristics due to reaction with an adhesive even when the electrolyte contains an aromatic compound. To do.

第1発明に係る非水電解質電池は、リチウムイオンを吸蔵放出することが可能な正極、負極、セパレータ、絶縁テープ、及び電解質を有し、絶縁テープは電解質と接触している非水電解質電池において、前記絶縁テープは、第1樹脂層、及び、該第1樹脂層よりも融点が高い第2樹脂層を有し、絶縁テープの第1樹脂層側の表面の一部又は全部が、正極に溶着されていることを特徴とする。   A nonaqueous electrolyte battery according to a first invention includes a positive electrode, a negative electrode, a separator, an insulating tape, and an electrolyte capable of occluding and releasing lithium ions, and the insulating tape is in contact with the electrolyte. The insulating tape has a first resin layer and a second resin layer having a melting point higher than that of the first resin layer, and a part or all of the surface of the insulating tape on the first resin layer side serves as the positive electrode. It is welded.

第2発明に係る非水電解質電池は、第1発明において、前記第1樹脂層は、ポリエチレン樹脂及びポリプロピレン樹脂からなる群より選択される1又は複数種類の合成樹脂を含み、前記第2樹脂層は、ポリプロピレン樹脂、ポリフェニレンサルファイド樹脂、及びポリイミド樹脂からなる群より選択される1又は複数種類の合成樹脂を含むことを特徴とする。   The nonaqueous electrolyte battery according to a second invention is the nonaqueous electrolyte battery according to the first invention, wherein the first resin layer includes one or more kinds of synthetic resins selected from the group consisting of a polyethylene resin and a polypropylene resin, and the second resin layer Includes one or more kinds of synthetic resins selected from the group consisting of polypropylene resins, polyphenylene sulfide resins, and polyimide resins.

第3発明に係る非水電解質電池は、第1又は第2発明において、前記正極は、金属部分と、該金属部分の大部分を覆う活物質層とを有し、前記絶縁テープは、活物質層に覆われていない金属部分と、該金属部分周辺の活物質層とを覆うように正極に溶着されていることを特徴とする。   A nonaqueous electrolyte battery according to a third invention is the nonaqueous electrolyte battery according to the first or second invention, wherein the positive electrode has a metal part and an active material layer covering most of the metal part, and the insulating tape is an active material. It is characterized by being welded to the positive electrode so as to cover the metal part not covered with the layer and the active material layer around the metal part.

第4発明に係る非水電解質電池は、第1〜第3発明の何れかにおいて、前記正極は、組成式Lix MO2 もしくはLiy 2 4 (ただし、Mは1種類以上の遷移金属、0≦x≦1、0≦y≦2)で表される複合酸化物、トンネル構造もしくは層状構造の金属カルコゲン化物、又は、トンネル構造もしくは層状構造の金属酸化物を含むことを特徴とする。 A non-aqueous electrolyte battery according to a fourth invention is the non-aqueous electrolyte battery according to any one of the first to third inventions, wherein the positive electrode has a composition formula of Li x MO 2 or Li y M 2 O 4 (where M is one or more transition metals). , 0 ≦ x ≦ 1, 0 ≦ y ≦ 2), a metal chalcogenide having a tunnel structure or a layered structure, or a metal oxide having a tunnel structure or a layered structure.

第5発明に係る非水電解質電池は、第1〜第4発明の何れかにおいて、前記電解質は、芳香族化合物を含むことを特徴とする。   The nonaqueous electrolyte battery according to a fifth aspect of the present invention is characterized in that, in any one of the first to fourth aspects, the electrolyte includes an aromatic compound.

第1発明においては、融点が低い第1樹脂層は溶着層として機能し、接着剤を用いずに、絶縁テープを正極に着けることができる。接着剤を使用していないため、接着剤との反応による放置特性の低下などの問題の発生を防止することができる。また、融点が高い第2樹脂層は絶縁層として機能し、第1樹脂層の熱溶着又は超音波溶着を行っても穴などが生じることなく、確実に絶縁を行うことができる。熱溶着又は超音波溶着などの溶着を行っても確実に絶縁を行い、安全性を高めることができる。   In the first invention, the first resin layer having a low melting point functions as a welding layer, and the insulating tape can be attached to the positive electrode without using an adhesive. Since no adhesive is used, it is possible to prevent the occurrence of problems such as deterioration in storage characteristics due to reaction with the adhesive. In addition, the second resin layer having a high melting point functions as an insulating layer, and even if the first resin layer is thermally welded or ultrasonically welded, it is possible to reliably perform insulation without generating a hole. Even if welding such as thermal welding or ultrasonic welding is performed, insulation can be reliably performed and safety can be improved.

第2発明においては、第1樹脂層に用いる高密度ポリエチレン、中密度ポリエチレン、又は低密度ポリエチレンなどのポリエチレンの融点は100℃〜120℃であり、延伸ポリプロピレン樹脂又は無延伸ポリプロピレンなどのポリプロピレンの融点は160℃前後である。また、第2樹脂層に用いるポリプロピレン(ただし、第1樹脂層がポリエチレンの場合)の融点は160℃前後であり、ポリフェニレンサルファイドの融点は270℃であり、ポリイミドの融点は500℃以上である。そのため、絶縁テープに熱溶着を行った場合、融点の低い第1樹脂層は溶融するが、融点の高い第2樹脂層は溶融しないため、第2樹脂層に穴が開くなどの悪影響を与えずに、第1樹脂層の溶着を行うことができる。   In the second invention, the melting point of polyethylene such as high density polyethylene, medium density polyethylene, or low density polyethylene used for the first resin layer is 100 ° C. to 120 ° C., and the melting point of polypropylene such as stretched polypropylene resin or unstretched polypropylene. Is around 160 ° C. Further, the melting point of polypropylene used for the second resin layer (provided that the first resin layer is polyethylene) is around 160 ° C., the melting point of polyphenylene sulfide is 270 ° C., and the melting point of polyimide is 500 ° C. or more. Therefore, when heat welding is performed on the insulating tape, the first resin layer having a low melting point is melted, but the second resin layer having a high melting point is not melted. Therefore, there is no adverse effect such as opening a hole in the second resin layer. In addition, the first resin layer can be welded.

第3発明においては、絶縁テープは、活物質層に覆われていない金属部分と、該金属部分周辺の活物質層とを覆うように正極に溶着されている。絶縁テープは、少なくとも前記金属部分を覆って、前記金属部分を絶縁できればよいが、前記金属部分周辺の活物質層も覆うことにより、製造工程において絶縁テープがずれた場合であっても、前記金属部分の絶縁を保つことができる。   In the third invention, the insulating tape is welded to the positive electrode so as to cover the metal part not covered with the active material layer and the active material layer around the metal part. The insulating tape only needs to cover at least the metal portion so as to insulate the metal portion. However, even if the insulating tape is displaced in the manufacturing process by covering the active material layer around the metal portion, the metal tape can be used. The insulation of the part can be kept.

第4発明においては、正極の活物質として、組成式Lix MO2 もしくはLiy 2 4 (ただし、Mは1種類以上の遷移金属、0≦x≦1、0≦y≦2)で表される複合酸化物、トンネル構造もしくは層状構造の金属カルコゲン化物、又は、トンネル構造もしくは層状構造の金属酸化物などの遷移金属酸化物を用いた場合であっても、接着剤を使用せずに、金属露出部分周辺の活物質層に絶縁テープが溶着されているため、従来の活物質層と接着剤との反応は生じず、電池の放置特性が低下することを防止できる。 In the fourth invention, as the positive electrode active material, the composition formula is Li x MO 2 or Li y M 2 O 4 (where M is one or more transition metals, 0 ≦ x ≦ 1, 0 ≦ y ≦ 2). Even when transition metal oxides such as complex oxides, tunnel structure or layer structure metal chalcogenides, or tunnel structure or layer structure metal oxides are used, no adhesive is used. In addition, since the insulating tape is welded to the active material layer around the exposed metal portion, the reaction between the conventional active material layer and the adhesive does not occur, and the battery standing characteristics can be prevented from being deteriorated.

第5発明においては、電解質にシクロヘキシルベンゼン又は2,4ジフルオロアニソールなどの芳香族化合物を添加した場合であっても、接着剤を使用せずに、金属露出部分周辺の活物質層に絶縁テープが溶着されているため、従来の活物質層と接着剤との反応は生じず、電池の放置特性が低下することを防止できる。   In the fifth invention, even when an aromatic compound such as cyclohexylbenzene or 2,4 difluoroanisole is added to the electrolyte, an insulating tape is formed on the active material layer around the exposed metal portion without using an adhesive. Since it is welded, the reaction between the conventional active material layer and the adhesive does not occur, and it is possible to prevent the battery leaving characteristics from deteriorating.

第1、第4、第5発明によれば、接着剤との反応による放置特性の低下などの問題の発生を防止することができる。また、確実に絶縁を行って安全性を高めることができる。   According to the first, fourth, and fifth inventions, it is possible to prevent the occurrence of problems such as deterioration of the standing characteristics due to the reaction with the adhesive. Further, it is possible to improve the safety by reliably performing the insulation.

第2発明によれば、絶縁テープの第2樹脂層に穴が開くなどの悪影響を与えずに、第1樹脂層の溶着を行うことができる。   According to the second invention, the first resin layer can be welded without adversely affecting the second resin layer of the insulating tape such as opening a hole.

第3発明によれば、製造工程において絶縁テープがずれた場合であっても、正極の金属部分の絶縁を保つことができる。   According to the third aspect of the present invention, the insulation of the metal part of the positive electrode can be maintained even when the insulating tape is displaced in the manufacturing process.

以下に好適な実施例を用いて本発明を説明するが、本発明は、本実施例により、何ら限定されるものではなく、その主旨を変更しない範囲において、適宜変更して実施することができる。   The present invention will be described below with reference to preferred examples. However, the present invention is not limited to the examples, and can be appropriately modified and implemented without departing from the scope of the present invention. .

(実施例1)
図1は、本発明に係る非水電解質電池の一例を示す断面図である。図1において、1は非水電解質電池(以下、電池という)、2は電極群、3は負極、4は正極、5はセパレータ、6は電池ケース、7は電池蓋、9は負極端子、10は負極リードである。電極群2は、負極3と正極4とをセパレータ5を介して巻回したものである。電極群2は電解質と共にアルミ製の電池ケース6に収納してあり、電池ケース6の開口部は、負極端子9を備えるアルミ製の電池蓋7をレーザー溶接することにより密封されている。負極3は負極リード10と接続され、正極4は電池ケース6と接続されている。
Example 1
FIG. 1 is a cross-sectional view showing an example of a nonaqueous electrolyte battery according to the present invention. In FIG. 1, 1 is a nonaqueous electrolyte battery (hereinafter referred to as a battery), 2 is an electrode group, 3 is a negative electrode, 4 is a positive electrode, 5 is a separator, 6 is a battery case, 7 is a battery lid, 9 is a negative electrode terminal, 10 Is a negative electrode lead. The electrode group 2 is obtained by winding a negative electrode 3 and a positive electrode 4 with a separator 5 interposed therebetween. The electrode group 2 is housed in an aluminum battery case 6 together with an electrolyte, and the opening of the battery case 6 is sealed by laser welding an aluminum battery lid 7 having a negative electrode terminal 9. The negative electrode 3 is connected to the negative electrode lead 10, and the positive electrode 4 is connected to the battery case 6.

正極合剤は、活物質としてLiCoO2 90質量%と、導電助剤としてアセチレンブラック5質量%と、結着剤としてポリフッ化ビニリデン(PVDF)5質量%とを混合し、N−メチル−2−ピロリドン(NMP)に分散させることによりペーストを調製した。このペーストを厚さ20μmのアルミニウム集電体に均一に塗布して、乾燥させた後、ロールプレスで圧縮成形することにより正極を作製した。 The positive electrode mixture was prepared by mixing 90% by mass of LiCoO 2 as an active material, 5% by mass of acetylene black as a conductive additive, and 5% by mass of polyvinylidene fluoride (PVDF) as a binder, and N-methyl-2- A paste was prepared by dispersing in pyrrolidone (NMP). This paste was uniformly applied to an aluminum current collector with a thickness of 20 μm, dried, and then compression molded with a roll press to produce a positive electrode.

負極合剤は、負極活物質として黒鉛を95質量%と、結着剤としてカルボキシメチルセルロース3質量%と、スチレンブタジエンゴム2質量%とを混合し、蒸留水を適宜加えて分散させ、スラリーを調製した。このスラリーを厚さ15μmの銅集電体に均一に塗布し、100℃で5時間乾燥させた後、ロールプレスで圧縮成形することにより負極を作製した。   The negative electrode mixture was prepared by mixing 95% by mass of graphite as a negative electrode active material, 3% by mass of carboxymethyl cellulose as a binder, and 2% by mass of styrene butadiene rubber, and adding distilled water as appropriate to disperse the slurry. did. This slurry was uniformly applied to a 15 μm thick copper current collector, dried at 100 ° C. for 5 hours, and then subjected to compression molding with a roll press to produce a negative electrode.

セパレータとしては、厚さ20μm程度の微多孔性ポリエチレンフィルムを用いた。セパレータは、多孔性であり、融点は115℃〜130℃である。電解質としては、エチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)の体積比3:7混合溶媒にLiPF6 を1.1mol/l溶解させたものを用いた。 As the separator, a microporous polyethylene film having a thickness of about 20 μm was used. The separator is porous and has a melting point of 115 ° C to 130 ° C. As the electrolyte, a solution obtained by dissolving 1.1 mol / l of LiPF 6 in a 3: 7 mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) was used.

正極4は、上述したように、アルミニウム集電体に正極合剤が塗布されているが、アルミニウム集電体の一部には正極合剤が塗布されておらず、アルミニウム集電体(金属部分)が露出している部分(以下、絶縁処理部という)を有する。正極4の絶縁処理部及びその周辺の正極合剤が塗布されている部分(以下、周辺塗布部分という)は、絶縁テープ11で覆われている。   As described above, in the positive electrode 4, the positive electrode mixture is applied to the aluminum current collector, but the positive electrode mixture is not applied to a part of the aluminum current collector, and the aluminum current collector (metal portion) ) Is exposed (hereinafter referred to as an insulation processing portion). A portion where the insulating treatment portion of the positive electrode 4 and the peripheral positive electrode mixture are applied (hereinafter referred to as a peripheral application portion) is covered with an insulating tape 11.

絶縁テープは、厚さ5μmの延伸ポリプロピレン樹脂(OPP)を用いた第1樹脂層と、厚さ10μmのポリフェニレンサルファイド樹脂(PPS)を用いた第2層樹脂層とを積層したものであり、第1樹脂層を正極4の絶縁処理部及び周辺塗布部に溶着してある。溶着は、熱溶着を用いており、例えば225℃で15秒間の熱溶着を行う。絶縁テープは、多孔性ではなく、融点は270℃程度である。また、絶縁テープは電解質と接触している。   The insulating tape is obtained by laminating a first resin layer using an expanded polypropylene resin (OPP) having a thickness of 5 μm and a second resin layer using a polyphenylene sulfide resin (PPS) having a thickness of 10 μm. One resin layer is welded to the insulating treatment part and the peripheral application part of the positive electrode 4. For the welding, thermal welding is used. For example, thermal welding is performed at 225 ° C. for 15 seconds. The insulating tape is not porous and has a melting point of about 270 ° C. The insulating tape is in contact with the electrolyte.

図2は、絶縁処理部及び周辺塗布部の例を示す要部拡大断面図である。正極4はアルミニウム集電体4aに正極合剤4b,4bが塗布されており、アルミニウム集電体4aの図中の中央内側付近は正極合剤4b,4bが塗布されておらず、アルミニウム集電体4aが露出している。また、負極3は銅集電体3aに負極合剤3b,3bが塗布されているが、銅集電体3aの図中の先端部は負極合剤3b,3bが塗布されておらず、銅集電体3aが露出している。正極4のアルミニウム集電体4aが露出している部分(絶縁処理部)及びその周辺の正極合剤4b,4bが塗布されている部分(周辺塗布部)には、第1樹脂層及び第2樹脂層を積層した絶縁テープ11の第1樹脂層が熱溶着されている。また、絶縁テープ11は、例えば正極の巻き終わりの集電体露出部分(絶縁処理部)に溶着されている。このように、絶縁テープ11は、集電体(金属部分)が露出している絶縁処理部に溶着され、他の金属部分との短絡を防止する。また、絶縁テープ11は、絶縁処理部の周辺の周辺塗布部にも溶着されており、製造工程での位置ずれが生じた場合であっても、絶縁処理部と他の金属部分との短絡を防止する。   FIG. 2 is an enlarged cross-sectional view of a main part showing an example of an insulation processing part and a peripheral application part. In the positive electrode 4, the positive electrode mixture 4 b, 4 b is applied to the aluminum current collector 4 a, and the positive electrode mixture 4 b, 4 b is not applied in the vicinity of the center inside of the aluminum current collector 4 a in the drawing. The body 4a is exposed. Further, the negative electrode 3 is coated with the negative electrode mixture 3b, 3b on the copper current collector 3a, but the tip of the copper current collector 3a in the figure is not coated with the negative electrode mixture 3b, 3b. The current collector 3a is exposed. A portion of the positive electrode 4 where the aluminum current collector 4a is exposed (insulation processing portion) and a portion where the positive electrode mixture 4b, 4b is applied (peripheral coating portion) are formed on the first resin layer and the second resin layer. The 1st resin layer of the insulating tape 11 which laminated | stacked the resin layer is heat-welded. The insulating tape 11 is welded to, for example, a current collector exposed portion (insulation processing portion) at the end of the positive electrode winding. In this way, the insulating tape 11 is welded to the insulating treatment part where the current collector (metal part) is exposed, and prevents a short circuit with other metal parts. Further, the insulating tape 11 is also welded to the peripheral coating portion around the insulating processing portion, and even if a positional shift occurs in the manufacturing process, the insulating processing portion and other metal portions are short-circuited. To prevent.

(実施例2)
絶縁テープの第1樹脂層を低密度ポリエチレン(LDPE)、第2樹脂層をポリフェニレンサルファイド樹脂(PPS)とし、他は実施例1と同様の電池を作製した。
(Example 2)
A battery was manufactured in the same manner as in Example 1 except that the first resin layer of the insulating tape was low density polyethylene (LDPE) and the second resin layer was polyphenylene sulfide resin (PPS).

(実施例3)
絶縁テープの第1樹脂層を中密度ポリエチレン(MDPE)、第2樹脂層をポリフェニレンサルファイド樹脂(PPS)とし、他は実施例1と同様の電池を作製した。
(Example 3)
A battery was manufactured in the same manner as in Example 1 except that the first resin layer of the insulating tape was medium density polyethylene (MDPE) and the second resin layer was polyphenylene sulfide resin (PPS).

(実施例4)
絶縁テープの第1樹脂層を高密度ポリエチレン(HDPE)、第2樹脂層をポリフェニレンサルファイド樹脂(PPS)とし、他は実施例1と同様の電池を作製した。
Example 4
A battery was manufactured in the same manner as in Example 1 except that the first resin layer of the insulating tape was high-density polyethylene (HDPE) and the second resin layer was polyphenylene sulfide resin (PPS).

(実施例5)
絶縁テープの第1樹脂層を延伸ポリプロピレン樹脂(OPP)、第2樹脂層をポリイミド樹脂(PI)とし、他は実施例1と同様の電池を作製した。
(Example 5)
A battery was manufactured in the same manner as in Example 1 except that the first resin layer of the insulating tape was expanded polypropylene resin (OPP) and the second resin layer was polyimide resin (PI).

(実施例6)
絶縁テープの第1樹脂層を無延伸ポリプロピレン樹脂(CPP)、第2樹脂層をポリエーテルイミド(PEI)とし、他は実施例1と同様の電池を作製した。
(Example 6)
A battery was produced in the same manner as in Example 1 except that the first resin layer of the insulating tape was unstretched polypropylene resin (CPP) and the second resin layer was polyetherimide (PEI).

(実施例7)
絶縁テープの第1樹脂層を低密度ポリエチレン(LDPE)、第2樹脂層をポリプロピレン樹脂(PP)とし、他は実施例1と同様の電池を作製した。
(Example 7)
A battery was manufactured in the same manner as in Example 1 except that the first resin layer of the insulating tape was low density polyethylene (LDPE) and the second resin layer was polypropylene resin (PP).

(実施例8)
電解質として、エチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)の体積比3:7混合溶媒に、LiPF6 を1.1mol/l、シクロヘキシルベンゼン(CHB)を2質量%溶解させ、他は実施例1と同様の電池を作製した。
(Example 8)
As an electrolyte, 1.1 mol / l of LiPF 6 and 2% by mass of cyclohexylbenzene (CHB) were dissolved in a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of 3: 7. A battery similar to 1 was produced.

(実施例9)
電解質として、エチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)の体積比3:7混合溶媒に、LiPF6 を1.1mol/l、2,4ジフルオロアニソール(2FA)を2質量%溶解させ、他は実施例1と同様の電池を作製した。
Example 9
As an electrolyte, 1.1% by mass of LiPF 6 and 2% by mass of 2,4 difluoroanisole (2FA) were dissolved in a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of 3: 7. Produced the same battery as in Example 1.

(実施例10)
電解質として、エチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)の体積比3:7混合溶媒に、LiPF6 を1.1mol/l、ビフェニル(BP)を2質量%溶解させ、他は実施例1と同様の電池を作製した。
(Example 10)
As an electrolyte, 1.1 mol / l of LiPF 6 and 2% by mass of biphenyl (BP) were dissolved in a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of 3: 7. A similar battery was produced.

(実施例11)
正極合剤は、活物質としてLiNiO2 90質量%と、導電助剤としてアセチレンブラック5質量%と、結着剤としてポリフッ化ビニリデン(PVDF)5質量%とを用い、他は実施例1と同様の電池を作製した。
(Example 11)
The positive electrode mixture uses 90% by mass of LiNiO 2 as an active material, 5% by mass of acetylene black as a conductive additive, and 5% by mass of polyvinylidene fluoride (PVDF) as a binder, and the others are the same as in Example 1. A battery was prepared.

(実施例12)
正極合剤は、活物質としてLiMn2 4 90質量%と、導電助剤としてアセチレンブラック5質量%と、結着剤としてポリフッ化ビニリデン(PVDF)5質量%とを用い、他は実施例1と同様の電池を作製した。
(Example 12)
The positive electrode mixture used 90% by mass of LiMn 2 O 4 as an active material, 5% by mass of acetylene black as a conductive additive, and 5% by mass of polyvinylidene fluoride (PVDF) as a binder. A similar battery was produced.

(実施例13)
正極合剤は、活物質としてLiNi0.4 Co0.3 Mn0.3 2 90質量%と、導電助剤としてアセチレンブラック5質量%と、結着剤としてポリフッ化ビニリデン(PVDF)5質量%とを用い、他は実施例1と同様の電池を作製した。
(Example 13)
The positive electrode mixture uses 90% by mass of LiNi 0.4 Co 0.3 Mn 0.3 O 2 as an active material, 5% by mass of acetylene black as a conductive additive, and 5% by mass of polyvinylidene fluoride (PVDF) as a binder. Produced the same battery as in Example 1.

(比較例1)
絶縁テープの第1樹脂層をブチルアクリル酸(BA)95質量%及びアクリル酸(AA)5質量%の接着剤層とし、第2樹脂層をポリフェニレンサルファイド樹脂(PPS)とし、他は実施例1と同様の電池を作製した。
(Comparative Example 1)
The first resin layer of the insulating tape is an adhesive layer of 95% by mass of butyl acrylic acid (BA) and 5% by mass of acrylic acid (AA), the second resin layer is polyphenylene sulfide resin (PPS), and the others are Example 1. A similar battery was produced.

(比較例2)
延伸ポリプロピレン樹脂(OPP)の絶縁テープ(1層のOPPで構成)を用い、他は実施例1と同様の電池を作製した。
(Comparative Example 2)
A battery was prepared in the same manner as in Example 1 except that an insulating tape of stretched polypropylene resin (OPP) (consisting of one layer of OPP) was used.

(比較例3)
絶縁テープは用いず、他は実施例1と同様の電池を作製した。
(Comparative Example 3)
A battery similar to that of Example 1 was fabricated except that no insulating tape was used.

(比較例4)
電解質として、エチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)の体積比3:7混合溶媒に、LiPF6 を1.1mol/l、シクロヘキシルベンゼン(CHB)を2質量%溶解させ、他は比較例1と同様の電池を作製した。
(Comparative Example 4)
As an electrolyte, 1.1 mol / l of LiPF 6 and 2% by mass of cyclohexylbenzene (CHB) were dissolved in a 3: 7 mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC). A battery similar to 1 was produced.

(比較例5)
電解質として、エチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)の体積比3:7混合溶媒に、LiPF6 を1.1mol/l、2,4ジフルオロアニソール(2FA)を2質量%溶解させ、他は比較例1と同様の電池を作製した。
(Comparative Example 5)
As an electrolyte, 1.1% by mass of LiPF 6 and 2% by mass of 2,4 difluoroanisole (2FA) were dissolved in a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of 3: 7. Produced a battery similar to Comparative Example 1.

(比較例6)
電解質として、エチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)の体積比3:7混合溶媒に、LiPF6 を1.1mol/l、ビフェニル(BP)を2質量%溶解させ、他は比較例1と同様の電池を作製した。
(Comparative Example 6)
As an electrolyte, 1.1 mol / l of LiPF 6 and 2% by mass of biphenyl (BP) were dissolved in a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of 3: 7. A similar battery was produced.

(比較例7)
正極合剤は、活物質としてLiNiO2 90質量%と、導電助剤としてアセチレンブラック5質量%と、結着剤としてポリフッ化ビニリデン(PVDF)5質量%とを用い、他は比較例1と同様の電池を作製した。
(Comparative Example 7)
The positive electrode mixture uses 90% by mass of LiNiO 2 as an active material, 5% by mass of acetylene black as a conductive additive, and 5% by mass of polyvinylidene fluoride (PVDF) as a binder. A battery was prepared.

(比較例8)
正極合剤は、活物質としてLiMn2 4 90質量%と、導電助剤としてアセチレンブラック5質量%と、結着剤としてポリフッ化ビニリデン(PVDF)5質量%とを用い、他は比較例1と同様の電池を作製した。
(Comparative Example 8)
The positive electrode mixture uses 90% by mass of LiMn 2 O 4 as an active material, 5% by mass of acetylene black as a conductive additive, and 5% by mass of polyvinylidene fluoride (PVDF) as a binder, and the others are Comparative Example 1. A similar battery was produced.

(比較例9)
正極合剤は、活物質としてLiNi0.4 Co0.3 Mn0.3 2 90質量%と、導電助剤としてアセチレンブラック5質量%と、結着剤としてポリフッ化ビニリデン(PVDF)5質量%とを用い、他は比較例1と同様の電池を作製した。
(Comparative Example 9)
The positive electrode mixture uses 90% by mass of LiNi 0.4 Co 0.3 Mn 0.3 O 2 as an active material, 5% by mass of acetylene black as a conductive additive, and 5% by mass of polyvinylidene fluoride (PVDF) as a binder. Produced a battery similar to Comparative Example 1.

上述した各実施例及び各比較例に対して、放置特性(電池膨れ、電圧低下分、容量保持率)を計測した。計測においては、同じ条件の電池を各10セルずつ作製し、これらの電池を、600mAの電流で4.2Vまで3時間定電流定電圧充電し、その後600mAの電流で3Vまで放電を行い、放電容量を測定した。その後、600mAの電流で4.2Vまで3時間定電流定電圧充電し、電池電圧と電池厚みとを測定した後、80℃で200時間放置し、放置後の電池電圧と電池厚みとを測定し、放置前に対する放置後の電池電圧の低下分(電圧低下分[mV])、電池厚み増大分(電池膨れ[mm])を求めた。そして、放置後の電池を、600mAの電流で3Vまで放電し、放置後の放電容量を測定し、容量保持率(=「放置後の放電容量」÷「放置前の放電容量」×100[%])を求めた。放置特性(電池膨れ、電圧低下分、容量保持率)の測定結果を表1〜3に示す。なお、測定結果は10セルの平均を示している。   The leaving characteristics (battery swelling, voltage drop, capacity retention) were measured for each of the above-described examples and comparative examples. In the measurement, 10 cells each of the same conditions were produced, and these batteries were charged at a constant current and a constant voltage for 3 hours up to 4.2 V at a current of 600 mA, and then discharged to 3 V at a current of 600 mA. The capacity was measured. After that, the battery was charged at a constant current of 600 mA to 4.2 V for 3 hours, and the battery voltage and battery thickness were measured. Then, the battery voltage and battery thickness were measured at 80 ° C. for 200 hours. Then, the battery voltage drop after being left (voltage drop [mV]) and battery thickness increase (battery swelling [mm]) after being left alone were determined. Then, the battery after being left is discharged to 3 V at a current of 600 mA, the discharge capacity after being left is measured, and the capacity retention rate (= “discharge capacity after being left” ÷ “discharge capacity before being left” × 100 [% ]). Tables 1 to 3 show measurement results of the leaving characteristics (battery swelling, voltage drop, capacity retention). In addition, the measurement result has shown the average of 10 cells.

Figure 2006040813
Figure 2006040813

表1に示すように、実施例1〜7及び比較例1の溶着部は、第2樹脂層が溶解すること等はなく、絶縁できており、また、十分な溶着強度が得られていた。一方、比較例2の溶着部は、絶縁テープが溶解して穴が開いており、完全に絶縁されていない箇所があった。また、より低い温度で溶着を行ってみたものの、十分な接着強度を得ることができなかった。また、比較例3の電池は、絶縁テープを用いておらず、接着剤を使用していないため、放置時の電池膨れ、電圧低下分、及び容量保持率に問題は無いが、金属露出部分(絶縁処理部)が絶縁被覆されていないため、異常過熱時にセパレータ及び電池が変形した際にショートが生じる可能性が高い。   As shown in Table 1, the welded portions of Examples 1 to 7 and Comparative Example 1 were insulated without the second resin layer being melted, and sufficient weld strength was obtained. On the other hand, in the welded part of Comparative Example 2, the insulating tape was melted and a hole was formed, and there was a part that was not completely insulated. Moreover, although welding was performed at a lower temperature, sufficient adhesive strength could not be obtained. In addition, the battery of Comparative Example 3 does not use an insulating tape and does not use an adhesive. Therefore, there is no problem in battery swelling, voltage drop, and capacity retention when left standing, but the metal exposed portion ( Since the insulation processing portion is not covered with insulation, there is a high possibility that a short circuit will occur when the separator and the battery are deformed during abnormal overheating.

また、表1の比較例1に示すように、絶縁テープがBA及びAAを含む接着剤層(第1樹脂層)を有する場合、BAと正極との反応によってガスが発生するため、電池膨れが大きく、また電圧低下分も大きい。また、BAは正極と反応して自己放電を促進したり、正極活物質を失活させるため、正極の放電抵抗が増大し、放電後の容量保持率が低下する。一方、表1の実施例1〜7に示す電池は、絶縁テープを熱溶着しており、接着剤を使用していないため、正極と溶着部との間に反応は起こらず、電池膨れ、電圧低下分、及び容量保持率の何れも良好である。   Moreover, as shown in Comparative Example 1 of Table 1, when the insulating tape has an adhesive layer (first resin layer) containing BA and AA, gas is generated due to the reaction between the BA and the positive electrode, so that the battery swells. Large and the voltage drop is large. Moreover, since BA reacts with the positive electrode to promote self-discharge or deactivate the positive electrode active material, the discharge resistance of the positive electrode increases and the capacity retention after discharge decreases. On the other hand, in the batteries shown in Examples 1 to 7 in Table 1, since the insulating tape is thermally welded and no adhesive is used, no reaction occurs between the positive electrode and the welded portion, and the battery swells and voltage Both the decrease and the capacity retention are good.

Figure 2006040813
Figure 2006040813

表2の実施例8〜10に示すように、OPP樹脂層(第1樹脂層)を熱溶着した電池は、電解液にCHB、2FA、又はBPを添加した場合であっても、特に問題は生じていない。一方、表2の比較例4〜6に示すように、第1樹脂層にBA及びAAを用い、電解液にCHB、2FA、又はBPを添加した場合は、放置後の電池電圧が異常に低下(電圧低下分が増加)している。また、電圧低下分の増大に伴って容量保持率が低下している。ただし、電池膨れについては、電池電圧が低下しているために、正極と電解液との反応が逆に抑制されて、小さくなっている。試験後の比較例4〜6の電池を解体したところ、負極上に正極活物質から溶出した金属コバルトが大量に析出していたことから、電圧の異常低下は負極上に析出した金属コバルトのデンドライトが正極に到達して微小短絡を引き起こしたためと考えられる。このことから、BAと、CHB、2FA、又はBPなどの芳香族化合物とを組合わせた場合、遷移金属酸化物が溶出し易くなると推察される。   As shown in Examples 8 to 10 in Table 2, the battery in which the OPP resin layer (first resin layer) is thermally welded is particularly problematic even when CHB, 2FA, or BP is added to the electrolytic solution. It has not occurred. On the other hand, as shown in Comparative Examples 4 to 6 in Table 2, when BA and AA are used for the first resin layer and CHB, 2FA, or BP is added to the electrolyte, the battery voltage after standing is abnormally lowered. (Voltage drop increases). In addition, the capacity retention rate decreases as the voltage drop increases. However, the battery bulge is reduced because the battery voltage is lowered and the reaction between the positive electrode and the electrolyte is suppressed. When the batteries of Comparative Examples 4 to 6 after the test were disassembled, a large amount of metallic cobalt eluted from the positive electrode active material was deposited on the negative electrode. Therefore, the abnormal decrease in voltage was caused by dendrites of metallic cobalt deposited on the negative electrode. This is thought to be due to the fact that reached the positive electrode and caused a short circuit. From this, it is presumed that transition metal oxides are likely to elute when BA is combined with an aromatic compound such as CHB, 2FA, or BP.

Figure 2006040813
Figure 2006040813

表3の実施例11〜13に示すように、OPP樹脂層(第1樹脂層)を熱溶着した電池は、正極活物質にLiNiO2 、LiMn2 4 、又はLiNi0.4 Co0.3 Mn0.3 2 などの遷移金属酸化物を用いた場合であっても、特に問題は生じていない。一方、表3の比較例7〜9に示すように、絶縁テープにBA及びAAを含む接着層(第1樹脂層)を用いると共に、正極活物質にLiNiO2 、LiMn2 4 、又はLiNi0.4 Co0.3 Mn0.3 2 などの遷移金属酸化物を用いた電池は、電池膨れは大きくなり、また電圧が低下(電圧低下分は増加)し、容量保持率も小さくなっている。 As shown in Examples 11 to 13 in Table 3, the battery in which the OPP resin layer (first resin layer) is thermally welded has LiNiO 2 , LiMn 2 O 4 , or LiNi 0.4 Co 0.3 Mn 0.3 O 2 as the positive electrode active material. Even when transition metal oxides such as these are used, no particular problem has occurred. On the other hand, as shown in Comparative Examples 7 to 9 in Table 3, an adhesive layer (first resin layer) containing BA and AA is used for the insulating tape, and LiNiO 2 , LiMn 2 O 4 , or LiNi 0.4 is used for the positive electrode active material. A battery using a transition metal oxide such as Co 0.3 Mn 0.3 O 2 has a large battery swelling, a low voltage (an increase in voltage drop), and a low capacity retention rate.

上述した各実施の形態においては、熱溶着方法によって絶縁テープの溶着を行っているが、熱溶着に限定はされず、例えばレーザー溶着によって絶縁テープの溶着を行ったり、超音波溶着によって絶縁テープの溶着を行うなど、任意の溶着方法で絶縁テープの溶着を行うことが可能である。絶縁テープを溶着する場合、接着剤は使用していないため、放置特性に悪影響が生じることはない。   In each of the above-described embodiments, the insulating tape is welded by the thermal welding method, but is not limited to the thermal welding, for example, the insulating tape is welded by laser welding, or the insulating tape is welded by ultrasonic welding. It is possible to weld the insulating tape by any welding method such as welding. When the insulating tape is welded, since no adhesive is used, the leaving characteristics are not adversely affected.

また、絶縁テープを溶着する際、製造工程で絶縁テープが外れず、位置がずれない程度の溶着強度が得られればよい。したがって、絶縁テープの第1樹脂層側の表面全面を溶着することは勿論、絶縁テープの第1樹脂層側の表面の一部分をスポット的に溶着することも可能である。特に、超音波溶着を行う場合は、超音波によって正極合剤又は負極合剤が脱落する可能性があるため、スポット的に溶着することが好ましい。   Further, when the insulating tape is welded, it is only necessary to obtain a welding strength that does not cause the insulating tape to be detached and the position is not shifted in the manufacturing process. Therefore, not only the entire surface of the insulating tape on the first resin layer side can be welded, but also a part of the surface of the insulating tape on the first resin layer side can be spot-welded. In particular, when ultrasonic welding is performed, since the positive electrode mixture or the negative electrode mixture may fall off by ultrasonic waves, it is preferable to perform spot welding.

絶縁テープを第1樹脂層及び第2樹脂層の積層構造とすることにより、溶着時に絶縁テープが破れること、又は、ピンホールができることを防止し、絶縁を確実に行うことができる。熱溶着においては、第2樹脂層の融点が第1樹脂層の融点よりも高ければ、第1樹脂層のみ溶着することが可能であるが、溶着をより短時間で行い、また、確実に絶縁を行うためには、第1樹脂層と第2樹脂層との融点の差は40℃以上が好ましい。第1樹脂層には、融点が160℃以下で、溶着が行い易く、また電気化学的安定性に優れているPE(LDPE、MDPE、HDPE)(融点は100℃〜120℃)、PP(CPP、OPP)(融点は160℃前後)が好ましい。また、第2樹脂層には、融点が200℃以上で、熱安定性及び電気化学的安定性に優れているPPS(融点は270℃)、PI(融点は500℃以上)が好ましい。ポリエチレンにはポリプロピレン樹脂が混合されていてもよい。強度、融点が異なるものを使用することによって、より好ましい効果を得ることができる。   By making the insulating tape a laminated structure of the first resin layer and the second resin layer, it is possible to prevent the insulating tape from being broken at the time of welding or to form a pinhole, and to perform insulation reliably. In thermal welding, if the melting point of the second resin layer is higher than the melting point of the first resin layer, it is possible to weld only the first resin layer, but the welding can be performed in a shorter time and insulation can be ensured. Therefore, the difference in melting point between the first resin layer and the second resin layer is preferably 40 ° C. or higher. For the first resin layer, PE (LDPE, MDPE, HDPE) (melting point is 100 ° C. to 120 ° C.), PP (CPP) having a melting point of 160 ° C. or less, easy to perform welding, and excellent in electrochemical stability. , OPP) (melting point is around 160 ° C.). The second resin layer is preferably made of PPS (melting point is 270 ° C.) or PI (melting point is 500 ° C. or more), which has a melting point of 200 ° C. or more and excellent thermal stability and electrochemical stability. Polypropylene resin may be mixed with polyethylene. By using those having different strengths and melting points, a more preferable effect can be obtained.

絶縁テープの厚さは、電極群2全体の厚さに影響を与えないように、できるだけ薄い方が好ましい。絶縁テープの厚さが20μmより大い場合、絶縁テープを溶着した部分の厚みが大きくなって電極群の一部が変形し、例えば電極群を電池ケースに挿入する際に、電極群の外周が電池ケース内壁と接触してキズが生じる可能性があるため、絶縁テープの厚さは20μm以下が好ましい。このように、第1樹脂層及び第2樹脂層の厚みは薄い方が好ましいが、確実に絶縁を行うためには、絶縁層である第2樹脂層は5μm以上が好ましく、より好ましくは10〜20μmである。また、溶着層である第1樹脂層は、溶着強度を維持するためには2μm以上が好ましく、より好ましくは3〜5μmである。   The thickness of the insulating tape is preferably as thin as possible so as not to affect the thickness of the entire electrode group 2. When the thickness of the insulating tape is larger than 20 μm, the thickness of the portion where the insulating tape is welded is increased and a part of the electrode group is deformed. For example, when the electrode group is inserted into the battery case, the outer periphery of the electrode group is The thickness of the insulating tape is preferably 20 μm or less because there is a possibility that scratches may occur upon contact with the battery case inner wall. Thus, the thickness of the first resin layer and the second resin layer is preferably thin, but in order to ensure insulation, the second resin layer that is an insulating layer is preferably 5 μm or more, more preferably 10 to 10 μm. 20 μm. Moreover, in order to maintain the welding strength, the first resin layer, which is a welding layer, is preferably 2 μm or more, more preferably 3 to 5 μm.

本発明に係る非水電解質電池の一例を示す断面図である。It is sectional drawing which shows an example of the nonaqueous electrolyte battery which concerns on this invention. 絶縁処理部及び周辺塗布部の例を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the example of an insulation process part and a peripheral application part.

符号の説明Explanation of symbols

1 電池(非水電解質電池)
2 電極群
3 負極
4 正極
5 セパレータ
6 電池ケース
7 電池蓋
9 負極端子
10 負極リード

1 battery (non-aqueous electrolyte battery)
2 Electrode group 3 Negative electrode 4 Positive electrode 5 Separator 6 Battery case 7 Battery lid 9 Negative electrode terminal 10 Negative electrode lead

Claims (5)

リチウムイオンを吸蔵放出することが可能な正極、負極、セパレータ、絶縁テープ、及び電解質を有し、絶縁テープは電解質と接触している非水電解質電池において、
前記絶縁テープは、
第1樹脂層、及び、該第1樹脂層よりも融点が高い第2樹脂層を有し、
絶縁テープの第1樹脂層側の表面の一部又は全部が、正極に溶着されていることを特徴とする非水電解質電池。
In a non-aqueous electrolyte battery having a positive electrode, a negative electrode, a separator, an insulating tape, and an electrolyte that can occlude and release lithium ions, and the insulating tape is in contact with the electrolyte,
The insulating tape is
A first resin layer, and a second resin layer having a melting point higher than that of the first resin layer,
A non-aqueous electrolyte battery, wherein a part or all of the surface of the insulating tape on the first resin layer side is welded to the positive electrode.
前記第1樹脂層は、ポリエチレン樹脂及びポリプロピレン樹脂からなる群より選択される1又は複数種類の合成樹脂を含み、
前記第2樹脂層は、ポリプロピレン樹脂、ポリフェニレンサルファイド樹脂、及びポリイミド樹脂からなる群より選択される1又は複数種類の合成樹脂を含むことを特徴とする請求項1記載の非水電解質電池。
The first resin layer includes one or more kinds of synthetic resins selected from the group consisting of polyethylene resins and polypropylene resins,
2. The nonaqueous electrolyte battery according to claim 1, wherein the second resin layer includes one or more kinds of synthetic resins selected from the group consisting of polypropylene resin, polyphenylene sulfide resin, and polyimide resin.
前記正極は、金属部分と、該金属部分の大部分を覆う活物質層とを有し、
前記絶縁テープは、活物質層に覆われていない金属部分と、該金属部分周辺の活物質層とを覆うように正極に溶着されていることを特徴とする請求項1又は2記載の非水電解質電池。
The positive electrode has a metal part and an active material layer covering most of the metal part,
3. The non-aqueous solution according to claim 1, wherein the insulating tape is welded to the positive electrode so as to cover a metal portion not covered with the active material layer and an active material layer around the metal portion. Electrolyte battery.
前記正極は、組成式Lix MO2 もしくはLiy 2 4 (ただし、Mは1種類以上の遷移金属、0≦x≦1、0≦y≦2)で表される複合酸化物、トンネル構造もしくは層状構造の金属カルコゲン化物、又は、トンネル構造もしくは層状構造の金属酸化物を含むことを特徴とする請求項1乃至3の何れかに記載の非水電解質電池。 The positive electrode is a composite oxide or tunnel represented by a composition formula Li x MO 2 or Li y M 2 O 4 (where M is one or more transition metals, 0 ≦ x ≦ 1, 0 ≦ y ≦ 2). 4. The nonaqueous electrolyte battery according to claim 1, comprising a metal chalcogenide having a structure or a layered structure, or a metal oxide having a tunnel structure or a layered structure. 5. 前記電解質は、芳香族化合物を含むことを特徴とする請求項1乃至4の何れかに記載の非水電解質電池。



The non-aqueous electrolyte battery according to claim 1, wherein the electrolyte contains an aromatic compound.



JP2004222311A 2004-07-29 2004-07-29 Non-aqueous electrolyte battery Pending JP2006040813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004222311A JP2006040813A (en) 2004-07-29 2004-07-29 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004222311A JP2006040813A (en) 2004-07-29 2004-07-29 Non-aqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2006040813A true JP2006040813A (en) 2006-02-09

Family

ID=35905569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004222311A Pending JP2006040813A (en) 2004-07-29 2004-07-29 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2006040813A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225539A (en) * 2009-03-25 2010-10-07 Tdk Corp Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2012156027A (en) * 2011-01-27 2012-08-16 Nitto Denko Corp Nonaqueous battery laminate
JP2017136741A (en) * 2016-02-03 2017-08-10 凸版印刷株式会社 Multilayer sheet for draw molding, molding and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225539A (en) * 2009-03-25 2010-10-07 Tdk Corp Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2012156027A (en) * 2011-01-27 2012-08-16 Nitto Denko Corp Nonaqueous battery laminate
JP2017136741A (en) * 2016-02-03 2017-08-10 凸版印刷株式会社 Multilayer sheet for draw molding, molding and method for producing the same

Similar Documents

Publication Publication Date Title
JP4541324B2 (en) Nonaqueous electrolyte secondary battery
JP4927064B2 (en) Secondary battery
JP6633283B2 (en) Nonaqueous electrolyte battery, method for manufacturing nonaqueous electrolyte battery, and battery pack
US20160336576A1 (en) Secondary battery and a method of manufacturing secondary battery
JP2015135822A (en) Sealed nonaqueous electrolyte secondary battery
JPWO2018180828A1 (en) Cylindrical battery
JP2007115678A (en) Nonaqueous electrolyte battery and its manufacturing method
JP2008103294A (en) Flat type battery
JP2012089402A (en) Lithium ion secondary battery
JP4710099B2 (en) Nonaqueous electrolyte secondary battery
JPWO2019044168A1 (en) Non-aqueous electrolyte secondary battery
KR100634901B1 (en) Non-aqueous electrolyte battery
JP2004273448A (en) Non-aqueous electrolyte solution and lithium secondary battery
JP2009259749A (en) Nonaqueous electrolyte secondary battery
JPH11250873A (en) Nonaqueous electrolyte secondary battery
JP2001167752A (en) Non-aqueous electrolyte secondary battery
JP6178183B2 (en) Nonaqueous electrolyte battery, assembled battery and storage battery device
JP2007234545A (en) Nonaqueous electrolyte battery and battery pack
JP4954468B2 (en) Winding electrode, manufacturing method thereof, and battery manufacturing method
JP5583419B2 (en) Lithium ion secondary battery
JP2003308887A (en) Nonaqueous electrolyte secondary battery
JP2006040813A (en) Non-aqueous electrolyte battery
JP2008243441A (en) Nonaqueous electrolyte secondary battery
JP2007172878A (en) Battery and its manufacturing method
JP4811983B2 (en) Winding electrode, manufacturing method thereof, and battery using the same