JP2006029255A - Vibration compressor - Google Patents

Vibration compressor Download PDF

Info

Publication number
JP2006029255A
JP2006029255A JP2004211393A JP2004211393A JP2006029255A JP 2006029255 A JP2006029255 A JP 2006029255A JP 2004211393 A JP2004211393 A JP 2004211393A JP 2004211393 A JP2004211393 A JP 2004211393A JP 2006029255 A JP2006029255 A JP 2006029255A
Authority
JP
Japan
Prior art keywords
yoke
piston
cylinder
casing
vibration compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004211393A
Other languages
Japanese (ja)
Inventor
Kentaro Toyama
健太郎 外山
Keiji Oshima
恵司 大嶋
Satoyuki Matsushita
智行 松下
Yoshinori Mizoguchi
義則 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2004211393A priority Critical patent/JP2006029255A/en
Publication of JP2006029255A publication Critical patent/JP2006029255A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase the accuracy of clearance seal in a vibration compressor provided with a clearance seal between a cylinder and a piston. <P>SOLUTION: In a vibration compressor including a cylinder 4 and a piston 6 inserted in the cylinder 4 via a gap 7 forming the clearance seal and forming a compression space 8 for working gas in the cylinder 4, the cylinder 4 is fitted to a yoke 1, and a support spring 12 reciprocatably supporting the piston 6 in a cantilever style is fastened on an end surface of the yoke 1. Aligning accuracy of the cylinder 5 and the piston 6 can be easily maintained and accuracy of the clearance seal 7 is improved by fastening the support spring 12 supporting the piston 6 to the yoke 1 having the cylinder 4 fitted. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、パルスチューブ冷凍機などの極低温冷凍機に作動ガスの振動流を供給するピストン型の振動圧縮機に関する。     The present invention relates to a piston-type vibration compressor that supplies an oscillating flow of working gas to a cryogenic refrigerator such as a pulse tube refrigerator.

上記振動圧縮機として、クリアランスシールを形成する隙間を介してシリンダに挿入されたピストンを支持ばねに軸方向に往復運動可能に片持ち支持させ、このピストンを駆動子コイルと環状の永久磁石とからなるリニア駆動部により往復運動させ、シリンダ内に形成された圧縮空間の作動ガスを圧縮させるものがある。リニア駆動部は、継鉄により形成される環状空間内に配置される。作動ガスの圧縮熱は、クリアランスシールを介して作動ガスの圧縮空間に通じるガス室の作動ガスから筐体に伝達され、熱伝導率の高い材料からなる筐体から外気に放熱される。この種の振動圧縮機については、例えば特許文献1に記載されている。
特開2002−13475号公報
As the vibration compressor, a piston inserted into a cylinder through a gap forming a clearance seal is cantilevered by a support spring so as to be able to reciprocate in the axial direction. There is one that reciprocates by a linear drive unit to compress the working gas in the compression space formed in the cylinder. A linear drive part is arrange | positioned in the annular space formed of a yoke. The compression heat of the working gas is transmitted from the working gas in the gas chamber communicating with the working gas compression space to the casing through the clearance seal, and is radiated from the casing made of a material having high thermal conductivity to the outside air. This type of vibration compressor is described in Patent Document 1, for example.
JP 2002-13475 A

シリンダとピストンとの間にクリアランスシールを設けた上記振動圧縮機は、ピストンがシリンダに接触しないため、磨耗や発熱が生じないという利点がある。しかしながら、この利点を生かすためにはクリアランスシールの寸法精度を厳密に管理する必要があり、シリンダによりピストンを摺動案内させる構造のものに比べて高い芯出し精度が必要である。   The above-described vibration compressor in which a clearance seal is provided between the cylinder and the piston has an advantage that the piston does not come into contact with the cylinder and therefore wear and heat generation do not occur. However, in order to take advantage of this advantage, it is necessary to strictly control the dimensional accuracy of the clearance seal, and higher centering accuracy is required as compared with the structure in which the piston is slidably guided by the cylinder.

その場合、特許文献1の振動圧縮機においては、支持ばねを介してピストンを支持する継鉄がシリンダを兼ねる筐体に締結される構造であるため、ピストンと支持ばね、支持ばねと継鉄、継鉄と筐体との間のそれぞれ組立精度が集積され、ピストンとシリンダとの間の芯出し精度が出しにくい。また、筐体には通常、放熱性の要求からアルミニウムや銅などの熱伝導率の高い材料が用いられるが、これらの材料は熱膨張率が大きく、圧縮熱による筐体の熱膨張によりクリアランスシールが変化しやすいという問題がある。   In that case, in the vibration compressor of Patent Document 1, since the yoke that supports the piston is fastened to the casing that also serves as the cylinder via the support spring, the piston and the support spring, the support spring and the yoke, The assembly accuracy between the yoke and the housing is integrated, and the centering accuracy between the piston and the cylinder is difficult to achieve. In addition, high thermal conductivity materials such as aluminum and copper are usually used for the housing because of heat dissipation requirements, but these materials have a large coefficient of thermal expansion, and clearance seals are generated by the thermal expansion of the housing due to compression heat. There is a problem that is easy to change.

この発明の課題は、シリンダとピストンとの間にクリアランスシールを設けた振動圧縮機において、クリアランスシールの精度の向上を容易にし、併せて放熱性を高めることにある。   SUMMARY OF THE INVENTION An object of the present invention is to easily improve the accuracy of a clearance seal and improve heat dissipation in a vibration compressor in which a clearance seal is provided between a cylinder and a piston.

上記課題を解決するために、この発明の振動圧縮機は、一端が開放した環状空間を有する二重円筒状の継鉄と、この継鉄に嵌め込まれたシリンダと、このシリンダにクリアランスシールを形成する隙間を介して挿入され、前記シリンダ内に作動ガスの圧縮空間を形成するピストンと、前記継鉄の周囲に配置された筐体と、前記ピストンに連結され前記継鉄の環状空間に軸方向に可動的に挿入された駆動子コイルと、前記継鉄に嵌め込まれ前記駆動子コイルに磁界を作用させる環状の永久磁石と、前記継鉄の端面に締結され前記ピストンを軸方向に往復運動可能に片持ち支持する支持ばねと、前記筐体の端面に接合され、この筐体とともに前記隙間を介して前記圧縮空間に通じるガス室を形成するカバーとを備え、前記駆動子コイルに交番電流が通流されると、前記ピストンを往復運動させて前記ガス室内の作動ガスを前記圧縮空間で圧縮し、この圧縮ガスを前記筐体に形成されたガス流路を介して外部機器に供給するものとする(請求項1)。   In order to solve the above problems, a vibration compressor according to the present invention includes a double cylindrical yoke having an annular space open at one end, a cylinder fitted into the yoke, and a clearance seal formed on the cylinder. A piston that forms a compressed space for the working gas in the cylinder, a casing disposed around the yoke, and an axial direction connected to the piston and in the annular space of the yoke A mover coil movably inserted into the yoke, an annular permanent magnet that is fitted in the yoke and applies a magnetic field to the drive coil, and is fastened to the end face of the yoke to allow the piston to reciprocate in the axial direction. A support spring that is cantilever-supported and a cover that is joined to the end face of the casing and forms a gas chamber that communicates with the casing through the gap together with the casing, and an alternating current is supplied to the driver coil. When flowed, the piston is reciprocated to compress the working gas in the gas chamber in the compression space, and the compressed gas is supplied to an external device through a gas flow path formed in the housing. (Claim 1).

請求項1の発明によれば、継鉄にシリンダが嵌め込まれるとともに、この継鉄にピストンを支持する支持ばねが締結されるため、シリンダとピストンの芯出し精度が得やすく、クリアランスシールの精度が高くなる。   According to the first aspect of the present invention, the cylinder is fitted into the yoke, and the support spring for supporting the piston is fastened to the yoke. Get higher.

請求項1の発明において、前記継鉄、ピストン及びシリンダを同一材料又は熱膨張率が互いに近似する材料で構成するのがよい(請求項2)。これにより、作動ガスの圧縮熱によるピストンとシリンダの熱膨張が略同じになり、クリアランスシールの変化が小さくなる。   In the invention of claim 1, the yoke, the piston and the cylinder are preferably made of the same material or materials having similar thermal expansion coefficients (invention 2). Thereby, the thermal expansion of the piston and the cylinder due to the compression heat of the working gas becomes substantially the same, and the change in the clearance seal becomes small.

請求項1の発明において、一対の前記ピストンを互いに対向させて設け、その間に前記圧縮空間を形成することができるが、その場合には一対のピストンの前記シリンダを一体に構成するのがよい(請求項3)。これにより、対向するピストン間でのクリアランスシールのばらつきが小さくなるとともに、高精度を必要とする部品の点数が少なくなり組立精度が高くなる。   In the first aspect of the present invention, the pair of pistons may be provided to face each other, and the compression space may be formed therebetween. In this case, the cylinders of the pair of pistons may be configured integrally ( Claim 3). As a result, the variation in the clearance seal between the opposing pistons is reduced, the number of parts requiring high accuracy is reduced, and the assembly accuracy is increased.

請求項1の発明において、前記作動ガスと接触する前記筐体の内周面に、軸方向の条溝を多数設けるとよい(請求項4)。これにより、筐体とガス室内の作動ガスとの接触面積を増やし、放熱性を高めることができる。その場合、内周面に軸方向の多数の条溝を有する円筒体を前記筐体の内側に嵌め込むようにしてもよい(請求項5)。   In the first aspect of the present invention, a number of axial grooves may be provided on the inner peripheral surface of the casing that contacts the working gas. Thereby, the contact area of a housing | casing and the working gas in a gas chamber can be increased, and heat dissipation can be improved. In this case, a cylindrical body having a large number of axial grooves on the inner peripheral surface may be fitted inside the casing (Claim 5).

請求項1の発明において、前記筐体とカバーとの間に円筒状の継手を介挿し、この継手と前記筐体とを摩擦圧接又は摩擦攪拌接合により接合し、またこの継手と前記カバーとを溶接により接合するとよい(請求項6)。筐体には熱伝導率の高いアルミニウムや銅を用い、カバーには加工性のよいステンレスを用いるのがよいが、アルミニウムや銅とステンレスとを直接溶接することは困難である。そこで、筐体とカバーとの間にカバーとの間の溶接性の良好なステンレス等の円筒状の継手を介挿して、この継手を摩擦圧接又は摩擦攪拌接合により筐体に接合し、筐体への内蔵部品の組み付け後に、継手にカバーを溶接により接合するのがよい。   In the invention of claim 1, a cylindrical joint is inserted between the casing and the cover, the joint and the casing are joined by friction welding or friction stir welding, and the joint and the cover are joined together. It is good to join by welding (Claim 6). Although aluminum or copper having high thermal conductivity is preferably used for the casing and stainless steel having good workability is preferably used for the cover, it is difficult to directly weld aluminum or copper and stainless steel. Therefore, a cylindrical joint made of stainless steel or the like with good weldability between the cover and the cover is inserted between the casing and the cover, and the joint is joined to the casing by friction welding or friction stir welding. After assembling the built-in parts, the cover should be joined to the joint by welding.

この発明によれば、シリンダとピストンとの間に高精度のクリアランスシールが得られ、ピストンのシリンダとの接触による磨耗や発熱が確実に回避されるとともに、高い圧縮効率が得られる。また、筐体と作動ガスとの接触面積の増大により作動ガスの圧縮熱や駆動子コイルの銅損による発生熱の放熱性が向上する。   According to the present invention, a high-precision clearance seal is obtained between the cylinder and the piston, and wear and heat generation due to contact of the piston with the cylinder are surely avoided and high compression efficiency is obtained. Further, the heat dissipation of heat generated by the compression heat of the working gas and the copper loss of the driver coil is improved by increasing the contact area between the housing and the working gas.

以下、図1〜図4に基づいて、この発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to FIGS.

図1は、この発明の実施例1を示す振動圧縮機の縦断面図である。なお、図示振動圧縮機は対向する一対のピストンが互いに反対方向に往復運動をする復動式圧縮機なので、左右対称部分については、その一方について説明する。さて、図1において、1は左右一対の継鉄で、中空の円筒体内に一端が開放した環状空間2を有する二重円筒状に形成されている。継鉄1には、渦電流の発生を抑えるための溝が、放射状に多数切り込み形成されている。3は継鉄1の周囲に配置された左右一体の筐体で、中空円筒体の左右中心に隔壁3aを有する縦断面エ字状に形成され、左右空間内に継鉄1が同心的に収められている。継鉄1と筐体3の中心穴には、左右一体のシリンダ4が環状パッキン(Oリング)5を介して嵌め込まれ、これにより継鉄1と筐体3の同心性が保たれている。   FIG. 1 is a longitudinal sectional view of a vibration compressor showing Embodiment 1 of the present invention. Since the illustrated vibration compressor is a reciprocating compressor in which a pair of opposed pistons reciprocate in opposite directions, one of the left and right symmetrical portions will be described. In FIG. 1, reference numeral 1 denotes a pair of left and right yokes, which are formed in a double cylindrical shape having an annular space 2 with one end opened in a hollow cylindrical body. The yoke 1 is formed with a large number of radially cut grooves for suppressing the generation of eddy currents. Reference numeral 3 denotes a left and right integral housing disposed around the yoke 1, which is formed in a vertical cross-sectional shape having a partition wall 3a at the left and right centers of the hollow cylindrical body, and the yoke 1 is concentrically accommodated in the left and right spaces. It has been. In the center hole of the yoke 1 and the housing 3, a left and right integrated cylinder 4 is fitted via an annular packing (O-ring) 5, whereby the concentricity of the yoke 1 and the housing 3 is maintained.

シリンダ4には、左右一対のピストン6がクリアランスシールを形成する隙間7を介して互いに対向するように挿入され、ピストン6,6間に作動ガスの圧縮空間8が形成されている。圧縮空間8は、シリンダ4の穴4aを介して、筐体3の隔壁3aに半径方向にあけられたガス流路3bに通じている。継鉄1の環状空間2内には、駆動子コイル9が軸方向に可動的に挿入され、この駆動子コイル9はピストン6に固定されたボビン10に巻回されている。継鉄1内の環状空間2の内側には、駆動子コイル9を隙間を介して囲むように、環状の永久磁石11が嵌め込まれている。この永久磁石11と駆動子コイル9とは、後述するようにピストン6を往復駆動するリニア駆動部を構成する。   A pair of left and right pistons 6 are inserted into the cylinder 4 so as to oppose each other through a gap 7 that forms a clearance seal, and a working gas compression space 8 is formed between the pistons 6 and 6. The compression space 8 communicates with the gas flow path 3 b formed in the radial direction in the partition wall 3 a of the housing 3 through the hole 4 a of the cylinder 4. In the annular space 2 of the yoke 1, a driver coil 9 is movably inserted in the axial direction, and this driver coil 9 is wound around a bobbin 10 fixed to the piston 6. An annular permanent magnet 11 is fitted inside the annular space 2 in the yoke 1 so as to surround the driver coil 9 via a gap. The permanent magnet 11 and the driver coil 9 constitute a linear drive unit that reciprocally drives the piston 6 as will be described later.

ピストン6は前後一対の円形の支持ばね12により軸方向に往復運動可能に支持され、支持ばね12は継鉄1の端面にボルト13により固定されている。前後の支持ばね12は間隔管14により互いの間隔が規定され、リングナット15によりピストン6に締め付けられている。一方、筐体3の端面には円筒状の継手16を介してカバー17が接合され、カバー17は筐体3及び継手16とともに、隙間7を介して圧縮空間8に通じる密閉されたガス室18を形成している。駆動子コイル9には、端子19からリード線20を介して交番電流が通流される。   The piston 6 is supported by a pair of front and rear circular support springs 12 so as to be capable of reciprocating in the axial direction, and the support springs 12 are fixed to the end face of the yoke 1 by bolts 13. The front and rear support springs 12 are spaced from each other by a spacing tube 14 and are fastened to the piston 6 by a ring nut 15. On the other hand, a cover 17 is joined to the end surface of the housing 3 via a cylindrical joint 16, and the cover 17 together with the housing 3 and the joint 16 is a sealed gas chamber 18 that leads to the compression space 8 via the gap 7. Is forming. An alternating current is passed through the driver coil 9 from the terminal 19 through the lead wire 20.

ここで、継鉄1、シリンダ4及びピストン6には、同一材料又は熱膨張率が互いに近似する材料、例えば電磁ステンレス鋼(SUS403,430等)が用いられる。シリンダ4及びピストン6は、非磁性のステンレス鋼(SUS304,316等)あるいはチタンを用いてもよい。一方、筐体3には熱伝導率の高いアルミニウムあるいは銅が用いられる。また、継手16、カバー17には、加工性のよいステンレス鋼が適している。その場合、異種金属である筐体3(アルミニウムや銅)と継手16あるいはカバー17(ステンレス鋼)とを直接溶接することは一般に困難である。そこで、筐体3と継手16とは振動圧縮機の組立の前に、端面同士が摩擦圧接又は摩擦攪拌接合(FSW)により接合される。そして、カバー17は、振動圧縮機の組立の最後に、ビーム溶接などにより継手16に接合される。なお、継鉄1、シリンダ4、ピストン6の他の材料として、すべて軟鋼を用いてもよい。   Here, the yoke 1, the cylinder 4 and the piston 6 are made of the same material or materials having similar thermal expansion coefficients, for example, electromagnetic stainless steel (SUS403, 430, etc.). The cylinder 4 and the piston 6 may be made of nonmagnetic stainless steel (SUS304, 316 or the like) or titanium. On the other hand, the casing 3 is made of aluminum or copper having high thermal conductivity. For the joint 16 and the cover 17, stainless steel having good workability is suitable. In that case, it is generally difficult to directly weld the housing 3 (aluminum or copper), which is a different metal, and the joint 16 or the cover 17 (stainless steel). Therefore, the housing 3 and the joint 16 are joined to each other by friction welding or friction stir welding (FSW) before assembly of the vibration compressor. The cover 17 is joined to the joint 16 by beam welding or the like at the end of the assembly of the vibration compressor. In addition, you may use all mild steel as another material of the yoke 1, the cylinder 4, and the piston 6. FIG.

このような振動圧縮機において、永久磁石11のN極(外周側)から出た磁束は継鉄1を通り、駆動子コイル9が挿入された環状空間2を経てS極(内周側)に戻る。この磁気回路内に配置された左右の駆動子コイル9に互いに180度の位相差を持つ交流励磁電流を通流すると、永久磁石11が発生する磁界とコイル電流との間に働く電磁力により、各ピストン6は軸方向に互いに逆向きに往復運動をし、圧縮空間8の作動ガスを圧縮する。この圧縮ガスは、穴4a及びガス流路3bを通して、図示しないパルスチューブ冷凍機などの外部機器に供給される。なお、作動ガスの圧縮、駆動子コイル9の銅損等により生じる熱は、作動ガスを介して筐体3に熱伝達され、筐体3の外表面から大気に放熱される。   In such a vibration compressor, the magnetic flux emitted from the N pole (outer peripheral side) of the permanent magnet 11 passes through the yoke 1 and passes through the annular space 2 in which the driver coil 9 is inserted into the S pole (inner peripheral side). Return. When an AC exciting current having a phase difference of 180 degrees is passed through the left and right driver coils 9 arranged in the magnetic circuit, the electromagnetic force acting between the magnetic field generated by the permanent magnet 11 and the coil current is Each piston 6 reciprocates in the axial direction opposite to each other to compress the working gas in the compression space 8. The compressed gas is supplied to an external device such as a pulse tube refrigerator (not shown) through the hole 4a and the gas flow path 3b. The heat generated by the compression of the working gas, the copper loss of the driver coil 9, etc. is transferred to the housing 3 through the working gas and radiated from the outer surface of the housing 3 to the atmosphere.

図示実施例1によれば、継鉄1にシリンダ4が嵌め込まれるとともに、この継鉄1にピストン6を支持する支持ばね12が直に締結される簡素な構造のため、組立誤差の集積が少ない。従って、シリンダ4とピストン6との同心性が得やすく、隙間(クリアランスシール)7の精度が高くなる。また、継鉄1、シリンダ4及びピストン6には同一材料が用いられているため、各々の熱膨張が等しく、作動ガスの圧縮熱や駆動子コイル9の銅損により継鉄1、シリンダ4、ピストン6が加熱されることによるクリアランスシール7の変化も小さく抑えられる。更に、シリンダ4は一対のピストン6,6に共通に一体構成されているため、対向するピストン間でのクリアランスシール7のばらつきが小さくなり、加えて高精度を必要とする部品点数が少なくなり組立精度が高くなる。   According to the illustrated embodiment 1, the cylinder 4 is fitted into the yoke 1 and the support spring 12 that supports the piston 6 is directly fastened to the yoke 1 so that assembly errors are less accumulated. . Therefore, concentricity between the cylinder 4 and the piston 6 is easily obtained, and the accuracy of the gap (clearance seal) 7 is increased. Further, since the same material is used for the yoke 1, the cylinder 4 and the piston 6, the thermal expansion of each is equal, and the yoke 1, the cylinder 4, Changes in the clearance seal 7 due to the piston 6 being heated are also kept small. Further, since the cylinder 4 is integrally formed with the pair of pistons 6 and 6, the variation of the clearance seal 7 between the opposed pistons is reduced, and in addition, the number of parts requiring high accuracy is reduced and the assembly is reduced. Increases accuracy.

一方、筐体3とカバー17との間には、円筒状の継手16が介挿され、この継手16と筐体3とは摩擦圧接又は摩擦攪拌接合により接合され、継手16とカバー17とは溶接により接合されているため、筐体3と異種材料のカバー17も接合が容易、確実となり、ガス漏れのない強固な圧力容器が形成される。   On the other hand, a cylindrical joint 16 is inserted between the housing 3 and the cover 17. The joint 16 and the housing 3 are joined by friction welding or friction stir welding. Since they are joined by welding, the casing 3 and the cover 17 made of a different material can be easily and reliably joined, and a strong pressure vessel free from gas leakage is formed.

図2は実施例2を示す振動圧縮機の縦断面図、図3は図2における筐体の横断面図である。実施例2において、実施例1と相違するのは、作動ガスと接触する筐体3の内周面に、軸方向の条溝21が多数設けられている点である。作動ガスの圧縮や駆動子コイル9の銅損などにより発生する熱は、ガス室18の作動ガスを介して筐体3に伝達され、筐体3内を熱伝導した後、その外表面から大気に放熱される。そこで、図3に示すように、筐体3の内周面に軸方向の条溝21を多数設ければ、作動ガスとの接触面積が増え放熱性が向上する。条溝21は図3に示すように、筐体3に直接形成するのが熱伝導性の点で有利であるが、図4に示すように条溝21を有する市販の円管22を筐体3の内周面に嵌め込むようにすれば製作が容易になる。   FIG. 2 is a longitudinal sectional view of the vibration compressor showing the second embodiment, and FIG. 3 is a transverse sectional view of the casing in FIG. The second embodiment is different from the first embodiment in that a large number of axial grooves 21 are provided on the inner peripheral surface of the housing 3 that contacts the working gas. The heat generated by the compression of the working gas or the copper loss of the driver coil 9 is transmitted to the housing 3 through the working gas in the gas chamber 18, conducts heat inside the housing 3, and then flows from the outer surface to the atmosphere. Is dissipated. Therefore, as shown in FIG. 3, if a large number of axial grooves 21 are provided on the inner peripheral surface of the housing 3, the contact area with the working gas is increased and heat dissipation is improved. As shown in FIG. 3, it is advantageous in terms of thermal conductivity that the groove 21 is directly formed in the housing 3, but a commercially available circular tube 22 having the groove 21 is formed in the housing as shown in FIG. If it fits in the inner peripheral surface of 3, manufacture will become easy.

なお、図示実施の形態では対向する一対のピストンが180度の位相差で往復運動する複動型の振動圧縮機の例を示したが、この発明は単一のピストンを有する振動圧縮機に対しても適用可能である。   In the illustrated embodiment, an example of a double-action vibration compressor in which a pair of opposed pistons reciprocate with a phase difference of 180 degrees is shown. However, the present invention is directed to a vibration compressor having a single piston. Is applicable.

この発明の実施例1を示す振動圧縮機の縦断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a longitudinal cross-sectional view of the vibration compressor which shows Example 1 of this invention. この発明の実施例2を示す振動圧縮機の縦断面図である。It is a longitudinal cross-sectional view of the vibration compressor which shows Example 2 of this invention. 図2における筐体の横断面図である。It is a cross-sectional view of the housing | casing in FIG. 図2における筐体の異なる実施態様を示す横断面図である。It is a cross-sectional view which shows the different embodiment of the housing | casing in FIG.

符号の説明Explanation of symbols

1 継鉄
2 環状空間
3 筐体
4 シリンダ
6 ピストン
7 隙間(クリアランスシール)
8 圧縮空間
9 駆動子コイル
11 永久磁石
12 支持ばね
16 継手
17 カバー
21 条溝
22 円管

1 yoke 2 annular space 3 housing 4 cylinder 6 piston 7 clearance (clearance seal)
8 Compression space 9 Driver coil 11 Permanent magnet 12 Support spring 16 Joint 17 Cover 21 Strip groove 22 Circular pipe

Claims (6)

一端が開放した環状空間を有する二重円筒状の継鉄と、この継鉄に嵌め込まれたシリンダと、このシリンダにクリアランスシールを形成する隙間を介して挿入され、前記シリンダ内に作動ガスの圧縮空間を形成するピストンと、前記継鉄の周囲に配置された筐体と、前記ピストンに連結され前記継鉄の環状空間に軸方向に可動的に挿入された駆動子コイルと、前記継鉄に嵌め込まれ前記駆動子コイルに磁界を作用させる環状の永久磁石と、前記継鉄の端面に締結され前記ピストンを軸方向に往復運動可能に片持ち支持する支持ばねと、前記筐体の端面に接合され、この筐体とともに前記隙間を介して前記圧縮空間に通じるガス室を形成するカバーとを備え、前記駆動子コイルに交番電流が通流されると、前記ピストンを往復運動させて前記ガス室内の作動ガスを前記圧縮空間で圧縮し、この圧縮ガスを前記筐体に形成されたガス流路を介して外部機器に供給することを特徴とする振動圧縮機。   A double-cylindrical yoke having an annular space open at one end, a cylinder fitted into the yoke, and a gap forming a clearance seal in the cylinder are inserted into the cylinder to compress the working gas. A piston that forms a space; a housing that is disposed around the yoke; a driver coil that is coupled to the piston and is movably inserted axially into the annular space of the yoke; and the yoke Joined to the end face of the housing, an annular permanent magnet that is fitted and applies a magnetic field to the driver coil, a support spring that is fastened to the end face of the yoke and cantileverably supports the piston in a reciprocating manner in the axial direction. And a cover that forms a gas chamber that communicates with the compression space through the gap together with the casing. When an alternating current is passed through the driver coil, the piston is reciprocated to reciprocate the gas. The working gas chamber is compressed by the compression space, the vibration compressor and supplying the compressed gas to the external device through the gas passage formed in the housing. 前記継鉄、ピストン及びシリンダを同一材料又は熱膨張率が互いに近似する材料で構成したことを特徴とする請求項1記載の振動圧縮機。   2. The vibration compressor according to claim 1, wherein the yoke, the piston, and the cylinder are made of the same material or materials having similar thermal expansion coefficients. 一対の前記ピストンを互いに対向させて設け、その間に前記圧縮空間を形成するとともに、前記一対のピストンの前記シリンダを一体に構成したことを特徴とする請求項1記載の振動圧縮機。   2. The vibration compressor according to claim 1, wherein the pair of pistons are provided to face each other, the compression space is formed therebetween, and the cylinders of the pair of pistons are integrally configured. 前記作動ガスと接触する前記筐体の内周面に、軸方向の条溝を多数設けたことを特徴とする請求項1記載の振動圧縮機。   The vibration compressor according to claim 1, wherein a plurality of axial grooves are provided on an inner peripheral surface of the casing that contacts the working gas. 内周面に軸方向の多数の条溝を有する円筒体を前記筐体の内側に嵌め込んだことを特徴とする請求項4記載の振動圧縮機。   5. The vibration compressor according to claim 4, wherein a cylindrical body having a plurality of axial grooves on an inner peripheral surface is fitted inside the casing. 前記筐体とカバーとの間に円筒状の継手を介挿し、この継手と前記筐体とを摩擦圧接又は摩擦攪拌接合により接合し、またこの継手と前記カバーとを溶接により接合したことを特徴とする請求項1記載の振動圧縮機。

A cylindrical joint is inserted between the casing and the cover, the joint and the casing are joined by friction welding or friction stir welding, and the joint and the cover are joined by welding. The vibration compressor according to claim 1.

JP2004211393A 2004-07-20 2004-07-20 Vibration compressor Pending JP2006029255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004211393A JP2006029255A (en) 2004-07-20 2004-07-20 Vibration compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004211393A JP2006029255A (en) 2004-07-20 2004-07-20 Vibration compressor

Publications (1)

Publication Number Publication Date
JP2006029255A true JP2006029255A (en) 2006-02-02

Family

ID=35895903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004211393A Pending JP2006029255A (en) 2004-07-20 2004-07-20 Vibration compressor

Country Status (1)

Country Link
JP (1) JP2006029255A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7377041B2 (en) 2019-09-23 2023-11-09 株式会社ジェイテクトフルードパワーシステム Swash plate type axial piston pump/motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7377041B2 (en) 2019-09-23 2023-11-09 株式会社ジェイテクトフルードパワーシステム Swash plate type axial piston pump/motor

Similar Documents

Publication Publication Date Title
JP4345250B2 (en) Compressor
JP2009047139A (en) Stirling cycle engine
JPH10332214A (en) Linear compressor
JP2010200522A (en) Reciprocation driving mechanism, and cold storage type refrigerator using the reciprocation driving mechanism and compressor
US20050129540A1 (en) Constructive arrangement for a resonant compressor
JP2007089344A (en) Linear electromagnetic device
CN112815565A (en) Stirling refrigerator
JP2006029255A (en) Vibration compressor
JP4178461B2 (en) Vibration compressor
JP2010213431A (en) Linear electromagnetic device
JP5098499B2 (en) Linear compressor for regenerative refrigerator
KR100246428B1 (en) Structure for fixing inner-lamination of linear motor
JP2005009397A (en) Oscillatory type compressor
JP2000205680A (en) Compressor for cryogenic refrigerating machine and armature coil used therefor
US20170030295A1 (en) Stirling cycle engine
JP4760421B2 (en) Vibration type compressor
JP2004092618A (en) Compressor
JP2009257625A (en) Pulse tube refrigerating machine
JP3858301B2 (en) refrigerator
JP2010071210A (en) Linear drive compressor
JP2004239206A (en) Compressor
JP5657479B2 (en) Regenerative refrigerator
JP2009213210A (en) Vibrating motor
JP2006144568A (en) Vibration type compressor
JP2006029223A (en) Vibration compressor