JP2004239206A - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP2004239206A
JP2004239206A JP2003030801A JP2003030801A JP2004239206A JP 2004239206 A JP2004239206 A JP 2004239206A JP 2003030801 A JP2003030801 A JP 2003030801A JP 2003030801 A JP2003030801 A JP 2003030801A JP 2004239206 A JP2004239206 A JP 2004239206A
Authority
JP
Japan
Prior art keywords
yoke
cylinder
compressor
gap
pressure vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003030801A
Other languages
Japanese (ja)
Inventor
Kentaro Toyama
健太郎 外山
Keiji Oshima
恵司 大嶋
Yoshinori Mizoguchi
義則 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2003030801A priority Critical patent/JP2004239206A/en
Publication of JP2004239206A publication Critical patent/JP2004239206A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piston vibration compressor used for a cryogenic refrigerator having a reduced external diameter size and improved processing and dimensional accuracy of a cylinder. <P>SOLUTION: A cylindrical outer yoke 8 is coaxially coupled to a disc member 21 having a working gas flow path 5. The outer yoke 8 thereby forms a peripheral wall of a pressure vessel 14. An inner yoke 6 is incorporated inside the outer yoke 8. Since the outer yoke 8 serves also as the peripheral wall of the pressure vessel 14, it is not necessary to separately engage the peripheral wall with the outer part of the outer yoke 8, which reduces the external diameter of the compressor and the number of parts. Further, in a double-action compressor having a pair of pistons 4, 4, placed opposite to each other, a cylinder 1 is divided for each of the pistons 4 and 4 by the disc member 21. Such a constitution enables reduction of the longitudinal size of the cylinder 1 and makes it easy to increase the processing accuracy. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、冷凍機の膨張部に作動ガスの振動流を供給して極低温を発生させるピストン型の圧縮機に関する。
【0002】
【従来の技術】
上記圧縮機は、例えば特許文献1に記載されているが、図3はこれと同一構成の圧縮機を改めて示した縦断面図である。図示圧縮機は一対のピストンが互いに対向して運動する複動型で、円筒空間を形成するシリンダ1と、シリンダ1にクリアランスシールを形成する隙間2を介して挿入され、円筒空間内に作動ガスの圧縮空間3を形成する左右一対のピストン4と、圧縮空間3の作動ガスを機外の膨張部に導く作動ガス流路5と、シリンダ1の外周側に配置された左右の内側継鉄6と、その外周側に組み合わされ、各内側継鉄6との間に環状の空隙7を形成する外側継鉄8と、各内側継鉄6に図示極性で装着され、空隙7に磁界を形成する左右の環状永久磁石9と、空隙7内に配置され各ピストン4にコイルボビン10を介してそれぞれ連結された駆動子コイル11と、各駆動子コイル11及びピストン4をそれぞれ往復動可能に支持する支持ばね12と、隙間2を介して圧縮空間3に通じるガス室13を形成する圧力容器14とを備えている。ガス室13内には作動ガス(一般にヘリウムガス)が封入されている。
【0003】
シリンダ1は一対のピストン4に対して一体で、その両端から挿入されたピストン4の対向面間に圧縮空間3が形成されている。圧力容器14は、その周壁を形成する円筒状の筐体15と、その両端を閉塞する端板16とからなり、筐体15は外側継鉄8の外周面に嵌合している。一端がコイルボビン10に結合された支持ばね12の他端は、支持部材17を介して圧力容器14の端板16に結合されている。作動ガス流路5は、圧力容器14の筐体15を貫通してシリンダ1に達する配管18により形成されている。永久磁石9の磁気通路は内側継鉄6及び外側継鉄8により形成され、永久磁石9のN極から出た磁力線は空隙7、外側継鉄8、内側継鉄6を巡ってS極に戻り、空隙7に磁界を形成する。そこで、左右の駆動子コイル11に位相が互いに180°異なる交流を流すと、この交流と永久磁石9の磁界との間に生じる電磁力によりピストン4,4は互いに反対方向に往復運動を行ない、圧縮空間3内の作動ガスに振動流を発生させる。
【0004】
【特許文献1】
特開平11−159902号公報
【0005】
【発明が解決しようとする課題】
上記従来の圧縮機は、外側継鉄8の外周部に圧力容器14の筐体15を有しているため、その分、外径寸法が大きくなっている。また、図示複動型の圧縮機において、シリンダ1は一対のピストン4,4に対して左右一体に構成されているため開口径に比べて長手寸法が大きく、加工精度を高めることが困難であった。
この発明の課題は、圧縮機の外径寸法の縮小とシリンダの加工性及び寸法精度の向上を図ることにある。
【0006】
【課題を解決するための手段】
上記課題を解決するために、この発明は、円筒空間を形成するシリンダと、このシリンダに隙間を介して挿入され、前記円筒空間内に作動ガスの圧縮空間を形成するピストンと、前記圧縮空間の作動ガスを機外に導く作動ガス流路と、前記シリンダの外周側に配置された内側継鉄と、この内側継鉄の外周側に組み合わされ、前記内側継鉄との間に環状の空隙を形成する外側継鉄と、前記空隙に磁界を形成する永久磁石と、前記空隙内に配置され前記ピストンにコイルボビンを介して連結された駆動子コイルと、この駆動子コイル及び前記ピストンを往復動可能に支持する支持ばねと、前記隙間を介して前記圧縮空間に通じるガス室を形成する圧力容器とを備えた圧縮機において、前記作動ガス流路を形成した円盤部材を設け、この円盤部材に前記外側継鉄を同軸に結合することにより前記圧力容器の周壁を形成し、その内側に前記内側継鉄を組み込むものとする。
【0007】
請求項1によれば、外側継鉄を圧力容器の周壁に兼用するため、この周壁を別途に外側継鉄の外周部に嵌合する必要がなくなり、それだけ圧縮機の外径寸法が縮小し、部品点数も少なくなる。また、複動型圧縮機においてはシリンダが円盤部材によりピストン別に分断されるため、シリンダの長手寸法が小さくなり、軸方向の加工精度を高めることが容易になる。
【0008】
請求項1において、前記内側継鉄に中心から半径方向に向うスリットを入れたるのがよい(請求項2)。これにより、駆動子コイルに流れる交流により内側継鉄に発生する渦電流を抑制することができる。
【0009】
【発明の実施の形態】
以下、図1〜図2に基づいて、この発明の実施の形態を説明する。なお、従来例と対応する部分には同一の符号を用いるものとする。ここで、図1は複動型圧縮機の実施の形態を示す縦断面図、図2は図1のII−II線に沿う内側継鉄の横断面図である。図1において、21は非磁性材、例えばステンレスからなる円盤部材で、この円盤部材21を構成する円形の板材の中心には、ボス21aが両面に一体に突出形成され、ボス21aの両端面に皿形の凹部が形成されるとともに、その中心に貫通穴22があけられている。そして、貫通穴22から外周面に達するように、丸穴からなる作動ガス流路5が半径方向にあけられている。
【0010】
円盤部材21の図1の左右両面には、鉄などの磁性材からなる円筒状の外側継鉄8が、摩擦圧接などにより同軸に結合されている。この外側継鉄8は、作動ガスが封入されるガス室13を形成する圧力容器14の周壁を兼ねている。外側継鉄8の内側には、内側継鉄6が組み込まれている。内側継鉄6は磁性材からなるつば付きの円筒体で、ステンレスのつば付き円筒体からなるシリンダ1が中空部に嵌め込まれた後、外側継鉄8内に円盤部材21に突き当たるまで挿入され、つば部6aを通して円盤部材21にねじ込まれた図示しないねじにより締め付けられている。この状態で、内側継鉄6はつば部6aの外周面で外側継鉄8に嵌合し、シリンダ1は円盤部材21のボス21aに嵌合するとともに、つば部1aが内側継鉄6と円盤部材21との間に挟まれて固定される。ここで、図1及び図2に示すように、内側継鉄6には中心から半径方向に向うスリット6bが放射状に入れられている。環状の永久磁石9は外側継鉄8に嵌合し、内側継鉄6と外側継鉄8との間の空隙7に磁界を形成している。
【0011】
ピストン4はステンレスの管材の先端が閉塞されて形成され、このピストン4に、駆動子コイル11が巻かれたコイルボビン10、円盤状の板ばねからなる第1の支持ばね23、ステンレスからなる内外2重の間隔管24及び25、第2の支持ばね26が順次嵌め込まれ、リングナット27で締め付けられて可動部が構成されている。この可動部はピストン4をシリンダ1に挿入して図示の通り外側継鉄8と組み合わされ、支持ばね23,26の外周部及び外側間隔管25を貫通する図示しないねじにより固定されている。この状態で、一対のピストン4,4の対向面間に、円盤部材21の貫通穴22を挟んで圧縮空間3が形成され、また駆動子コイル11は空隙7内に位置して永久磁石9と軸方向位置が一致している。外側継鉄8の開放端には端板16が溶接により固着され、圧力容器14は密閉されている。
【0012】
図1の圧縮機の動作は従来例と実質的に同じであり、図示しない電源端子からリード線28を介して左右の駆動子コイル11に、位相が180°異なる交流をそれぞれ給電すると、この交流が永久磁石9の磁界中で受ける電磁力により、ピストン4は図1の左右に互いに反対方向に往復駆動され、ガス室13に隙間2を介して通じる圧縮空間3の作動ガスに振動流を生じさせる。この振動流は作動ガス流路5を介して図示しない極低温冷凍機の膨張部に導かれ、低温端に極低温を発生させる。
【0013】
図示実施の形態において、外側継鉄8は、圧力容器14の周壁として兼用されている。従って、外側継鉄8の外周部に別途に嵌合させる圧力容器の筐体が不要で、それだけ圧縮機の外径寸法が縮小するとともに部品点数も少なくなる。また、図示複動型圧縮機においてもシリンダ1が円盤部材21を境に左右に分断可能であるため、シリンダ1の長手寸法を従来の半分にすることができ、それだけ加工が容易になって寸法精度が向上する。一方、内側継鉄6には駆動子コイル11の磁束を打ち消す向きに、周方向の渦電流を生じるが、図示実施の形態では内側継鉄6に渦電流と直交する方向に多数(図示の場合は16個)のスリット6bが形成されているため、電流経路が分断されて渦電流の発生が抑制される。
【0014】
なお、図示実施の形態では複動型の圧縮機の例を示したが、シリンダ1やピストン4が円盤部材21の左右片側のみの単動型の圧縮機についてもこの発明は適用可能であり、その場合は円盤部材21の貫通穴22の一端を閉塞して、円盤部材21を圧力容器14の一方の端板として兼用すればよい。
【0015】
【発明の効果】
以上の通り、この発明によれば、外側継鉄を圧力容器の周壁に兼用することにより、圧縮機の外径寸法が縮小して圧縮機が小型化するとともに、部品点数が減少して製作費が安価になる。特に、複動型圧縮機においてはシリンダの長手寸法が短くなり、その加工精度が向上する。また、内側継鉄にスリットを形成することにより渦電流の発生を抑制し、圧縮機の低消費電力化を図ることができる。
【図面の簡単な説明】
【図1】この発明の実施の形態を示す圧縮機の縦断面図である。
【図2】図1のII−II線に沿う内側継鉄の横断面図である。
【図3】従来例を示す圧縮機の縦断面図である。
【符号の説明】
1 シリンダ
2 隙間
3 圧縮空間
4 ピストン
5 作動ガス流路
6 内側継鉄
6b スリット
7 空隙
8 外側継鉄
9 永久磁石
10 コイルボビン
11 駆動子コイル
13 ガス室
14 圧力容器
21 円盤部材
23,26 支持ばね
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a piston-type compressor that generates a cryogenic temperature by supplying an oscillating flow of a working gas to an expansion section of a refrigerator.
[0002]
[Prior art]
The compressor is described in, for example, Patent Document 1, and FIG. 3 is a vertical cross-sectional view showing a compressor having the same configuration as that of the compressor. The illustrated compressor is of a double-acting type in which a pair of pistons move in opposition to each other, and is inserted through a cylinder 1 forming a cylindrical space and a gap 2 forming a clearance seal in the cylinder 1, and a working gas is introduced into the cylindrical space. A pair of left and right pistons 4 forming a compression space 3 of the above, a working gas flow path 5 for guiding a working gas in the compression space 3 to an expansion portion outside the machine, and a left and right inner yoke 6 arranged on the outer peripheral side of the cylinder 1 And an outer yoke 8 which is combined with the outer peripheral side thereof to form an annular gap 7 with each inner yoke 6, and is attached to each inner yoke 6 with the illustrated polarity to form a magnetic field in the gap 7. Left and right annular permanent magnets 9, driver coils 11 arranged in the gap 7 and connected to the respective pistons 4 via coil bobbins 10, and supports for supporting the respective driver coils 11 and the piston 4 in a reciprocating manner. Spring 12 and gap And a pressure vessel 14 to form a gas chamber 13 which communicates with the compression space 3 through 2. The gas chamber 13 is filled with a working gas (generally helium gas).
[0003]
The cylinder 1 is integral with a pair of pistons 4, and a compression space 3 is formed between opposing surfaces of the pistons 4 inserted from both ends. The pressure vessel 14 includes a cylindrical casing 15 forming a peripheral wall thereof, and an end plate 16 closing both ends thereof. The casing 15 is fitted on the outer peripheral surface of the outer yoke 8. The other end of the support spring 12 whose one end is connected to the coil bobbin 10 is connected to an end plate 16 of the pressure vessel 14 via a support member 17. The working gas flow path 5 is formed by a pipe 18 that passes through the housing 15 of the pressure vessel 14 and reaches the cylinder 1. The magnetic passage of the permanent magnet 9 is formed by the inner yoke 6 and the outer yoke 8, and the magnetic lines of force from the N pole of the permanent magnet 9 return to the S pole around the gap 7, the outer yoke 8, and the inner yoke 6. , A magnetic field is formed in the gap 7. Therefore, when alternating currents having phases different from each other by 180 ° are applied to the left and right driver coils 11, the pistons 4 and 4 reciprocate in opposite directions due to an electromagnetic force generated between the alternating current and the magnetic field of the permanent magnet 9. An oscillating flow is generated in the working gas in the compression space 3.
[0004]
[Patent Document 1]
JP-A-11-159902 [0005]
[Problems to be solved by the invention]
Since the conventional compressor has the housing 15 of the pressure vessel 14 on the outer peripheral portion of the outer yoke 8, the outer diameter is increased accordingly. Further, in the illustrated double-acting compressor, the cylinder 1 is configured integrally with the pair of pistons 4 and 4 on the left and right sides, so that the longitudinal dimension is larger than the opening diameter, and it is difficult to increase the processing accuracy. Was.
An object of the present invention is to reduce the outer diameter of a compressor and improve the workability and dimensional accuracy of a cylinder.
[0006]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a cylinder that forms a cylindrical space, a piston that is inserted into the cylinder through a gap, and that forms a compression space for working gas in the cylindrical space, A working gas flow path that guides the working gas out of the machine, an inner yoke arranged on the outer peripheral side of the cylinder, and an outer circumferential side of the inner yoke combined with the inner yoke to form an annular gap between the inner yoke. An outer yoke to be formed, a permanent magnet for forming a magnetic field in the gap, a driver coil disposed in the gap and connected to the piston via a coil bobbin, and a reciprocating motion between the driver coil and the piston. In a compressor provided with a support spring that supports the compression gas and a pressure vessel that forms a gas chamber that communicates with the compression space through the gap, a disk member having the working gas flow path is provided. The peripheral wall of the pressure vessel is formed by coupling the Kisotogawa yoke coaxially, which is incorporated the inner yoke therein.
[0007]
According to the first aspect, since the outer yoke also serves as the peripheral wall of the pressure vessel, it is not necessary to separately fit this peripheral wall to the outer peripheral portion of the outer yoke, and the outer diameter of the compressor is reduced accordingly, The number of parts is also reduced. Further, in the double-acting compressor, since the cylinder is divided into pistons by the disk member, the longitudinal dimension of the cylinder is reduced, and the processing accuracy in the axial direction is easily increased.
[0008]
According to the first aspect, it is preferable that the inner yoke is provided with a slit extending radially from a center (claim 2). Thereby, the eddy current generated in the inner yoke by the alternating current flowing through the driver coil can be suppressed.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. Note that the same reference numerals are used for the portions corresponding to the conventional example. Here, FIG. 1 is a longitudinal sectional view showing an embodiment of a double-acting compressor, and FIG. 2 is a transverse sectional view of an inner yoke along a line II-II in FIG. In FIG. 1, reference numeral 21 denotes a disk member made of a non-magnetic material, for example, stainless steel. Bosses 21a are integrally formed on both sides of the center of a circular plate constituting the disk member 21, and are formed on both end surfaces of the boss 21a. A dish-shaped recess is formed, and a through hole 22 is formed at the center. The working gas flow path 5 formed of a round hole is formed in the radial direction so as to reach the outer peripheral surface from the through hole 22.
[0010]
A cylindrical outer yoke 8 made of a magnetic material such as iron is coaxially connected to both left and right surfaces of the disk member 21 in FIG. 1 by friction welding or the like. The outer yoke 8 also serves as a peripheral wall of the pressure vessel 14 forming the gas chamber 13 in which the working gas is sealed. The inside yoke 6 is incorporated inside the outside yoke 8. The inner yoke 6 is a cylindrical body with a brim made of a magnetic material. After the cylinder 1 made of a cylindrical body with a brim made of stainless steel is fitted into the hollow portion, it is inserted into the outer yoke 8 until it hits the disk member 21. It is tightened by a screw (not shown) screwed into the disk member 21 through the flange 6a. In this state, the inner yoke 6 is fitted to the outer yoke 8 on the outer peripheral surface of the collar 6a, the cylinder 1 is fitted to the boss 21a of the disk member 21, and the collar 1a is connected to the inner yoke 6 and the disk. It is sandwiched and fixed between the member 21. Here, as shown in FIG. 1 and FIG. 2, a slit 6 b radially extending from the center is radially formed in the inner yoke 6. The annular permanent magnet 9 is fitted to the outer yoke 8 and forms a magnetic field in the gap 7 between the inner yoke 6 and the outer yoke 8.
[0011]
The piston 4 is formed by closing the tip of a stainless steel tube. The piston 4 is provided with a coil bobbin 10 around which a driver coil 11 is wound, a first support spring 23 made of a disc-shaped leaf spring, and an inner and outer 2 made of stainless steel. The heavy interval tubes 24 and 25 and the second support spring 26 are sequentially fitted and fastened by a ring nut 27 to form a movable portion. This movable portion is inserted with the piston 4 into the cylinder 1 and combined with the outer yoke 8 as shown in the figure, and is fixed by screws (not shown) penetrating the outer peripheral portions of the support springs 23 and 26 and the outer spacing tube 25. In this state, the compression space 3 is formed between the opposing surfaces of the pair of pistons 4 and 4 with the through hole 22 of the disk member 21 interposed therebetween, and the driver coil 11 is located in the gap 7 and The axial positions match. An end plate 16 is fixed to the open end of the outer yoke 8 by welding, and the pressure vessel 14 is sealed.
[0012]
The operation of the compressor shown in FIG. 1 is substantially the same as that of the conventional example. When an AC having a phase difference of 180 ° is supplied from a power supply terminal (not shown) to the left and right driver coils 11 via the lead wires 28, the AC The piston 4 is reciprocated to the right and left in FIG. 1 in opposite directions by the electromagnetic force received in the magnetic field of the permanent magnet 9, and generates an oscillating flow in the working gas in the compression space 3 communicating with the gas chamber 13 through the gap 2. Let it. This oscillating flow is guided to an expansion section of a cryogenic refrigerator (not shown) via the working gas flow path 5 and generates a cryogenic temperature at a low temperature end.
[0013]
In the illustrated embodiment, the outer yoke 8 is also used as a peripheral wall of the pressure vessel 14. Therefore, a pressure vessel housing that is separately fitted to the outer peripheral portion of the outer yoke 8 is not required, and the outer diameter of the compressor is reduced and the number of components is reduced accordingly. Also, in the illustrated double-acting compressor, the cylinder 1 can be divided into right and left parts by the disc member 21 as a boundary. The accuracy is improved. On the other hand, an eddy current in the circumferential direction is generated in the inner yoke 6 in a direction to cancel the magnetic flux of the driver coil 11, but in the illustrated embodiment, a large number of eddy currents are formed in the inner yoke 6 in a direction orthogonal to the eddy current (in the illustrated case). Since 16 slits 6b are formed, the current path is cut off, and generation of eddy current is suppressed.
[0014]
In the illustrated embodiment, an example of a double-acting compressor is shown. However, the present invention is also applicable to a single-acting compressor in which the cylinder 1 and the piston 4 are provided only on one of the left and right sides of the disk member 21. In that case, one end of the through hole 22 of the disk member 21 may be closed, and the disk member 21 may be used also as one end plate of the pressure vessel 14.
[0015]
【The invention's effect】
As described above, according to the present invention, the outer yoke is also used as the peripheral wall of the pressure vessel, so that the outer diameter of the compressor is reduced to reduce the size of the compressor, and the number of parts is reduced, thereby reducing the manufacturing cost. Is cheaper. In particular, in a double-acting compressor, the longitudinal dimension of the cylinder is shortened, and the processing accuracy is improved. Further, by forming a slit in the inner yoke, generation of eddy current can be suppressed, and power consumption of the compressor can be reduced.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a compressor showing an embodiment of the present invention.
FIG. 2 is a cross-sectional view of the inner yoke taken along the line II-II in FIG.
FIG. 3 is a longitudinal sectional view of a compressor showing a conventional example.
[Explanation of symbols]
Reference Signs List 1 cylinder 2 gap 3 compression space 4 piston 5 working gas flow path 6 inner yoke 6b slit 7 gap 8 outer yoke 9 permanent magnet 10 coil bobbin 11 driver coil 13 gas chamber 14 pressure vessel 21 disk members 23, 26 support spring

Claims (2)

円筒空間を形成するシリンダと、このシリンダに隙間を介して挿入され、前記円筒空間内に作動ガスの圧縮空間を形成するピストンと、前記圧縮空間の作動ガスを機外に導く作動ガス流路と、前記シリンダの外周側に配置された内側継鉄と、この内側継鉄の外周側に組み合わされ、前記内側継鉄との間に環状の空隙を形成する外側継鉄と、前記空隙に磁界を形成する永久磁石と、前記空隙内に配置され前記ピストンにコイルボビンを介して連結された駆動子コイルと、この駆動子コイル及び前記ピストンを往復動可能に支持する支持ばねと、前記隙間を介して前記圧縮空間に通じるガス室を形成する圧力容器とを備えた圧縮機において、
前記作動ガス流路を形成した円盤部材を設け、この円盤部材に前記外側継鉄を同軸に結合することにより前記圧力容器の周壁を形成し、その内側に前記内側継鉄を組み込んだことを特徴とする圧縮機。
A cylinder that forms a cylindrical space, a piston that is inserted into the cylinder via a gap, and forms a compression space for a working gas in the cylindrical space, and a working gas flow path that guides the working gas in the compression space out of the machine. An inner yoke arranged on the outer peripheral side of the cylinder; an outer yoke combined with the outer peripheral side of the inner yoke to form an annular gap with the inner yoke; and applying a magnetic field to the gap. A permanent magnet to be formed, a driver coil arranged in the gap and connected to the piston via a coil bobbin, a support spring for supporting the driver coil and the piston in a reciprocating manner, and via the gap A pressure vessel forming a gas chamber communicating with the compression space,
A disk member having the working gas flow path formed therein is provided, a peripheral wall of the pressure vessel is formed by coaxially coupling the outer yoke to the disk member, and the inner yoke is incorporated inside the pressure vessel. And the compressor.
前記内側継鉄に中心から半径方向に向うスリットを入れたことを特徴とする請求項1記載の圧縮機。2. The compressor according to claim 1, wherein a slit is formed in the inner yoke in a radial direction from a center.
JP2003030801A 2003-02-07 2003-02-07 Compressor Pending JP2004239206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003030801A JP2004239206A (en) 2003-02-07 2003-02-07 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003030801A JP2004239206A (en) 2003-02-07 2003-02-07 Compressor

Publications (1)

Publication Number Publication Date
JP2004239206A true JP2004239206A (en) 2004-08-26

Family

ID=32957592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003030801A Pending JP2004239206A (en) 2003-02-07 2003-02-07 Compressor

Country Status (1)

Country Link
JP (1) JP2004239206A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10947962B1 (en) 2018-10-05 2021-03-16 Lockheed Martin Corporation Low disturbance cryocooler compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10947962B1 (en) 2018-10-05 2021-03-16 Lockheed Martin Corporation Low disturbance cryocooler compressor

Similar Documents

Publication Publication Date Title
JP3983294B2 (en) Linear compressor motor
US9800127B2 (en) Reciprocating electric motor
JP3927089B2 (en) Linear actuator, pump device and compressor device using the same
KR102133697B1 (en) Linear drive and piston pump arrangement
JP2008259413A (en) Linear actuator
JP2007291991A (en) Vibration type compressor
CN103762816A (en) Moving-magnetic-type linear motor used for stirling cryocooler
US20050129540A1 (en) Constructive arrangement for a resonant compressor
CN203708062U (en) Moving-magnetic type linear motor for Stirling refrigerator
US10876524B2 (en) Linear compressor
JP2009065755A (en) Vibrating-type motor and vibrating-type compressor using the same
JP2004239206A (en) Compressor
US8049375B2 (en) Electromagnetic transducer apparatus
JP2010213431A (en) Linear electromagnetic device
JP3624109B2 (en) Compressor for cryogenic refrigerator and armature coil used therefor
JP2003278652A (en) Linear motor drive type compressor and refrigerating machine therewith
JP4760421B2 (en) Vibration type compressor
JP2004056988A (en) Moving coil linear motor, compressor, and refrigerator
JP2009041791A (en) Linear compressor for cold storage refrigerating machine
JP2010203363A (en) Vibration type compressor and stirling refrigerating machine
JP2006029255A (en) Vibration compressor
JP2005009397A (en) Oscillatory type compressor
JP2004293334A (en) Linear motor drive type compressor and refrigerator using it
KR20180093432A (en) Linear compressor
JP2009213210A (en) Vibrating motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050517

A977 Report on retrieval

Effective date: 20060602

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060615

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061012