JP2006037212A - Solid grain erosion resistant surface treatment film and rotary machine - Google Patents

Solid grain erosion resistant surface treatment film and rotary machine Download PDF

Info

Publication number
JP2006037212A
JP2006037212A JP2004223513A JP2004223513A JP2006037212A JP 2006037212 A JP2006037212 A JP 2006037212A JP 2004223513 A JP2004223513 A JP 2004223513A JP 2004223513 A JP2004223513 A JP 2004223513A JP 2006037212 A JP2006037212 A JP 2006037212A
Authority
JP
Japan
Prior art keywords
layer
surface treatment
treatment film
physical vapor
solid particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004223513A
Other languages
Japanese (ja)
Other versions
JP3861097B2 (en
Inventor
Toyoaki Yasui
豊明 安井
Yoshikazu Yamada
義和 山田
Shugo Iwasaki
修吾 岩崎
Katsuyasu Hananaka
勝保 花中
Kyoichi Ikeno
恭一 池野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004223513A priority Critical patent/JP3861097B2/en
Publication of JP2006037212A publication Critical patent/JP2006037212A/en
Application granted granted Critical
Publication of JP3861097B2 publication Critical patent/JP3861097B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid grain erosion resistant surface treatment film in which solid grain erosion resistance can be remarkably improved, and which is provided with oxidation resistance without reducing the fatigue strength even to a rotary member, and to provide a rotary machine such as a steam turbine and an axial flow compressor obtained by applying the same. <P>SOLUTION: The solid grain erosion resistant surface treatment film comprises a nitrided hard layer formed on a surface of a base material; one or more physical vapor-deposited hard layers formed on the surface of the nitrided hard layer by a physical vapor deposition method. The thickness of the nitrided hard layer is controlled to ≥30 μm, and also, the total thickness of the physical vapor-deposited hard film is controlled to ≥10 μm. In this way, the deformation of the base material at the time of the collision with solid grains and the cracking of the film comprising the nitrided hard layer and the physical vapor-deposited hard layers as the upper layers of the base material are prevented, and its solid grain erosion resistance is secured, thus the increase of the service life in the solid grain erosion resistant surface treatment film is made possible, and also, its oxidation resistance and fatigue strength are improved. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、耐固体粒子エロージョン性を有する表面処理皮膜と、それを適用した例えば蒸気タービンや軸流圧縮機等の回転機械(本願明細書および特許請求の範囲において、単に「回転機械」という)に関する。   The present invention relates to a surface treatment film having solid particle erosion resistance and a rotary machine such as a steam turbine or an axial flow compressor to which the surface treatment film is applied (in the present specification and claims, simply referred to as “rotary machine”). About.

蒸気タービンでは、蒸気に接触する部位には、基材として例えば12%クロム系のステンレス鋼が使用されている。また、蒸気中に存在する固体粒子によるエロージョン性を改善するため、静止部品ではボロンを浸透拡散処理したボロナイジング処理も基材表層に施されている。   In a steam turbine, for example, 12% chromium-based stainless steel is used as a base material at a portion that comes into contact with steam. Moreover, in order to improve the erosion property by the solid particle which exists in a vapor | steam, the boronizing process which carried out the osmosis | diffusion diffusion process of the boron is given to the base-material surface layer in the stationary component.

しかしながら、上述の12%クロム系ステンレス鋼では、蒸気中に含まれるシリカ、酸化鉄等の固体粒子によりエロージョン損傷し、寿命が短い課題があった。また、これを解決するために上述したとおり、ボロナイジング処理が12%クロムステンレス鋼表層に施される場合があるが、この場合も固体粒子によるエロージョン性は十分でなく、さらに、疲労強度が低下する問題から回転部材には適用することが難しいという問題があった。   However, the above 12% chromium-based stainless steel suffers from erosion damage due to solid particles such as silica and iron oxide contained in the steam, resulting in a short life. In order to solve this, as described above, boronizing treatment may be applied to the surface layer of 12% chromium stainless steel, but in this case as well, the erosion property due to the solid particles is not sufficient, and the fatigue strength is further reduced. Due to the problem, there is a problem that it is difficult to apply to the rotating member.

また、蒸気タービン等高温蒸気に接する部位においては、耐固体粒子エロージョン性のみならず耐酸化性や疲労強度においても同時に十分な性能を有することが求められている。   Moreover, in the part which contacts high temperature steams, such as a steam turbine, it is calculated | required that it has sufficient performance not only in solid particle erosion resistance but in oxidation resistance and fatigue strength simultaneously.

従来、動圧流体軸受け等の高速回転体で、磨耗によって生じた金属粉等の不純物による高速回転体の損傷、回転性能や寿命の低下に対しては、硬化処理した母材にダイヤモンド状炭素膜を被覆する提案等がなされているが(特許文献1:特開2002−188642)、そのような表面処理皮膜は蒸気タービンの蒸気に接する部分への適用に関しては耐固体粒子エロージョン性においても、また耐酸化性、疲労強度等からも、実用性、適合性が十分なものではなかった。   Conventionally, in a high-speed rotating body such as a hydrodynamic fluid bearing, a diamond-like carbon film is applied to a hardened base material to prevent damage to the high-speed rotating body due to impurities such as metal powder caused by wear and a decrease in rotational performance and life. (Patent Document 1: Japanese Patent Application Laid-Open No. 2002-188642), however, such a surface-treated film is applied to a portion of a steam turbine in contact with steam, and is also resistant to solid particles. From the standpoint of oxidation resistance and fatigue strength, practicality and suitability were not sufficient.

特開2002−18864公報(第1頁、図1)Japanese Patent Laid-Open No. 2002-18864 (first page, FIG. 1)

本発明は、上記の従来の問題点を解消し、耐エロージョン性を大幅に向上させることができ、回転部材に対しても疲労強度を低下させることなく耐酸化性を備える耐固体粒子エロージョン性表面処理皮膜と、それを適用した回転機械を提供することを課題とするものである。   The present invention eliminates the above-mentioned conventional problems, can greatly improve erosion resistance, and has a solid particle erosion-resistant surface having oxidation resistance without reducing fatigue strength even for rotating members. It is an object of the present invention to provide a treatment film and a rotating machine to which the treatment film is applied.

本発明は、上記の課題を解決するためになされ、下記の(1)から(12)の手段を提供するものであり、以下、特許請求の範囲に記載の順に説明する。   The present invention has been made to solve the above-described problems, and provides the following means (1) to (12), and will be described below in the order of the claims.

(1)その第1の手段として、基材表層に形成した窒化硬質層と、同窒化硬質層の上に物理蒸着法により形成した1層以上の物理蒸着硬質層とを有し、前記窒化硬質層の厚さが30μm以上、且つ前記物理蒸着硬質膜の厚さが総厚として10μm以上であることを特徴とする耐固体粒子エロージョン性表面処理皮膜を提供する。   (1) As the first means, it has a hard nitrided layer formed on a substrate surface layer, and one or more physical vapor deposited hard layers formed on the nitrided hard layer by a physical vapor deposition method. Provided is a solid particle erosion-resistant surface treatment film characterized in that the layer thickness is 30 μm or more, and the physical vapor deposition hard film has a total thickness of 10 μm or more.

(2)第2の手段としては、第1の手段の耐固体粒子エロージョン性表面処理皮膜において、前記窒化硬質層がラジカル窒化法により形成されてなることを特徴とする耐固体粒子エロージョン性表面処理皮膜を提供する。   (2) As a second means, the solid particle erosion-resistant surface treatment film according to the first means, wherein the hard nitrided layer is formed by a radical nitriding method. Provide a film.

(3)また、第3の手段として、第1の手段の耐固体粒子エロージョン性表面処理皮膜において、前記物理蒸着硬質層が、前記窒化硬質層上に形成したCrN層であることを特徴とする耐固体粒子エロージョン性表面処理皮膜を提供する。   (3) Further, as a third means, in the solid particle erosion-resistant surface treatment film of the first means, the physical vapor deposition hard layer is a CrN layer formed on the nitride hard layer. A solid particle erosion-resistant surface treatment film is provided.

(4)第4の手段として、第1の手段の耐固体粒子エロージョン性表面処理皮膜において、前記物理蒸着硬質層が、前記窒化硬質層上に形成したCrN層と同CrN層を形成後更にその上に形成したAlCrN層又はTiAlNであることを特徴とする耐固体粒子エロージョン性表面処理皮膜を提供する。   (4) As a fourth means, in the solid particle erosion-resistant surface treatment film of the first means, the physical vapor deposition hard layer further forms a CrN layer and a CrN layer formed on the nitrided hard layer, and further Provided is a solid particle erosion-resistant surface treatment film characterized by being an AlCrN layer or TiAlN formed thereon.

(5)第5の手段として、第1の手段の耐固体粒子エロージョン性表面処理皮膜において、前記物理蒸着硬質層が、前記窒化硬質層上に形成したTiN層と同TiN層を形成後更にその上に形成したCrN層であることを特徴とする耐固体粒子エロージョン性表面処理皮膜を提供する。   (5) As a fifth means, in the solid particle erosion-resistant surface treatment film of the first means, the physical vapor deposition hard layer further forms a TiN layer and a TiN layer formed on the nitrided hard layer. Provided is a solid particle erosion-resistant surface treatment film characterized by being a CrN layer formed thereon.

(6)第6の手段として、第1の手段の耐固体粒子エロージョン性表面処理皮膜において、前記物理蒸着硬質層が、前記窒化硬質層上に形成したTiN層と同TiN層を形成後更にその上に形成したAlCrN層又はTiAlN層であることを特徴とする耐固体粒子エロージョン性表面処理皮膜を提供する。   (6) As a sixth means, in the solid particle erosion-resistant surface treatment film of the first means, the physical vapor deposition hard layer further forms a TiN layer and a TiN layer formed on the nitrided hard layer, and further Provided is a solid particle erosion-resistant surface treatment film characterized by being an AlCrN layer or a TiAlN layer formed thereon.

(7)第7の手段として、第1の手段の耐固体粒子エロージョン性表面処理皮膜において、前記物理蒸着硬質層が、前記窒化硬質層上に交互に多層化して形成したCrN層とTiAlN層であることを特徴とする耐固体粒子エロージョン性表面処理皮膜を提供する。   (7) As a seventh means, in the solid particle erosion-resistant surface treatment film of the first means, the physical vapor deposition hard layer is a CrN layer and a TiAlN layer formed by alternately multilayering on the nitrided hard layer. There is provided a solid particle erosion-resistant surface treatment film characterized by being.

(8)第8の手段として、第1の手段の耐固体粒子エロージョン性表面処理皮膜において、前記物理蒸着硬質層が、前期窒化硬質層上に交互に多層化して形成したCrN層とAlCrN層であることを特徴とする耐固体粒子エロージョン性表面処理皮膜を提供する。   (8) As an eighth means, in the solid particle erosion-resistant surface treatment film of the first means, the physical vapor-deposited hard layer is a CrN layer and an AlCrN layer formed by alternately multilayering on the previous nitrided hard layer. There is provided a solid particle erosion-resistant surface treatment film characterized by being.

(9)第9の手段として、第1の手段の耐固体粒子エロージョン性表面処理皮膜において、前記物理蒸着硬質層が、前期窒化硬質層上に交互に多層化して形成したCrN層とTiN層であることを特徴とする耐固体粒子エロージョン性表面処理皮膜を提供する。   (9) As a ninth means, in the solid particle erosion-resistant surface treatment film of the first means, the physical vapor deposition hard layer is a CrN layer and a TiN layer formed by alternately multilayering on the previous nitrided hard layer. There is provided a solid particle erosion-resistant surface treatment film characterized by being.

(10)第10の手段として、第1の手段の耐固体粒子エロージョン性表面処理皮膜において、前記物理蒸着硬質層が、前期窒化硬質層上に交互に多層化して形成したTiN層とTiAlN層であることを特徴とする耐固体粒子エロージョン性表面処理皮膜を提供する。   (10) As a tenth means, in the solid particle erosion-resistant surface treatment film of the first means, the physical vapor deposition hard layer is a TiN layer and a TiAlN layer formed by alternately multilayering on the nitridation hard layer in the previous period. There is provided a solid particle erosion-resistant surface treatment film characterized by being.

(11)第11の手段として、第1の手段の耐固体粒子エロージョン性表面処理皮膜において、前記物理蒸着硬質層が、前期窒化硬質層上に交互に多層化して形成したTiN層とAlCrN層であることを特徴とする耐固体粒子エロージョン性表面処理皮膜を提供する。   (11) As eleventh means, in the solid particle erosion-resistant surface treatment film of the first means, the physical vapor deposition hard layer is a TiN layer and an AlCrN layer formed by alternately multilayering on the previous nitrided hard layer. There is provided a solid particle erosion-resistant surface treatment film characterized by being.

(12)第12の手段として、第1の手段ないし第11の手段のいずれかの耐固体粒子エロージョン性表面処理皮膜を、蒸気と接する部位の表面に設けてなることを特徴とする回転機械を提供する。   (12) A rotating machine characterized in that as a twelfth means, the solid particle erosion-resistant surface treatment film of any one of the first means to the eleventh means is provided on the surface of a portion in contact with the vapor. provide.

(1)耐固体粒子エロージョン性は、衝突する粒子の硬度より硬い皮膜(物理蒸着硬質層)を施すことにより向上するが、その皮膜の下地(基材)が柔らかい場合、固体粒子が衝突した時に基材が変形し、上層の物理蒸着硬質層が変形により割れてしまい、結果的には耐エロージョン性は向上しない、という知見を得て本願発明はなされたものである。   (1) Solid particle erosion resistance is improved by applying a coating (physical vapor deposition hard layer) that is harder than the hardness of the colliding particles, but when the base of the coating is soft, when solid particles collide The present invention has been made with the knowledge that the base material is deformed and the upper physical vapor-deposited hard layer is cracked due to the deformation, and as a result, the erosion resistance is not improved.

特許請求の範囲に記載の請求項1の発明によれば、物理蒸着により形成される物理蒸着硬質層の耐固体粒子エロージョン性を向上させるために、基材の表層に窒化硬質層を形成して下地が高硬度化されており、しかも、窒化硬質層の厚さに関しては、30μm以上の厚さとして、上述の固体粒子衝突時の基材の変形と、基材表層の窒化硬質層と物理蒸着硬質層を含む皮膜の割れが防止され、耐固体粒子エロージョン性が確保される。また、物理蒸着硬質層を、総厚として10μm以上とすることにより、固体粒子衝突によるエロージョンの影響を防止し、耐固体粒子エロージョン性表面処理皮膜の寿命を増大できる。   According to the invention of claim 1, in order to improve the solid particle erosion resistance of the physical vapor deposition hard layer formed by physical vapor deposition, a hard nitride layer is formed on the surface layer of the substrate. The substrate has a high hardness, and the thickness of the hard nitride layer is 30 μm or more, so that the deformation of the base material at the time of the solid particle collision described above, the hard nitride layer and the physical vapor deposition on the surface of the base material Cracking of the coating including the hard layer is prevented, and solid particle erosion resistance is ensured. Further, by setting the physical vapor deposition hard layer to a total thickness of 10 μm or more, the influence of erosion due to solid particle collision can be prevented, and the life of the solid particle erosion-resistant surface treatment film can be increased.

そして、上記のような窒化硬質層と物理蒸着硬質層の組み合わせにより、耐酸化性と疲労強度が向上し、回転部材等強度を要する部位に対しても適用が好ましい耐固体粒子エロージョン性表面処理皮膜となる。   The combination of the nitrided hard layer and the physical vapor deposition hard layer as described above improves the oxidation resistance and fatigue strength, and is preferably applied to a portion requiring strength such as a rotating member. It becomes.

(2)請求項2の発明によれば、請求項1の発明の作用効果に加え、窒化硬質層をラジカル窒化法により形成してなるので、ラジカル窒化法による窒化硬質層は脆弱な変質層が無く、疲労特性に対し強く、基材の疲労特性と比較して疲労強度を向上させることができる。   (2) According to the invention of claim 2, in addition to the function and effect of the invention of claim 1, since the hard nitrided layer is formed by radical nitriding, the hard nitrided layer by radical nitriding is a weakly altered layer. In addition, it is strong against fatigue characteristics and can improve the fatigue strength as compared with the fatigue characteristics of the base material.

(3)窒化硬質層の上層の物理蒸着硬質層は、耐固体粒子エロージョン性を得る為に、衝突する粒子の硬さよりその皮膜の硬さを大きくすることが重要であり、衝突する固体粒子の代表的な材質であるSiOのビッカース硬さで1000〜1300より硬いセラミックスが必要であるが、請求項3から請求項6の発明によれば、CrN、TiAlN、AlCrN、およびTiNは、上記硬さの条件を満足し、請求項1の発明の作用効果に加え、高温安定性と靭性が他のセラミックスに比べ優れ、より好ましい耐固体粒子エロージョン皮膜の具体的構造が得られる。 (3) In order to obtain solid particle erosion resistance, it is important for the physical vapor deposition hard layer on the upper layer of the nitride hard layer that the hardness of the coating is larger than the hardness of the colliding particles. Ceramics having a Vickers hardness of SiO 2 as a typical material and harder than 1000 to 1300 are required. According to the inventions of claims 3 to 6, CrN, TiAlN, AlCrN, and TiN are hardened. In addition to the effects of the invention of claim 1, the high temperature stability and toughness are superior to those of other ceramics, and a more preferable specific structure of the solid particle erosion coating is obtained.

(4)請求項7から請求項11の発明によれば、請求項1の発明の作用効果に加え、請求項3から請求項6の発明と同様に、CrN、TiAlN、AlCrN、およびTiNが硬さの条件を満たすほか、高温安定性と靭性が他のセラミックスに比べ優れ、より好ましい耐固体粒子エロージョン皮膜の具体的構造が得られ、さらに、物理蒸着硬質層を2種類の材質で交互に薄く多層に形成することで、耐割れ剥離性が単層あるいは2層膜の物理蒸着硬質層より向上し、耐固体粒子エロージョン性がさらに向上する。   (4) According to the inventions of claims 7 to 11, in addition to the effects of the invention of claim 1, CrN, TiAlN, AlCrN, and TiN are hard as in the inventions of claims 3 to 6. In addition to satisfying the above conditions, high temperature stability and toughness are superior to other ceramics, and a more preferable concrete structure of a solid particle erosion coating can be obtained. By forming it in multiple layers, the resistance to cracking and peeling is improved compared to a single layer or two-layer physical vapor deposition hard layer, and the solid particle erosion resistance is further improved.

(5)請求項12の発明によれば、請求項1ないし請求項11のいずれかの発明の作用効果により、耐エロージョン性、耐酸化性および疲労特性の高い、長寿命化を達成できる蒸気タービンが得られる。   (5) According to the invention of claim 12, the steam turbine capable of achieving a long life with high erosion resistance, oxidation resistance and fatigue characteristics due to the operational effects of any of the inventions of claims 1 to 11. Is obtained.

本発明は、耐酸化性を有し疲労強度の維持と耐固体粒子エロージョン性の向上を満足させる表面処理皮膜を得るために、数多くの試験、研究の結果に基づき見出し得たものであり、以下に本発明を実施するための最良の形態として図1から図12によって、実施例1から実施例12を説明する。   The present invention has been found based on the results of numerous tests and research in order to obtain a surface-treated film that has oxidation resistance and satisfies the maintenance of fatigue strength and improvement in solid particle erosion resistance. Embodiments 1 to 12 will be described with reference to FIGS. 1 to 12 as the best mode for carrying out the present invention.

図1は本発明の実施例1に係る耐固体粒子エロージョン性表面処理皮膜101の断面説明図である。本実施例の耐固体粒子エロージョン性表面処理皮膜101は、窒化硬質層2を基材3上に形成し、その上に物理蒸着による硬質皮膜として物理蒸着硬質層1を形成することにより、耐固体粒子エロージョン性表面処理皮膜101を構成したものであり、本発明の蒸気タービンはそのように構成した耐固体粒子エロージョン性表面処理皮膜を適用したものである。   FIG. 1 is a cross-sectional explanatory view of a solid particle erosion-resistant surface treatment film 101 according to Example 1 of the present invention. The solid particle erosion-resistant surface treatment film 101 of this example is formed by forming a hard nitrided hard layer 2 on a substrate 3 and forming a physical vapor deposition hard layer 1 as a hard film by physical vapor deposition thereon. The particle erosion surface treatment film 101 is constituted, and the steam turbine of the present invention is applied with the solid particle erosion-resistant surface treatment film thus constituted.

窒化硬質層2としては、ラジカル窒化層が好ましく、その厚さは、疲労強度低下を抑制することおよび耐固体粒子エロージョン性を向上させるため、30μm以上、好ましくは60〜100μmとし、その上に形成する物理蒸着硬質層1は、総厚として10μm以上、好ましくは20μm以上である。10μm未満の場合、固体粒子衝突によるエロージョンにより寿命が短い。また一方、厚さ25μm程度が、成膜時の皮膜応力の観点から限界である。材質は、CrN(クロムナイトライド)、TiN(チタンナイトライド)、AlCrN(アルミクロムナイトライド)およびTiAlN(チタンアルミナイトライド)から選定され、これら1層、もしくは2種類を2層化、または2種類を多層化つまり、材質a層と別の材質b層を多層化するものである。また、そのように構成した耐固体粒子エロージョン性表面処理皮膜101は蒸気タービン、軸流圧縮機などの回転機械に効果的に用いることができる。なお、本明細書、特許請求の範囲において、「回転機械」とは、例えば蒸気タービンや軸流圧縮機等のものをいう。   The nitrided hard layer 2 is preferably a radical nitrided layer, and its thickness is 30 μm or more, preferably 60 to 100 μm, in order to suppress fatigue strength reduction and improve solid particle erosion resistance. The physical vapor deposition hard layer 1 to be used has a total thickness of 10 μm or more, preferably 20 μm or more. When the thickness is less than 10 μm, the lifetime is short due to erosion caused by solid particle collision. On the other hand, the thickness of about 25 μm is a limit from the viewpoint of film stress during film formation. The material is selected from CrN (chromium nitride), TiN (titanium nitride), AlCrN (aluminum chromium nitride), and TiAlN (titanium aluminum nitride). The type is multilayered, that is, the material a layer and another material b layer are multilayered. Moreover, the solid particle erosion-resistant surface treatment film 101 having such a configuration can be effectively used for a rotary machine such as a steam turbine or an axial compressor. In the present specification and claims, the “rotary machine” refers to a steam turbine, an axial compressor, or the like.

次に、図2から図12により本発明の耐固体粒子エロージョン性表面処理皮膜のさらに具体的な実施例を説明する。   Next, a more specific embodiment of the solid particle erosion-resistant surface treatment film of the present invention will be described with reference to FIGS.

図2は本発明の実施例2に係る耐固体粒子エロージョン性表面処理皮膜102の断面説明図である。本実施例の耐固体粒子エロージョン性表面処理皮膜102は、基材3上に実施例1で説明したと同様に窒化硬質層2を形成し、その上に物理蒸着によりCrN層11を物理蒸着硬質層1として形成したものである。   FIG. 2 is a cross-sectional explanatory view of the solid particle erosion-resistant surface treatment film 102 according to Example 2 of the present invention. In the solid particle erosion-resistant surface treatment film 102 of this example, the nitrided hard layer 2 is formed on the substrate 3 in the same manner as described in Example 1, and the CrN layer 11 is physically vapor-deposited thereon by physical vapor deposition. The layer 1 is formed.

窒化硬質層2としては、変質層がないラジカル窒化法により形成され、その厚さは30μm以上であり、好ましくは60〜100μmである。30μm未満の場合、固体粒子が衝突する環境において、粒子衝突時に上層の物理蒸着硬質層1が基材3とともに変形し、上層の物理蒸着硬質層が割れ、剥離し、耐エロージョン性が劣化する恐れがある。100μmを越える厚さは物性上問題はないが、製造コスト面で高価となり実用上不利となる。   The hard nitride layer 2 is formed by radical nitriding without an altered layer, and has a thickness of 30 μm or more, preferably 60 to 100 μm. When the thickness is less than 30 μm, in an environment where solid particles collide, the upper physical vapor deposition hard layer 1 may be deformed together with the base material 3 at the time of particle collision, and the upper physical vapor deposition hard layer may be cracked and peeled, resulting in deterioration of erosion resistance. There is. A thickness exceeding 100 μm is not problematic in terms of physical properties, but is expensive in terms of manufacturing cost and disadvantageous for practical use.

本実施例の上層の物理蒸着硬質層1はCrN層11であり、例えばアーク式イオンプレーティング法により形成され、その厚さは10μm以上好ましくは20μm以上である。10μm未満の場合、固体粒子衝突によるエロージョンにより寿命が短い。また一方、厚さ25μm程度が、成膜時の皮膜応力の観点から限界である。   The upper physical vapor deposition hard layer 1 of this embodiment is a CrN layer 11, which is formed, for example, by an arc ion plating method, and has a thickness of 10 μm or more, preferably 20 μm or more. When the thickness is less than 10 μm, the lifetime is short due to erosion caused by solid particle collision. On the other hand, the thickness of about 25 μm is a limit from the viewpoint of film stress during film formation.

図3は本発明の実施例3に係る耐固体粒子エロージョン性表面処理皮膜103の断面説明図である。本実施例の耐固体粒子エロージョン性表面処理皮膜103は、基材3上に実施例1で説明したと同様に窒化硬質層2を形成し、その上に物理蒸着によりCrN層11を上述と同様に形成し、更に、その上に物理蒸着によりTiAlN層12を設け、物理蒸着硬質層1としたものである。TiAlN層12はCrN層11と同様に、例えばアーク式イオンプレーティング法等により形成でき、その厚さは1〜6μmである。   FIG. 3 is a cross-sectional explanatory view of the solid particle erosion-resistant surface treatment film 103 according to Example 3 of the present invention. In the solid particle erosion-resistant surface treatment film 103 of this example, the nitrided hard layer 2 is formed on the substrate 3 in the same manner as described in Example 1, and the CrN layer 11 is formed thereon by physical vapor deposition in the same manner as described above. Further, a TiAlN layer 12 is provided thereon by physical vapor deposition to form a physical vapor deposition hard layer 1. Similar to the CrN layer 11, the TiAlN layer 12 can be formed by, for example, an arc ion plating method, and the thickness thereof is 1 to 6 μm.

図4は本発明の実施例4に係る耐固体粒子エロージョン性表面処理皮膜104の断面説明図である。本実施例の耐固体粒子エロージョン性表面処理皮膜104は、基材3上に実施例1で説明したと同様に窒化硬質層2を形成し、その上に物理蒸着によりCrN層11を上述と同様に形成し、更に、その上に物理蒸着によりAlCrN層13を形成し物理蒸着硬質層1としたものである。AlCrN層13はCrN層11と同様に、例えばアーク式イオンプレーティング法等により形成でき、その厚さは1〜6μmである。   FIG. 4 is a cross-sectional explanatory view of the solid particle erosion-resistant surface treatment film 104 according to Example 4 of the present invention. In the solid particle erosion-resistant surface treatment film 104 of this example, the nitrided hard layer 2 is formed on the substrate 3 in the same manner as described in Example 1, and the CrN layer 11 is formed thereon by physical vapor deposition in the same manner as described above. Further, an AlCrN layer 13 is formed thereon by physical vapor deposition to form a physical vapor deposition hard layer 1. Similar to the CrN layer 11, the AlCrN layer 13 can be formed by, for example, an arc ion plating method, and the thickness thereof is 1 to 6 μm.

図5は本発明の実施例5に係る耐固体粒子エロージョン性表面処理皮膜105の断面説明図である。本実施例の耐固体粒子エロージョン性表面処理皮膜105は、基材3上に実施例1で説明したと同様に窒化硬質層2を形成し、その上に物理蒸着によりTiN層14を厚さ5〜10μm形成し、更に、その上に物理蒸着により上述同様にCrN層11を形成し、物理蒸着硬質層1としたものである。TiN層14はCrN層11と同様に、例えばアーク式イオンプレーティング法等により形成できる。   FIG. 5 is a cross-sectional explanatory view of the solid particle erosion-resistant surface treatment film 105 according to Example 5 of the present invention. In the solid particle erosion-resistant surface treatment film 105 of this example, the nitrided hard layer 2 is formed on the base material 3 in the same manner as described in Example 1, and the TiN layer 14 is formed thereon by physical vapor deposition to a thickness of 5. The CrN layer 11 is formed thereon by physical vapor deposition in the same manner as described above to form the physical vapor deposition hard layer 1. Similar to the CrN layer 11, the TiN layer 14 can be formed by, for example, an arc ion plating method.

図6は本発明の実施例6に係る耐固体粒子エロージョン性表面処理皮膜106の断面説明図である。本実施例の耐固体粒子エロージョン性表面処理皮膜106は、基材3上に実施例1で説明したと同様に窒化硬質層2を形成し、その上に物理蒸着によりTiN層14を厚さ5〜10μm形成し、更に、その上に物理蒸着によりTiAlN層12を上述同様に形成し、物理蒸着硬質層1としたものである。   FIG. 6 is a cross-sectional explanatory view of the solid particle erosion-resistant surface treatment film 106 according to Example 6 of the present invention. In the solid particle erosion-resistant surface treatment film 106 of this example, the nitrided hard layer 2 is formed on the substrate 3 in the same manner as described in Example 1, and the TiN layer 14 having a thickness of 5 is formed thereon by physical vapor deposition. The TiAlN layer 12 is formed in the same manner as described above by physical vapor deposition, and the physical vapor deposition hard layer 1 is formed.

図7は本発明の実施例7に係る耐固体粒子エロージョン性表面処理皮膜107の断面説明図である。本実施例の耐固体粒子エロージョン性表面処理皮膜107は、基材3上に実施例1で説明したと同様に窒化硬質層2を形成し、その上に物理蒸着によりTiN層14を厚さ5〜10μm形成し、更に、その上に物理蒸着により上述同様にAlCrN層13を形成し、物理蒸着硬質層1としたものである。   FIG. 7 is a cross-sectional explanatory view of the solid particle erosion-resistant surface treatment film 107 according to Example 7 of the present invention. In the solid particle erosion-resistant surface treatment film 107 of this example, the nitrided hard layer 2 is formed on the base material 3 in the same manner as described in Example 1, and the TiN layer 14 having a thickness of 5 is formed thereon by physical vapor deposition. The AlCrN layer 13 is formed by physical vapor deposition in the same manner as described above to form the physical vapor deposition hard layer 1.

次の図8から図12は、物理蒸着硬質層1が2種類材質の多層化により形成された耐固体粒子エロージョン性表面処理皮膜の実施例の説明図である。   Next, FIG. 8 to FIG. 12 are explanatory views of examples of the solid particle erosion-resistant surface treatment film in which the physical vapor deposition hard layer 1 is formed by multilayering two kinds of materials.

図8は本発明の実施例8に係る耐固体粒子エロージョン性表面処理皮膜108の断面説明図である。本実施例の耐固体粒子エロージョン性表面処理皮膜108は、基材3上に実施例1で説明したと同様に窒化硬質層2を形成し、その上に物理蒸着法によりCrN層11とTiAlN層12を交互に多層化して形成し物理蒸着硬質層1としたものである。物理蒸着硬質層1の各層の厚さは広範囲に設定することが可能であり、例えば、10〜100nmが挙げられ、総厚としては実施例1と同様に10μm以上、好ましくは20μm以上である。   FIG. 8 is a cross-sectional explanatory view of the solid particle erosion-resistant surface treatment film 108 according to Example 8 of the present invention. In the solid particle erosion-resistant surface treatment film 108 of this example, the nitrided hard layer 2 is formed on the substrate 3 as described in Example 1, and the CrN layer 11 and the TiAlN layer are formed thereon by physical vapor deposition. The physical vapor deposition hard layer 1 is formed by alternately layering 12 layers. The thickness of each layer of the physical vapor deposition hard layer 1 can be set in a wide range, for example, 10 to 100 nm. The total thickness is 10 μm or more, preferably 20 μm or more as in the first embodiment.

図9は本発明の実施例9に係る耐固体粒子エロージョン性表面処理皮膜109の断面説明図である。本実施例の耐固体粒子エロージョン性表面処理皮膜109は、基材3上に実施例1で説明したと同様に窒化硬質層2を形成し、その上に物理蒸着法によりCrN層11とAlCrN層13を交互に多層化して形成し物理蒸着硬質層1としたものである。物理蒸着硬質層1の各層の厚さは広範囲に設定することが可能であり、例えば、10〜100nmが挙げられる、総厚としては実施例1と同様に10μm以上、好ましくは20μm以上である。   FIG. 9 is a cross-sectional explanatory view of the solid particle erosion-resistant surface treatment film 109 according to Example 9 of the present invention. In the solid particle erosion-resistant surface treatment film 109 of this example, the nitrided hard layer 2 is formed on the substrate 3 as described in Example 1, and the CrN layer 11 and the AlCrN layer are formed thereon by physical vapor deposition. The physical vapor deposition hard layer 1 is formed by alternately layering 13. The thickness of each layer of the physical vapor deposition hard layer 1 can be set in a wide range. For example, the thickness is 10 to 100 nm. The total thickness is 10 μm or more, preferably 20 μm or more as in Example 1.

図10は本発明の実施例10に係る耐固体粒子エロージョン性表面処理皮膜110の断面説明図である。本実施例の耐固体粒子エロージョン性表面処理皮膜110は、基材3上に実施例1で説明したと同様に窒化硬質層2を形成し、その上に物理蒸着法によりTiN層14とCrN層11を交互に多層化して形成し物理蒸着硬質層1としたものである。物理蒸着硬質層1の各層の厚さは広範囲に設定することが可能であり、例えば、10〜100nmが挙げられ、総厚としては実施例1と同様に10μm以上、好ましくは20μm以上である。   FIG. 10 is a cross-sectional explanatory view of the solid particle erosion-resistant surface treatment film 110 according to Example 10 of the present invention. In the solid particle erosion-resistant surface treatment film 110 of this example, the nitrided hard layer 2 is formed on the substrate 3 in the same manner as described in Example 1, and the TiN layer 14 and the CrN layer are formed thereon by physical vapor deposition. The physical vapor deposition hard layer 1 is formed by alternately layering 11. The thickness of each layer of the physical vapor deposition hard layer 1 can be set in a wide range, for example, 10 to 100 nm. The total thickness is 10 μm or more, preferably 20 μm or more as in the first embodiment.

図11は本発明の実施例11に係る耐固体粒子エロージョン性表面処理皮膜111の断面説明図である。本実施例の耐固体粒子エロージョン性表面処理皮膜111は、基材3上に実施例1で説明したと同様に窒化硬質層2を形成し、その上に物理蒸着法によりTiN層14とTiAlN層12を交互に多層化して形成し物理蒸着硬質層1としたものである。物理蒸着硬質層1の各層の厚さは広範囲に設定することが可能であり、例えば、10〜100nmが挙げられ、総厚としては実施例1と同様に10μm以上、好ましくは20μm以上である。   FIG. 11 is a cross-sectional explanatory view of the solid particle erosion-resistant surface treatment film 111 according to Example 11 of the present invention. In the solid particle erosion-resistant surface treatment film 111 of this example, the nitrided hard layer 2 is formed on the substrate 3 as described in Example 1, and the TiN layer 14 and the TiAlN layer are formed thereon by physical vapor deposition. The physical vapor deposition hard layer 1 is formed by alternately layering 12 layers. The thickness of each layer of the physical vapor deposition hard layer 1 can be set in a wide range, for example, 10 to 100 nm. The total thickness is 10 μm or more, preferably 20 μm or more as in the first embodiment.

図12は本発明の実施例12に係る耐固体粒子エロージョン性表面処理皮膜112の断面説明図である。本実施例の耐固体粒子エロージョン性表面処理皮膜112は、基材3上に実施例1で説明したと同様に窒化硬質層2を形成し、その上に物理蒸着法によりTiN層14とAlCrN層13を交互に多層化して形成し物理蒸着硬質層1としたものである。物理蒸着硬質層1の各層の厚さは広範囲に設定することが可能であり、例えば、10〜100nmが挙げられ、総厚としては実施例1と同様に10μm以上、好ましくは20μm以上である。   FIG. 12 is a cross-sectional explanatory view of the solid particle erosion-resistant surface treatment coating 112 according to Example 12 of the present invention. In the solid particle erosion-resistant surface treatment film 112 of this example, the nitrided hard layer 2 is formed on the base material 3 as described in Example 1, and the TiN layer 14 and the AlCrN layer are formed thereon by physical vapor deposition. The physical vapor deposition hard layer 1 is formed by alternately layering 13. The thickness of each layer of the physical vapor deposition hard layer 1 can be set in a wide range, for example, 10 to 100 nm. The total thickness is 10 μm or more, preferably 20 μm or more as in the first embodiment.

なお、実施例1から実施例12において、CrN層11、TiAlN層12、AlCrN層13、TiN層14の物理蒸着方法は限定する必要はないが、例えば、アーク式イオンプレーティング法が用いられる。   In Examples 1 to 12, the physical vapor deposition method of the CrN layer 11, the TiAlN layer 12, the AlCrN layer 13, and the TiN layer 14 need not be limited. For example, an arc ion plating method is used.

以上の、各実施例の耐固体粒子エロージョン性表面処理皮膜101〜112において、基材3上の窒化硬質層2は、その上の物理蒸着により形成される物理蒸着硬質層1の耐固体粒子エロージョン性を向上させるため設ける。すなわち、耐固体粒子エロージョン性は衝突する粒子の硬度より硬い皮膜(物理蒸着硬質層1)を施すことにより向上するが、この場合、その皮膜の基材(下地)3が柔らかい場合、固体粒子が衝突した時に基材3が変形し、上層の皮膜(物理蒸着硬質層1)が変形により割れてしまい、結果的には耐エロージョン性は向上しない。   In the solid particle erosion-resistant surface treatment films 101 to 112 of the above-described embodiments, the nitrided hard layer 2 on the substrate 3 is solid-particle erosion-resistant of the physical vapor deposition hard layer 1 formed by physical vapor deposition thereon. Provided to improve performance. That is, the solid particle erosion resistance is improved by applying a coating (physical vapor deposition hard layer 1) that is harder than the hardness of the colliding particles. In this case, if the base material (base) 3 of the coating is soft, the solid particles When the collision occurs, the base material 3 is deformed, and the upper film (physical vapor deposition hard layer 1) is cracked by the deformation, and as a result, the erosion resistance is not improved.

従って、上層の物理蒸着硬質層1の特徴をうまく発現させるためには、下地を高硬度化することが必要であり、この為に、基材3の表層に窒化硬質層2を形成することが必要になる。窒化硬質層2の厚さに関しては、その適正値が存在する。30μm未満であると、上述の固体粒子衝突時の基材3の変形が生じ、表層の窒化硬質層2と物理蒸着硬質層を含む皮膜が割れるため好ましくない。耐固体粒子エロージョン性を確保するためには窒化硬質層2は30μm以上の厚さが必要である。なお、上述のように100μmを越える厚さは物性上問題はないが、製造コスト面では高価となり実用上不利となる。   Therefore, in order to express the characteristics of the upper physical vapor deposition hard layer 1 well, it is necessary to increase the hardness of the base, and for this purpose, the nitride hard layer 2 can be formed on the surface layer of the substrate 3. I need it. There is an appropriate value for the thickness of the nitrided hard layer 2. If it is less than 30 μm, deformation of the base material 3 at the time of collision of the above-mentioned solid particles occurs, and the coating containing the hard nitride layer 2 and the physical vapor deposition hard layer on the surface is broken, which is not preferable. In order to secure solid particle erosion resistance, the nitrided hard layer 2 needs to have a thickness of 30 μm or more. As described above, a thickness exceeding 100 μm is not problematic in terms of physical properties, but is expensive in terms of manufacturing cost and disadvantageous for practical use.

更に、蒸気タービンの動翼のごとく稼動中に大きな疲労応力を受ける場合、耐固体粒子エロージョン性表面処理皮膜は、これに対し問題ない強度が必要である。それに対し、特にラジカル窒化による窒化硬質層2は脆弱な変質層が無く、疲労特性に対し強く、基材3の疲労特性と比較すると、疲労強度が向上する。   Furthermore, when subjected to a large fatigue stress during operation like a moving blade of a steam turbine, the solid particle erosion-resistant surface treatment coating must have a strength with no problem. In contrast, the hard nitrided layer 2 by radical nitriding does not have a weakly altered layer and is strong against fatigue characteristics, and the fatigue strength is improved as compared with the fatigue characteristics of the base material 3.

窒化硬質層2の上層の物理蒸着硬質層1は、耐固体粒子エロージョン性を得る為に、衝突する粒子の硬さよりその皮膜の硬さを大きくすることが重要である。そこで、衝突する固体粒子の代表的な材質であるSiOの硬さはビッカース硬さで1000〜1300であり、これより硬いセラミックスが主な対象となる。 In order to obtain solid particle erosion resistance, it is important that the hardness of the coating of the physical vapor deposition hard layer 1 on the upper layer of the nitrided hard layer 2 is larger than the hardness of the colliding particles. Therefore, the hardness of SiO 2 which is a representative material of the colliding solid particles is 1000 to 1300 in terms of Vickers hardness, and ceramics harder than this are mainly targeted.

したがって、上記各実施例の物理蒸着硬質層1を形成する窒化物セラミックス、すなわち、CrN、TiAlN、AlCrN、およびTiNは、上記硬さの条件を満足し、高温安定性(500℃での耐酸化性)と靭性が他のセラミックスに比べ優れている点で、上記実施形態の耐固体粒子エロージョン皮膜101〜112を構成する物理蒸着硬質層1をなす材質としては最適である。   Therefore, the nitride ceramics forming the physical vapor-deposited hard layer 1 of each of the above examples, that is, CrN, TiAlN, AlCrN, and TiN satisfy the above-mentioned hardness conditions and are stable at high temperatures (oxidation resistance at 500 ° C. Property) and toughness are excellent as compared with other ceramics, and is optimal as a material forming the physical vapor deposition hard layer 1 constituting the solid particle erosion-resistant films 101 to 112 of the above embodiment.

また、物理蒸着硬質層1を、総厚として10μm以上とすることにより、固体粒子衝突によるエロージョンの影響を防止し、耐固体粒子エロージョン性表面処理皮膜の寿命を増大できる。   Further, by setting the physical vapor deposition hard layer 1 to a total thickness of 10 μm or more, the influence of erosion due to solid particle collision can be prevented, and the life of the solid particle erosion-resistant surface treatment film can be increased.

更に、実施例8から実施例12のように、この物理蒸着硬質層1を2種類の材質で交互に薄く多層に形成することで、耐割れ剥離性が単層あるいは2層膜の物理蒸着硬質層1よりさらに向上する。多層に形成した場合は、もし表面の割れが発生しても、各層間で割れの進行方向が板厚方向から、水平方向に分散されるため、損傷を最小にすることが可能であり、このため、耐固体粒子エロージョン性が向上するためである。   Further, as in Example 8 to Example 12, this physical vapor deposition hard layer 1 is formed of two kinds of materials alternately and thinly in multiple layers so that the cracking peel resistance is a single layer or two-layer film. Further improvement over layer 1. If it is formed in multiple layers, even if surface cracks occur, the progressing direction of the cracks is distributed from the thickness direction to the horizontal direction between each layer, so that damage can be minimized. Therefore, the solid particle erosion resistance is improved.

以上のごとく、本発明の耐固体粒子エロージョン性表面処理皮膜は、下地として、窒化硬質層2と上層に物理蒸着硬質層1が存在し、相乗して耐固体粒子エロージョン性を格段に向上させることに成功したものであり、下記の比較試験結果に示されるように、耐酸化性、疲労強度においても優れ、同皮膜を蒸気に接する部位表面に設けた蒸気タービン、軸流圧縮機などの回転機械は、耐固体粒子エロージョン性、耐酸化性、疲労強度を同時に向上させたものとなる。   As described above, the solid particle erosion-resistant surface treatment film of the present invention includes the hard nitride layer 2 and the physical vapor-deposited hard layer 1 as an underlayer, and synergistically improves the solid particle erosion resistance. As shown in the following comparative test results, it has excellent oxidation resistance and fatigue strength, and rotating machines such as steam turbines and axial flow compressors with the same coating on the surface of the part in contact with steam Is obtained by simultaneously improving solid particle erosion resistance, oxidation resistance, and fatigue strength.

以下に本発明の各実施形態に係る実施例と比較例および従来例の比較試験結果につき説明する。   Hereinafter, the comparative test results of the examples, comparative examples, and conventional examples according to the respective embodiments of the present invention will be described.

[比較試験結果 1]
30mm×60mm×5mm厚さのSUS410J1基材を用い、この表面に以下の方法でラジカル窒化法による窒化硬質層、および物理蒸着硬質層を成膜した。この試験片を用い、平均粒子径326μmのコニカル珪砂を速度100m/s、衝突角度30、60、90°(deg.)で試験片表面に吹き付けるサンドエロージョン試験を室温で実施した。
[Comparison test result 1]
A SUS410J1 base material having a thickness of 30 mm × 60 mm × 5 mm was used, and a hard nitride layer and a physical vapor deposition hard layer were formed on this surface by radical nitriding by the following method. Using this test piece, a sand erosion test was carried out at room temperature, in which conical silica sand having an average particle diameter of 326 μm was sprayed on the surface of the test piece at a speed of 100 m / s and a collision angle of 30, 60, 90 ° (deg.).

試験後の試験片重量と試験前の重量から、各サンプルの摩耗重量を求め、各サンプルの皮膜密度より摩耗体積に換算した。   The wear weight of each sample was determined from the weight of the test piece after the test and the weight before the test, and was converted into a wear volume from the film density of each sample.

更に各サンプルの磨耗量に対する従来法のSUS410J1のみの材料の摩耗量の比率を「耐エロージョン性倍数」として求めた。すなわち、この耐エロージョン性倍数は数字が大きいほど従来法のSUS410J1に比較し耐エロージョン性に優れていることを示している。   Furthermore, the ratio of the wear amount of the material of SUS410J1 of the conventional method only to the wear amount of each sample was determined as “multiple erosion resistance”. That is, this erosion resistance multiple indicates that the larger the number, the better the erosion resistance compared to the conventional method SUS410J1.

ラジカル窒化処理は、時間を変化させ、窒化硬質膜の厚さ20、30、60、および100μmのものを形成して用いた。   The radical nitriding treatment was used by changing the time and forming nitride hard films with thicknesses of 30, 30, 60 and 100 μm.

物理蒸着硬質層の成膜は、アーク式イオンプレーティング装置で行い、アーク電流:150A、バイアス電圧:−30V、ガス圧力:4Pa、基材温度:450℃とした。   The physical vapor deposition hard layer was formed using an arc ion plating apparatus, and the arc current was 150 A, the bias voltage was −30 V, the gas pressure was 4 Pa, and the substrate temperature was 450 ° C.

従来例のボロライジング処理は、920℃×18時間の条件で実施し、基材表層に70μmのボロナイジング処理層を形成し、その後焼入れ焼き戻し処理を施した。   The bororizing treatment of the conventional example was performed under the condition of 920 ° C. × 18 hours, and a 70 μm boronizing treatment layer was formed on the surface layer of the substrate, followed by quenching and tempering treatment.

以上の条件で、実施例2につき2−1から2−5の5サンプル、実施例3から実施例12につき各1サンプル、従来例につき2サンプル(従来例1:基材のみ。従来例2:基材表層にボロナイジング処理。)、比較例として6サンプル(比較例1:窒化硬質層のみ。比較例2〜4:窒化硬質層が30μm未満。比較例5、6:物理蒸着硬質層が10μm未満。)の試験を行い、その各条件と結果(耐エロージョン性倍数)を表1「比較試験結果 1」に示す。   Under the above conditions, 5 samples from 2-1 to 2-5 for Example 2, 1 sample each for Examples 3 to 12, and 2 samples for Conventional Example (Conventional Example 1: Base material only. Conventional Example 2: Boronizing treatment on the substrate surface layer.), 6 samples as comparative examples (Comparative Example 1: Nitride hard layer only. Comparative Examples 2 to 4: Nitride hard layer is less than 30 μm. Comparative Examples 5 and 6: Physical vapor deposition hard layer is less than 10 μm. Table 1 “Comparison test result 1” shows the respective conditions and results (erosion resistance multiple).

Figure 2006037212
Figure 2006037212

表1「比較試験結果 1」の耐エロージョン性倍率に示されるように、本発明の各実施例の耐固体粒子エロージョン性表面処理皮膜は、従来のSUS410J1基材のみ、およびボロナイジング処理に比較し格段に優れていることがわかる。   As shown in the erosion resistance magnification of Table 1 “Comparative Test Result 1”, the solid particle erosion-resistant surface-treated film of each example of the present invention is markedly compared with the conventional SUS410J1 base material alone and the boronizing treatment. It turns out that it is excellent in.

また、窒化硬質層のみで物理蒸着硬質層を有しない場合(比較例1)、窒化硬質層と物理蒸着硬質層をともに有しても窒化硬質層が30μm未満(20μm)の場合(比較例2〜4)、窒化硬質層と物理蒸着硬質層をともに有しても物理蒸着硬質層が10μm未満(5μm、8μm)場合(比較例5、6)、上記各実施例に比べ耐エロージョン性倍率が大きく劣り、各実施例のような十分な耐固体粒子エロージョン性が得られないことがわかる。   Further, when only the hard nitride layer is not provided with the physical vapor deposition hard layer (Comparative Example 1), and the hard nitride layer is less than 30 μm (20 μm) even if both the hard nitride layer and the physical vapor deposition hard layer are present (Comparative Example 2) 4) When the physical vapor deposition hard layer is less than 10 μm (5 μm, 8 μm) even when both the hard nitride layer and the physical vapor deposition hard layer are present (Comparative Examples 5 and 6), the erosion resistance magnification is higher than those of the above examples. It is greatly inferior and it turns out that sufficient solid particle | grain erosion resistance like each Example is not acquired.

[比較試験結果 2]
20mm×20mm×5mm厚さのSUS410J1基材を用い、この表面に以下の方法でラジカル窒化法による窒化硬質層および物理蒸着硬質層を成膜した。この試験片を用い、高温水蒸気雰囲気中で保持し、耐酸化性を調査した。
[Comparison test result 2]
A SUS410J1 substrate having a thickness of 20 mm × 20 mm × 5 mm was used, and a hard nitride layer and a physical vapor deposition hard layer were formed on this surface by radical nitriding by the following method. Using this test piece, it was kept in a high-temperature steam atmosphere, and the oxidation resistance was investigated.

ラジカル窒化処理は、時間を調整し、窒化硬質層の厚さを60μmとした。   In the radical nitriding treatment, the time was adjusted, and the thickness of the nitrided hard layer was set to 60 μm.

物理蒸着硬質層の成膜は、アーク式イオンプレーティング装置で行い、アーク電流:150A、バイアス電圧:−30V、ガス圧力:4Pa、基材温度:450℃とした。   The physical vapor deposition hard layer was formed using an arc ion plating apparatus, and the arc current was 150 A, the bias voltage was −30 V, the gas pressure was 4 Pa, and the substrate temperature was 450 ° C.

従来例2のボロライジング処理は、920℃×18時間の条件で実施し、基材表層に70μmのボロナイジング処理層を形成し、その後焼入れ焼き戻し処理を施した。   The bolorizing process of Conventional Example 2 was performed under the condition of 920 ° C. × 18 hours, a 70 μm boronizing process layer was formed on the surface of the base material, and then subjected to a quenching and tempering process.

以上の条件で、実施例2につき1サンプル、実施例3につき1サンプル、従来例につき2サンプル(従来例1:基材のみ。従来例2:基材表層にボロナイジング処理。)、比較例として1サンプル(窒化硬質層のみで物理蒸着硬質層なし)の試験を行い、その各条件と結果(酸化層厚さ比率)を表2「比較試験結果 2」に示す。   Under the above conditions, 1 sample for Example 2, 1 sample for Example 3, 2 samples for Conventional Example (Conventional Example 1: Base material only, Conventional Example 2: Boronizing treatment on base material surface layer), 1 as a comparative example A test of a sample (only a hard nitrided layer and no physical vapor deposition hard layer) was performed, and each condition and result (oxide layer thickness ratio) are shown in Table 2 “Comparative Test Result 2”.

Figure 2006037212
Figure 2006037212

なお、表2「比較試験結果 2」においては、耐酸化性を、SUS410J1の酸化層厚さを1とした場合の酸化層厚さの相対比率で示すが、表中の酸化層厚さの相対比率に示されるように、本発明の各実施例の耐固体粒子エロージョン性表面処理皮膜の耐酸化性は、従来例、およびラジカル窒化による窒化硬質層のみの比較例の場合に比べて格段に優れていることがわかる。   In Table 2, “Comparative Test Result 2”, the oxidation resistance is shown as a relative ratio of the oxide layer thickness when the oxide layer thickness of SUS410J1 is 1, but the relative oxidation layer thickness in the table is As shown in the ratio, the oxidation resistance of the solid particle erosion-resistant surface treatment film of each example of the present invention is remarkably superior to that of the conventional example and the comparative example of the nitrided hard layer only by radical nitriding. You can see that

[比較試験結果 3]
上記実施例2につきラジカル窒化法による窒化硬質層(60μm)上にCrN層(25μm)を形成した試験片と、従来例としてSUS410J1基材(表面処理なし)の試験片を作製し、450℃で回転曲げ疲労試験を実施した。その結果、107回時間強さで比較すると、上記の窒化硬質層(60μm)上にCrN層(25μm)を形成した実施例2の試験片は、上記従来例に比べ疲労強度が13%向上することが判明し、本発明の実施例の耐固体粒子エロージョン性表面処理皮膜は疲労強度も良好であることがわかった。
[Comparison test result 3]
In Example 2, a test piece in which a CrN layer (25 μm) was formed on a hard nitrided layer (60 μm) by radical nitriding and a test piece of SUS410J1 base material (without surface treatment) as a conventional example were prepared at 450 ° C. A rotating bending fatigue test was performed. As a result, when compared with the strength of 107 times, the test piece of Example 2 in which the CrN layer (25 μm) was formed on the nitrided hard layer (60 μm) improved in fatigue strength by 13% compared to the conventional example. As a result, it was found that the solid particle erosion-resistant surface treatment film of the example of the present invention has good fatigue strength.

以上のように、本発明の各実施例の耐固体粒子エロージョン性表面処理皮膜によれば、基材上に、30μm以上の厚さの窒化硬質層とその上層に10μm以上の厚さの物理蒸着硬質層を設けることによって、固体粒子の衝突に対し極めて高い抵抗力が得られ、これを被覆した部材の耐エロージョン性が格段に向上し長寿命化が達成できる。また、それに加えて、耐高温酸化性および疲労特性も良好な耐固体粒子エロージョン性表面処理皮膜となる。また、蒸気タービンの、蒸気と接して固体粒子が衝突する部位の表面に適用すれば、耐エロージョン性、耐高温酸化性および疲労特性の高い長寿命化を達成できる蒸気タービンが得られる。さらに、軸流圧縮機などの回転機械の部位に適用することにより製品の長寿命化が達成される。   As described above, according to the solid particle erosion-resistant surface treatment film of each embodiment of the present invention, a hard nitride layer having a thickness of 30 μm or more on the substrate and a physical vapor deposition having a thickness of 10 μm or more on the upper layer. By providing the hard layer, an extremely high resistance to collision of solid particles can be obtained, and the erosion resistance of the member coated therewith can be remarkably improved and a longer life can be achieved. In addition, a solid particle erosion-resistant surface treatment film having good high-temperature oxidation resistance and fatigue characteristics is obtained. Moreover, if it is applied to the surface of the steam turbine where the solid particles collide with the steam, a steam turbine capable of achieving a long life with high erosion resistance, high temperature oxidation resistance and fatigue characteristics can be obtained. Furthermore, the life of the product can be extended by applying it to a rotary machine such as an axial compressor.

以上、本発明を図示の実施例について説明したが、本発明は上記の実施例に限定されず、本発明の範囲内でその具体的構造、構成に種々の変更を加えてよいことはいうまでもない。また、本発明の蒸気タービンは特に図示をしないが、特定の構造の蒸気タービンに限定されるものではなく、蒸気タービン一般において、蒸気に接する部位の表面に本発明の耐固体粒子エロージョン性表面処理皮膜を設けたものである。   The present invention has been described with reference to the illustrated embodiments. However, the present invention is not limited to the above-described embodiments, and various modifications may be made to the specific structure and configuration within the scope of the present invention. Nor. Further, the steam turbine of the present invention is not particularly illustrated, but is not limited to a steam turbine having a specific structure. In general, the surface of a portion in contact with steam is applied to the surface of the solid particle erosion-resistant surface treatment of the present invention. A film is provided.

本発明の実施例1に係る耐固体粒子エロージョン性表面処理皮膜101の断面説明図である。It is sectional explanatory drawing of the solid particle erosion-resistant surface treatment film 101 which concerns on Example 1 of this invention. 本発明の実施例2に係る耐固体粒子エロージョン性表面処理皮膜102の断面説明図である。It is sectional explanatory drawing of the solid particle erosion-resistant surface treatment film | membrane 102 which concerns on Example 2 of this invention. 本発明の実施例3に係る耐固体粒子エロージョン性表面処理皮膜103の断面説明図である。It is a cross-sectional explanatory drawing of the solid particle erosion-resistant surface treatment film 103 according to Example 3 of the present invention. 本発明の実施例4に係る耐固体粒子エロージョン性表面処理皮膜104の断面説明図である。It is a cross-sectional explanatory drawing of the solid particle erosion-resistant surface treatment film 104 according to Example 4 of the present invention. 本発明の実施例5に係る耐固体粒子エロージョン性表面処理皮膜105の断面説明図である。It is sectional explanatory drawing of the solid particle erosion-resistant surface treatment membrane | film | coat 105 which concerns on Example 5 of this invention. 本発明の実施例6に係る耐固体粒子エロージョン性表面処理皮膜106の断面説明図である。It is a cross-sectional explanatory drawing of the solid particle erosion-resistant surface treatment film 106 according to Example 6 of the present invention. 本発明の実施例7に係る耐固体粒子エロージョン性表面処理皮膜107の断面説明図である。It is sectional explanatory drawing of the solid particle erosion-resistant surface treatment film | membrane 107 which concerns on Example 7 of this invention. 本発明の実施例8に係る耐固体粒子エロージョン性表面処理皮膜108の断面説明図である。It is sectional explanatory drawing of the solid particle erosion-resistant surface treatment film | membrane 108 which concerns on Example 8 of this invention. 本発明の実施例9に係る耐固体粒子エロージョン性表面処理皮膜109の断面説明図である。It is sectional explanatory drawing of the solid particle erosion-resistant surface treatment film 109 which concerns on Example 9 of this invention. 本発明の実施例10に係る耐固体粒子エロージョン性表面処理皮膜110の断面説明図である。It is sectional explanatory drawing of the solid particle erosion-resistant surface treatment film | membrane 110 which concerns on Example 10 of this invention. 本発明の実施例11に係る耐固体粒子エロージョン性表面処理皮膜111の断面説明図である。It is a section explanatory view of the solid particle erosion-resistant surface treatment film 111 concerning Example 11 of the present invention. 本発明の実施例12に係る耐固体粒子エロージョン性表面処理皮膜112の断面説明図である。It is sectional explanatory drawing of the solid particle erosion-resistant surface treatment film | membrane 112 which concerns on Example 12 of this invention.

符号の説明Explanation of symbols

1 物理蒸着硬質層
2 窒化硬質層
3 基材
11 CrN層
12 TiAlN層
13 AlCrN層
14 TiN層
101〜112 耐固体粒子エロージョン性表面処理皮膜
DESCRIPTION OF SYMBOLS 1 Physical vapor deposition hard layer 2 Nitride hard layer 3 Base material 11 CrN layer 12 TiAlN layer 13 AlCrN layer 14 TiN layer 101-112 Solid particle erosion-resistant surface treatment film

Claims (12)

基材表層に形成した窒化硬質層と、同窒化硬化層の上に物理蒸着法により形成した1層以上の物理蒸着硬質層とを有し、前記窒化硬質層の厚さが30μm以上、且つ前記物理蒸着硬質膜の厚さが総厚として10μm以上であることを特徴とする耐固体粒子エロージョン性表面処理皮膜。   A hard nitride layer formed on the substrate surface layer, and one or more physical vapor deposition hard layers formed by physical vapor deposition on the hardened nitride layer, the thickness of the hard nitride layer being 30 μm or more, and A solid particle erosion-resistant surface treatment film characterized in that the physical vapor deposition hard film has a total thickness of 10 μm or more. 請求項1に記載の耐固体粒子エロージョン性表面処理皮膜において、前記窒化硬質層がラジカル窒化法により形成されてなることを特徴とする耐固体粒子エロージョン性表面処理皮膜。   The solid particle erosion-resistant surface treatment coating according to claim 1, wherein the hard nitrided layer is formed by radical nitriding. 請求項1に記載の耐固体粒子エロージョン性表面処理皮膜において、前記物理蒸着硬質層が、前記窒化硬質層上に形成したCrN層であることを特徴とする耐固体粒子エロージョン性表面処理皮膜。   2. The solid particle erosion-resistant surface treatment film according to claim 1, wherein the physical vapor deposition hard layer is a CrN layer formed on the nitrided hard layer. 請求項1に記載の耐固体粒子エロージョン性表面処理皮膜において、前記物理蒸着硬質層が、前記窒化硬質層上に形成したCrN層と同CrN層を形成後更にその上に形成したAlCrN層又はTiAlNであることを特徴とする耐固体粒子エロージョン性表面処理皮膜。   2. The solid particle erosion-resistant surface treatment film according to claim 1, wherein the physical vapor deposition hard layer is an AlCrN layer or TiAlN formed on the CrN layer and the CrN layer formed on the nitrided hard layer and then further formed thereon. A solid particle erosion-resistant surface treatment film characterized by being: 請求項1に記載の耐固体粒子エロージョン性表面処理皮膜において、前記物理蒸着硬質層が、前記窒化硬質層上に形成したTiN層と同TiN層を形成後更にその上に形成したCrN層であることを特徴とする耐固体粒子エロージョン性表面処理皮膜。   2. The solid particle erosion-resistant surface treatment film according to claim 1, wherein the physical vapor deposition hard layer is a TiN layer formed on the nitrided hard layer and a CrN layer formed on the TiN layer after the TiN layer is formed. A solid particle erosion-resistant surface treatment film characterized by 請求項1に記載の耐固体粒子エロージョン性表面処理皮膜において、前記物理蒸着硬質層が、前記窒化硬質層上に形成したTiN層と同TiN層を形成後更にその上に形成したAlCrN層又はTiAlN層であることを特徴とする耐固体粒子エロージョン性表面処理皮膜。   2. The solid particle erosion-resistant surface treatment film according to claim 1, wherein the physical vapor deposition hard layer is a TiN layer formed on the nitrided hard layer and the same TiN layer, and an AlCrN layer or TiAlN further formed thereon. A solid particle erosion-resistant surface treatment film characterized by being a layer. 請求項1に記載の耐固体粒子エロージョン性表面処理皮膜において、前記物理蒸着硬質層が、前記窒化硬質層上に交互に多層化して形成したCrN層とTiAlN層であることを特徴とする耐固体粒子エロージョン性表面処理皮膜。   2. The solid particle erosion-resistant surface treatment film according to claim 1, wherein the physical vapor deposition hard layer is a CrN layer and a TiAlN layer formed by alternately multilayering on the nitride hard layer. Particle erosion surface treatment film. 請求項1に記載の耐固体粒子エロージョン性表面処理皮膜において、前記物理蒸着硬質層が、前期窒化硬質層上に交互に多層化して形成したCrN層とAlCrN層であることを特徴とする耐固体粒子エロージョン性表面処理皮膜。   2. The solid particle erosion-resistant surface treatment film according to claim 1, wherein the physical vapor-deposited hard layer is a CrN layer and an AlCrN layer formed by alternately multilayering on the previous nitrided hard layer. Particle erosion surface treatment film. 請求項1に記載の耐固体粒子エロージョン性表面処理皮膜において、前記物理蒸着硬質層が、前期窒化硬質層上に交互に多層化して形成したCrN層とTiN層であることを特徴とする耐固体粒子エロージョン性表面処理皮膜。   2. The solid particle erosion-resistant surface treatment film according to claim 1, wherein the physical vapor deposition hard layer is a CrN layer and a TiN layer formed by alternately multilayering on the nitridation hard layer. Particle erosion surface treatment film. 請求項1に記載の耐固体粒子エロージョン性表面処理皮膜において、前記物理蒸着硬質層が、前期窒化硬質層上に交互に多層化して形成したTiN層とTiAlN層であることを特徴とする耐固体粒子エロージョン性表面処理皮膜。   2. The solid particle erosion-resistant surface treatment film according to claim 1, wherein the physical vapor deposition hard layer is a TiN layer and a TiAlN layer formed by alternately layering on the nitridation hard layer. Particle erosion surface treatment film. 請求項1に記載の耐固体粒子エロージョン性表面処理皮膜において、前記物理蒸着硬質層が、前期窒化硬質層上に交互に多層化して形成したTiN層とAlCrN層であることを特徴とする耐固体粒子エロージョン性表面処理皮膜。   2. The solid particle erosion-resistant surface treatment film according to claim 1, wherein the physical vapor-deposited hard layer is a TiN layer and an AlCrN layer formed by alternately layering on the nitridation hard layer. Particle erosion surface treatment film. 請求項1ないし請求項11項のいずれかに記載の耐固体粒子エロージョン性表面処理皮膜を、蒸気と接する部位の表面に設けてなることを特徴とする回転機械。   A rotating machine comprising the solid particle erosion-resistant surface treatment film according to any one of claims 1 to 11 provided on a surface in contact with steam.
JP2004223513A 2004-07-30 2004-07-30 Rotating machine Expired - Fee Related JP3861097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004223513A JP3861097B2 (en) 2004-07-30 2004-07-30 Rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004223513A JP3861097B2 (en) 2004-07-30 2004-07-30 Rotating machine

Publications (2)

Publication Number Publication Date
JP2006037212A true JP2006037212A (en) 2006-02-09
JP3861097B2 JP3861097B2 (en) 2006-12-20

Family

ID=35902518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004223513A Expired - Fee Related JP3861097B2 (en) 2004-07-30 2004-07-30 Rotating machine

Country Status (1)

Country Link
JP (1) JP3861097B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083361A1 (en) * 2006-01-18 2007-07-26 Mitsubishi Heavy Industries, Ltd. Surface treatment coating film with resistance to erosion by solid particle and rotary machine
WO2009016051A1 (en) * 2007-07-28 2009-02-05 Federal-Mogul Burscheid Gmbh Piston ring
JP2009228897A (en) * 2008-03-20 2009-10-08 Minebea Co Ltd Aerospace bearing component and bearing device
WO2009129790A1 (en) * 2008-04-21 2009-10-29 Mtu Aero Engines Gmbh Erosion protection coating
EP2154265A1 (en) * 2008-08-07 2010-02-17 Mitsubishi Heavy Industries, Ltd. Part for rotary machine and its method of manufacture
JP2011528766A (en) * 2008-07-23 2011-11-24 スネクマ Method for increasing the adhesion rate between two parts rotating together with a rotor
CN103060749A (en) * 2011-10-19 2013-04-24 现代自动车株式会社 Surface coating film for forming machine and method of manufacturing same
CN103572289A (en) * 2012-08-07 2014-02-12 现代自动车株式会社 Multi-layer mold coating
US8668447B2 (en) 2008-12-26 2014-03-11 Kabushiki Kaisha Toshiba Steam turbine blade and method for manufacturing the same
JP2015518542A (en) * 2012-04-16 2015-07-02 シーメンス アクティエンゲゼルシャフト Turbomachine parts with functional coating
US9309773B2 (en) 2008-06-23 2016-04-12 Kabushiki Kaisha Toshiba Steam turbine and steam turbine blade
JP2017218644A (en) * 2016-06-09 2017-12-14 株式会社東芝 Production method of metal component
JP6347566B1 (en) * 2017-10-13 2018-06-27 鋼鈑工業株式会社 Hard coating, coating material coated with this hard coating, surface treatment method, and target material for arc discharge ion plating
JP2018119517A (en) * 2017-01-27 2018-08-02 株式会社デンソー Refrigerant pump
KR20200000546A (en) * 2018-06-25 2020-01-03 두산중공업 주식회사 Composite coating layer having excellent erosion resistance and turbine component comprising the same

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7998581B2 (en) 2006-01-18 2011-08-16 Mitsubishi Heavy Industires, Ltd. Solid particle erosion resistant surface treated coating and rotating machine applied therewith
WO2007083361A1 (en) * 2006-01-18 2007-07-26 Mitsubishi Heavy Industries, Ltd. Surface treatment coating film with resistance to erosion by solid particle and rotary machine
WO2009016051A1 (en) * 2007-07-28 2009-02-05 Federal-Mogul Burscheid Gmbh Piston ring
US9447490B2 (en) 2007-07-28 2016-09-20 Federal-Mogul Burscheid Gmbh Piston ring
JP2009228897A (en) * 2008-03-20 2009-10-08 Minebea Co Ltd Aerospace bearing component and bearing device
WO2009129790A1 (en) * 2008-04-21 2009-10-29 Mtu Aero Engines Gmbh Erosion protection coating
US9951411B2 (en) 2008-04-21 2018-04-24 Mtu Aero Engines Gmbh Erosion protection coating
US9309773B2 (en) 2008-06-23 2016-04-12 Kabushiki Kaisha Toshiba Steam turbine and steam turbine blade
JP2011528766A (en) * 2008-07-23 2011-11-24 スネクマ Method for increasing the adhesion rate between two parts rotating together with a rotor
US8043730B2 (en) 2008-08-07 2011-10-25 Mitsubishi Heavy Industries, Ltd. Part for rotary machine, and manufacturing method therefor
CN101643889B (en) * 2008-08-07 2012-10-10 三菱重工业株式会社 Part for rotary machine and its method of manufacture
EP2154265A1 (en) * 2008-08-07 2010-02-17 Mitsubishi Heavy Industries, Ltd. Part for rotary machine and its method of manufacture
US8668447B2 (en) 2008-12-26 2014-03-11 Kabushiki Kaisha Toshiba Steam turbine blade and method for manufacturing the same
KR101316376B1 (en) 2011-10-19 2013-10-08 동우에이치에스티 주식회사 Coating a thin film and method for coating surface on forming tool
CN103060749A (en) * 2011-10-19 2013-04-24 现代自动车株式会社 Surface coating film for forming machine and method of manufacturing same
US9719360B2 (en) 2012-04-16 2017-08-01 Siemens Aktiengesellschaft Turbomachine component having a functional coating
JP2015518542A (en) * 2012-04-16 2015-07-02 シーメンス アクティエンゲゼルシャフト Turbomachine parts with functional coating
KR102063760B1 (en) * 2012-04-16 2020-01-09 지멘스 악티엔게젤샤프트 Turbomachine component with a functional coating
CN103572289A (en) * 2012-08-07 2014-02-12 现代自动车株式会社 Multi-layer mold coating
JP2017218644A (en) * 2016-06-09 2017-12-14 株式会社東芝 Production method of metal component
JP2018119517A (en) * 2017-01-27 2018-08-02 株式会社デンソー Refrigerant pump
JP6347566B1 (en) * 2017-10-13 2018-06-27 鋼鈑工業株式会社 Hard coating, coating material coated with this hard coating, surface treatment method, and target material for arc discharge ion plating
JP2019073755A (en) * 2017-10-13 2019-05-16 鋼鈑工業株式会社 Hard film, covering material for covering hard film, surface treatment method, and target material for arc discharge type ion plating
KR20200000546A (en) * 2018-06-25 2020-01-03 두산중공업 주식회사 Composite coating layer having excellent erosion resistance and turbine component comprising the same
KR102083417B1 (en) * 2018-06-25 2020-05-22 두산중공업 주식회사 Composite coating layer having excellent erosion resistance and turbine component comprising the same

Also Published As

Publication number Publication date
JP3861097B2 (en) 2006-12-20

Similar Documents

Publication Publication Date Title
WO2007083361A1 (en) Surface treatment coating film with resistance to erosion by solid particle and rotary machine
JP3861097B2 (en) Rotating machine
EP2064363B1 (en) Coated drill and a method of making the same
KR100468931B1 (en) Thermal spray coating for gates and seats
JP5920681B2 (en) Coated mold for plastic working excellent in sliding characteristics and manufacturing method thereof
WO2010021285A1 (en) Nitrogen-containing amorphous carbon film, amorphous carbon layered film, and sliding member
JP2007196365A (en) Insert for milling steel
JP2017523353A (en) Brake disc for automobile
JP2010106311A (en) Formed article with hard multilayer film and method for producing the same
JP2011115941A (en) Multilayer coated cutting tool
KR20080063449A (en) Method for treating organs subject to erosion by liquids and anti-erosion coating alloy
JP2009167512A (en) Diamond-like carbon film for sliding component and method for manufacturing the same
JP2004169137A (en) Sliding member
CN108118301B (en) AlCrSiN coating with intermediate layer with gradient change of Si content and preparation method
JP2006214313A (en) Valve lifter
JP2007119795A (en) Hard film, and coated tool with hard film
JP6396903B2 (en) Arc PVD coating with enhanced friction and wear reduction properties
JP3394021B2 (en) Coated cutting tool
EP2339045B1 (en) Wear resistant device and process therefor
CN113584438B (en) Periodic multilayer structure coating band saw blade and preparation method and application thereof
US20100239429A1 (en) Wear protection coating
JP2007084899A (en) Coating member, and method for coating coating member
JP4393650B2 (en) Wear-resistant coated tool
JP5370808B2 (en) Abrasion resistant TiN film and formed body thereof
JP2010168603A (en) WEAR-RESISTANT CrN FILM

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060925

R151 Written notification of patent or utility model registration

Ref document number: 3861097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees