JP2006035165A - Treating equipment of waste water containing organic material - Google Patents

Treating equipment of waste water containing organic material Download PDF

Info

Publication number
JP2006035165A
JP2006035165A JP2004222056A JP2004222056A JP2006035165A JP 2006035165 A JP2006035165 A JP 2006035165A JP 2004222056 A JP2004222056 A JP 2004222056A JP 2004222056 A JP2004222056 A JP 2004222056A JP 2006035165 A JP2006035165 A JP 2006035165A
Authority
JP
Japan
Prior art keywords
sludge
tank
supplied
water
aeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004222056A
Other languages
Japanese (ja)
Other versions
JP4358058B2 (en
Inventor
Hidemasa Kobayashi
秀匡 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miike Inc
Original Assignee
Miike Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miike Inc filed Critical Miike Inc
Priority to JP2004222056A priority Critical patent/JP4358058B2/en
Publication of JP2006035165A publication Critical patent/JP2006035165A/en
Application granted granted Critical
Publication of JP4358058B2 publication Critical patent/JP4358058B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)
  • Crushing And Pulverization Processes (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide treating equipment of waste water containing an organic material capable of efficiently treating a super-pulverized suspension organic material by means of fermentative bacteria in a short time, drastically enhancing waste water treating ability and completely eliminating cytoplasm by means of fermentative bacteria by destroying corpse cell membrane of sludge bacteria according to super-pulverization. <P>SOLUTION: The treating equipment 1 of waste water containing an organic material comprises a pretreatment part 10 in which waste water is supplied and sedimentation and filtration are performed, an aeration part 30 in which the aeration of pretreated waste water is performed, a water discharge part 40 in which the aerated waste water is subjected to treatment for discharge and, thereafter, is discharged, a sludge tank 50 in which the sludge is supplied from the bottom part of the aeration part 30 by means of a sludge extracting pump P2 and a sludge treatment part. Further, the sludge treatment part is provided with a sludge super-pulverization part 72 in which the sludge is supplied from the sludge tank 50 by a pump P5 and the supplied sludge is super-pulverized into the level of several microns at least by the shear action according to high-rate swirling flow of at least 8 m/sec and a fermentation facilitation tank 90 which receives the supply of the super-pulverized sludge, at the same time, receives the supply of the fermentative bacteria, facilitates the fermentation, supplies fermentation liquid to the aeration part 30 and circulates the same. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、下水や食品加工場からの排水など、有機物を含有した廃水の処理から生じる汚泥を減らすように処理する有機物を含有した廃水の処理設備に関する。 The present invention relates to a treatment facility for wastewater containing organic matter, such as sewage and wastewater from food processing plants, which is treated to reduce sludge generated from treatment of wastewater containing organic matter.

従来の有機物を含有した廃水の処理としては、下水、し尿、各種産業廃水などの有機性廃水に含有された窒素酸化物をメタン発酵菌のグラニュール汚泥床を有した嫌気性処理槽内で上向流で流通させつつ、脱窒菌をグラニュール汚泥の周りで繁殖させ、生物学的に還元して脱窒処理する生物学的脱窒方法がある(特許文献1を参照)。これは、菌体自体をグラニュール化して菌体を高い密度で保持でき、高容積負荷での運転ができる。
特開平7−290088号公報
In the treatment of wastewater containing organic substances in the past, nitrogen oxides contained in organic wastewater such as sewage, human waste, and various industrial wastewaters are treated in an anaerobic treatment tank with a granular sludge bed of methane fermentation bacteria. There is a biological denitrification method in which denitrifying bacteria are propagated around granule sludge while being distributed countercurrently, and biologically reduced and denitrified (see Patent Document 1). This can granulate the microbial cells themselves to hold the microbial cells at a high density, and can be operated at a high volume load.
JP 7-290088 A

上述のような生物学的脱窒方法では、被処理物の浮遊有機物自体が数ミリメートルから0.1ミリメートル程の粒状物やフレークであり、それに作用する菌もグラニュール状態では、例え高密度接触を図っても作用効果は限定的である。他方、脱窒菌着生のグラニュール汚泥が短期間で形成され、安定したグラニュール汚泥床が維持できる分、汚泥が比較的早く蓄積していき、その汚泥の処置も重要な課題である。 In the biological denitrification method as described above, the suspended organic matter itself of the object to be processed is a granular material or flake of about several millimeters to 0.1 millimeter, and the bacteria that act on it are in a granular state, for example, high density contact. However, the effects are limited. On the other hand, the granular sludge settled by denitrifying bacteria is formed in a short period of time, and the sludge accumulates relatively quickly as long as a stable granular sludge bed can be maintained, and the treatment of the sludge is also an important issue.

本願発明は、ポンプによって発生される所定の高速度旋回水流を用い、複数の筒壁から成る環状流路で起こす少なくとも剪断作用によって水クラスターも有機物も超微細化すると、超微細化によって単位重量当り極めて大きくなった表面積の浮遊有機物を発酵菌によって効率的に極めて短時間で処理し、廃水の処理能力を大幅に高めることができると共に、超微細化によって汚泥の主構成物である細菌の死骸の細胞膜を破壊して細胞質を発酵菌で処理しつつ増殖させ、汚泥を大幅に減容させることができることを見出し、完成したもので、その目的とするところは、その作用効果を構成が比較的簡単で保守が容易なもので達成できる有機物を含有した廃水の処理設備を提供するものである。   The present invention uses a predetermined high-speed swirling water flow generated by a pump, and when water clusters and organic substances are made ultrafine by at least shearing action caused by an annular flow path composed of a plurality of cylindrical walls, Suspended organic matter with an extremely large surface area can be efficiently treated in a very short time with fermenting bacteria, and the treatment capacity of wastewater can be greatly increased, and ultrafine refinement of bacterial dead bodies that are the main constituent of sludge The cell membrane was destroyed and the cytoplasm was grown while being treated with fermenting bacteria, and it was found that sludge can be drastically reduced in volume. It is intended to provide a facility for treating wastewater containing organic matter that can be achieved with easy maintenance.

本発明は、下水や食品加工場からの排水などの有機物を含有した廃水の供給を受けて、沈砂及び/又は瀘過を行う前処理部と、
前処理された廃水の供給を受けて、曝気処理する曝気部と、
曝気処理された廃水の供給を受けて、放水処理して放水する放水部と、
上記の前処理部と曝気部と放水部の内の少なくとも一つの底部から汚泥引き抜きポンプによって汚泥が供給される汚泥槽と、
該汚泥槽から残留汚泥の供給を受けて、残留汚泥の処理を行う残留汚泥処理部とを有した有機物を含有した廃水の処理設備において、
上記残留汚泥処理部は、上記汚泥槽から汚泥引き抜きポンプによって汚泥が供給されると共に高速旋回流を起こして、その高速旋回流の少なくとも剪断作用によって供給汚泥を超微細化処理する汚泥超微細化部と、
該汚泥超微細化部から超微細化処理された超微細汚泥の供給を受けると共に発酵菌の供給を受けて発酵を促進して発酵液を上記曝気部に供給する発酵促進槽とを有していることを特徴とするものである。
The present invention receives a supply of wastewater containing organic matter such as sewage and wastewater from a food processing plant, and a pretreatment unit that performs sedimentation and / or filtration,
An aeration unit that receives a supply of pretreated wastewater and performs aeration treatment;
A water discharge unit that receives the supply of aerated wastewater, discharges the water, and discharges the water;
A sludge tank in which sludge is supplied by a sludge extraction pump from at least one bottom of the pretreatment unit, the aeration unit, and the water discharge unit;
In the wastewater treatment facility containing organic matter having a residual sludge treatment section that receives residual sludge supplied from the sludge tank and processes the residual sludge,
The residual sludge treatment section is a sludge ultrafine refinement section that generates sludge from the sludge tank by a sludge extraction pump and generates a high-speed swirling flow, and ultrafine-treats the supplied sludge by at least a shearing action of the high-speed swirling flow When,
A fermentation accelerating tank that receives the supply of ultrafine sludge that has been subjected to ultrafine treatment from the sludge ultrafine refinement section and that receives the supply of fermentation bacteria to promote fermentation and supply the fermentation liquid to the aeration section It is characterized by being.

上記処理設備においては、超微細化処理により供給汚泥を数ミクロンレベルにまで微細化することが好ましい。   In the above processing equipment, it is preferable to refine the supplied sludge to a level of several microns by ultra-miniaturization treatment.

上記処理設備においては、高速旋回流が少なくとも8m/秒であることが好ましい。   In the processing facility, the high-speed swirling flow is preferably at least 8 m / sec.

更に、上記曝気部の前に上記前処理部から廃水の供給を受けて、水中撹拌機によって廃水を撹拌する調整槽と、該調整槽からポンプによって調整廃水の供給を受けて所定流量を曝気部に供給する流量計槽とが設けられる。   In addition, the aeration unit receives wastewater from the pretreatment unit before the aeration unit, and agitates the wastewater by an underwater agitator, and receives the regulated wastewater supply from the adjustment tank by a pump. And a flow meter tank to be supplied to.

上記曝気部は、底部に汚泥引き抜きポンプと曝気撹拌装置とを有すると共に槽外に返送流量調整装置を有し、発酵液が上記発酵促進槽から供給される第一曝気槽と、底部に汚泥引き抜きポンプと曝気撹拌装置とを有すると共に出口に膜瀘過装置を有した第二曝気槽とから構成される。   The aeration section has a sludge extraction pump and an aeration stirrer at the bottom and a return flow rate adjustment device outside the tank, and a first aeration tank to which the fermentation liquid is supplied from the fermentation promotion tank, and a sludge extraction at the bottom. It comprises a second aeration tank having a pump and an aeration stirring device and having a membrane filtration device at the outlet.

上記放水部は、底部に処理水引き抜きポンプを有し、該ポンプによって処理水を逆洗水として上記膜瀘過装置に供給すると共に返送水として上記流量計槽に供給し、また水面近くにpH計及びpH調節装置と消毒薬注入装置とを有することができる。   The drainage unit has a treated water extraction pump at the bottom, and supplies the treated water as backwash water to the membrane filtration device and the returned water as a return water to the flow meter tank, and has a pH near the water surface. It may have a meter and pH adjuster and a disinfectant injector.

上記汚泥槽は、上記第一曝気槽から汚泥引き抜きポンプによって汚泥が供給されると共に、上記第二曝気槽から汚泥引き抜きポンプによって上記第一曝気槽の返送流量調整装置を経由して汚泥が供給される汚泥濃縮槽と、ブロワーから供給される空気力を利用するエアーリフトで上記汚泥濃縮槽から汚泥が供給される汚泥貯留槽とから構成され、該汚泥貯留槽から汚泥引き抜きポンプによって上記汚泥超微細化部に汚泥が供給される。   In the sludge tank, sludge is supplied from the first aeration tank by a sludge extraction pump, and sludge is supplied from the second aeration tank by a sludge extraction pump via the return flow rate adjusting device of the first aeration tank. A sludge concentration tank, and a sludge storage tank to which sludge is supplied from the sludge concentration tank by an air lift using air force supplied from a blower, and the sludge ultrafine by a sludge extraction pump from the sludge storage tank. Sludge is supplied to the conversion section.

上記汚泥超微細化部は、処理槽と超微細化装置とから構成され、また上記超微細化装置は、そのケーシングの外壁を円筒状に形成し、そのケーシング内部に同心状に、又は筒壁同士が接触せずに流路を形成する程度に偏心状に内部円筒壁を隔設し、内部円筒壁をケーシング底壁と結合し且つケーシング天井壁に対して隙間を形成することで、円筒状外壁と内部円筒壁とで形成した環状流路と内部円筒壁の内部とを上記隙間を介して連通しており、また第一ポンプによって上記処理槽から上記内部円筒壁の内部に汚泥を含有した第一高速度水流が供給され、次いで該内部円筒壁の内部から第二ポンプによって吸引されて高速度で吐出されて形成される汚泥を含有した第二高速度水流が第二水導入部において上記環状流路に供給されて、次いで上記内部円筒壁の上端からその内部に急激に落下されてケーシング底壁に激突させるようにしており、上記環状流路と上記内部円筒壁の内部に渡って形成した循環流路において水流中の汚泥の細胞膜を破壊し、汚泥を超微細化した処理水を上記環状流路から一部分抜いて上記処理槽に供給される構造を有することができる。   The sludge ultrafine refinement section is composed of a treatment tank and an ultrafine refiner, and the ultrafine refiner forms a cylindrical outer wall of the casing, concentrically inside the casing, or a cylindrical wall. By separating the inner cylindrical wall eccentrically enough to form a flow path without contacting each other, connecting the inner cylindrical wall with the casing bottom wall and forming a gap with respect to the casing ceiling wall, the cylindrical shape The annular flow path formed by the outer wall and the inner cylindrical wall communicates with the inside of the inner cylindrical wall through the gap, and the first pump contains sludge from the treatment tank to the inside of the inner cylindrical wall. The second high-speed water flow containing the sludge formed by being supplied with the first high-speed water flow and then sucked by the second pump from the inside of the inner cylindrical wall and discharged at a high speed is formed in the second water introduction part. Supplied to the annular channel, then up From the upper end of the inner cylindrical wall, it suddenly falls into the inside of the casing and collides with the bottom wall of the casing, and in the circulation channel formed over the annular channel and the inner cylindrical wall, It can have a structure in which the treated water in which the cell membrane is destroyed and the sludge is made ultrafine is partially extracted from the annular channel and supplied to the treatment tank.

上記超微細化装置は、そのケーシングの外壁を円筒状に形成し、そのケーシング内部に同心状に、又は筒壁同士が接触せずに流路を形成する程度に偏心状に中間円筒壁と内部円筒壁の二つを隔設し、中間円筒壁をケーシング天井壁とケーシング底壁に結合して外環状流路を形成し、内部円筒壁をケーシング底壁と結合し且つケーシング天井壁に対して隙間を形成することで、中間円筒壁と内部円筒壁とで形成した中間環状流路と内部円筒壁の内部とを上記隙間を介して連通しており、また上記処理槽から第一水導入部において、第一ポンプによって発生された汚泥を含有した第一高速度水流が空気導入部に供給されて、そこで空気が第一高速度水流に気泡として導入され、該気泡の導入された第一高速度水流は上記中間環状流路に供給され、次いで上記内部円筒壁の上端からその内部に急激に落下されてケーシング底壁に激突させ、また該内部円筒壁の内部から第二ポンプによって吸引されて高速度で吐出されて形成される汚泥を含有した第二高速度水流が第二水導入部において上記外環状流路に供給されるようにして、更に該外環状流路を上記第一ポンプの吸引側に管路を介して接続して形成される循環路を流れるようにされ、この循環路を成す上記中間環状流路及び上記外環状流路での剪断作用と上記ケーシング底壁への激突とによって水中の汚泥の細胞膜を破壊して超微細化し、超微細化された汚泥を含有した処理水が上記外環状流路から一部分抜かれて上記処理槽に導かれる構造を有することができる。   The ultra-miniaturization apparatus is formed such that the outer wall of the casing is formed in a cylindrical shape, and is formed concentrically within the casing or eccentrically to the extent that a flow path is formed without contacting the cylindrical walls. Two cylindrical walls are spaced apart, the intermediate cylindrical wall is joined to the casing ceiling wall and the casing bottom wall to form an outer annular flow path, the inner cylindrical wall is joined to the casing bottom wall and to the casing ceiling wall By forming the gap, the intermediate annular channel formed by the intermediate cylindrical wall and the inner cylindrical wall communicates with the inside of the inner cylindrical wall via the gap, and the first water introduction section is connected from the treatment tank. The first high-speed water stream containing sludge generated by the first pump is supplied to the air introduction section, where air is introduced into the first high-speed water stream as bubbles, and the first high-speed water into which the bubbles have been introduced is introduced. The velocity water stream is supplied to the intermediate annular flow path, Contains sludge that is suddenly dropped from the upper end of the inner cylindrical wall into the casing and crashes into the bottom wall of the casing, and is sucked from the inner cylindrical wall by the second pump and discharged at a high speed. The second high-speed water flow is supplied to the outer annular flow channel at the second water introduction portion, and the outer annular flow channel is further connected to the suction side of the first pump via a conduit. The cell membrane of sludge in water is destroyed by the shearing action in the intermediate annular flow path and the outer annular flow path forming the circulation path and the collision with the bottom wall of the casing. The treated water containing the refined and ultrafine sludge can be partly extracted from the outer annular channel and guided to the treatment tank.

上記空気導入部は、高速度水流を利用したエジェクターから構成される。
上記装置ケーシング内部において筒壁で限定された環状流路内に供給される高速度の水流は、該環状流路に接線方向から供給される。
上記筒壁は、平坦部等の曲率変更部を部分的に有することができる。
上記発酵促進槽は、発酵菌培養装置から連続的に、又は間欠的に発酵菌の供給を受けることができる。
The air introduction part is composed of an ejector using a high-speed water flow.
The high-speed water flow supplied into the annular channel defined by the cylindrical wall inside the apparatus casing is supplied to the annular channel from the tangential direction.
The said cylinder wall can have a curvature change part, such as a flat part, partially.
The fermentation accelerating tank can be supplied with fermenting bacteria continuously or intermittently from the fermentation bacteria culture apparatus.

本発明の効果として、有機物を含有した廃水の処理設備では、下水や食品加工場からの排水などの有機物を含有した廃水の供給を受けて、沈砂及び/又は瀘過を行う前処理部で部材の損耗を早める砂などの硬い異物や配管や弁の詰まりを起こす布、ポリ袋などの柔軟物を除去してから曝気部で発酵菌による有機物の処理をして放水部から放水する一方、主に曝気部で生じる汚泥を底部から汚泥引き抜きポンプによって汚泥槽に移送するが、汚泥槽から汚泥引き抜きポンプによって汚泥が汚泥超微細化部に供給されて、そこで高速旋回流が発生されて、その高速旋回流の少なくとも剪断作用によって供給汚泥を超微細化処理すると共に超微細化された汚泥を発酵促進槽に送り、汚泥を形成している細菌の死骸の細胞膜が超微細化で破壊されて与えられる細胞質を栄養素として発酵が促進される。上記高速旋回流で供給汚泥を数ミクロンレベルまで微細化するとその効果はきわめて顕著である。この超微細化を達成するためには少なくとも8m/秒の、好ましくは30m/秒から50m/秒の高速旋回流とするとよい。
これによって汚泥は大幅に減容され、発酵菌が増殖され、発酵液が上記曝気部に供給され、循環されることになり、循環中に汚泥は発酵菌によって最終的に消滅される。かくして、汚泥超微細化部において、超微細化によって単位重量当り極めて大きくなった表面積の汚泥や有機物を発酵促進部において発酵菌によって効率的に極めて短時間で処理する。このように、超微細化によって汚泥の主構成物である細菌の死骸の細胞膜を破壊して細胞質を発酵菌で処理しつつ増殖させ、汚泥を大幅に減容させることができると共に、増殖した大量の発酵菌を含有した発酵液を上記曝気部に供給して廃水中の有機物の曝気処理を促進させ廃水の処理能力を大幅に高めることができる。また、高速旋回流を発生する構成が比較的簡単であり、前処理部によって砂による摩滅も無くなり保守が容易なものとできる。
As an effect of the present invention, in a wastewater treatment facility containing organic matter, a member is provided in a pretreatment section that receives the supply of wastewater containing organic matter such as sewage and wastewater from a food processing plant, and performs sedimentation and / or filtration. While removing hard foreign matter such as sand, cloths that cause clogging of pipes and valves, and flexible materials such as plastic bags, organic substances are treated with fermentation bacteria in the aeration section and discharged from the discharge section. The sludge generated in the aeration section is transferred from the bottom to the sludge tank by a sludge extraction pump, and the sludge is supplied from the sludge tank to the sludge ultrafine section, where a high-speed swirling flow is generated, The supplied sludge is subjected to ultrafine processing at least by the shearing action of the swirl flow, and the ultrafine sludge is sent to the fermentation accelerating tank, and the cell membrane of the bacterial dead bodies forming the sludge is destroyed by ultrafine processing. Fermentation is promoted to be the cytoplasm as a nutrient. When the supplied sludge is refined to the level of several microns with the high-speed swirling flow, the effect is extremely remarkable. In order to achieve this ultrafine size, a high-speed swirling flow of at least 8 m / sec, preferably 30 m / sec to 50 m / sec is preferable.
As a result, the volume of sludge is greatly reduced, the fermenting bacteria are propagated, the fermentation liquor is supplied to the aeration unit and circulated, and the sludge is finally extinguished by the fermenting bacteria during the circulation. Thus, in the sludge ultrafine refinement section, sludge and organic matter having a surface area that has become extremely large per unit weight due to ultrafine refinement are efficiently processed in a fermentation promotion part by fermentation bacteria in a very short time. In this way, it is possible to proliferate while treating the cytoplasm with fermenting bacteria by destroying the cell membrane of bacterial dead bodies that are the main constituent of sludge by ultra-miniaturization, and it is possible to greatly reduce the volume of sludge, The fermented liquid containing this fermenting bacterium can be supplied to the aeration unit to promote the aeration treatment of the organic matter in the wastewater, thereby greatly increasing the treatment capacity of the wastewater. In addition, the configuration for generating a high-speed swirling flow is relatively simple, and the pretreatment unit eliminates abrasion due to sand, and can be easily maintained.

更に、上記曝気部の前に上記前処理部から廃水の供給を受けて、水中撹拌機によって廃水を撹拌する調整槽と、該調整槽からポンプによって調整廃水の供給を受けて所定流量を曝気部に供給する流量計槽とが設けられると、調整槽において塊の有機物を砕いて撹拌して均一な状態にしてから、調整廃水として流量計槽を経て曝気部の曝気能力に応じた流量で曝気部にポンプで移送される。   In addition, the aeration unit receives wastewater from the pretreatment unit before the aeration unit, and agitates the wastewater by an underwater agitator, and receives the regulated wastewater supply from the adjustment tank by a pump. If the flow meter tank to be supplied is provided, agglomerated organic matter is crushed and stirred in the adjustment tank to make it uniform, and then aerated as adjusted wastewater through the flow meter tank at a flow rate according to the aeration capacity of the aeration unit Pumped to the part.

上記曝気部は、底部に汚泥引き抜きポンプと曝気撹拌装置とを有すると共に槽外に返送流量調整装置を有し、また発酵液が発酵促進槽から供給される第一曝気槽と、底部に汚泥引き抜きポンプと曝気撹拌装置とを有すると共に出口に膜瀘過装置を有した第二曝気槽とから構成されると、両方の曝気槽においてブロワーから供給される空気を曝気撹拌装置によって気泡として撹拌しながら放出して曝気作用、即ち接触酸化作用を廃水に加えることができると共に発酵促進槽から供給される発酵液に含有された大量の主に好気性発酵菌によって廃水中の有機物を効果的に消却することができる。   The aeration unit has a sludge extraction pump and an aeration stirrer at the bottom, a return flow rate adjustment device outside the tank, a first aeration tank in which the fermentation liquid is supplied from the fermentation promotion tank, and a sludge extraction at the bottom. When comprised of a second aeration tank having a pump and an aeration stirrer and having a membrane filtration device at the outlet, the air supplied from the blower in both aeration tanks is stirred as bubbles by the aeration stirrer Release and aeration, ie, catalytic oxidation, can be added to the wastewater, and organic substances in the wastewater are effectively eliminated by a large amount of mainly aerobic fermentation bacteria contained in the fermentation broth supplied from the fermentation accelerating tank be able to.

上記放水部は、底部に処理水引き抜きポンプを有し、該ポンプによって処理水を逆洗水として上記膜瀘過装置に供給することで人手をかけずに膜瀘過装置の逆洗浄を行うことができ、また返送水として上記流量計槽に供給して流量計槽の調整水として利用できるようにすると共に部分循環させることができる。また水面近くにpH計及びpH調節装置と消毒薬注入装置とを有すると、中性状態で且つ消毒された状態で有機物の処理された水を河川などに放水することができるようになる。   The drainage unit has a treated water extraction pump at the bottom, and performs reverse cleaning of the membrane filtration device without manpower by supplying treated water as backwash water to the membrane filtration device by the pump. In addition, it can be supplied to the flow meter tank as return water so that it can be used as adjustment water for the flow meter tank and partially circulated. If a pH meter, a pH adjusting device, and a disinfectant injection device are provided near the water surface, water treated with organic matter can be discharged into a river or the like in a neutral state and a disinfected state.

上記汚泥槽は、上記第一曝気槽から汚泥引き抜きポンプによって汚泥が供給されると共に、上記第二曝気槽から汚泥引き抜きポンプによって上記第一曝気槽の返送流量調整装置を経由して汚泥が供給される汚泥濃縮槽と、ブロワーから供給される空気力を利用するエアーリフトで上記汚泥濃縮槽から汚泥が供給される汚泥貯留槽とから構成されると、汚泥貯留槽から汚泥引き抜きポンプによって汚泥超微細化部に移送され、従来のように脱水乾燥を経て最終的に焼却処理する必要が無くなる。汚泥超微細化による汚泥の処理能力に応じて返送流量調整装置によって汚泥濃縮槽に移送する量を調整できる。   In the sludge tank, sludge is supplied from the first aeration tank by a sludge extraction pump, and sludge is supplied from the second aeration tank by a sludge extraction pump via the return flow rate adjusting device of the first aeration tank. The sludge concentration tank and the sludge storage tank to which sludge is supplied from the sludge concentration tank by the air lift that uses the air force supplied from the blower There is no need for final incineration after dehydration and drying as in the prior art. The amount transferred to the sludge concentrating tank can be adjusted by the return flow rate adjusting device according to the sludge processing capacity by ultrafine sludge.

上記汚泥超微細化部は、処理槽と超微細化装置とから構成され、また上記超微細化装置は、そのケーシングの外壁を円筒状に形成し、そのケーシング内部に同心状に、又は筒壁同士が接触せずに流路を形成する程度に偏心状に内部円筒壁を隔設すると、壁と内部円筒壁との間に環状流路が形成され、そこに供給される高速度水流は流れ方向が常に変化して強力な遠心力を発生させて、外側壁面に強く当って大きな圧縮力と壁面の層流間に剪断力を生じさせ、同時に内側壁面からの層流剥離によってキャビテーションを生じさせて、水クラスターと汚泥の超微細化、即ち汚泥の細菌死骸の細胞膜の破壊と細胞質の超微細化を促進できる。円形環状流路では水流の流速の維持が比較的容易である。また内部円筒壁をケーシング底壁に結合し且つケーシング天井壁に対して隙間を形成することで、円筒状外壁と内部円筒壁とで形成した環状流路と内部円筒壁の内部とを上記隙間を介して連通し、高速度の水流が環状流路から、また同時に第一ポンプから供給されてくる水流が内部円筒壁の内部に落下して、ケーシング底壁に激突して衝撃力によって水のクラスターと気泡の超微細化を促進する。また第二ポンプによって内部円筒壁の内部から水を吸引するので、その内部に落下する水流の上記衝撃力をより強いものにできる。第二ポンプによって吸引されて高速度で吐出されて形成される第二高速度水流が上記環状流路に供給されることで、環状流路と内部円筒壁の内部に渡って循環流路を形成することになり、循環中に繰り返し水のクラスターの超微細化と水流中の汚泥細菌死骸の細胞膜の破壊と内部の細胞質の超微細化を行うことができる。超微細化された汚泥の細菌死骸を含有した処理水は環状流路から一部分抜いて処理槽に供給される。   The sludge ultrafine refinement section is composed of a treatment tank and an ultrafine refiner, and the ultrafine refiner forms a cylindrical outer wall of the casing, concentrically inside the casing, or a cylindrical wall. If the inner cylindrical wall is spaced eccentrically enough to form a flow path without contact with each other, an annular flow path is formed between the wall and the inner cylindrical wall, and the high-speed water flow supplied thereto flows. The direction always changes, generating strong centrifugal force, strongly hitting the outer wall surface, creating a shear force between the large compressive force and laminar flow of the wall surface, and simultaneously causing cavitation by laminar flow separation from the inner wall surface Thus, it is possible to promote the ultrafine refinement of water clusters and sludge, that is, the destruction of the cell membrane of bacterial sludge and the ultrafine cytoplasm. In the circular annular channel, it is relatively easy to maintain the water flow velocity. Further, by connecting the inner cylindrical wall to the casing bottom wall and forming a gap with respect to the casing ceiling wall, the gap between the annular channel formed by the cylindrical outer wall and the inner cylindrical wall and the inside of the inner cylindrical wall is reduced. The high-speed water flow from the annular channel and simultaneously the water flow supplied from the first pump falls into the inner cylindrical wall, collides with the bottom wall of the casing and collides with the water cluster by impact force. And promote ultra-fine bubbles. Moreover, since water is sucked from the inside of the inner cylindrical wall by the second pump, the impact force of the water flow falling into the inside can be made stronger. A second high-speed water flow formed by being sucked by the second pump and discharged at a high speed is supplied to the annular channel, thereby forming a circulation channel across the annular channel and the inner cylindrical wall. Therefore, it is possible to repeatedly refine the water cluster during circulation, destroy the cell membrane of sludge bacterial dead bodies in the water stream, and ultrafine the internal cytoplasm. A part of the treated water containing the bacterial dead bodies of the ultrafine sludge is extracted from the annular channel and supplied to the treatment tank.

処理水供給装置のケーシングの外壁を円筒状に形成し、そのケーシング内部に同心状に、又は筒壁同士が接触せずに流路を形成する程度に偏心状に中間と内部の円筒壁を隔設すると、外部と中間と内部の各円筒壁間に外部と中間の環状流路が形成される。これら外部と中間の環状流路に供給される高速度水流は、流れ方向が常に変化して強力な遠心力を発生して外側壁面に強く当って大きな圧縮力と壁面の層流間に剪断力を生じさせ、同時に内側壁面から層流剥離を生じさせてキャビテーション作用を発生させ、汚泥の超微細化、即ち汚泥の細菌死骸の細胞膜の破壊と細胞質の超微細化を促進できる。円形環状流路では水流の流速の維持が比較的容易である。また中間円筒壁をケーシング天井壁とケーシング底壁に結合し、内部円筒壁をケーシング底壁と結合し且つケーシング天井壁に対して隙間を形成すると、中間環状流路に供給される水流は内部円筒壁の上端からその内部に急激に落下して、ケーシング底壁に激突して生じる衝撃力によって水のクラスターと汚泥の超微細化を促進する。水流への気泡の導入は、水導入部の内の第一水導入部の空気導入部において、第一ポンプによって発生された第一高速度水流を利用したエジェクター作用などによって行われる。水に吸収された空気は、上記のキャビテーション作用を強力に発生させる。この気泡の導入された第一高速度水流は中間環状流路に供給され、次いで上述のように内部円筒壁の上端からその内部に急激に落下してケーシング底壁に激突するが、該内部円筒壁の内部から第二ポンプによって吸引されるために、内部に落下する水流の上記衝撃をより強いものにできる。第二ポンプによって吸引され、高速度で吐出されて形成される第二高速度水流が第二水導入部で外環状流路に供給されるようにして、更に該外環状流路から第一ポンプの吸引側に管路を介して供給されることで循環路が形成される。循環を繰り返すことでクラスターの超微細化と汚泥の超微細化を行うことができる。超微細化された汚泥を含有した処理水は、外環状流路から一部分抜かれて処理槽に供給される。   The outer wall of the casing of the treated water supply device is formed in a cylindrical shape, and the intermediate and inner cylindrical walls are separated so as to be concentric inside the casing or eccentric so as to form a flow path without contacting the cylindrical walls. If provided, an outer and intermediate annular channel is formed between the outer, intermediate and inner cylindrical walls. The high-speed water flow supplied to these external and intermediate annular channels constantly changes the flow direction to generate a strong centrifugal force and strongly hits the outer wall surface, causing a large compressive force and a shear force between the laminar flow on the wall surface. At the same time, laminar flow separation is caused from the inner wall surface to generate a cavitation action, and it is possible to promote the ultrafine sludge, that is, the destruction of the cell membrane of the dead bacterial sludge and the ultrafine cytoplasm. In the circular annular channel, it is relatively easy to maintain the water flow velocity. Further, when the intermediate cylindrical wall is connected to the casing ceiling wall and the casing bottom wall, the inner cylindrical wall is connected to the casing bottom wall and a gap is formed with respect to the casing ceiling wall, the water flow supplied to the intermediate annular channel is The water drops suddenly from the top of the wall to the inside, and the impact force generated by crashing into the bottom wall of the casing promotes ultra-fine water clusters and sludge. Bubbles are introduced into the water flow by an ejector action using the first high-speed water flow generated by the first pump in the air introduction portion of the first water introduction portion in the water introduction portion. Air absorbed in water strongly generates the above cavitation action. The first high-speed water flow into which the bubbles are introduced is supplied to the intermediate annular flow path, and then suddenly falls into the inside from the upper end of the inner cylindrical wall as described above and collides with the casing bottom wall. Since it is sucked by the second pump from the inside of the wall, the impact of the water flow falling into the inside can be made stronger. A second high-speed water flow formed by being sucked and discharged at a high speed by the second pump is supplied to the outer annular flow path at the second water introduction portion, and further from the outer annular flow path to the first pump A circulation path is formed by being supplied to the suction side via a pipe line. By repeating the cycle, it is possible to make the cluster ultrafine and sludge ultrafine. A portion of the treated water containing ultrafine sludge is extracted from the outer annular channel and supplied to the treatment tank.

空気導入部は、高速度水流を利用したエジェクターから構成され、空気ポンプを使わずに、エジェクターのノズルから噴出する高速度水流が発生する負圧によって空気を吸引して水流中に混入させることができる。
装置ケーシング内部において筒壁で限定された環状流路内に供給される高速度の水流は、該環状流路に接線方向から供給され、環状流路内への水流供給をスムースに行い、速度の激変を防ぎ、経路全体に渡って高速度水流の上記作用の維持に役立つ。
The air introduction part is composed of an ejector that uses a high-speed water flow, and without using an air pump, air can be sucked and mixed into the water flow by the negative pressure generated by the high-speed water flow ejected from the nozzle of the ejector. it can.
The high-speed water flow that is supplied into the annular flow path limited by the cylindrical wall inside the device casing is supplied to the annular flow path from the tangential direction, smoothly supplying the water flow into the annular flow path, It prevents catastrophic changes and helps maintain the above action of high velocity water flow throughout the path.

筒壁は、平坦部等の曲率変更部を部分的に有すると、それら曲率変更部で若干水流速度が低下するが、水流の方向が変わって水流層間に作用する剪断力を高めることができる。
発酵促進槽は、発酵菌培養装置から連続的に、又は間欠的に発酵菌の供給を受けるように構成されると、大量の活力のある発酵菌が発酵促進槽の発酵状態に応じて連続的に、又は間欠的に発酵促進層に供給される。
When the cylindrical wall partially has a curvature changing part such as a flat part, the water flow speed slightly decreases at these curvature changing parts, but the shear force acting between the water flow layers can be increased by changing the direction of the water flow.
When the fermentation accelerating tank is configured to be continuously or intermittently supplied with the fermenting bacteria from the fermentation bacteria culturing apparatus, a large amount of vigorous fermenting bacteria are continuously added according to the fermentation state of the fermentation accelerating tank. Or intermittently to the fermentation promoting layer.

図1に示すように、本発明の代表の実施形態に係る下水などの有機物を含有した廃水の処理設備1は、廃水発生現場からポンプや水頭差によって有機物を含有した廃水WWの供給を受けて、事前に粗大物掻き揚げ機やスクリーンでゴミの除去を行ってから砂瀘過層17での汚れ除去及び沈砂を行う前処理部としての沈砂槽10と、前処理された廃水の供給を受け、水中撹拌機21によって廃水を撹拌する調整槽20と、該調整槽20からその水中ポンプP1によって調整廃水の供給を受けると共に後続部からの部分返送水の供給を受けて所定流量を曝気部30に供給する流量計槽25と、所定流量の調整廃水の供給を受けると共に発酵菌の供給を受けて浮遊有機物を接触酸化と発酵菌処理を行う曝気部30と、曝気処理された廃水の供給を受けてpH調節や消毒などの放水処理をして放水する放水部40とから成る廃水処理ラインAと、曝気部30の底部から汚泥引き抜きポンプP2によって汚泥が供給される汚泥濃縮槽50と、該汚泥濃縮槽50から濃縮汚泥の供給を受けて貯留し、全部を汚泥の発酵処理するための処理槽71に供給するように汚泥貯留槽55から汚泥引き抜きポンプP3によって汚泥が供給される処理槽71を有し、該処理槽71から高圧ポンプ(図示は省略)で汚泥水流を吸引して少なくとも8m/秒の高速旋回流を起こして、その高速旋回流の少なくとも剪断作用によって供給汚泥や有機物を数ミクロン前後に超微細化する汚泥超微細化装置72、80とから成る汚泥超微細化部70と、該汚泥超微細化部70から超微細化された汚泥、即ち汚泥の細菌死骸細胞膜が破壊され、細胞質も超微細化された状態の汚泥槽を含有した水流が供給され、発酵菌培養装置95から発酵菌の供給を受けて発酵を促進して発酵液を上記曝気部30に供給する発酵促進槽90とから成る汚泥発酵処理ラインCとを有している。従来は、上記汚泥貯留槽55から残留汚泥の供給受けて汚泥の脱水と乾燥を行って焼却処理していたが、このための脱水乾燥部60と最終処理部としての焼却炉65とから成る汚泥焼却ラインBは、汚泥超微細化と発酵促進とによって、本実施形態では不要になった。   As shown in FIG. 1, a wastewater treatment facility 1 containing organic matter such as sewage according to a representative embodiment of the present invention receives supply of wastewater WW containing organic matter from a wastewater generation site by a pump or a water head difference. In addition, the sand removal tank 10 as a pretreatment unit that removes dirt in the sand trapping layer 17 after removing dust with a coarse scraper or a screen in advance and sets the sand, and the supply of pretreated waste water are received. The adjustment tank 20 that stirs the wastewater by the underwater agitator 21, and the adjustment wastewater is supplied from the adjustment tank 20 by the submersible pump P 1, and the partial return water is supplied from the subsequent part, and the aeration unit 30 A flow meter tank 25 to be supplied to an aeration unit, an aeration unit 30 which receives supply of adjusted waste water at a predetermined flow rate and receives fermentation bacteria and performs contact oxidation and fermentation bacteria treatment of floating organic matter, and supply of waste water subjected to aeration treatment Receiving And a sludge concentration tank 50 to which sludge is supplied by a sludge extraction pump P2 from the bottom of the aeration unit 30, and the sludge. A treatment tank 71 to which sludge is supplied by the sludge extraction pump P3 from the sludge storage tank 55 so as to be supplied and stored with the supply of the concentrated sludge from the concentration tank 50 and supplied to the treatment tank 71 for fermenting sludge. A high-pressure pump (not shown) sucks the sludge water flow from the treatment tank 71 to generate a high-speed swirling flow of at least 8 m / sec, and feeds sludge and organic matter by several microns by at least the shearing action of the high-speed swirling flow. Sludge ultrafine refinement unit 70 composed of sludge ultrafine refiners 72 and 80 that make ultrafine before and after, and sludge ultrafine from sludge ultrafine refinement unit 70, that is, bacterial death of sludge A water stream containing a sludge tank in a state where the cell membrane is destroyed and the cytoplasm is also made ultrafine is supplied, receives fermentation bacteria from the fermentation bacteria culture device 95, promotes fermentation, and transfers the fermentation liquid to the aeration unit 30. It has a sludge fermentation treatment line C comprising a fermentation promotion tank 90 to be supplied. In the past, residual sludge was supplied from the sludge storage tank 55, and sludge was dehydrated and dried for incineration. Sludge comprising a dehydration drying unit 60 and an incinerator 65 as a final treatment unit for this purpose. Incineration line B became unnecessary in this embodiment by sludge ultrafine refinement and fermentation promotion.

沈砂槽10は、主槽11と、その内部で浮遊する粗大物を除去する粗大物掻き揚げ機12と、主槽11に隣接した補助槽13と、主槽11の上方に設置され、補助槽13内の底部から曝気沈水ブロワー14からの空気供給を受けて曝気撹拌装置15によって曝気撹拌しながら水中ポンプ16で汚れた廃水が供給される砂瀘過層17とを有している。砂瀘過層17の砂は定期的に交換される。   The sand settling tank 10 is installed above the main tank 11, a coarse material hoisting machine 12 for removing coarse objects floating therein, an auxiliary tank 13 adjacent to the main tank 11, and the main tank 11. 13 is provided with a sand surplus layer 17 which receives air supply from the aeration submerged blower 14 from the bottom of the inside 13 and is supplied with dirty wastewater by the submersible pump 16 while being aerated and stirred by the aeration and stirring device 15. The sand in the sand overlayer 17 is periodically replaced.

曝気部30は、底部の汚泥引き抜きポンプP2と、ブロワー32からの空気供給を受けて曝気撹拌する曝気撹拌装置33と、槽外の汚泥用返送流量調整装置34とを有すると共に、発酵菌によって処理された消却残渣の汚泥及び有機物と発酵菌とを含んだ発酵液が上記発酵促進槽90から供給される第一曝気槽31と、これに直列に配列され、底部の汚泥引き抜きポンプP2と上記と同じ曝気撹拌装置33とを有すると共に出口に膜瀘過装置36を有した第二曝気槽35とから構成されている。曝気部30では、発酵促進槽90から供給されてくる発酵液中の大量の発酵菌とブロワー32からの気泡による接触酸化によって廃水中の浮遊有機物が消却処理される。また、底部に沈下し蓄積する発光菌などの細菌の死骸の汚泥は汚泥引き抜きポンプP2によって引き抜かれて汚泥濃縮槽50に移送されるが、第二曝気槽35からのものは返送流量調整装置34によって一部第一曝気槽31に戻される。従って、汚泥濃縮槽50に所定量だけ移送される汚泥は、大部分が一番蓄積率の大きな第一曝気槽31からのものであるが、不足が生じた場合に返送流量調整装置34によって第二曝気槽35からのものが付加される。有機物や汚泥が処理されて無くなった中間廃水は、膜瀘過装置36を経て瀘過されてから第一曝気槽31から第二曝気槽35へ移送される。第二曝気槽35からは、放水部40に処理済み水として移送される。計量槽25以後の廃水の移送は、計量槽25への押し込みヘッドによって行われる。   The aeration unit 30 includes a sludge extraction pump P2 at the bottom, an aeration stirrer 33 that receives air supply from the blower 32 and aeration stirrer, and a sludge return flow rate adjustment unit 34 outside the tank, and is processed by fermentation bacteria. The first aeration tank 31 in which the sludge and the fermented liquid containing the organic matter and the fermenting bacteria are supplied from the fermentation promotion tank 90, and arranged in series in this, the bottom sludge extraction pump P2 and the above A second aeration tank 35 having the same aeration and stirring device 33 and having a membrane filtering device 36 at the outlet is formed. In the aeration unit 30, the floating organic matter in the wastewater is subjected to a cancellation process by contact oxidation with a large amount of fermentation bacteria in the fermentation liquid supplied from the fermentation promotion tank 90 and bubbles from the blower 32. Moreover, sludge of dead bodies of bacteria such as luminescent bacteria that sink and accumulate at the bottom is extracted by the sludge extraction pump P2 and transferred to the sludge concentration tank 50, while the sludge from the second aeration tank 35 is returned to the flow rate adjusting device 34. Is partially returned to the first aeration tank 31. Therefore, most of the sludge transferred to the sludge concentration tank 50 is from the first aeration tank 31 having the largest accumulation rate, but when the shortage occurs, the return flow rate adjusting device 34 sets the sludge. Those from the two aeration tanks 35 are added. The intermediate wastewater that has been removed by the treatment of organic matter and sludge is filtered through the membrane filtering device 36 and then transferred from the first aeration tank 31 to the second aeration tank 35. From the 2nd aeration tank 35, it transfers to the water discharge part 40 as processed water. Transfer of waste water after the measuring tank 25 is performed by a pushing head into the measuring tank 25.

放水部40は、底部に処理水引き抜きポンプP4を有し、該ポンプP4によって処理済み水を逆洗水として膜瀘過装置36に供給して、定期的に又は差圧に応じて自動的に膜瀘過装置36を逆洗浄する。また水面近くにpH計41とpH調節装置42と消毒薬注入装置43とを有しており、処理済み水0Wの河川への放流を可能にしている。   The water discharge unit 40 has a treated water extraction pump P4 at the bottom, and supplies treated water as backwash water to the membrane filtration device 36 by the pump P4, and automatically or periodically according to the differential pressure. The membrane filtration device 36 is back cleaned. Further, a pH meter 41, a pH adjusting device 42, and a disinfectant injection device 43 are provided near the water surface, and the treated water 0W can be discharged into the river.

汚泥槽として用意されている汚泥濃縮槽50には、第一曝気槽31からの汚泥引き抜きポンプP2による汚泥と、第二曝気槽35からの汚泥引き抜きポンプP2による第一曝気槽31の返送流量調整装置34を経由した調量用汚泥とが供給される。汚泥濃縮槽50では、ブロワー51から供給される空気力を利用してエアーリフト52によって流動性に富んだ汚泥を汚泥貯留槽55に供給する。汚泥は、依然廃水を十分含んでおり、一般の遠心ポンプで移送できるほど流動性に富んでいる。汚泥貯留槽55からは全部の汚泥が処理槽71に送られて、後述のように発酵菌による汚泥消却処理を受ける。汚泥は、全て発酵菌によって消却されることが判明したため、汚泥貯留槽55からポンプP5によって脱水乾燥部60の脱水機61に移送され、凝集剤注入機62からの凝集剤によって凝集されてから、熱風乾燥機65にベルトコンベヤ64によって搬送され、焼却炉67で焼却される必要がなくなった。従って熱風乾燥機65の排気部の消臭装置66も不要に成った。   In the sludge concentration tank 50 prepared as a sludge tank, the return flow rate of the first aeration tank 31 by the sludge extraction pump P2 from the first aeration tank 31 and the sludge extraction pump P2 from the second aeration tank 35 is adjusted. The metering sludge via the device 34 is supplied. In the sludge concentration tank 50, sludge rich in fluidity is supplied to the sludge storage tank 55 by the air lift 52 using the air force supplied from the blower 51. The sludge still contains enough waste water and is fluid enough to be transferred with a general centrifugal pump. All the sludge is sent from the sludge storage tank 55 to the treatment tank 71, and is subjected to a sludge cancellation process using fermentative bacteria as described later. Since it became clear that all the sludge was canceled by the fermenting bacteria, the sludge was transferred from the sludge storage tank 55 to the dehydrator 61 of the dehydration drying unit 60 by the pump P5, and after being aggregated by the coagulant from the coagulant injection machine 62, It is no longer necessary to be conveyed to the hot air dryer 65 by the belt conveyor 64 and incinerated in the incinerator 67. Therefore, the deodorizing device 66 in the exhaust part of the hot air dryer 65 is also unnecessary.

汚泥超微細化部70は、処理槽71と超微細化装置72、80とから構成されている。 第一形態の超微細化装置72は、図2に示すように、処理槽71内部の高圧水中ポンプ(図示省略)によって高速度で供給される廃水の水流W1は、本装置ケーシング73の内部において筒壁74で限定された筒壁内部76に供給され、また筒壁74の外側の環状流路75内に更に高圧第二ポンプ2Pによって高速度の水流W2が少なくとも8m/秒、好ましくは30m/秒以上の流速で供給され、流れ方向変更部での衝撃力、筒壁面での剪断力及びキャビテーション作用によって水のクラスターを超微細化すると共に水流中の汚泥、即ち汚泥の細菌死骸を数ミクロン前後に超微細化して細菌細胞膜を破壊して水流に含有させてから処理水W3として水排出部79から処理槽71に戻す。   The sludge ultrafine refinement unit 70 includes a processing tank 71 and ultrafine refiners 72 and 80. As shown in FIG. 2, the ultrafine refiner 72 of the first embodiment is configured so that the wastewater stream W <b> 1 supplied at a high speed by a high-pressure submersible pump (not shown) inside the treatment tank 71 is present inside the apparatus casing 73. The high-speed water flow W2 is supplied to the inside of the cylindrical wall 76 defined by the cylindrical wall 74, and further into the annular flow path 75 outside the cylindrical wall 74 by the high-pressure second pump 2P, at least 8 m / second, preferably 30 m / second. Supplied at a flow rate of more than a second, the water cluster is refined by impact force at the flow direction change part, shear force at the cylinder wall surface and cavitation action, and sludge in the water stream, that is, bacterial sludge in the sludge is around several microns Then, the bacterial cell membrane is destroyed and contained in the water flow after being ultrafine, and then returned to the treatment tank 71 from the water discharge unit 79 as treated water W3.

この第一の形態の汚泥超微細化装置72は、そのケーシング73の外壁73aを円筒状に形成し、そのケーシング内部に同心状に内部円筒壁74を隔設し、内部円筒壁74の下端をケーシング底壁73bに結合し且つケーシング天井壁73cに対して隙間Cを形成することで、円筒状外壁73aと内部円筒壁74とで形成した環状流路75と内部円筒壁74の内部76とを隙間Cを介して連通している。また処理槽71の内部の高圧水中ポンプによって供給されてくる汚泥を含有した高速水流W1を第一水導入部のケーシング天井壁73cの中央部から内部円筒壁74の内部76に供給している。次いで、本装置72は、内部円筒壁内部76の下部から第二ポンプ2Pによって吸引され高速度で吐出されて形成される第二高速度水流W2をケーシング外壁73aの下部に設けた第二水導入部77から環状流路75にほぼ接線方向から供給し、次いで内部円筒壁74の上端の隙間Cからその内部76に急激に落下させてケーシング底壁73bに激突させるようにしており、かくして、環状流路75と内部円筒壁内部76に渡って形成した循環流路において上述のような作用で水クラスターを超微細化すると共に水流中の汚泥と有機物を超微細化し、超微細な汚泥と有機物を含有した処理水W3をケーシング外壁73aの上部に設けた水排出部79において環状流路から一部分抜いて処理槽71に戻す。   The sludge ultrafine refiner 72 of this first form forms the outer wall 73a of the casing 73 in a cylindrical shape, and concentrically separates the inner cylindrical wall 74 inside the casing, and the lower end of the inner cylindrical wall 74 is By connecting to the casing bottom wall 73b and forming a gap C with respect to the casing ceiling wall 73c, an annular flow path 75 formed by the cylindrical outer wall 73a and the inner cylindrical wall 74 and an inner part 76 of the inner cylindrical wall 74 are formed. It communicates through the gap C. A high-speed water flow W1 containing sludge supplied by a high-pressure submersible pump inside the treatment tank 71 is supplied from the center of the casing ceiling wall 73c of the first water introduction part to the inside 76 of the internal cylindrical wall 74. Next, the apparatus 72 introduces a second water introduction in which a second high-speed water flow W2 formed by being sucked and discharged at a high speed by the second pump 2P from the lower part of the inner cylindrical wall inside 76 is provided at the lower part of the casing outer wall 73a. The portion 77 is supplied to the annular flow path 75 from a substantially tangential direction, and then suddenly falls from the gap C at the upper end of the inner cylindrical wall 74 to the inside 76 to collide with the casing bottom wall 73b. In the circulation channel formed across the channel 75 and the inner cylindrical wall interior 76, the water cluster is made ultrafine by the above-described action, and the sludge and the organic matter in the water flow are made ultrafine, and the ultrafine sludge and the organic matter are removed. A part of the contained treated water W3 is removed from the annular flow path and returned to the treatment tank 71 at a water discharge part 79 provided on the upper part of the casing outer wall 73a.

また水流W2を繰り返し循環流路に通す度合いは、隙間Cを大きくしたり、水排出部79における水排出量を減らしたり、汚泥含有した廃水導入量を増やすことで、またそれらを複合的に組み合わせて高めることができ、繰り返し循環する度合いを低下させる場合は、それらの逆の調節を行う。ケーシング73は、底壁73bを2段に分離しているが、底壁73bを内部円筒壁74の下端レベルに統合できることは言うまでもない。筒壁同士が接触せずに流通横断面の余り変化の無い流路75を形成する程度に偏心状に内部円筒壁74を設けることもできる。更に、ケーシング外壁73aや、内部円筒壁74は、平坦部等の曲率変更部を部分的に有したり、内部円筒壁74に縦長のスリットを形成することができ、当該部分での衝撃力や剪断力を高めるように構成できる。   In addition, the degree to which the water flow W2 is repeatedly passed through the circulation flow path can be increased by increasing the gap C, reducing the water discharge amount in the water discharge section 79, or increasing the amount of waste water containing sludge, and combining them in combination. If the degree of repeated circulation is reduced, the opposite adjustment is performed. The casing 73 separates the bottom wall 73b into two stages, but it goes without saying that the bottom wall 73b can be integrated with the lower end level of the internal cylindrical wall 74. It is also possible to provide the inner cylindrical wall 74 in an eccentric manner to such an extent that the flow path 75 is formed so that the cylindrical walls do not contact each other and the flow cross section does not change much. Furthermore, the casing outer wall 73a and the inner cylindrical wall 74 can partially have a curvature changing portion such as a flat portion, or a vertically long slit can be formed in the inner cylindrical wall 74. It can be configured to increase the shear force.

第二の形態の処理水供給装置80は、図3に示すように、ケーシング83の外壁83aを円筒状に形成し、そのケーシング内部に同心状に中間円筒壁84Aと内部円筒壁84Bの二つを隔設し、中間円筒壁84Aの上端をケーシング天井壁83cに、下端をケーシング底壁83bに結合して外環状流路85Aを形成し、内部円筒壁84Bの下端をケーシング底壁83bに結合し且つケーシング天井壁83cに対して隙間Cを形成することで、中間円筒壁84Aと内部円筒壁83Bとで形成した中間環状流路85Bと内部円筒壁内部86とを隙間Cを介して連通している。また水導入部の内の第一水導入部81において、装置80の近くに配置した第一高圧ポンプ1Pによって処理槽71の内部の汚泥含有の廃水wを吸引して発生した第一高速度水流W0が空気導入部のエジェクター82に供給されて、そこで空気Aが第一高速度水流W0に気泡として導入され、該気泡の導入された高速度水流W1は中間環状流路85Bに接線方向から供給され、次いで内部円筒壁84Bの上端からその内部86に急激に落下されてケーシング底壁83bに激突させ、また該内部円筒壁内部86から第二高圧ポンプ2Pによって吸引されて高速度で吐出されて形成される第二高速度水流W2が第二導入部87で外環状流路85Aに接線方向から供給されるようにしている。本装置80は、更に外環状流路85Aを第一ポンプ1Pの吸引側に管路pを介して接続して形成される循環路に水流W1、W2が繰り返し流されるようにし、この循環路を成す中間環状流路85B及び外環状流路85Aでの剪断作用ときャビテーション作と、ケーシング底壁83bへの激突とによって水のクラスターが超微細化されると共に水流中の汚泥及び有機物が超微細化され、超微細な気泡を含有した処理水W3が水排出部89において外環状流路85Aから一部分抜かれて処理槽71に戻される。   As shown in FIG. 3, the treated water supply apparatus 80 according to the second embodiment forms an outer wall 83a of a casing 83 in a cylindrical shape, and concentrically forms an intermediate cylindrical wall 84A and an inner cylindrical wall 84B inside the casing. The upper end of the intermediate cylindrical wall 84A is coupled to the casing ceiling wall 83c, the lower end is coupled to the casing bottom wall 83b to form an outer annular flow path 85A, and the lower end of the inner cylindrical wall 84B is coupled to the casing bottom wall 83b. In addition, by forming a gap C with respect to the casing ceiling wall 83c, the intermediate annular channel 85B formed by the intermediate cylindrical wall 84A and the inner cylindrical wall 83B and the inner cylindrical wall interior 86 are communicated with each other via the gap C. ing. Moreover, in the 1st water introduction part 81 of the water introduction parts, the 1st high speed water flow which generate | occur | produced by attracting the sludge containing waste water w inside the processing tank 71 with the 1st high pressure pump 1P arrange | positioned near the apparatus 80 is carried out. W0 is supplied to the ejector 82 of the air introduction section, where air A is introduced as bubbles into the first high-speed water flow W0, and the high-speed water flow W1 into which the bubbles are introduced is supplied to the intermediate annular channel 85B from the tangential direction. Then, it is suddenly dropped from the upper end of the inner cylindrical wall 84B to the inner part 86 to collide with the casing bottom wall 83b, and is sucked from the inner cylindrical wall part 86 by the second high-pressure pump 2P and discharged at a high speed. The formed second high-speed water flow W2 is supplied from the tangential direction to the outer annular flow path 85A by the second introduction portion 87. The apparatus 80 further causes the water flows W1 and W2 to flow repeatedly in a circulation path formed by connecting the outer annular flow path 85A to the suction side of the first pump 1P via the pipe line p. The water cluster is refined and the sludge and organic matter in the stream are refined by shearing action and cavitation work in the intermediate annular flow path 85B and the outer annular flow path 85A and the collision with the casing bottom wall 83b. Then, the treated water W3 containing ultrafine bubbles is partially removed from the outer annular channel 85A in the water discharge part 89 and returned to the treatment tank 71.

また水流W1、W2を繰り返し循環する度合いは、隙間Cを大きくしたり、水排出部89における水排出量を減らしたり、第一水導入部81における水導入量を増やしたり、第一ポンプ1Pの吸引側の弁V1を絞ると共に管路pの弁V2を大きく開いて、またそれらを複合的に組み合わせて高めることができ、繰り返し循環する度合いを低下させる場合は、それらの逆の調節を行う。ケーシング83は、底壁83bを2段に分離しているが、底壁33bを中間と内部の円筒壁84A、84Bの下端レベルに統合できることは言うまでもない。筒壁同士が接触せずに流路85A、85Bを形成する程度に偏心状に中間と内部の円筒壁84A、84Bを設けることもできる。ケーシング外壁83aや、中間と内部の円筒壁84A、84Bは、平坦部等の曲率変更部を部分的に有したり、中間と内部の円筒壁84A、84Bに縦長のスリットを形成したりでき、当該部分での衝撃力や剪断力を高めるように構成できる。   In addition, the degree to which the water flows W1 and W2 are repeatedly circulated increases the gap C, reduces the water discharge amount in the water discharge portion 89, increases the water introduction amount in the first water introduction portion 81, and the first pump 1P. When the valve V1 on the suction side is throttled and the valve V2 of the pipe line p is opened wide, and they can be combined and increased, and the degree of repeated circulation is reduced, the reverse adjustment is performed. The casing 83 separates the bottom wall 83b into two stages, but it goes without saying that the bottom wall 33b can be integrated with the lower end levels of the intermediate and inner cylindrical walls 84A and 84B. The intermediate and inner cylindrical walls 84A and 84B can be provided eccentrically so that the flow paths 85A and 85B are formed without contacting the cylindrical walls. The casing outer wall 83a and the intermediate and inner cylindrical walls 84A and 84B can partially have a curvature changing portion such as a flat portion, or can form a vertically long slit in the intermediate and inner cylindrical walls 84A and 84B. It can comprise so that the impact force and shear force in the said part may be raised.

超微細化された汚泥と有機物を含有した廃水は、図1に示すように、ポンプP6によって処理槽71から発酵促進槽90に移送された後で、発酵促進槽90内では、発酵菌培養装置95から大量の発酵菌が供給されて、気泡も超微細化されて大量に含んで溶解酸素量の多い廃水中の超微細汚泥に対して接触酸化と好気性発酵とが飛躍的に促進され、汚泥と有機物が大量に処理される。発酵促進を3日間に渡って行うバッチ方式が好ましいが、連続運転も可能である。発酵菌培養装置95は、ラクトバチルス菌などの発酵菌種を収容した種菌タンク96と、糖蜜を含む添加物を収容した添加物タンク97と、上水の供給を受け、高圧ポンプP9で発生された高速水流の衝撃力と大きな水流速度差による剪断力と気泡破裂の超音波とによって水のクラスタを微細化する水超微細化装置98(上記超微細化装置72、80の構造をとることができる)と、種菌タンク96から発酵菌種が、添加物タンク97から添加物が、水微細化装置98から超微細化されたクラスタの水がそれぞれ供給されて発酵菌を大量に培養する発酵菌種菌の培養タンク99とから構成されている。培養発酵菌はポンプP10によって上記発酵促進槽90に供給される。発酵菌としては、現地で採取したラクトバチルス菌、乳酸菌、酵母菌、酪酸菌、納豆菌等が一般加えられ、更に共生関係を取る光合成菌も添加される。光合成菌は、発酵菌と互いに必要とする物質を供給しあって培養を早めてくれる。   As shown in FIG. 1, the waste water containing ultrafine sludge and organic matter is transferred from the treatment tank 71 to the fermentation promotion tank 90 by the pump P6, and then in the fermentation promotion tank 90, the fermentation bacteria culture apparatus. A large amount of fermentative bacteria is supplied from 95, and the catalytic oxidation and aerobic fermentation are dramatically promoted against ultrafine sludge in wastewater containing a large amount of bubbles and containing a large amount of dissolved oxygen, A large amount of sludge and organic matter are processed. A batch system in which the fermentation is accelerated for 3 days is preferable, but continuous operation is also possible. The fermenter culturing apparatus 95 is supplied by an inoculum tank 96 containing a fermenter species such as Lactobacillus, an additive tank 97 containing an additive containing molasses, and clean water, and is generated by a high-pressure pump P9. The water ultrafine refiner 98 (which has the structure of the ultrafine refiners 72 and 80 described above) that refines the water cluster by the shear force due to the impact force of the high-speed water flow, the large water flow velocity difference, and the ultrasonic waves of bubble bursting. Fermenting bacteria that culture fermenting bacteria in large quantities by supplying fermenting bacterial species from the inoculating tank 96, additives from the additive tank 97, and ultra-miniaturized water from the water refining device 98, respectively. It comprises a culture tank 99 for inoculum. The cultured fermented bacteria are supplied to the fermentation promoting tank 90 by the pump P10. As fermentative bacteria, Lactobacillus bacteria, lactic acid bacteria, yeasts, butyric acid bacteria, natto bacteria, etc. collected in the field are generally added, and photosynthetic bacteria taking a symbiotic relationship are also added. The photosynthetic bacteria supply the necessary substances with the fermenting bacteria to speed up the culture.

以上の説明で明らかなように、本発明においては、高速旋回流、好ましくは少なくとも8m/秒、より好ましくは30〜50m/秒程度の高速旋回流で供給汚泥を数ミクロンレベルまで微細化することにより発酵の促進を図るものであるが、上記微細化処理が行われない場合と比較すると、本発明では最終的に汚泥が消滅する効果が得られた。従来の微細化処理を行わない場合では焼却処理が必要であったのに比して、顕著な汚泥減容処理が実現できる。   As is clear from the above description, in the present invention, the supplied sludge is refined to a level of several microns with a high-speed swirling flow, preferably at least 8 m / sec, more preferably about 30-50 m / sec. However, compared with the case where the above-mentioned refinement process is not performed, the present invention has the effect of finally eliminating sludge. When the conventional refinement process is not performed, a remarkable sludge volume reduction process can be realized as compared with the case where the incineration process is necessary.

本発明の代表的な実施形態の有機物を含有した廃水の処理設備の概略説明線図。The schematic explanatory drawing of the treatment facility of the wastewater containing the organic substance of typical embodiment of this invention. 同曝気処理設備の第一形態の超微細化装置の構成を示す部分断面の概略説明立面図。The rough explanatory elevation view of the partial cross section which shows the structure of the ultrafine-fabrication apparatus of the 1st form of the aeration processing equipment. 同曝気処理設備の第二形態の超微細化装置の構成を示す部分断面の概略説明立面図。The rough explanatory elevation view of the partial cross section which shows the structure of the ultrafine-fabrication apparatus of the 2nd form of the aeration processing equipment.

符号の説明Explanation of symbols

1:有機物を含有した廃水の処理設備
10:前処理部(沈砂槽)
20:調整槽
21:水中撹拌機
25:流量計槽
30:曝気部
31:第一曝気槽
33:曝気撹拌装置
34:返送流量調整装置
35:第二曝気槽
36:膜瀘過装置
40:放水部
41:pH計
42:pH調節装置
43:消毒薬注入装置
50:汚泥槽(汚泥濃縮槽)
51:ブロワー
52:エアーリフト
55:汚泥貯留槽
71:処理槽
72:第一形態の超微細化装置
73b:ケーシング底壁
74:内部円筒壁
75:環状流路
76:内部円筒壁の内部
80:第二形態の超微細化装置
82:空気導入部
83b:ケーシング底壁
84A:中間円筒壁
84B:内部円筒壁
85A:外環状流路
85B:中間環状流路
90:発酵促進槽
95:発酵菌培養装置
P1:ポンプ
P2:汚泥引き抜きポンプ
P3:汚泥引き抜きポンプ
P4:処理水引き抜きポンプ
WW:廃水
W3:処理水
1: Treatment facility for waste water containing organic substances 10: Pretreatment section (sand-sink tank)
20: Adjustment tank 21: Underwater stirrer 25: Flow meter tank 30: Aeration unit 31: First aeration tank 33: Aeration agitation device 34: Return flow rate adjustment device 35: Second aeration tank 36: Membrane filtration device 40: Water discharge Unit 41: pH meter 42: pH controller 43: Disinfectant injection device 50: Sludge tank (sludge concentration tank)
51: Blower 52: Air lift 55: Sludge storage tank 71: Treatment tank 72: Ultrafine refinement device 73b of the first form: Casing bottom wall 74: Internal cylindrical wall 75: Annular channel 76: Inside of the internal cylindrical wall 80: Second embodiment of ultrafine device 82: air introduction part 83b: casing bottom wall 84A: intermediate cylindrical wall 84B: inner cylindrical wall 85A: outer annular channel 85B: intermediate annular channel 90: fermentation promotion tank 95: fermentation bacteria culture Apparatus P1: Pump P2: Sludge extraction pump P3: Sludge extraction pump P4: Treated water extraction pump WW: Waste water W3: Treated water

Claims (13)

下水や食品加工場からの排水などの有機物を含有した廃水の供給を受けて、沈砂及び/又は瀘過を行う前処理部と、
前処理された廃水の供給を受けて、曝気処理する曝気部と、
曝気処理された廃水の供給を受けて、放水処理して放水する放水部と、
前記の前処理部と曝気部と放水部の内の少なくとも一つの底部から汚泥引き抜きポンプによって汚泥が供給される汚泥槽と、
該汚泥槽から残留汚泥の供給を受けて、残留汚泥の処理を行う残留汚泥処理部とを有した有機物を含有した廃水の処理設備において、
前記残留汚泥処理部は、前記汚泥槽から汚泥引き抜きポンプによって汚泥が供給されると共に高速旋回流を起こして、その高速旋回流の少なくとも剪断作用によって供給汚泥を超微細化処理する汚泥超微細化部と、
該汚泥超微細化部から超微細化処理された超微細汚泥の供給を受けると共に発酵菌の供給を受けて発酵を促進して発酵液を前記曝気部に供給する発酵促進槽とを有していることを特徴とする有機物を含有した廃水の処理設備。
A pre-treatment unit that receives sandwater and wastewater containing organic matter such as wastewater from food processing plants, and performs sedimentation and / or filtration;
An aeration unit that receives a supply of pretreated wastewater and performs aeration treatment;
A water discharge unit that receives the supply of aerated wastewater, discharges the water, and discharges the water;
A sludge tank in which sludge is supplied by a sludge extraction pump from at least one bottom of the pretreatment part, the aeration part and the water discharge part,
In the wastewater treatment facility containing organic matter having a residual sludge treatment section that receives residual sludge supplied from the sludge tank and processes the residual sludge,
The residual sludge treatment section is a sludge ultrafine refinement section that is supplied with sludge by a sludge extraction pump from the sludge tank and causes a high-speed swirling flow to ultrafine-fine the supplied sludge by a shearing action of the high-speed swirling flow When,
A fermentation accelerating tank that receives the supply of ultrafine sludge that has been subjected to ultrafine treatment from the sludge ultrafine refinement section and that receives the supply of fermentation bacteria to promote fermentation and supply the fermentation liquor to the aeration section Wastewater treatment equipment containing organic substances characterized by
前記超微細化処理により供給汚泥を数ミクロンレベルにまで微細化する請求項1記載の処理設備。   The treatment equipment according to claim 1, wherein the supplied sludge is refined to a level of several microns by the ultra-miniaturization treatment. 前記高速旋回流が少なくとも8m/秒である請求項1記載の処理設備。   The processing facility according to claim 1, wherein the high-speed swirling flow is at least 8 m / sec. 更に、前記曝気部の前に前記前処理部から廃水の供給を受けて、水中撹拌機によって廃水を撹拌する調整槽と、該調整槽からポンプによって調整廃水の供給を受けて所定流量を曝気部に供給する流量計槽とが設けられている請求項1記載の処理設備。   In addition, the aeration unit receives wastewater from the pretreatment unit before the aeration unit, and agitates the wastewater by an underwater agitator, and receives the regulated wastewater supply from the adjustment tank by a pump. The processing equipment according to claim 1, further comprising a flow meter tank to be supplied to the apparatus. 前記曝気部は、底部に汚泥引き抜きポンプと曝気撹拌装置とを有すると共に槽外に返送流量調整装置を有し、発酵液が前記発酵促進槽から供給される第一曝気槽と、底部に汚泥引き抜きポンプと曝気撹拌装置とを有すると共に出口に膜瀘過装置を有した第二曝気槽とから構成されている請求項1記載の処理設備。   The aeration section has a sludge extraction pump and an aeration stirrer at the bottom and a return flow rate adjustment device outside the tank, and a first aeration tank to which the fermentation liquid is supplied from the fermentation promotion tank, and a sludge extraction at the bottom. The processing equipment according to claim 1, comprising a second aeration tank having a pump and an aeration stirring device and having a membrane filtration device at the outlet. 前記放水部は、底部に処理水引き抜きポンプを有し、該ポンプによって処理水を逆洗水として前記膜瀘過装置に供給すると共に返送水として前記流量計槽に供給し、また水面近くにpH計及びpH調節装置と消毒薬注入装置とを有している請求項1記載の処理設備。   The water discharge unit has a treated water extraction pump at the bottom, and supplies the treated water as backwash water to the membrane filtration device and the returned water to the flow meter tank by the pump, and has a pH near the water surface. The processing facility according to claim 1, further comprising a meter, a pH control device, and a disinfectant injection device. 前記汚泥槽は、前記第一曝気槽から汚泥引き抜きポンプによって汚泥が供給されると共に、前記第二曝気槽から汚泥引き抜きポンプによって前記第一曝気槽の返送流量調整装置を経由して汚泥が供給される汚泥濃縮槽と、ブロワーから供給される空気力を利用するエアーリフトで前記汚泥濃縮槽から汚泥が供給される汚泥貯留槽とから構成されており、該汚泥貯留槽から汚泥引き抜きポンプによって前記汚泥超微細化部に汚泥が供給される請求項5記載の処理設備。   In the sludge tank, sludge is supplied from the first aeration tank by a sludge extraction pump, and sludge is supplied from the second aeration tank by a sludge extraction pump via the return flow rate adjusting device of the first aeration tank. A sludge concentration tank, and a sludge storage tank to which sludge is supplied from the sludge concentration tank by an air lift using air force supplied from a blower, and the sludge is extracted from the sludge storage tank by a sludge extraction pump. The processing equipment according to claim 5, wherein sludge is supplied to the ultrafine refinement section. 前記汚泥超微細化部は、処理槽と超微細化装置とから構成されており、また前記超微細化装置は、そのケーシングの外壁を円筒状に形成し、そのケーシング内部に同心状に、又は筒壁同士が接触せずに流路を形成する程度に偏心状に内部円筒壁を隔設し、内部円筒壁をケーシング底壁と結合し且つケーシング天井壁に対して隙間を形成することで、円筒状外壁と内部円筒壁とで形成した環状流路と内部円筒壁の内部とを前記隙間を介して連通しており、また第一ポンプによって前記処理槽から前記内部円筒壁の内部に汚泥を含有した第一高速度水流が供給され、次いで該内部円筒壁の内部から第二ポンプによって吸引されて高速度で吐出されて形成される汚泥を含有した第二高速度水流が第二水導入部において前記環状流路に供給されて、次いで前記内部円筒壁の上端からその内部に急激に落下されてケーシング底壁に激突させるようにしており、前記環状流路と前記内部円筒壁の内部に渡って形成した循環流路において水流中の汚泥の細胞膜を破壊し、汚泥の超微細化した処理水を前記環状流路から一部分抜いて前記処理槽に供給される構造を有している請求項1記載の処理設備。   The sludge ultrafine refinement unit is composed of a treatment tank and an ultrafine refiner, and the ultrafine refiner forms a cylindrical outer wall of the casing and concentrically within the casing, or By separating the inner cylindrical wall eccentrically so as to form a flow path without contacting the cylindrical walls, connecting the inner cylindrical wall with the casing bottom wall and forming a gap with respect to the casing ceiling wall, An annular flow path formed by a cylindrical outer wall and an inner cylindrical wall communicates with the inside of the inner cylindrical wall through the gap, and sludge is passed from the treatment tank to the inside of the inner cylindrical wall by a first pump. The second high-speed water flow containing the sludge formed by supplying the first high-speed water flow and then sucking it from the inside of the inner cylindrical wall and discharging it at a high speed In the annular channel, The inner cylindrical wall is suddenly dropped from the upper end of the inner cylindrical wall so as to collide with the bottom wall of the casing, and in the circulation channel formed over the annular channel and the inner cylindrical wall, The treatment facility according to claim 1, wherein the treatment facility has a structure in which sludge cell membranes are destroyed, and the treated water with ultrafine sludge is partially extracted from the annular channel and supplied to the treatment tank. 前記超微細化装置は、そのケーシングの外壁を円筒状に形成し、そのケーシング内部に同心状に、又は筒壁同士が接触せずに流路を形成する程度に偏心状に中間円筒壁と内部円筒壁の二つを隔設し、中間円筒壁をケーシング天井壁とケーシング底壁に結合して外環状流路を形成し、内部円筒壁をケーシング底壁と結合し且つケーシング天井壁に対して隙間を形成することで、中間円筒壁と内部円筒壁とで形成した中間環状流路と内部円筒壁の内部とを前記隙間を介して連通しており、また前記処理槽から第一水導入部において、第一ポンプによって発生された汚泥を含有した第一高速度水流が空気導入部に供給されて、そこで空気が第一高速度水流に気泡として導入され、該気泡の導入された第一高速度水流は前記中間環状流路に供給され、次いで前記内部円筒壁の上端からその内部に急激に落下されてケーシング底壁に激突させ、また該内部円筒壁の内部から第二ポンプによって吸引されて高速度で吐出されて形成される汚泥を含有した第二高速度水流が第二水導入部において前記外環状流路に供給されるようにして、更に該外環状流路を前記第一ポンプの吸引側に管路を介して接続して形成される循環路を流れるようにされ、この循環路を成す前記中間環状流路及び前記外環状流路での剪断作用と前記ケーシング底壁への激突とによって水中の汚泥の細胞膜を破壊して超微細化し、超微細化された汚泥を含有した処理水が前記外環状流路から一部分抜かれて前記処理槽に導かれる構造を有している請求項8記載の処理設備。   The ultra-miniaturization apparatus has an outer wall of the casing formed in a cylindrical shape, and is formed concentrically inside the casing or in an eccentric shape so as to form a flow path without contact between the cylindrical walls. Two cylindrical walls are spaced apart, the intermediate cylindrical wall is joined to the casing ceiling wall and the casing bottom wall to form an outer annular flow path, the inner cylindrical wall is joined to the casing bottom wall and to the casing ceiling wall By forming the gap, the intermediate annular flow path formed by the intermediate cylindrical wall and the inner cylindrical wall communicates with the inside of the inner cylindrical wall via the gap, and the first water introduction section from the treatment tank The first high-speed water stream containing sludge generated by the first pump is supplied to the air introduction section, where air is introduced into the first high-speed water stream as bubbles, and the first high-speed water into which the bubbles have been introduced is introduced. A velocity water stream is supplied to the intermediate annular channel, Contains sludge that is suddenly dropped into the inside of the inner cylindrical wall from the upper end of the inner cylindrical wall and collides with the bottom wall of the casing, and is sucked from the inner cylindrical wall by the second pump and discharged at a high speed. The second high-speed water flow is supplied to the outer annular flow channel at the second water introduction portion, and further formed by connecting the outer annular flow channel to the suction side of the first pump via a conduit. The cell membrane of the sludge in the water is destroyed by the shearing action in the intermediate annular passage and the outer annular passage and the collision with the casing bottom wall. The treatment equipment according to claim 8, wherein the treatment water containing refined and ultrafine sludge is partially extracted from the outer annular channel and guided to the treatment tank. 前記空気導入部は、高速度水流を利用したエジェクターから構成されている請求項9記載の処理設備。   The processing equipment according to claim 9, wherein the air introduction unit is configured by an ejector using a high-speed water flow. 前記装置ケーシング内部において筒壁で限定された環状流路内に供給される高速度の水流は、該環状流路に接線方向から供給される請求項9又は10に記載の処理設備。   The processing equipment according to claim 9 or 10, wherein a high-speed water flow supplied into an annular flow path defined by a cylindrical wall inside the apparatus casing is supplied to the annular flow path from a tangential direction. 前記筒壁は、平坦部等の曲率変更部を部分的に有している請求項8又は9に記載の処理設備。   The processing equipment according to claim 8 or 9, wherein the cylindrical wall partially has a curvature changing portion such as a flat portion. 前記発酵促進槽は、発酵菌培養装置から連続的に、又は間欠的に発酵菌の供給を受ける請求項1記載の処理設備。

The processing equipment according to claim 1, wherein the fermentation accelerating tank receives supply of fermenting bacteria continuously or intermittently from a fermentation bacteria culture apparatus.

JP2004222056A 2004-07-29 2004-07-29 Wastewater treatment equipment containing organic matter Expired - Fee Related JP4358058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004222056A JP4358058B2 (en) 2004-07-29 2004-07-29 Wastewater treatment equipment containing organic matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004222056A JP4358058B2 (en) 2004-07-29 2004-07-29 Wastewater treatment equipment containing organic matter

Publications (2)

Publication Number Publication Date
JP2006035165A true JP2006035165A (en) 2006-02-09
JP4358058B2 JP4358058B2 (en) 2009-11-04

Family

ID=35900723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004222056A Expired - Fee Related JP4358058B2 (en) 2004-07-29 2004-07-29 Wastewater treatment equipment containing organic matter

Country Status (1)

Country Link
JP (1) JP4358058B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008136984A (en) * 2006-12-05 2008-06-19 Fuji Electric Holdings Co Ltd Methane fermentation treatment apparatus
JP2009028673A (en) * 2007-07-30 2009-02-12 Miike Iron Works Co Ltd Apparatus for reducing sludge volume
JP2009039638A (en) * 2007-08-08 2009-02-26 Nishimatsu Constr Co Ltd Sludge volume reducing method and apparatus
CN106746421A (en) * 2017-03-20 2017-05-31 陕西延长石油(集团)有限责任公司 A kind of oil field slurry containing oil treating device
CN112255062A (en) * 2020-10-19 2021-01-22 林惠明 Soil soluble salt detection device and detection method
CN113480112A (en) * 2021-08-24 2021-10-08 航天环境工程有限公司 Wastewater treatment device based on pneumatic desulfurization unit and application
CN114180740A (en) * 2021-12-14 2022-03-15 广州珠水生态环境技术有限公司 Sewage treatment device capable of reducing odor emission
CN114804446A (en) * 2022-06-10 2022-07-29 山东华芯环保科技有限公司 Geothermal supply wastewater treatment circulating system and wastewater treatment method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008136984A (en) * 2006-12-05 2008-06-19 Fuji Electric Holdings Co Ltd Methane fermentation treatment apparatus
JP2009028673A (en) * 2007-07-30 2009-02-12 Miike Iron Works Co Ltd Apparatus for reducing sludge volume
JP2009039638A (en) * 2007-08-08 2009-02-26 Nishimatsu Constr Co Ltd Sludge volume reducing method and apparatus
CN106746421A (en) * 2017-03-20 2017-05-31 陕西延长石油(集团)有限责任公司 A kind of oil field slurry containing oil treating device
CN112255062A (en) * 2020-10-19 2021-01-22 林惠明 Soil soluble salt detection device and detection method
CN113480112A (en) * 2021-08-24 2021-10-08 航天环境工程有限公司 Wastewater treatment device based on pneumatic desulfurization unit and application
CN113480112B (en) * 2021-08-24 2022-05-17 航天环境工程有限公司 Wastewater treatment device based on pneumatic desulfurization unit and application
CN114180740A (en) * 2021-12-14 2022-03-15 广州珠水生态环境技术有限公司 Sewage treatment device capable of reducing odor emission
CN114180740B (en) * 2021-12-14 2022-11-08 广州珠水生态环境技术有限公司 Sewage treatment device capable of reducing odor emission
CN114804446A (en) * 2022-06-10 2022-07-29 山东华芯环保科技有限公司 Geothermal supply wastewater treatment circulating system and wastewater treatment method

Also Published As

Publication number Publication date
JP4358058B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
AU2010293066B2 (en) System and method for enhancing a wastewater treatment process
CN101434444B (en) Membrane bioreactor and use thereof in wastewater treatment
CN106698856A (en) Comprehensive treatment system for fermented antibiotic pharmaceutical wastewater
KR20120005857A (en) Plant for treatment waste water
JP6497871B2 (en) Method and apparatus for treating oil-containing wastewater
CN1208262C (en) High concentration oxganic effluent treatment composite process and its equipment
JP4358058B2 (en) Wastewater treatment equipment containing organic matter
JP4402604B2 (en) Sewage treatment equipment containing urine, etc.
CN108609812A (en) A kind of method for processing organic wastewater
JPH10118686A (en) Aeration tank of organic wastewater and aeration treatment apparatus using the same
JP2007044566A (en) Treatment system of sewage containing night soil, organic sludge and the like
US20210198132A1 (en) Methods and apparatuses for water, wastewater, and waste treatment
CN212222760U (en) Beer wastewater treatment system
CN210261475U (en) Rural domestic sewage rewet processing apparatus
CN210340470U (en) Novel biological aerated filter
KR101134037B1 (en) Apparatus for processing polluted water containing organic material
CN210176666U (en) Domestic waste filtration liquid high efficiency treatment all-in-one
JP3854269B2 (en) Sewage treatment equipment
JP4402564B2 (en) Sewage treatment equipment
CN111704325A (en) Beer wastewater treatment system
JP2006326387A (en) Aeration tank structure
JP4536396B2 (en) Water bottom and / or water sludge treatment facility
CN212687860U (en) Soybean product wastewater biochemical treatment system
JP5022128B2 (en) Sludge volume reduction equipment
CN211339198U (en) Integrated double-membrane sewage treatment device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees