JP2006026867A - Surface-coated cemented carbide cutting tool having surface coating layer exhibiting excellent chipping resistance in high-speed heavy cutting - Google Patents
Surface-coated cemented carbide cutting tool having surface coating layer exhibiting excellent chipping resistance in high-speed heavy cutting Download PDFInfo
- Publication number
- JP2006026867A JP2006026867A JP2004212896A JP2004212896A JP2006026867A JP 2006026867 A JP2006026867 A JP 2006026867A JP 2004212896 A JP2004212896 A JP 2004212896A JP 2004212896 A JP2004212896 A JP 2004212896A JP 2006026867 A JP2006026867 A JP 2006026867A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- highest
- point
- content point
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Drilling Tools (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
この発明は、表面被覆層がすぐれた高温硬さと耐熱性、さらにすぐれた高温強度に加えて、すぐれた潤滑性を有し、したがって特に各種のAlおよびAl合金やCuおよびCu合金、さらにTiおよびTi合金などの非鉄材料の切削加工を、特に高熱発生を伴う高速で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合に、表面被覆層にチッピング(微小欠け)などの発生なく、すぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。 The present invention has excellent lubricity in addition to excellent high-temperature hardness and heat resistance, and excellent high-temperature strength, and thus various types of Al and Al alloys, Cu and Cu alloys, and more particularly Ti and When cutting non-ferrous materials such as Ti alloys at high speed with high heat generation and heavy cutting conditions with high mechanical impact, such as high cutting and high feed, chipping (small chipping) ) And the like, and a surface-coated cemented carbide cutting tool (hereinafter referred to as a coated cemented carbide tool) that exhibits excellent wear resistance.
一般に、被覆超硬工具には、各種の材質の被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。 In general, coated carbide tools have a throwaway tip that can be attached to the tip of a bite for turning and planing of various materials, and drilling of the material. There are drills and miniature drills used, as well as solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material, and the solid type end mill with the throwaway tip detachably attached A slow-away end mill tool that performs cutting processing in the same manner as in the past is known.
また、特に上記の非鉄材料からなる被削材の切削加工に用いられる被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された超硬基体の表面に、
(a)下部層として、1.5〜10μmの平均層厚を有し、かつ組成式:(Ti1-ZAlZ )N(ただし、原子比で、Zは0.40〜0.60を示す)を満足するTiとAlの複合窒化物[以下、(Ti,Al)Nで示す]層からなる硬質層、
(b)上部層として、1〜10μmの平均層厚を有し、かつスパッタリング装置にて、カソード電極(蒸発源)として、WCターゲットを用い、炭化水素の分解ガスとArの混合ガスからなる反応雰囲気で形成され、オージェ分光分析装置で測定して、
W:5〜20原子%、
を含有し、残りが炭素と不可避不純物からなる組成をする非晶質炭素系潤滑層、
を蒸着形成してなる被覆超硬工具が知られており、かつ前記被覆超硬工具の表面被覆層の硬質層である(Ti,Al)N層が、構成成分であるAlによって高温硬さと耐熱性、同Tiによって高温強度を有し、かつ同上部層である非晶質炭素系潤滑層の共存と相俟って、上記の非鉄材料などの被削材の連続切削や断続切削加工に用いた場合にすぐれた切削性能を発揮することも知られている。
Further, as a coated cemented carbide tool used for cutting a workpiece made of the above-mentioned non-ferrous material, tungsten carbide (hereinafter referred to as WC) based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) based cermet On the surface of the cemented carbide substrate composed of
(A) As a lower layer, it has an average layer thickness of 1.5 to 10 μm, and a composition formula: (Ti 1 -Z Al Z ) N (however, in atomic ratio, Z is 0.40 to 0.60) A hard layer composed of a composite nitride of Ti and Al satisfying (shown below) [hereinafter referred to as (Ti, Al) N] layer,
(B) Reaction having an average layer thickness of 1 to 10 μm as an upper layer, and using a WC target as a cathode electrode (evaporation source) in a sputtering apparatus and comprising a mixed gas of hydrocarbon decomposition gas and Ar Formed in an atmosphere, measured with an Auger spectroscopic analyzer,
W: 5 to 20 atomic%,
An amorphous carbon-based lubricating layer having a composition consisting of carbon and inevitable impurities,
A coated carbide tool formed by vapor-depositing is known, and the (Ti, Al) N layer, which is a hard layer of the surface coating layer of the coated carbide tool, has high temperature hardness and heat resistance due to Al as a constituent component. Combined with the coexistence of the amorphous carbon-based lubricating layer that is the upper layer and the high temperature strength due to the same Ti, it is used for continuous cutting and intermittent cutting of the above-mentioned non-ferrous materials and other work materials It is also known to demonstrate excellent cutting performance when
さらに、上記の被覆超硬工具が、例えば図4に概略説明図で示される蒸着装置、すなわちカソード電極(蒸発源)として所定組成を有するTi−Al合金がセットされたアーク放電装置と、カソード電極(蒸発源)としてWCターゲットがセットされたスパッタリング装置を備えた蒸着装置を用い、これに上記の超硬基体を装入し、
(a)まず、上記下部層として、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と上記Ti−Al合金のカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記超硬基体には、例えば−100Vのバイアス電圧を印加した条件で、前記超硬基体の表面に、上記(Ti,Al)N層からなる硬質層を蒸着形成し、
(b)つぎに、上部層として、例えば装置内の加熱温度を200℃とした状態で、C2H2などの炭化水素とArを、C2H2流量:40〜80sccm、Ar流量:250sccmの割合で導入して、例えば1Paの炭化水素の分解ガスとArの混合ガスからなる反応雰囲気とし、例えば上記超硬基体に印加するバイアス電圧を−20Vとし、WCターゲットのカソード電極(蒸発源)には出力:4〜6kW(周波数:40kHz)のスパッタ電力を印加した条件で、上記(Ti,AlN層からなる硬質層の上に非晶質炭素系潤滑層を蒸着形成することにより製造されることも知られている。
(A) First, as the lower layer, with the heater heated to a temperature of, for example, 500 ° C., between the anode electrode and the cathode electrode (evaporation source) of the Ti—Al alloy, for example, current: An arc discharge is generated under the condition of 90 A, and simultaneously, nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of 2 Pa, for example, while a bias voltage of, for example, −100 V is applied to the cemented carbide substrate. , By vapor-depositing a hard layer composed of the (Ti, Al) N layer on the surface of the cemented carbide substrate,
(B) Next, as an upper layer, for example, in a state where the heating temperature in the apparatus is set to 200 ° C., hydrocarbons such as C 2 H 2 and Ar, C 2 H 2 flow rate: 40 to 80 sccm, Ar flow rate: 250 sccm For example, a reaction atmosphere composed of a mixed gas of 1 Pa of hydrocarbon cracking gas and Ar, for example, a bias voltage applied to the carbide substrate of −20 V, and a cathode electrode (evaporation source) of a WC target. Is produced by vapor-depositing an amorphous carbon-based lubricating layer on the hard layer (Ti, AlN layer) under the condition that a sputtering power of 4 to 6 kW (frequency: 40 kHz) is applied. It is also known.
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向を深め、かつ高切り込みや高送りなどの重切削条件での切削加工が強く求められる傾向にあるが、上記の従来被覆超硬工具においては、これを通常の切削加工条件で用いた場合には問題はないが、特に上記の非鉄材料などの被削材の切削加工を、高速で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合には、表面被覆層の下部層である硬質層にあっては高温硬さおよび耐熱性、さらに高温強度、また同非晶質炭素系潤滑層にあっては高温強度がそれぞれ不十分であるために、チッピングが発生し易く、かつ摩耗進行も一段と促進するようになることから、比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting machines has been remarkable. On the other hand, there has been a strong demand for labor saving and energy saving and further cost reduction for cutting work. Although there is a tendency that cutting under heavy cutting conditions such as high feed is strongly demanded, in the above conventional coated carbide tools, there is no problem when this is used under normal cutting conditions. When cutting a non-ferrous material such as non-ferrous materials at high speed and under heavy cutting conditions such as high cutting and high feed with high mechanical impact, a hard layer that is the lower layer of the surface coating layer In this case, the high temperature hardness and heat resistance, the high temperature strength, and the amorphous carbon-based lubricating layer are insufficient in high temperature strength, so that chipping is likely to occur and wear progress is further increased. Like to promote Since, at present, leading to a relatively short time service life.
そこで、本発明者等は、上述のような観点から、特に上記の非鉄材料などの被削材の高速重切削加工で表面被覆層が、チッピングの発生なく、長期に亘ってすぐれた耐摩耗性を発揮する被覆超硬工具を開発すべく、上記の従来被覆超硬工具に着目し、研究を行った結果、
(a)上記の図4の蒸着装置のアーク放電装置を用いて形成された従来被覆超硬工具の表面硬質層を構成する(Ti,Al)N層の下部層(硬質層)は、層厚全体に亘って実質的に均一な組成を有し、したがって均質な高温硬さと耐熱性、さらに高温強度を有するが、例えば図2(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置、すなわち装置中央部に超硬基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に相対的にAl含有量の高い(Ti含有量の低い)Al−Ti合金、他方側に相対的にTi含有量の高い(Al含有量の低い)Ti−Al合金をそれぞれカソード電極(蒸発源)として対向配置し、さらに前記両カソード電極に対して90度回転した位置にもカソード電極(蒸発源)として金属Crを装着したアークイオンプレーティング装置を用い、この蒸着装置の前記回転テーブル上に、これの中心軸から半径方向に所定距離離れた位置に複数の超硬基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される下部層(硬質層)の層厚均一化を図る目的で超硬基体自体も自転させながら、前記の図面上左右両側のそれぞれのカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記超硬基体の表面にAlとTiの複合窒化物[以下、(Al/Ti)Nで示す]層を形成すると、この結果の(Al/Ti)N層においては、回転テーブル上にリング状に配置された前記超硬基体が上記の一方側の相対的にAl含有量の高い(Ti含有量の低い)Al−Ti合金のカソード電極(蒸発源)に最も接近した時点で層中にAl最高含有点が形成され、また前記超硬基体が上記の他方側の相対的にTi含有量の高い(Al含有量の低い)Ti−Al合金のカソード電極に最も接近した時点で層中にTi最高含有点が形成され、上記回転テーブルの回転によって層中には層厚方向にそって前記Al最高含有点とTi最高含有点が所定間隔をもって交互に繰り返し現れると共に、前記Al最高含有点から前記Ti最高含有点、前記Ti最高含有点から前記Al最高含有点へAlおよびTi含有量がそれぞれ連続的に変化する組成変化構造をもつようになること。
In view of the above, the inventors of the present invention, in particular, have excellent wear resistance over a long period of time without the occurrence of chipping in the surface coating layer in high-speed heavy cutting of the work material such as the non-ferrous material. As a result of conducting research, focusing on the above-mentioned conventional coated carbide tools,
(A) The lower layer (hard layer) of the (Ti, Al) N layer constituting the surface hard layer of the conventional coated carbide tool formed by using the arc discharge device of the vapor deposition device shown in FIG. It has a substantially uniform composition throughout, and therefore has uniform high-temperature hardness and heat resistance, and high-temperature strength. For example, FIG. 2A is a schematic plan view, and FIG. An arc ion plating apparatus having a structure shown by the following, that is, a rotating table for mounting a carbide substrate is provided in the center of the apparatus, and a relatively high Al content (a low Ti content) on one side across the rotating table ) An Al—Ti alloy, and a Ti—Al alloy having a relatively high Ti content (low Al content) on the other side are arranged opposite to each other as cathode electrodes (evaporation sources). The cathode is also rotated Using an arc ion plating apparatus equipped with metal Cr as an electrode (evaporation source), a plurality of cemented carbide substrates are ringed on the rotary table of the vapor deposition apparatus at a predetermined distance in the radial direction from the central axis thereof. In this state, the atmosphere inside the apparatus is changed to a nitrogen atmosphere, the rotary table is rotated, and the carbide substrate itself is rotated for the purpose of uniforming the thickness of the lower layer (hard layer) to be deposited. Arc discharge is generated between the cathode electrode (evaporation source) and the anode electrode on both the left and right sides in the drawing, and a composite nitride of Al and Ti [hereinafter referred to as (Al / Ti) N]] layer is formed, and in the resulting (Al / Ti) N layer, the cemented carbide substrate arranged in a ring shape on the rotary table has a relatively Al content on one side. of When the closest point to the cathode electrode (evaporation source) of the Al-Ti alloy (low Ti content) is formed, the highest Al content point is formed in the layer, and the carbide substrate is relatively positioned on the other side. The highest Ti content point is formed in the layer at the point closest to the cathode electrode of the Ti-Al alloy having a high Ti content (low Al content), and in the layer thickness direction in the layer by the rotation of the rotary table. Accordingly, the Al highest content point and the Ti highest content point appear alternately and alternately with a predetermined interval, and the Al and Ti content from the Al highest content point to the Ti highest content point and from the Ti highest content point to the Al highest content point. To have a composition change structure in which each quantity changes continuously.
(b)上記(a)の組成変化構造を有する(Al/Ti)N層の形成において、対向配置の一方側のカソード電極(蒸発源)であるAl−Ti合金におけるAl含有量を上記の従来Ti−Al合金のAl含有量に比して相対的に高いものとし、かつ同他方側のカソード電極(蒸発源)であるTi−Al合金におけるTi含有量を上記の従来Ti−Al合金のTi含有量に比して相対的に高いものとする共に、超硬基体が装着されている回転テーブルの回転速度を制御して、
上記Al最高含有点が、組成式:(Al1-X TiX)N(ただし、原子比で、Xは0.05〜0.35を示す)、
上記Ti最高含有点が、組成式:(Ti1-YAlY)N(ただし、原子比で、Yは0.05〜0.35を示す)、
をそれぞれ満足し、かつ隣り合う上記Al最高含有点とTi最高含有点の厚さ方向の間隔を0.01〜0.1μmとすると、
上記Al最高含有点部分では、上記の従来(Ti,Al)N層に比してAl含有量が相対的に高くなることから、より一段とすぐれた高温硬さと耐熱性(高温特性)を示し、一方上記Ti最高含有点部分では、前記従来(Ti,Al)N層に比してTi含有量が相対的に高くなることから、一段と高い高温強度を具備し、かつこれらAl最高含有点とTi最高含有点の間隔をきわめて小さくしたことから、層全体の特性としてすぐれた高温強度を保持した状態ですぐれた高温硬さと耐熱性を具備するようになること。
(B) In the formation of the (Al / Ti) N layer having the composition change structure of (a) above, the Al content in the Al—Ti alloy, which is the cathode electrode (evaporation source) on one side of the opposing arrangement, is changed to The Ti content in the Ti-Al alloy, which is a cathode electrode (evaporation source) on the other side, is relatively higher than the Al content of the Ti-Al alloy. While making it relatively higher than the content, controlling the rotation speed of the turntable on which the carbide substrate is mounted,
The Al highest content point is a composition formula: (Al 1-X Ti X ) N (however, in atomic ratio, X represents 0.05 to 0.35),
The highest Ti content point is the composition formula: (Ti 1-Y Al Y ) N (wherein Y represents 0.05 to 0.35 in atomic ratio),
And the interval in the thickness direction of the adjacent Al highest content point and Ti highest content point adjacent to each other is 0.01 to 0.1 μm,
In the Al highest content point portion, since the Al content is relatively higher than the conventional (Ti, Al) N layer described above, it shows even higher high temperature hardness and heat resistance (high temperature characteristics), On the other hand, in the Ti highest content point portion, the Ti content is relatively higher than that of the conventional (Ti, Al) N layer, so that it has higher high-temperature strength and the Al highest content point and Ti. Since the interval between the highest inclusion points is extremely small, the high-temperature hardness and heat resistance must be maintained while maintaining the excellent high-temperature strength as the characteristics of the entire layer.
(c)つぎに、例えば図3(a)に概略平面図で、同(b)に概略正面図で示される通り、カソード電極(蒸発源)がTiターゲットのマグネトロンスパッタリング装置と、カソード電極(蒸発源)がWCターゲットのマグネトロンスパッタリング装置を備えた蒸着装置の回転テーブル上に、上記の下部層を形成した超硬基体を装着し、回転テーブルを回転させると共に、蒸着形成される上部層(非晶質炭素系潤滑層)の層厚均一化を図る目的で前記超硬基体自体も自転させ、電磁コイルにより磁場を形成して、前記超硬基体の装着部における磁束密度を100〜300G(ガウス)とし、前記装置内の加熱温度を300〜500℃とした状態で、かつ装置内に反応ガスとして、例えばC2H2などの炭化水素と窒素とArを、望ましくはC2H2流量:25〜100sccm、窒素流量:200〜300sccm、Ar流量:150〜250sccmの割合で導入して、反応雰囲気を、例えば1PaのC2H2の分解ガスと窒素とArの混合ガスとすると共に、前記両マグネトロンスパッタリング装置のWCターゲットのカソード電極(蒸発源)には、例えば出力:1〜3kW(周波数:40kHz)のスパッタ電力、同Tiターゲットには、例えば出力:3〜8kW(周波数:40kHz)のスパッタ電力を同時に印加した条件で非晶質炭素系潤滑層(上部層)の形成を行うと、この結果形成された非晶質炭素系潤滑層は、これの透過型電子顕微鏡による組織観察結果が図1に模式図で示される通りW成分含有の炭素系非晶質体の素地に、結晶質炭窒化チタン系化合物の微粒[以下、「結晶質Ti(C,N)系化合物微粒」で示す]が分散分布した組織をもつようになること。 (C) Next, for example, as shown in the schematic plan view of FIG. 3A and the schematic front view of FIG. 3B, the cathode electrode (evaporation source) is a Ti target magnetron sputtering apparatus and the cathode electrode (evaporation) The carbide substrate having the lower layer is mounted on a rotary table of a vapor deposition apparatus equipped with a magnetron sputtering device with a WC target as a source, and the rotary table is rotated and an upper layer (amorphous) formed by vapor deposition is rotated. In order to make the layer thickness of the carbonaceous lubricating layer) uniform, the carbide substrate itself is also rotated, a magnetic field is formed by an electromagnetic coil, and the magnetic flux density in the mounting portion of the carbide substrate is 100 to 300 G (Gauss). and then, in the state was 300 to 500 ° C. the heating temperature in the apparatus, and as a reaction gas into the apparatus, for example, hydrocarbons, nitrogen and Ar, such as C 2 H 2, preferably 2 H 2 flow rate: 25 - 100, the nitrogen flow rate: 200~300Sccm, Ar flow rate: introduced at a rate of 150~250Sccm, the reaction atmosphere, for example 1Pa decomposition gas of C 2 H 2 of nitrogen and Ar mixed gas In addition, for the cathode electrode (evaporation source) of the WC target of both the magnetron sputtering devices, for example, the output power is 1 to 3 kW (frequency: 40 kHz), and for the Ti target, for example, the output is 3 to 8 kW ( When the amorphous carbon-based lubricating layer (upper layer) is formed under the condition that a sputtering power having a frequency of 40 kHz is applied at the same time, the amorphous carbon-based lubricating layer formed as a result is obtained by using a transmission electron microscope. As shown in the schematic diagram of FIG. 1, the structure observation results of the crystalline titanium carbonitride-based compound on the substrate of the carbon-based amorphous body containing the W component Grain [hereinafter "crystalline Ti (C, N) -based compound fine" shown in] that will have a dispersed distribution organization.
(d)上記(c)の非晶質炭素系潤滑層を形成するに際して、蒸着装置内に導入される反応ガスとしての炭化水素と窒素とArのそれぞれの流量と、マグネトロンスパッタリング装置のWCターゲットとTiターゲットに印加されるスパッタ電力を調整して、前記非晶質炭素系潤滑層が、オージェ分光分析装置で測定して、
W:5〜20原子%、
Ti:5〜20原子%、
窒素:0.5〜18原子%、
を含有し、残りが炭素と不可避不純物からなる組成を有するようにすると、この結果形成された非晶質炭素系潤滑層は、これの素地が含有するW成分の作用と、結晶質Ti(C,N)系微粒の分散分布効果、および前記電磁コイルによる磁場成膜に際しての細粒化効果で、高温強度が著しく向上するようになること。
(D) When forming the amorphous carbon-based lubricating layer of (c) above, the respective flow rates of hydrocarbon, nitrogen and Ar as reaction gases introduced into the vapor deposition apparatus, the WC target of the magnetron sputtering apparatus, Adjusting the sputtering power applied to the Ti target, the amorphous carbon-based lubricating layer is measured with an Auger spectrometer,
W: 5 to 20 atomic%,
Ti: 5 to 20 atomic%,
Nitrogen: 0.5-18 atomic%,
When the composition has a composition composed of carbon and inevitable impurities, the amorphous carbon-based lubricating layer formed as a result of the W component contained in the substrate and crystalline Ti (C , N) The high-temperature strength is remarkably improved by the dispersion distribution effect of the system fine particles and the effect of fine graining when the magnetic field is formed by the electromagnetic coil.
(e)上記の下部層が組成変化構造を有する(Al/Ti)N層、上部層が非晶質炭素系潤滑層で構成された表面被覆層を蒸着形成してなる被覆超硬工具は、特に著しい高熱発生と高い機械的衝撃を伴う上記の非鉄材料などの被削材の高速重切削でも、下部層である(Al/Ti)N層がすぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、かつ上部層である非晶質炭素系潤滑層も、すぐれた高温強度を具備するようになることから、表面被覆層にチッピングの発生なく、すぐれた耐摩耗性を長期に亘って発揮するようになること。
以上(a)〜(e)に示される研究結果を得たのである。
(E) A coated carbide tool formed by vapor-depositing a surface coating layer in which the lower layer has an (Al / Ti) N layer having a composition change structure and the upper layer is an amorphous carbon-based lubricating layer, The high temperature hardness and heat resistance of the lower layer (Al / Ti) N layer is excellent even in high-speed heavy cutting of the above-mentioned non-ferrous materials such as the above-mentioned non-ferrous materials with particularly high heat generation and high mechanical impact. Since the amorphous carbon-based lubricating layer, which has strength and has an upper layer, also has excellent high-temperature strength, the surface coating layer does not generate chipping and has excellent wear resistance over a long period of time. To come out.
The research results shown in (a) to (e) above were obtained.
この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、
(a)下部層として、1.5〜10μmの平均層厚を有し、かつ、層厚方向にそって、Al最高含有点とTi最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Ti最高含有点、前記Ti最高含有点から前記Al最高含有点へAlおよびTi含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、
さらに、上記Al最高含有点が、組成式:(Al1-X TiX)N(ただし、原子比で、Xは0.05〜0.35を示す)、上記Ti最高含有点が、組成式:(Ti1-YAlY)N(ただし、原子比で、Yは0.05〜0.35を示す)、を満足し、
かつ隣り合う上記Al最高含有点とTi最高含有点の間隔が、0.01〜0.1μmからなる組成変化構造を有する(Al/Ti)N層からなる硬質層、
(b)上部層として、1〜10μmの平均層厚を有し、かつマグネトロンスパッタリング装置にて、カソード電極(蒸発源)として、WCターゲットとTiターゲットを用い、炭化水素の分解ガスと窒素とArの混合ガスからなる反応雰囲気で磁場中成膜され、オージェ分光分析装置で測定して、
W:5〜20原子%、
Ti:5〜20原子%、
窒素:0.5〜18原子%、
を含有し、残りが炭素と不可避不純物からなる組成を有すると共に、透過型電子顕微鏡による観察で、W成分含有の炭素系非晶質体の素地に、結晶質Ti(C,N)系化合物微粒が分散分布した組織を有する非晶質炭素系潤滑層、
以上(a)および(b)で構成された表面被覆層を蒸着形成してなる、特に高速重切削加工で表面被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具に特徴を有するものである。
This invention was made based on the above research results, and on the surface of the carbide substrate,
(A) As a lower layer, it has an average layer thickness of 1.5 to 10 μm, and Al maximum content points and Ti maximum content points are alternately present at predetermined intervals along the layer thickness direction. And the component concentration distribution structure in which Al and Ti content continuously change from the Al highest content point to the Ti highest content point, from the Ti highest content point to the Al highest content point, respectively,
Further, the highest Al content point is the composition formula: (Al 1-X Ti X ) N (wherein X is 0.05 to 0.35 in atomic ratio), and the highest Ti content point is the composition formula. : (Ti 1-Y Al Y ) N (wherein Y represents 0.05 to 0.35 in atomic ratio),
And the hard layer which consists of an (Al / Ti) N layer which has the composition change structure whose interval of the above-mentioned Al highest content point and Ti highest content point which adjoins consists of 0.01-0.1 micrometer,
(B) The upper layer has an average layer thickness of 1 to 10 μm, and in a magnetron sputtering apparatus, a WC target and a Ti target are used as a cathode electrode (evaporation source), a hydrocarbon decomposition gas, nitrogen and Ar The film was formed in a magnetic field in a reaction atmosphere consisting of a mixed gas, and measured with an Auger spectrometer.
W: 5 to 20 atomic%,
Ti: 5 to 20 atomic%,
Nitrogen: 0.5-18 atomic%,
And the remainder is composed of carbon and unavoidable impurities, and the crystalline Ti (C, N) compound fine particles are formed on the base of the carbon-based amorphous material containing the W component by observation with a transmission electron microscope. An amorphous carbon-based lubricating layer having a structure in which is distributed and distributed,
It is characterized by a coated carbide tool that exhibits excellent chipping resistance, which is formed by vapor-depositing the surface coating layer composed of the above (a) and (b), particularly in high-speed heavy cutting. is there.
つぎに、この発明の被覆超硬工具の表面被覆層の構成層に関し、上記の通りに数値限定した理由を説明する。
(A)下部層[(Al/Ti)N層]
(a)Al最高含有点の組成
下部層である(Al/Ti)N層におけるAl成分は、高温硬さおよび耐熱性を向上させ、同Ti成分は高温強度を向上させる作用があり、したがって相対的にAl成分の含有割合が高いAl最高含有点では一段とすぐれた高温硬さと耐熱性を具備するようになり、高熱発生を伴う高速切削条件で、すぐれた耐摩耗性を発揮するようになるが、Tiの割合を示すX値がAlとの合量に占める割合(原子比)で0.05未満になると、相対的にAlの割合が多くなり過ぎて、すぐれた高温強度を有するTi最高含有点が隣接して存在しても層自体の強度低下は避けられず、この結果高速重切削条件ではチッピングなどが発生し易くなり、一方Ti成分の割合を示すX値が同0.35を越えると、相対的にAlの割合が少なくなり過ぎて、所望のすぐれた高温硬さおよび耐熱性を確保することができなくなることから、X値を0.05〜0.35と定めた。
Next, the reason why the numerical values of the constituent layers of the surface coating layer of the coated carbide tool of the present invention are limited as described above will be described.
(A) Lower layer [(Al / Ti) N layer]
(A) Composition of the highest Al content point The Al component in the lower layer (Al / Ti) N layer improves the high-temperature hardness and heat resistance, and the Ti component has the effect of improving the high-temperature strength. In particular, at the highest Al content point with a high Al component content, it will have better high-temperature hardness and heat resistance, and will exhibit excellent wear resistance under high-speed cutting conditions with high heat generation. When the X value indicating the proportion of Ti is less than 0.05 in terms of the total amount with Al (atomic ratio), the proportion of Al is excessively increased, and the highest Ti content with excellent high-temperature strength Even if dots are present adjacent to each other, the strength of the layer itself is inevitably lowered. As a result, chipping and the like are likely to occur under high speed heavy cutting conditions, while the X value indicating the ratio of Ti component exceeds 0.35. And the relative proportion of Al Therefore, the X value was determined to be 0.05 to 0.35 because the desired high-temperature hardness and heat resistance could not be secured.
(b)Ti最高含有点の組成
上記の通りAl最高含有点は高温硬さおよび耐熱性のすぐれたものであるが、反面高温強度の劣るものであるため、このAl最高含有点の高温強度不足を補う目的で、相対的にTi含有割合が高く、これによってすぐれた高温強度を有するようになるTi最高含有点を厚さ方向に交互に介在させるものであり、したがってAlの割合を示すY値がTiとの合量に占める割合(原子比)で0.35を越えると、相対的にAlの割合が多くなり過ぎて、所望のすぐれた高温強度を確保することができず、一方同Y値が同じく0.05未満になると、相対的にTiの割合が多くなり過ぎて、Ti最高含有点に所望の高温硬さおよび耐熱性を具備せしめることができなくなり、摩耗進行促進の原因となることから、Y値を0.05〜0.35と定めた。
(B) Composition of highest Ti content point As described above, the highest Al content point is excellent in high-temperature hardness and heat resistance, but on the other hand, it is inferior in high-temperature strength. In order to compensate for this, the Ti content is relatively high, and thereby the highest Ti content point that has excellent high-temperature strength is alternately interposed in the thickness direction, and thus the Y value indicating the Al content If the ratio (atomic ratio) of Ti with respect to the total amount of Ti exceeds 0.35, the ratio of Al becomes relatively large, and the desired excellent high-temperature strength cannot be ensured. If the value is also less than 0.05, the proportion of Ti is relatively increased, and it becomes impossible to provide the desired high-temperature hardness and heat resistance at the highest Ti content point, which promotes the progress of wear. Therefore, Y value It was determined to be 0.05 to 0.35.
(c)Al最高含有点とTi最高含有点間の間隔
その間隔が0.01μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果層に所望のすぐれた高温強度と、すぐれた高温硬さおよび耐熱性を確保することができなくなり、またその間隔が0.1μmを越えるとそれぞれの点がもつ欠点、すなわちAl最高含有点であれば高温強度不足、Ti最高含有点であれば高温硬さおよび耐熱性不足が層内に局部的に現れ、これが原因で切刃にチッピングが発生し易くなったり、摩耗進行が促進されるようになることから、その間隔を0.01〜0.1μmと定めた。
(C) Interval between the highest Al content point and the highest Ti content point If the distance is less than 0.01 μm, it is difficult to clearly form each point with the above composition. Strength, excellent high-temperature hardness and heat resistance cannot be ensured, and if the distance exceeds 0.1 μm, each point has a defect, that is, if Al is the highest content point, insufficient high-temperature strength, Ti highest If it is included, high temperature hardness and insufficient heat resistance will appear locally in the layer, and this may cause chipping on the cutting edge and promote wear progress. It was determined to be 0.01 to 0.1 μm.
(d)平均層厚
その層厚が1.5μm未満では、所望の耐摩耗性を長期に亘って確保することができず、一方その平均層厚が10μmを越えると、チッピングが発生し易くなることから、その平均層厚を1.5〜10μmと定めた。
(D) Average layer thickness If the layer thickness is less than 1.5 μm, the desired wear resistance cannot be ensured over a long period of time. On the other hand, if the average layer thickness exceeds 10 μm, chipping tends to occur. Therefore, the average layer thickness was determined to be 1.5 to 10 μm.
(B)上部層(非晶質炭素系潤滑層)
(a)W含有量
W成分は、上記の非晶質炭素系潤滑層の素地に含有して、層の高温強度を向上させる作用があるが、その含有量が5原子%未満では所望のすぐれた高温強度を確保することができず、一方その含有量が20原子%を越えると潤滑性が急激に低下するようになることから、その含有量を5〜20原子%と定めた。
(B) Upper layer (amorphous carbon-based lubricating layer)
(A) W content W component is contained in the base of the above-mentioned amorphous carbon-based lubricating layer and has the effect of improving the high temperature strength of the layer. However, when the content exceeds 20 atomic%, the lubricity is drastically lowered. Therefore, the content is determined to be 5 to 20 atomic%.
(b)TiおよびN含有量
Ti成分とN成分、さらにC(炭素)成分は磁場成膜下で結合して、被膜中に結晶質のTi(C,N)系化合物微粒として存在し、層の具備するすぐれた潤滑性を損なうことなく、高温強度を著しく向上させる作用があるが、その含有量がTi成分が5原子%未満、およびN成分が0.5原子%未満では、層中にTi(C,N)系微粒として存在する割合が少なくて、所望のすぐれた高温強度を確保することができず、一方その含有量がTi成分が20原子%、およびN成分が18原子%を越えると高温硬さおよび潤滑性が急激に低下するようになることから、その含有量をそれぞれTi:5〜20原子%、N:0.5〜18原子%と定めた。
(B) Ti and N contents Ti component, N component, and further C (carbon) component are combined under magnetic field film formation, and are present as crystalline Ti (C, N) compound fine particles in the film. Has the effect of remarkably improving the high-temperature strength without impairing the excellent lubricity, but if its content is less than 5 atomic% for the Ti component and less than 0.5 atomic% for the N component, The proportion of Ti (C, N) -based fine particles present is small, and the desired excellent high-temperature strength cannot be ensured, while its content is 20 atomic% for the Ti component and 18 atomic% for the N component. If it exceeds, the high temperature hardness and lubricity will decrease rapidly, so the contents were determined to be Ti: 5 to 20 atomic% and N: 0.5 to 18 atomic%, respectively.
(c)平均層厚
その平均層厚が1μm未満では、所望の潤滑効果を長期に亘って確保することができず、一方その平均層厚が10μmを越えると、切刃部にチッピングが発生し易くなることから、その平均層厚を1〜10μmと定めた。
(C) Average layer thickness If the average layer thickness is less than 1 μm, the desired lubricating effect cannot be ensured over a long period of time. On the other hand, if the average layer thickness exceeds 10 μm, chipping occurs at the cutting edge. Since it becomes easy, the average layer thickness was determined to be 1 to 10 μm.
この発明の被覆超硬工具は、表面被覆層を構成する下部層の(Al/Ti)N層がすぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、かつ同上部層である非晶質炭素系潤滑層が、これの炭素系非晶質体の素地が含有するW成分の作用、並びに前記素地に磁場成膜により超微細となった状態で分散分布する結晶質Ti(C,N)系化合物微粒の作用によって、一段とすぐれた高温強度を具備するようになることから、特に著しい高熱発生と高い機械的衝撃を伴う上記の非鉄材料などの被削材の高速重切削でも、表面被覆層にチッピングの発生なく、すぐれた耐摩耗性を長期に亘って発揮するものである。 In the coated carbide tool of the present invention, the lower (Al / Ti) N layer constituting the surface coating layer has excellent high-temperature hardness and heat resistance, and excellent high-temperature strength. The crystalline carbon-based lubricating layer is dispersed in the action of the W component contained in the carbon-based amorphous body, and the crystalline Ti (C, N) Due to the action of the compound compound fine particles, it has a much higher high-temperature strength, so even in high-speed heavy cutting of the above-mentioned non-ferrous materials such as the above-mentioned non-ferrous materials accompanied by remarkably high heat generation and high mechanical impact, the surface The coating layer exhibits excellent wear resistance over a long period of time without occurrence of chipping.
つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。 Next, the coated carbide tool of the present invention will be specifically described with reference to examples.
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 C2 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで60時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、研磨加工を施してISO規格・TEGX160304Rのチップ形状をもったWC基超硬合金製の超硬基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended into the composition shown in Table 1, wet mixed for 60 hours with a ball mill, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium temperature: Sintered at 1400 ° C. for 1 hour, sintered, polished, and then processed into a WC-based cemented carbide substrate A-1 having a chip shape of ISO standard TEGX160304R A-10 was formed.
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで48時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、研磨加工を施してISO規格・TEGX160304Rのチップ形状をもったTiCN系超硬製の超硬基体B−1〜B−6を形成した。 In addition, as raw material powders, all are TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed for 48 hours by a ball mill, dried, and then pressed into a compact at a pressure of 100 MPa. This compact is sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, it is polished to have a TiCN type carbide with a chip shape of ISO standard TEGX160304R. Cemented carbide substrates B-1 to B-6 were formed.
(a)つぎに、図2に示されるアークイオンプレーティング装置、すなわち装置中央部に超硬基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に相対的にAl含有量の高いAl−Ti合金、他方側に相対的にTi含有量の高いTi−Al合金をそれぞれカソード電極(蒸発源)として装着し、さらに前記両カソード電極に対して90度回転した位置にカソード電極(蒸発源)として金属Crを装着したアークイオンプレーティング装置を用い、上記の超硬基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、前記蒸着装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極として装着した前記金属Crとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記金属Crによってボンバード洗浄し、
(c)ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−70Vの直流バイアス電圧を印加し、かつそれぞれ対向配置した両カソード電極(前記Ti最高含有点形成用Ti−Al合金およびAl最高含有点形成用Al−Ti合金)とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、層厚方向に沿って表3に示される目標組成のAl最高含有点とTi最高含有点とが交互に同じく表3に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Ti最高含有点、前記Ti最高含有点から前記Al最高含有点へAlおよびTi含有量がそれぞれ連続的に変化する組成変化構造を有し、かつ同じく表3に示される目標層厚の(Al/Ti)N層を表面被覆層の下部層として蒸着形成し、
(d)つぎに、図3に示される蒸着装置、すなわち一方側のマグネトロンスパッタリング装置のカソード電極(蒸発源)として、純度:99.9質量%のTiターゲット、他方側のマグネトロンスパッタリング装置のカソード電極(蒸発源)として、純度:99.6質量%のWCターゲットを回転テーブルを挟んで対向配置した蒸着装置を用い、装置内の回転テーブル上に、これの中心軸から半径方向に所定距離離れた位置に上記の下部層形成の超硬基体をリング状に装着し、
(e)電磁コイルに印加する条件を、電圧:50〜100V、電流:10〜20Aの範囲内の所定の値として、上記下部層形成の超硬基体の装着部における磁束密度を100〜300G(ガウス)の範囲内の所定の値とし、前記蒸着装置内の加熱温度を400℃、前記超硬基体に−100Vのバイアス電圧を印加し、一方前記蒸着装置内には反応ガスとして、C2H2(炭化水素)と窒素とArを、C2H2流量:25〜100sccm、窒素流量:200〜300sccm、Ar流量:150〜250sccmの範囲内の所定の流量で導入して、反応雰囲気を、1PaのC2H2の分解ガスと窒素とArの混合ガスとすると共に、前記両マグネトロンスパッタリング装置のWCターゲットのカソード電極(蒸発源)には、例えば出力:1〜3kW(周波数:40kHz)の範囲内の所定のスパッタ電力、同Tiターゲットには、出力:3〜8kW(周波数:40kHz)の範囲内の所定のスパッタ電力を同時に印加した条件で、同じく表3,4に示される目標組成および目標層厚の非晶質炭素系潤滑層を上部層として蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製スローアウエイチップ(以下、本発明被覆チップと云う)1〜16をそれぞれ製造した。
(A) Next, the arc ion plating apparatus shown in FIG. 2, that is, a carbide substrate mounting rotary table is provided at the center of the apparatus, and the Al content is relatively high on one side with the rotary table in between. An Al—Ti alloy and a Ti—Al alloy having a relatively high Ti content are mounted on the other side as cathode electrodes (evaporation sources), respectively, and the cathode electrodes (evaporation) are rotated 90 degrees with respect to both the cathode electrodes. Each of the above carbide substrates A-1 to A-10 and B-1 to B-6 was ultrasonically cleaned in acetone and dried using an arc ion plating apparatus equipped with metal Cr as a source) In the state, mounted along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table in the vapor deposition apparatus,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then the carbide substrate that rotates while rotating on the rotary table is set to −1000 V. And applying an AC discharge between the metal Cr mounted as a cathode electrode and an anode electrode to generate an arc discharge, thereby bombarding the surface of the carbide substrate with the metal Cr,
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 3 Pa, a DC bias voltage of −70 V is applied to the carbide substrate rotating while rotating on the rotary table, and An arc discharge is generated by flowing a current of 100 A between the cathode electrodes (the Ti-Al alloy for forming the highest Ti containing point and the Al-Ti alloy for forming the highest Al containing point) and the anode electrode, On the surface of the cemented carbide substrate, Al highest content points and Ti highest content points of the target composition shown in Table 3 along the layer thickness direction alternately and repeatedly exist at the target intervals shown in Table 3, and Having a composition change structure in which the Al and Ti contents continuously change from the highest Al content point to the highest Ti content point, from the highest Ti content point to the highest Al content point, and Target layer thicknesses shown in the axis table 3 (Al / Ti) N layer was vapor deposited as the lower layer of the surface coating layer,
(D) Next, as a cathode electrode (evaporation source) of the vapor deposition apparatus shown in FIG. 3, that is, one side of the magnetron sputtering apparatus, a purity: 99.9 mass% Ti target, and the other side of the cathode electrode of the magnetron sputtering apparatus As the (evaporation source), a vapor deposition apparatus in which a WC target having a purity of 99.6% by mass was disposed opposite to each other with the rotary table interposed therebetween, and was spaced apart from the central axis by a predetermined distance on the rotary table in the apparatus in the radial direction. At the position, attach the carbide substrate of the lower layer formation in a ring shape,
(E) Assuming that the conditions applied to the electromagnetic coil are a predetermined value within the range of voltage: 50 to 100 V and current: 10 to 20 A, the magnetic flux density at the mounting portion of the lower-layer formed carbide substrate is 100 to 300 G ( The heating temperature in the vapor deposition apparatus is 400 ° C., and a bias voltage of −100 V is applied to the carbide substrate, while the vapor deposition apparatus contains C 2 H as a reactive gas. 2 (hydrocarbon), nitrogen, and Ar are introduced at a predetermined flow rate within a range of C 2 H 2 flow rate: 25-100 sccm, nitrogen flow rate: 200-300 sccm, Ar flow rate: 150-250 sccm, A 1 Pa C 2 H 2 decomposition gas, a mixed gas of nitrogen and Ar, and a cathode electrode (evaporation source) of the WC target of both the magnetron sputtering apparatuses, for example, output : Predetermined sputter power within a range of 1 to 3 kW (frequency: 40 kHz), and the same Ti target with a predetermined sputter power within a range of output: 3 to 8 kW (frequency: 40 kHz). By forming the amorphous carbon-based lubricating layer having the target composition and target layer thickness shown in Tables 3 and 4 as the upper layer, the throwaway tip made of the surface-coated cemented carbide of the present invention as the coated carbide tool of the present invention is formed. 1 to 16 (hereinafter referred to as the present coated chip) were produced.
(a)また、比較の目的で、上記の超硬基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図4に示される蒸着装置、すなわちカソード電極(蒸発源)として所定組成を有するTi−Al合金がセットされたアーク放電装置と、カソード電極(蒸発源)としてWCターゲットがセットされたスパッタリング装置を備えた蒸着装置に装入し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Ti−Al合金でボンバード洗浄し、
(c)上記装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記超硬基体に印加するバイアス電圧を−100Vに下げて、前記Ti−Al合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記超硬基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表4に示される目標組成および目標層厚の(Ti,Al)N層を表面被覆層の下部層として蒸着形成し、
(d)ついで、上記蒸着装置内の加熱温度を200℃とした状態で、C2H2とArを、C2H2流量:40〜80sccm、Ar流量:250sccmの範囲内の所定の流量で導入して、1PaのC2H2の分解ガスとArの混合ガスからなる反応雰囲気とすると共に、上記の下部層形成の超硬基体に印加するバイアス電圧を−20Vとし、WCターゲットのカソード電極(蒸発源)には出力:4〜6kW(周波数:40kHz)の範囲内の所定のスパッタ電力を印加した条件で、上記下部層の上に、同じく表5,6に示される目標組成および目標層厚の非晶質炭素系潤滑層を蒸着形成することにより、従来被覆超硬工具に相当する比較表面被覆超硬合金製スローアウエイチップ(以下、比較被覆超硬チップと云う)1〜16をそれぞれ製造した。
(A) Further, for the purpose of comparison, the above-mentioned carbide substrates A-1 to A-10 and B-1 to B-6 are ultrasonically washed in acetone and dried, as shown in FIG. Vapor deposition apparatus, that is, an arc discharge apparatus in which a Ti—Al alloy having a predetermined composition is set as a cathode electrode (evaporation source) and a deposition apparatus having a sputtering apparatus in which a WC target is set as a cathode electrode (evaporation source) Charging,
(B) First, the inside of the apparatus was heated to 500 ° C. with a heater while the inside of the apparatus was evacuated and kept at a vacuum of 0.1 Pa or less, and then a DC bias voltage of −1000 V was applied to the cemented carbide substrate, and An arc discharge is generated by passing a current of 100 A between the Ti—Al alloy and the anode electrode of the cathode electrode, and the carbide substrate surface is bombarded with the Ti—Al alloy,
(C) Nitrogen gas is introduced as a reaction gas into the apparatus to make a reaction atmosphere of 3 Pa, and the bias voltage applied to the cemented carbide substrate is lowered to -100 V, and the cathode electrode and anode of the Ti-Al alloy An arc discharge is generated between the electrodes and the surfaces of the cemented carbide substrates A-1 to A-10 and B-1 to B-6 having the target composition and target layer thickness shown in Table 4 ( Ti, Al) N layer is deposited as a lower layer of the surface coating layer,
(D) Next, in a state where the heating temperature in the vapor deposition apparatus is 200 ° C., C 2 H 2 and Ar are flown at a predetermined flow rate within a range of C 2 H 2 flow rate: 40 to 80 sccm and Ar flow rate: 250 sccm. Introduced into a reaction atmosphere composed of a 1 Pa C 2 H 2 decomposition gas and Ar mixed gas, a bias voltage applied to the above-mentioned carbide substrate of the lower layer formation is −20 V, and the cathode electrode of the WC target The target composition and target layer shown in Tables 5 and 6 are also formed on (evaporation source) on the lower layer under the condition that a predetermined sputtering power within the range of output: 4 to 6 kW (frequency: 40 kHz) is applied. By forming a thick amorphous carbon-based lubricating layer by vapor deposition, comparative surface-coated cemented carbide throwaway tips (hereinafter referred to as comparative coated carbide tips) 1 to 16 corresponding to conventional coated carbide tools are formed. The manufactured.
つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜16および比較被覆チップ1〜16について、
被削材:JIS・A5052の丸棒、
切削速度:800m/min.、
切り込み:7.3mm、
送り:0.1mm/rev.、
切削時間:20分、
の条件(切削条件A)でのAl合金の乾式連続高速高切り込み切削加工試験(通常の切削速度および切り込みは400m/min.および2mm)、
被削材:JIS・C3710の丸棒、
切削速度:380m/min.、
切り込み:6.8mm、
送り:0.13mm/rev.、
切削時間:20分、
の条件(切削条件B)でのCu合金の乾式連続高速高切り込み切削加工試験(通常の切削速度および切り込みは200m/min.および2mm)、
被削材:JIS・TB340Hの丸棒、
切削速度:150m/min.、
切り込み:6.4mm、
送り:0.11mm/rev.、
切削時間:15分、
の条件(切削条件C)でのTi合金の乾式連続高速高切り込み切削加工試験(通常の切削速度および切り込みは100m/min.および1.5mm)を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表5に示した。
Next, in the state where each of the above various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1-16 and the comparative coated chips 1-16,
Work material: JIS A5052 round bar,
Cutting speed: 800 m / min. ,
Cutting depth: 7.3 mm,
Feed: 0.1 mm / rev. ,
Cutting time: 20 minutes,
Dry continuous high-speed high-cut cutting test of Al alloy under the following conditions (cutting condition A) (normal cutting speed and cutting are 400 m / min. And 2 mm),
Work material: JIS C3710 round bar,
Cutting speed: 380 m / min. ,
Incision: 6.8 mm,
Feed: 0.13 mm / rev. ,
Cutting time: 20 minutes,
A dry continuous high-speed high-cut cutting test of a Cu alloy under the following conditions (cutting condition B) (normal cutting speed and cutting are 200 m / min. And 2 mm),
Work material: JIS / TB340H round bar,
Cutting speed: 150 m / min. ,
Incision: 6.4mm,
Feed: 0.11 mm / rev. ,
Cutting time: 15 minutes,
The dry continuous high-speed, high-cutting cutting test (normal cutting speed and cutting is 100 m / min. And 1.5 mm) of Ti alloy under the above conditions (cutting condition C). The surface wear width was measured. The measurement results are shown in Table 5.
原料粉末として、平均粒径:4.6μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr3C2粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表6に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle size of 4.6 μm, 0.8 μm fine WC powder, 1.3 μm TaC powder, 1.2 μm NbC powder, 1.2 μm ZrC Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 .8 μm Co powders were prepared, each of these raw material powders was blended in the composition shown in Table 6, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and then shaped into a predetermined shape at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions Three types of sintered carbide rod forming bodies for forming a carbide substrate having diameters of 8 mm, 13 mm, and 26 mm were formed, and further, the three types of round rod sintered bodies described above were subjected to grinding and shown in Table 7. Made of WC-base cemented carbide with a combination of 4 blade square shape with diameter and length of 6mm × 13mm, 10mm × 22mm, and 20mm × 45mm respectively, and a twist angle of 30 degrees. Carbide substrates (end mills) C-1 to C-8 were produced.
ついで、これらの超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表7に示される目標組成のAl最高含有点とTi最高含有点とが交互に同じく表7に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Ti最高含有点、前記Ti最高含有点から前記Al最高含有点へAlおよびTi含有量がそれぞれ連続的に変化する組成変化構造を有し、かつ表7に示される目標層厚の(Al/Ti)N層を表面被覆層の下部層(硬質層)として蒸着形成し、ついで前記下部層形成の超硬基体を同じく図3に示される蒸着装置に装入し、同じく表7に示される目標組成および目標層厚の非晶質炭素系潤滑層を同上部層として蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)1〜8をそれぞれ製造した。 Next, the surfaces of these carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1, the Al highest content point and the Ti highest content point of the target composition shown in Table 7 along the layer thickness direction are alternately present at the target intervals shown in Table 7 alternately, and The compositional change structure in which Al and Ti contents continuously change from the highest Al content point to the highest Ti content point, from the highest Ti content point to the highest Al content point, and the targets shown in Table 7 The (Al / Ti) N layer having a layer thickness is deposited and formed as the lower layer (hard layer) of the surface coating layer, and then the lower layer-formed carbide substrate is loaded into the deposition apparatus shown in FIG. The target composition shown in Table 7 and By depositing an amorphous carbon-based lubricating layer having a target layer thickness as the upper layer, the surface-coated carbide end mill (hereinafter referred to as the present invention coated end mill) 1 to 1 of the present invention coated carbide tool. 8 were produced respectively.
また、比較の目的で、上記の超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図4に示される蒸着装置に装入し、上記実施例1と同一の条件で、同じく表8に示される目標組成および目標層厚の(Ti,Al)N層および非晶質炭素系潤滑層をそれぞれ表面被覆層の下部層および上部層として蒸着形成することにより、従来被覆超硬工具に相当する比較表面被覆超硬製エンドミル(以下、比較被覆エンドミルと云う)1〜8をそれぞれ製造した。 Further, for the purpose of comparison, the surfaces of the above-mentioned carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then loaded into the vapor deposition apparatus shown in FIG. The (Ti, Al) N layer and the amorphous carbon-based lubricating layer having the target composition and target layer thickness shown in Table 8 under the same conditions as in Example 1 above are the lower layer and the upper layer of the surface coating layer, respectively. The comparative surface-coated carbide end mills (hereinafter referred to as comparative coated end mills) 1 to 8 corresponding to conventional coated carbide tools were produced respectively.
つぎに、上記本発明被覆エンドミル1〜8および比較被覆エンドミル1〜8のうち、本発明被覆エンドミル1〜3および比較被覆エンドミル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・C3710の板材、
切削速度:180m/min.、
溝深さ(切り込み):5mm、
テーブル送り:485mm/分、
の条件でのCu合金の乾式高速高切り込み溝切削加工試験(通常の切削速度および溝深さは150m/min.および2mm)、本発明被覆エンドミル4〜6および比較被覆エンドミル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・TP340Hの板材、
切削速度:185m/min.、
溝深さ(切り込み):8.1mm、
テーブル送り:455mm/分、
の条件でのTi合金の乾式高速高切り込み溝切削加工試験(通常の切削速度および溝深さは150m/min.および4mm)、本発明被覆エンドミル7,8および比較被覆エンドミル7,8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・A5052の板材、
切削速度:205m/min.、
溝深さ(切り込み):16mm、
テーブル送り:500mm/分、
の条件でのTi合金の乾式高速高送り溝切削加工試験(通常の切削速度および溝深さは180m/min.および8mm)をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果をそれぞれ表7,8に示した。
Next, of the present invention coated end mills 1-8 and comparative coated end mills 1-8, the present invention coated end mills 1-3 and comparative coated end mills 1-3 are as follows:
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS C3710 plate material,
Cutting speed: 180 m / min. ,
Groove depth (cut): 5 mm,
Table feed: 485 mm / min,
With regard to the Cu alloy dry high-speed high-cut groove cutting test (normal cutting speed and groove depth is 150 m / min. And 2 mm), the present invention coated end mills 4 to 6 and the comparative coated end mills 4 to 6
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / TP340H plate material,
Cutting speed: 185 m / min. ,
Groove depth (cut): 8.1 mm,
Table feed: 455 mm / min,
With respect to the dry high-speed high-cut groove cutting test of Ti alloy under the following conditions (normal cutting speed and groove depth are 150 m / min. And 4 mm), the coated end mills 7 and 8 and the comparative coated end mills 7 and 8 of the present invention,
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS A5052 plate material,
Cutting speed: 205 m / min. ,
Groove depth (cut): 16 mm,
Table feed: 500 mm / min,
Ti-alloy dry high-speed high-feed grooving test (normal cutting speed and groove depth is 180 m / min. And 8 mm) was performed. The cutting groove length was measured until the flank wear width reached 0.1 mm, which is a guide for the service life. The measurement results are shown in Tables 7 and 8, respectively.
上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。 The diameters produced in Example 2 above were 8 mm (for forming carbide substrates C-1 to C-3), 13 mm (for forming carbide substrates C-4 to C-6), and 26 mm (for carbide substrates C-). 7, for C-8 formation), from these three types of round bar sintered bodies, the diameter x length of the groove forming portion is 4 mm x 13 mm (by grinding), respectively. Carbide substrates D-1 to D-3), 8 mm × 22 mm (Carbide substrates D-4 to D-6), and 16 mm × 45 mm (Carbide substrates D-7 and D-8), and all Carbide substrates (drills) D-1 to D-8 made of a WC-base cemented carbide having a two-blade shape with a twist angle of 30 degrees were produced.
ついで、これらの超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表9に示される目標組成のAl最高含有点とTi最高含有点とが交互に同じく表9に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Ti最高含有点、前記Ti最高含有点から前記Al最高含有点へAlおよびTi含有量がそれぞれ連続的に変化する組成変化構造を有し、かつ表9に示される目標層厚の(Al/Ti)N層を表面被覆層の下部層(硬質層)として蒸着形成し、ついで前記下部層形成の超硬基体を同じく図3に示される蒸着装置に装入し、同じく表9に示される目標組成および目標層厚の非晶質炭素系潤滑層を同上部層として蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)1〜8をそれぞれ製造した。 Next, the cutting edges of these carbide substrates (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone and dried, and the arc ion plating apparatus shown in FIG. 2 is also used. In the same conditions as in Example 1 above, the target interval shown in Table 9 in which the Al highest content point and the Ti highest content point of the target composition shown in Table 9 are alternately shown along the layer thickness direction. And a composition change structure in which the content of Al and Ti continuously changes from the highest Al content point to the highest Ti content point, from the highest Ti content point to the highest Al content point, and The (Al / Ti) N layer having the target layer thickness shown in Table 9 is formed by vapor deposition as the lower layer (hard layer) of the surface coating layer, and then the carbide substrate for forming the lower layer is also deposited by the vapor deposition apparatus shown in FIG. As shown in Table 9 The surface-coated carbide drill of the present invention as a coated carbide tool of the present invention (hereinafter referred to as the coated drill of the present invention) is formed by vapor-depositing an amorphous carbon-based lubricating layer having a target composition and a target layer thickness as the upper layer. 1) -8 were produced respectively.
また、比較の目的で、上記の超硬基体(ドリル)D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図4に示される蒸着装置に装入し、上記実施例1と同一の条件で、同じく表10に示される目標組成および目標層厚を有する(Ti,Al)N層および非晶質炭素系潤滑層をそれぞれ表面被覆層の下部層および上部層として蒸着形成することにより、従来被覆超硬工具に相当する比較表面被覆超硬製ドリル(以下、比較被覆ドリルと云う)1〜8をそれぞれ製造した。 For comparison purposes, the surfaces of the above-mentioned carbide substrates (drills) D-1 to D-8 are honed, ultrasonically cleaned in acetone, and dried, as shown in FIG. The (Ti, Al) N layer and the amorphous carbon-based lubricating layer having the target composition and the target layer thickness shown in Table 10 under the same conditions as in Example 1 were charged into the apparatus, respectively. Comparative surface-coated carbide drills (hereinafter referred to as comparative coated drills) 1 to 8 corresponding to conventional coated carbide tools were produced by vapor deposition as the lower layer and the upper layer.
つぎに、上記本発明被覆ドリル1〜8および比較被覆ドリル1〜8のうち、本発明被覆ドリル1〜3および比較被覆ドリル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・A5052の板材、
切削速度:115m/min.、
送り:0.52mm/rev、
穴深さ:6mm、
の条件でのAl合金の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは80m/min.および0.2mm/rev)、本発明被覆ドリル4〜6および比較被覆ドリル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・C3710の板材、
切削速度:110m/min.、
送り:0.57mm/rev、
穴深さ:12mm、
の条件でのCu合金の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは80m/min.および0.25mm/rev)、本発明被覆ドリル7,8および比較被覆ドリル7,8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・TP340Hの板材、
切削速度:65m/min.、
送り:0.52mm/rev、
穴深さ:20mm、
の条件でのTi合金の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは40m/min.および0.2mm/rev)、をそれぞれ行い、いずれの湿式高速高送り穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果をそれぞれ表9,10に示した。
Next, of the present invention coated drills 1-8 and comparative coated drills 1-8, for the present invention coated drills 1-3 and comparative coated drills 1-3,
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS A5052 plate material,
Cutting speed: 115 m / min. ,
Feed: 0.52mm / rev,
Hole depth: 6mm,
Wet high-speed high-feed drilling test (normal cutting speed and feed are 80 m / min. And 0.2 mm / rev) of the present invention, and the present invention coated drills 4 to 6 and comparative coated drills 4 to 6 Is
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS C3710 plate material,
Cutting speed: 110 m / min. ,
Feed: 0.57mm / rev,
Hole depth: 12mm,
Wet high-speed high-feed drilling test of Cu alloy under the following conditions (normal cutting speed and feed are 80 m / min. And 0.25 mm / rev), the present invention coated drills 7 and 8 and comparative coated drills 7 and 8 Is
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / TP340H plate material,
Cutting speed: 65 m / min. ,
Feed: 0.52mm / rev,
Hole depth: 20mm,
Wet high-speed high-feed drilling machining test (normal cutting speed and feed are 40 m / min. And 0.2 mm / rev), respectively, under the conditions of Using water-soluble cutting oil), the number of drilling operations was measured until the flank wear width of the cutting edge surface reached 0.3 mm. The measurement results are shown in Tables 9 and 10, respectively.
この結果得られた本発明被覆超硬工具としての本発明被覆超硬チップ1〜16、本発明被覆超硬エンドミル1〜8、および本発明被覆超硬ドリル1〜8、並びに従来被覆超硬工具としての比較被覆超硬チップ1〜16、比較被覆超硬エンドミル1〜8、および比較被覆超硬ドリル1〜8を構成する表面被覆層の下部層を構成する(Al/Ti)N層および(Ti,Al)N層について、厚さ方向に沿ってAlおよびTi成分の含有量をオージェ分光分析装置、その層厚を走査型電子顕微鏡を用いて測定したところ、前記本発明被覆超硬工具の(Al/Ti)N層では、Al最高含有点とTi最高含有点とがそれぞれ目標値と実質的に同じ組成および間隔で交互に繰り返し存在し、かつ前記Al最高含有点から前記Ti最高含有点、前記Ti最高含有点から前記Al最高含有点へAlおよびTi含有量がそれぞれ連続的に変化する組成変化構造を有することが確認され、さらに平均層厚も目標層厚と実質的に同じ値を示した。一方、前記従来被覆超硬工具の(Ti,Al)N層では、目標組成と実質的に同じ組成および目標層厚と実質的に同じ平均層厚を示すものの、厚さ方向に沿った組成変化は見られず、層全体に亘って均質な組成を示すものであった。
さらに、同上部層を構成する非晶質炭素系潤滑層についても、その組成をオージェ分光分析装置、その層厚を走査型電子顕微鏡を用いて測定したところ、いずれも目標組成および目標層厚と実質的に同じ組成および平均層厚(断面5箇所の平均値)を示し、また、その組織を透過型電子顕微鏡を用いて観察したところ、前記本発明被覆超硬工具は、図1に示される通りW成分含有の炭素系非晶質体の素地に、結晶質のTi(C,N)系化合物微粒が分散分布した組織を示し、一方前記従来被覆超硬工具は、炭素系非晶質体の単一相からなる組織を示した。
As a result, the coated carbide tips 1 to 16 of the present invention, the coated carbide end mills 1 to 8 of the present invention, the coated carbide drills 1 to 8 of the present invention, and the conventionally coated carbide tools of the present invention. (Al / Ti) N layer constituting the lower layer of the surface coating layer constituting the comparative coated carbide tips 1 to 16, the comparative coated carbide end mills 1 to 8, and the comparative coated carbide drills 1 to 8 and ( For the Ti, Al) N layer, the content of Al and Ti components along the thickness direction was measured using an Auger spectroscopic analyzer, and the layer thickness was measured using a scanning electron microscope. In the (Al / Ti) N layer, the highest Al content point and the highest Ti content point alternately and repeatedly exist at substantially the same composition and interval as the target value, and the highest Ti content point from the highest Al content point. The Ti Ti Confirmed to have a composition change structure wherein Al highest to contain points Al and Ti content from content point varies respectively continuously, even further the average layer thickness showed target layer thickness substantially the same value. On the other hand, the (Ti, Al) N layer of the conventional coated carbide tool shows a composition substantially the same as the target composition and an average layer thickness substantially the same as the target layer thickness, but changes in composition along the thickness direction. Was not seen, and showed a homogeneous composition throughout the layer.
Furthermore, when the composition of the amorphous carbon-based lubricating layer constituting the upper layer was measured using an Auger spectrometer and the thickness of the layer was measured using a scanning electron microscope, both the target composition and the target layer thickness were measured. The substantially same composition and average layer thickness (average value of five cross-sections) are shown, and when the structure is observed using a transmission electron microscope, the coated carbide tool of the present invention is shown in FIG. As shown above, a structure in which crystalline Ti (C, N) compound fine particles are dispersed and distributed on the substrate of the carbon-based amorphous body containing the W component is shown. The structure consisting of a single phase was shown.
表3〜10に示される結果から、本発明被覆超硬工具は、いずれも著しい高熱発生および高い機械的衝撃を伴なう非鉄材料の高速重切削でも、表面被覆層の下部層である(Al/Ti)N層がすぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、かつ同上部層である非晶質炭素系潤滑層が、W成分含有の炭素系非晶質体の素地に、結晶質のTi(C,N)系化合物微粒が分散分布した組織を有し、すぐれた高温強度を具備することから、表面被覆層にチッピングの発生なく、すぐれた耐摩耗性を長期に亘って発揮するのに対して、表面被覆層の下部層が(Ti,Al)N層、同上部層が炭素系非晶質体の単一相からなる組織を有する非晶質炭素系潤滑層で構成された従来被覆超硬工具においては、いずれも非鉄材料の高速重切削加工では表面被覆層の摩耗進行が速く、かつチッピングも発生することから、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 3 to 10, the coated carbide tool of the present invention is a lower layer of the surface coating layer even in high-speed heavy cutting of non-ferrous materials with significant heat generation and high mechanical impact (Al / Ti) N layer has excellent high-temperature hardness and heat resistance, and excellent high-temperature strength, and the amorphous carbon-based lubricating layer, which is the upper layer, is a W-containing carbon-based amorphous material In addition, it has a structure in which crystalline Ti (C, N) -based compound fine particles are dispersed and distributed, and has excellent high-temperature strength, so that excellent wear resistance can be achieved for a long time without occurrence of chipping in the surface coating layer. An amorphous carbon-based lubricating layer having a structure in which the lower layer of the surface coating layer is a (Ti, Al) N layer and the upper layer is composed of a single phase of a carbon-based amorphous body. All conventional coated carbide tools composed of high-speed heavy cutting of non-ferrous materials From the wear progress of the surface coating layer is high and chipping also occurs, it is clear that lead to a relatively short time service life.
上述のように、この発明の被覆超硬工具は、特に各種の非鉄材料などの通常の切削条件での切削加工は勿論のこと、特に高い発熱および機械的衝撃を伴なう高速重切削加工でもすぐれた耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置の高性能化および自動化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated carbide tool of the present invention can be used not only for cutting under normal cutting conditions such as various non-ferrous materials, but also for high-speed heavy cutting with high heat generation and mechanical shock. Because it exhibits excellent wear resistance and excellent cutting performance over a long period of time, it is sufficient for high performance and automation of cutting equipment, labor saving and energy saving of cutting work, and cost reduction It can respond to satisfaction.
Claims (1)
(a)下部層として、1.5〜10μmの平均層厚を有し、かつ、層厚方向にそって、Al最高含有点とTi最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Ti最高含有点、前記Ti最高含有点から前記Al最高含有点へAlおよびTi含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、
さらに、上記Al最高含有点が、組成式:(Al1-X TiX)N(ただし、原子比で、Xは0.05〜0.35を示す)、
上記Ti最高含有点が、組成式:(Ti1-YAlY)N(ただし、原子比で、Yは0.05〜0.35を示す)、
を満足し、かつ隣り合う上記Al最高含有点とTi最高含有点の間隔が、0.01〜0.1μmからなる組成変化構造を有するTiとAlの複合窒化物層からなる硬質層、
(b)上部層として、1〜10μmの平均層厚を有し、かつマグネトロンスパッタリング装置にて、カソード電極(蒸発源)として、炭化タングステンターゲットとTiターゲットを用い、炭化水素の分解ガスと窒素とArの混合ガスからなる反応雰囲気で磁場中成膜され、オージェ分光分析装置で測定して、
W:5〜20原子%、
Ti:5〜20原子%、
窒素:0.5〜18原子%、
を含有し、残りが炭素と不可避不純物からなる組成を有すると共に、透過型電子顕微鏡による観察で、W成分含有の炭素系非晶質体の素地に、結晶質炭窒化チタン系化合物の微粒が分散分布した組織を有する非晶質炭素系潤滑層、
以上(a)および(b)で構成された表面被覆層を蒸着形成してなる、高速重切削加工で表面被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具。 On the surface of the cemented carbide substrate composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) As a lower layer, it has an average layer thickness of 1.5 to 10 μm, and Al maximum content points and Ti maximum content points are alternately present at predetermined intervals along the layer thickness direction. And the component concentration distribution structure in which Al and Ti content continuously change from the Al highest content point to the Ti highest content point, from the Ti highest content point to the Al highest content point, respectively,
Furthermore, the Al highest content point is the composition formula: (Al 1-X Ti X ) N (however, X is 0.05 to 0.35 in atomic ratio),
The highest Ti content point is the composition formula: (Ti 1-Y Al Y ) N (wherein Y represents 0.05 to 0.35 in atomic ratio),
And a hard layer composed of a composite nitride layer of Ti and Al having a composition change structure in which the interval between the Al highest content point and the Ti highest content point adjacent to each other is 0.01 to 0.1 μm,
(B) The upper layer has an average layer thickness of 1 to 10 μm, and in the magnetron sputtering apparatus, a tungsten carbide target and a Ti target are used as a cathode electrode (evaporation source), a hydrocarbon decomposition gas and nitrogen Films are formed in a magnetic field in a reaction atmosphere consisting of a mixed gas of Ar, and measured with an Auger spectrometer.
W: 5 to 20 atomic%,
Ti: 5 to 20 atomic%,
Nitrogen: 0.5-18 atomic%,
And the remainder is composed of carbon and inevitable impurities, and fine particles of crystalline titanium carbonitride compound are dispersed in the W-component-containing carbon-based amorphous body by observation with a transmission electron microscope. An amorphous carbon-based lubricating layer having a distributed structure,
A surface-coated cemented carbide cutting tool that exhibits excellent chipping resistance by high-speed heavy cutting, which is formed by vapor-depositing the surface coating layer composed of (a) and (b) above.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004212896A JP4530142B2 (en) | 2004-07-21 | 2004-07-21 | Surface coated cemented carbide cutting tool with excellent chipping resistance in high speed heavy cutting with excellent surface coating layer |
EP11152017.7A EP2308621B1 (en) | 2004-01-30 | 2005-01-28 | Surface-coated cutting tool made of hard metal |
US10/597,505 US7655299B2 (en) | 2004-01-30 | 2005-01-28 | Surface-coated cutting tool made of hard metal and manufacturing method for same |
PCT/JP2005/001208 WO2005072895A1 (en) | 2004-01-30 | 2005-01-28 | Cutting tool made of surface-coated super hard alloy, and method for manufacture thereof |
EP05709435.1A EP1710032B1 (en) | 2004-01-30 | 2005-01-28 | Cutting tool made of surface-coated super hard alloy, and method for manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004212896A JP4530142B2 (en) | 2004-07-21 | 2004-07-21 | Surface coated cemented carbide cutting tool with excellent chipping resistance in high speed heavy cutting with excellent surface coating layer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006026867A true JP2006026867A (en) | 2006-02-02 |
JP4530142B2 JP4530142B2 (en) | 2010-08-25 |
Family
ID=35893795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004212896A Expired - Fee Related JP4530142B2 (en) | 2004-01-30 | 2004-07-21 | Surface coated cemented carbide cutting tool with excellent chipping resistance in high speed heavy cutting with excellent surface coating layer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4530142B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008049453A (en) * | 2006-08-25 | 2008-03-06 | Mitsubishi Materials Corp | Surface coated cutting tool having hard coating layer showing superior wear resistance |
KR20160084434A (en) | 2014-03-26 | 2016-07-13 | 제이엑스금속주식회사 | Sputtering target comprising tungsten carbide or titanium carbide |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0762541A (en) * | 1993-08-26 | 1995-03-07 | Kyocera Corp | Wear resistant member |
JP2001225412A (en) * | 2000-02-16 | 2001-08-21 | Token Thermotec:Kk | Protective film coated member |
JP2001316800A (en) * | 2000-02-25 | 2001-11-16 | Sumitomo Electric Ind Ltd | Amorphous carbon coated member |
JP2002206177A (en) * | 2000-12-28 | 2002-07-26 | Komatsu Ltd | Sliding member having excellent sliding characteristic |
JP2002235748A (en) * | 2001-02-13 | 2002-08-23 | Koyo Seiko Co Ltd | Rolling sliding component |
JP2003300103A (en) * | 2002-04-08 | 2003-10-21 | Mitsubishi Materials Kobe Tools Corp | Cutting tool made of coated cemented carbide in which hard coating layer exhibits excellent abrasion resistant property at high speed deep cutting condition |
JP2004010923A (en) * | 2002-06-04 | 2004-01-15 | Toyota Motor Corp | Sliding member and its production method |
-
2004
- 2004-07-21 JP JP2004212896A patent/JP4530142B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0762541A (en) * | 1993-08-26 | 1995-03-07 | Kyocera Corp | Wear resistant member |
JP2001225412A (en) * | 2000-02-16 | 2001-08-21 | Token Thermotec:Kk | Protective film coated member |
JP2001316800A (en) * | 2000-02-25 | 2001-11-16 | Sumitomo Electric Ind Ltd | Amorphous carbon coated member |
JP2002206177A (en) * | 2000-12-28 | 2002-07-26 | Komatsu Ltd | Sliding member having excellent sliding characteristic |
JP2002235748A (en) * | 2001-02-13 | 2002-08-23 | Koyo Seiko Co Ltd | Rolling sliding component |
JP2003300103A (en) * | 2002-04-08 | 2003-10-21 | Mitsubishi Materials Kobe Tools Corp | Cutting tool made of coated cemented carbide in which hard coating layer exhibits excellent abrasion resistant property at high speed deep cutting condition |
JP2004010923A (en) * | 2002-06-04 | 2004-01-15 | Toyota Motor Corp | Sliding member and its production method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008049453A (en) * | 2006-08-25 | 2008-03-06 | Mitsubishi Materials Corp | Surface coated cutting tool having hard coating layer showing superior wear resistance |
KR20160084434A (en) | 2014-03-26 | 2016-07-13 | 제이엑스금속주식회사 | Sputtering target comprising tungsten carbide or titanium carbide |
Also Published As
Publication number | Publication date |
---|---|
JP4530142B2 (en) | 2010-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4702520B2 (en) | Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel | |
JP5594575B2 (en) | Surface coated cutting tool with excellent wear resistance due to hard coating layer | |
JP3969230B2 (en) | Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under heavy cutting conditions | |
JP2009101491A (en) | Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting | |
JP5344129B2 (en) | Surface coated cutting tool with excellent wear resistance due to hard coating layer | |
JP4711177B2 (en) | Surface coated cemented carbide cutting tool with excellent wear resistance due to lubricity coating layer | |
JP4530139B2 (en) | Surface coated cemented carbide cutting tool with excellent wear resistance due to lubricated amorphous carbon coating | |
JP4438546B2 (en) | Surface coated cemented carbide cutting tool with excellent chipping resistance in high speed heavy cutting with excellent surface coating layer | |
JP5035527B2 (en) | Surface coated cutting tool | |
JP4007102B2 (en) | Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions | |
JP4530142B2 (en) | Surface coated cemented carbide cutting tool with excellent chipping resistance in high speed heavy cutting with excellent surface coating layer | |
JP4120500B2 (en) | Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting | |
JP2007160465A (en) | Surface coated cemented carbide cutting tool having hard lubricating layer exhibiting excellent wear resistance in high speed cutting | |
JP2006224198A (en) | Cutting tool made of surface coated cemented carbide alloy with hard coating layer displaying excellent abrasion resistance in high speed cutting work of highly reactive work material | |
JP4697389B2 (en) | Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting | |
JP4029328B2 (en) | Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer under high-speed heavy cutting conditions | |
JP2004338008A (en) | Cutting tool made of surface coated hard metal with hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting condition | |
JP2004358610A (en) | Surface-coated cermet made cutting tool with hard coating layer having excellent wear resistance in high-speed cutting | |
JP4530138B2 (en) | Surface coated cemented carbide cutting tool with excellent wear resistance due to lubricated amorphous carbon coating | |
JP2005342834A (en) | Surface coated cemented carbide cutting tool with diamond-like carbon coat of plasma cvd film forming exerting excellent abrasion resistance | |
JP4088831B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions. | |
JP4645818B2 (en) | Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys | |
JP2004106108A (en) | Surface coated cemented carbide cutting tool having hard coated layer exhibiting superior chipping resistance under high speed heavy duty cutting condition | |
JP4120499B2 (en) | Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting | |
JP2006224216A (en) | Cutting tool made of surface coated cemented carbide alloy with hard coating layer displaying excellent abrasion resistance in high speed cutting work of heat resisting alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070330 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100519 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4530142 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100601 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130618 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |