JP2006021605A - Rolling bearing unit for supporting wheel and its manufacturing method - Google Patents

Rolling bearing unit for supporting wheel and its manufacturing method Download PDF

Info

Publication number
JP2006021605A
JP2006021605A JP2004200693A JP2004200693A JP2006021605A JP 2006021605 A JP2006021605 A JP 2006021605A JP 2004200693 A JP2004200693 A JP 2004200693A JP 2004200693 A JP2004200693 A JP 2004200693A JP 2006021605 A JP2006021605 A JP 2006021605A
Authority
JP
Japan
Prior art keywords
wheel
hub body
rolling bearing
bearing unit
side flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004200693A
Other languages
Japanese (ja)
Other versions
JP2006021605A5 (en
Inventor
Shoko Yasumura
昌紘 安村
Akifumi Horiie
章史 堀家
Fumihiko Usui
文彦 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2004200693A priority Critical patent/JP2006021605A/en
Publication of JP2006021605A publication Critical patent/JP2006021605A/en
Publication of JP2006021605A5 publication Critical patent/JP2006021605A5/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the run out of a rotor supported and fixed to the axially outward surface of a rotation side flange 18, and prevent occurrence of judder at the time of braking. <P>SOLUTION: A hub body 9b providing the rotation side flange 18 on its peripheral surface is supported by a pair of centers 29a, 29b. The hub body 9b is rotated by a chuck 30 in this state, and an inner ring raceway 15a formed on the outer peripheral surface of the hub body 9b and a small diameter stepped portion 12 for externally fitting a separate inner ring are ground. The axially outward surface 19 of the rotation side flange 18 is machined to a flat surface orthogonal to the rotating center with a cutting tool 33 without removing the hub body 9b from the both centers 29a, 29b. The perpendicularity of the axially outward surface 19 relative to the rotating center of the hub body 9b is made good and thereby the above-mentioned problem is solved. <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

この発明は、自動車の車輪並びにロータ或はドラム等の制動用回転体を支持する為の車輪支持用転がり軸受ユニット、及び、この様な車輪支持用転がり軸受ユニットの製造方法の改良に関する。   The present invention relates to a wheel-supporting rolling bearing unit for supporting an automobile wheel and a braking rotator such as a rotor or a drum, and an improvement of a method for manufacturing such a wheel-supporting rolling bearing unit.

自動車の車輪を構成するホイール1及び制動装置であるディスクブレーキを構成するロータ2は、例えば特許文献1に記載されている様に、図26に示す様な構造により、懸架装置を構成するナックル3に回転自在に支承している。即ち、このナックル3に形成した円形の支持孔4部分に、本発明の対象となる車輪支持用転がり軸受ユニット5を構成する外輪6を、この外輪6の外周面に形成した固定側フランジ7を上記ナックル3に、複数本のボルト8で結合する事により固定している。上記外輪6の内径側には、ハブ本体9と内輪10とから成るハブ11を、回転自在に支持している。この内輪10は、このハブ本体9の軸方向内端部(軸方向に関して内とは、自動車への組み付け状態で幅方向中央側となる部分を言い、各図の左側。反対に、自動車への組み付け状態で幅方向外側となる、各図の右側を外と言う。本明細書及び特許請求の範囲全体で同じ。)に形成した小径段部12に、この内輪10の軸方向外端面をこの小径段部12の軸方向外端部に存在する段差面13に突き当てる状態で外嵌している。   A wheel 1 constituting a wheel of an automobile and a rotor 2 constituting a disc brake, which is a braking device, include, for example, a knuckle 3 constituting a suspension device having a structure as shown in FIG. It is supported rotatably. That is, a fixed-side flange 7 formed on the outer peripheral surface of the outer ring 6 and an outer ring 6 constituting a wheel bearing rolling bearing unit 5 as an object of the present invention is formed in the circular support hole 4 formed in the knuckle 3. The knuckle 3 is fixed by being coupled with a plurality of bolts 8. A hub 11 composed of a hub body 9 and an inner ring 10 is rotatably supported on the inner diameter side of the outer ring 6. The inner ring 10 is the inner end of the hub body 9 in the axial direction (inside with respect to the axial direction, the inner side refers to a portion which is the central side in the width direction when assembled to the automobile, and is the left side of each figure. The right side of each figure, which is the outer side in the width direction in the assembled state, is referred to as the outside, and the same is applied to the entire specification and claims). The small diameter stepped portion 12 is externally fitted in a state of abutting against the stepped surface 13 existing at the axially outer end portion.

この様なハブ11を上記外輪6の内径側に回転自在に支持する為に、上記外輪6の内周面に複列の外輪軌道14a、14bを形成している。そして、これら両外輪軌道14a、14bと、上記ハブ11を構成する上記ハブ本体9の中間部外周面及び上記内輪10の外周面に形成した複列の内輪軌道15a、15bとの間に、各列毎に複数個ずつの転動体16、16を、それぞれ保持器17、17により保持した状態で転動自在に設けている。図26に示した構造では、上記各転動体16、16として玉を使用している為、上述した構成により、背面組み合わせである、複列アンギュラ型の玉軸受としている。尚、重量の嵩む自動車用の転がり軸受ユニットの場合、転動体として円すいころを使用する場合もある。   In order to rotatably support such a hub 11 on the inner diameter side of the outer ring 6, double-row outer ring raceways 14 a and 14 b are formed on the inner peripheral surface of the outer ring 6. Between each of the outer ring raceways 14a and 14b and the double row inner ring raceways 15a and 15b formed on the outer peripheral surface of the intermediate portion of the hub body 9 and the outer peripheral surface of the inner ring 10 constituting the hub 11, A plurality of rolling elements 16 and 16 are provided for each row so as to be freely rollable while being held by holders 17 and 17, respectively. In the structure shown in FIG. 26, since balls are used as the rolling elements 16 and 16, a double-row angular ball bearing which is a back surface combination is formed by the above-described configuration. In the case of a rolling bearing unit for automobiles that is heavy in weight, a tapered roller may be used as a rolling element.

又、上記ハブ本体9の軸方向外端部で、上記外輪6の軸方向外端開口から突出した部分には、回転側フランジ18を形成している。前記ホイール1及びロータ2はこの回転側フランジ18の片側面(図示の例では軸方向外側面19)に、この回転側フランジ18にその基端部を圧入固定した複数本のスタッド20とナット32とにより、結合固定している。尚、上記外輪6の軸方向両端部内周面と、上記ハブ本体9の中間部外周面及び上記内輪10の軸方向内端部外周面との間には、それぞれシールリング21a、21bを設けて、上記各転動体16、16を設けた空間と外部空間とを遮断している。更に、図示の例は、駆動輪(FR車及びRR車の後輪、FF車の前輪、4WD車の全輪)用の車輪支持用転がり軸受ユニット5である為、上記ハブ本体9の中心部に、スプライン孔22を形成している。そして、このスプライン孔22に、等速ジョイント23のスプライン軸24を挿入している。   A rotation-side flange 18 is formed at a portion protruding from the axial outer end opening of the outer ring 6 at the axial outer end portion of the hub body 9. The wheel 1 and the rotor 2 have a plurality of studs 20 and nuts 32 each having a proximal end portion press-fitted and fixed to one side surface (in the illustrated example, the axially outer surface 19) of the rotation side flange 18. And are fixed. Seal rings 21 a and 21 b are provided between the inner peripheral surface of both ends in the axial direction of the outer ring 6 and the outer peripheral surface of the intermediate portion of the hub body 9 and the outer peripheral surface of the inner ring 10 in the axial direction. The space provided with each of the rolling elements 16 and 16 is blocked from the external space. Furthermore, since the illustrated example is a wheel bearing rolling bearing unit 5 for driving wheels (the rear wheels of FR and RR vehicles, the front wheels of FF vehicles, and all wheels of 4WD vehicles), In addition, a spline hole 22 is formed. The spline shaft 24 of the constant velocity joint 23 is inserted into the spline hole 22.

これに対して、図27に示す様な、従動輪(FR車及びRR車の前輪、FF車の後輪)用の車輪支持用転がり軸受ユニット5aの場合には、ハブ11aを構成するハブ本体9aを充実体としている。そして、このハブ本体9aの軸方向中間部内端寄り部分の小径段部12に外嵌した内輪10の軸方向内端面を、このハブ本体9aの軸方向内端部に設けた雄ねじ部25に螺着したナット26により抑え付けて、上記内輪10をこのハブ本体9aに固定している。   On the other hand, in the case of a wheel support rolling bearing unit 5a for driven wheels (front wheels of FR and RR vehicles, rear wheels of FF vehicles) as shown in FIG. 27, the hub body constituting the hub 11a. 9a is a solid body. Then, the inner end surface in the axial direction of the inner ring 10 that is externally fitted to the small diameter step portion 12 near the inner end in the axial direction intermediate portion of the hub main body 9a is screwed into the male screw portion 25 provided at the inner end portion in the axial direction of the hub main body 9a. The inner ring 10 is fixed to the hub body 9a by being held down by the attached nut 26.

上述の様な車輪支持用転がり軸受ユニット5(5a)の使用時には、図26に示す様に、外輪6をナックル3に固定すると共に、ハブ本体9(9a)の回転側フランジ18に、図示しないタイヤを組み合わせた前記ホイール1及びロータ2を固定する。又、このうちのロータ2と、上記ナックル3に固定した、図示しないサポート及びキャリパとを組み合わせて、制動用のディスクブレーキを構成する。制動時には、上記ロータ2を挟んで設けた1対のパッドをこのロータ2の両側面に押し付ける。   When the wheel support rolling bearing unit 5 (5a) as described above is used, as shown in FIG. 26, the outer ring 6 is fixed to the knuckle 3, and the rotation side flange 18 of the hub body 9 (9a) is not shown. The wheel 1 and the rotor 2 combined with tires are fixed. A brake disc brake is configured by combining the rotor 2 and the support and caliper (not shown) fixed to the knuckle 3. During braking, a pair of pads provided across the rotor 2 are pressed against both side surfaces of the rotor 2.

上述の様な車輪支持用転がり軸受ユニット5(5a)を組み込んだ自動車の制動時に、しばしば、ジャダーと呼ばれる、不快な騒音を伴う振動が発生する事が知られている。この様な振動の原因としては、上記ロータ2の軸方向両側面とパッドのライニングとの摩擦状態の不均一等、各種の原因が知られているが、上記ロータ2の振れも、大きな原因となる事が知られている。即ち、このロータ2の側面はこのロータ2の回転中心に対して、本来直角となるべきものであるが、不可避的な製造誤差により、完全に直角にする事は難しい。この結果、自動車の走行時に上記ロータ2の側面は、多少とは言え、回転軸方向(図26の左右方向)に振れる事が避けられない。この様な振れ(図26の左右方向への変位量)が大きくなると、制動の為に1対のパッドのライニングを上記ロータ2の両側面に押し付けた場合に、上記ジャダーが発生する。   It is known that vibration with unpleasant noise, often referred to as judder, often occurs during braking of an automobile incorporating the wheel bearing rolling bearing unit 5 (5a) as described above. Various causes of such vibrations are known, such as non-uniform friction between the axially opposite side surfaces of the rotor 2 and the pad lining. The vibration of the rotor 2 is also a major cause. It is known that That is, the side surface of the rotor 2 should be perpendicular to the center of rotation of the rotor 2, but it is difficult to make it completely perpendicular due to unavoidable manufacturing errors. As a result, it is inevitable that the side surface of the rotor 2 swings in the direction of the rotation axis (the left-right direction in FIG. 26), although it is somewhat, when the automobile is running. When such deflection (the amount of displacement in the left-right direction in FIG. 26) increases, the judder occurs when the lining of a pair of pads is pressed against both side surfaces of the rotor 2 for braking.

この様な原因で発生するジャダーを抑える為には、上記ロータ2の側面の軸方向に関する振れ(アキシアル振れ)を抑える(小さくする)事が重要となる。そして、この振れを抑える為には、上記ハブ本体9(9a)の回転中心に対する回転側フランジ18の取付面(回転側フランジ18の軸方向外側面19で、各図の右側面)の直角度を向上させる必要がある。この直角度に影響を及ぼす要素は複数存在するが、特に影響の大きい要素としては、上記取付面と軌道面(外輪軌道14a、14b及び内輪軌道15a、15b)との平行度がある。又、この平行度を高める為には、ハブ本体9(9a)の構成各部のうち、上記回転側フランジ18の取付面と軸方向中間部外周面に形成した内輪軌道15a及び軸方向内端部に形成した小径段部12との位置関係、並びにこれら各部の形状及び寸法を、精度良く仕上げる事が必要である。このうちの内輪軌道15a及び小径段部12の形状及び寸法の精度を、上記取付面との関係で高めれば、この取付面の上記ハブ本体9(9a)の回転中心に対する直角度を向上させる事ができる。   In order to suppress judder generated due to such a cause, it is important to suppress (reduce) the shake (axial shake) in the axial direction of the side surface of the rotor 2. In order to suppress this deflection, the squareness of the mounting surface of the rotation side flange 18 with respect to the center of rotation of the hub body 9 (9a) (the right side surface in each figure on the axially outer side surface 19 of the rotation side flange 18). It is necessary to improve. There are a plurality of elements that affect the perpendicularity, and elements that have a particularly large influence include the parallelism between the mounting surface and the raceway surfaces (the outer ring raceways 14a and 14b and the inner ring raceways 15a and 15b). In order to increase the parallelism, among the constituent parts of the hub body 9 (9a), the inner ring raceway 15a and the axially inner end part formed on the mounting surface of the rotating flange 18 and the outer peripheral surface of the axially intermediate part. It is necessary to finish the positional relationship with the small-diameter step portion 12 formed in the above and the shape and size of each portion with high accuracy. If the accuracy of the shape and dimensions of the inner ring raceway 15a and the small diameter step portion 12 is increased in relation to the mounting surface, the squareness of the mounting surface with respect to the center of rotation of the hub body 9 (9a) can be improved. Can do.

この様な事情に鑑みて、特許文献2には、車輪支持用転がり軸受ユニットを構成するハブの加工方法が記載されている。この特許文献2に記載された加工方法の場合には、ハブの端部に設けた、車輪の位置決めを行なう為の位置決め筒部の端面を基準にして、このハブを加工装置に支持した状態で、このハブに設けた回転側フランジの側面やこのハブの外周面を旋削加工する。この様な特許文献2に記載された方法によれば、上記ロータ2の振れに結び付く、上記回転側フランジ18の取付面の振れを或る程度防止する事はできる。但し、この特許文献2に記載された従来技術は、基準面として本来必要でない面を精密仕上する為、徒にコストが嵩む可能性がある。又、加工時にハブを複数種類の加工装置に対し着脱するので、着脱に伴う、加工装置へのハブの組付誤差が加工誤差として入り込み、必ずしも上記直角度を良好にできない。   In view of such circumstances, Patent Document 2 describes a method for processing a hub constituting a wheel bearing rolling bearing unit. In the case of the processing method described in Patent Document 2, the hub is supported by the processing device with reference to the end surface of the positioning cylinder portion for positioning the wheel provided at the end portion of the hub. The side surface of the rotation side flange provided on the hub and the outer peripheral surface of the hub are turned. According to such a method described in Patent Document 2, it is possible to prevent the mounting surface of the rotation-side flange 18 from shaking to some extent, which leads to the shaking of the rotor 2. However, since the conventional technique described in Patent Document 2 precisely finishes a surface that is not originally required as a reference surface, there is a possibility that the cost may increase. In addition, since the hub is attached to and detached from a plurality of types of processing devices during processing, an assembly error of the hub to the processing device accompanying the attachment and removal enters as a processing error, and the perpendicularity cannot always be improved.

又、従来から、回転側フランジ18の振れとロータ2自体の形状誤差に基づく振れとを相殺する為、車輪支持用転がり軸受ユニット5(5a)とロータ2とを選択して組み合わせたり、或は車輪支持用転がり軸受ユニット5(5a)とロータ2とを組み合わせた後、このロータ2の側面を加工する等を行なう場合もあった。ところが、前者の場合には組み合わせの為の選択作業が面倒になり、後者の場合には加工の為の機械装置が複雑化、大型化する等、何れもコストが嵩む原因となる。又、上記回転側フランジ18の振れの原因として、この回転側フランジ18に対し前記各スタッド20の基端部を圧入固定する事に基づく、この回転側フランジ18の変形(反りや膨出)があるが、上記選択組み合わせによっては、この様な変形に基づく振れを十分に低減する事は難しい。   Conventionally, in order to cancel out the deflection of the rotation side flange 18 and the deflection based on the shape error of the rotor 2 itself, the wheel support rolling bearing unit 5 (5a) and the rotor 2 are selected and combined, or In some cases, after the rolling bearing unit 5 (5a) for supporting the wheel and the rotor 2 are combined, the side surface of the rotor 2 is processed. However, in the former case, the selection work for the combination becomes troublesome, and in the latter case, the mechanical device for processing becomes complicated and large in size. Further, as a cause of the deflection of the rotation side flange 18, deformation (warping or bulging) of the rotation side flange 18 based on press-fitting and fixing the base end portion of each stud 20 to the rotation side flange 18. However, depending on the selected combination, it is difficult to sufficiently reduce the shake based on such deformation.

更に、特許文献3には、回転側フランジの軸方向外側面の仕上加工をスタッドの圧入後に行なう事、及び、ハブ本体の外周面中間部の内輪軌道部分や小径段部の仕上加工を、これら各部を熱処理した後に行なう事が記載されている。但し、上記特許文献3に記載された従来技術の場合には、上記回転側フランジの軸方向外側面の仕上加工と、上記ハブ本体外周面の内輪軌道及び小径段部の仕上加工とを、それぞれ別個に行なう為、このハブ本体の回転中心に対する上記回転側フランジの軸方向外側面の直角度を、必ずしも十分に高くできない。   Further, in Patent Document 3, the finishing process of the outer side surface in the axial direction of the rotation side flange is performed after the studs are press-fitted, and the finishing process of the inner ring raceway portion and the small-diameter stepped portion at the intermediate portion of the outer peripheral surface of the hub body. It describes what to do after heat-treating each part. However, in the case of the prior art described in Patent Document 3, the finishing process of the outer side surface in the axial direction of the rotation side flange and the finishing process of the inner ring raceway and the small diameter step portion of the outer peripheral surface of the hub body are respectively performed. Since it is performed separately, the perpendicularity of the axially outer side surface of the rotation side flange with respect to the rotation center of the hub body cannot always be made sufficiently high.

特開2000−234624号公報JP 2000-234624 A 特開平10−217001号公報JP 10-217011 A 特開2001−233001号公報JP 2001-233001 A

本発明は、上述の様な事情に鑑みて、ハブ本体の回転中心に対する回転側フランジの軸方向外側面の直角度を、特に加工コストを高くする事なく向上させて、制動時に発生する不快な騒音や振動の抑制を低コストで行なえる、車輪支持用転がり軸受ユニットとその製造方法を実現すべく発明したものである。   In view of the circumstances as described above, the present invention improves the squareness of the axially outer surface of the rotation side flange with respect to the rotation center of the hub body without particularly increasing the processing cost, and is uncomfortable that occurs during braking. The invention was invented to realize a rolling bearing unit for supporting wheels and a method for manufacturing the same that can suppress noise and vibration at low cost.

本発明の車輪支持用転がり軸受ユニットとその製造方法のうち、請求項1に記載した車輪支持用転がり軸受ユニットは、前述した従来から知られている車輪支持用転がり軸受ユニットと同様に、外輪と、ハブと、複数個の転動体とを備える。
このうちの外輪は、内周面に複列の外輪軌道を有する。
又、上記ハブは、ハブ本体及びこのハブ本体に外嵌固定された少なくとも1個の内輪から成り、外周面に複列の内輪軌道を有する。
又、上記各転動体は、これら両内輪軌道と上記両外輪軌道との間にそれぞれ複数個ずつ、転動自在に設けられている。
更に、上記ハブの外周面の軸方向外端寄りで上記外輪の軸方向外端面よりも軸方向外方に突出した部分に、使用状態でその軸方向外側面に制動用回転体及び車輪を結合固定する、回転側フランジを設けている。
特に、請求項1に記載した車輪支持用転がり軸受ユニットに於いては、上記回転側フランジの軸方向外側面、並びに、上記ハブ本体の外周面で上記内輪を外嵌固定する部分は、このハブ本体を加工装置の支持部に回転自在に支持した後、このハブ本体をこの支持部から取り外す以前に所定の形状に加工されたものである。
Of the rolling bearing unit for wheel support and the manufacturing method thereof according to the present invention, the rolling bearing unit for wheel support described in claim 1 is similar to the above-described conventionally known rolling bearing unit for wheel support and the outer ring. A hub and a plurality of rolling elements.
Among these, the outer ring has a double row outer ring raceway on the inner peripheral surface.
The hub includes a hub main body and at least one inner ring that is externally fixed to the hub main body, and has double-row inner ring raceways on the outer peripheral surface.
Further, a plurality of the rolling elements are provided between the inner ring raceways and the outer ring raceways so as to roll freely.
In addition, a braking rotator and a wheel are coupled to the axially outer surface of the outer peripheral surface of the hub near the axially outer end and projecting axially outwardly from the axially outer end surface of the outer ring. A rotating flange is provided for fixing.
In particular, in the rolling bearing unit for supporting a wheel according to claim 1, the axially outer side surface of the rotation side flange and the portion where the inner ring is fitted and fixed on the outer peripheral surface of the hub body are the hub. After the main body is rotatably supported by the support portion of the processing apparatus, the hub main body is processed into a predetermined shape before being removed from the support portion.

又、請求項6に記載した車輪支持用転がり軸受ユニットの製造方法は、ハブ本体を加工装置の支持部に回転自在に支持した後、このハブ本体をこの支持部から取り外す以前に、回転側フランジの軸方向外側面、並びに、このハブ本体の外周面で内輪を外嵌固定する部分を所定の形状に加工する。   According to a sixth aspect of the present invention, there is provided a method of manufacturing a wheel-supporting rolling bearing unit, wherein the hub body is rotatably supported on the support portion of the processing apparatus and then the hub body is removed from the support portion before the hub body is removed from the support portion. A portion of the outer peripheral surface of the hub body and the outer peripheral surface of the hub body on which the inner ring is fitted and fixed are processed into a predetermined shape.

上述の様に構成する本発明の車輪支持用転がり軸受ユニットとその製造方法によれば、ハブ本体の外周面に形成した回転側フランジの軸方向外側面と、この外周面に直接又は別体の内輪を介して形成した複列の内輪軌道との位置関係を、正規にできる。この結果、上記ハブ本体の回転中心に対する、上記回転側フランジの軸方向外側面の直角度を高くして、この回転側フランジに固定した制動用回転体の振れを抑える事ができる。   According to the rolling bearing unit for supporting a wheel of the present invention configured as described above and the method for manufacturing the same, the axially outer surface of the rotation side flange formed on the outer peripheral surface of the hub body, and the outer peripheral surface directly or separately. The positional relationship with the double-row inner ring raceway formed through the inner ring can be normalized. As a result, the perpendicularity of the axially outer side surface of the rotation-side flange with respect to the rotation center of the hub body can be increased to suppress the vibration of the braking rotating body fixed to the rotation-side flange.

即ち、上記ハブ本体を加工装置の支持部に(このハブ本体の中心軸を中心に)回転自在に支持してから、このハブ本体をこの支持部から取り外すまでの間に、上記回転側フランジの軸方向外側面並びに内輪を外嵌固定する部分を、所定の形状及び寸法に形成する。この為、上記回転側フランジの軸方向外側面を加工する際と、上記内輪を外嵌固定する部分を加工する際との間で、上記ハブ本体の回転中心がずれる事はない。そして、このハブ本体の回転中心を同じとしたまま、上記軸方向外側面並びに上記内輪を外嵌固定する部分の加工を行なえる。この為、これら回転側フランジの軸方向外側面及びこの部分に外嵌固定した内輪の外周面に設けた内輪軌道の位置関係を正規の関係にできる。   That is, after the hub main body is rotatably supported by the support portion of the processing apparatus (centering on the central axis of the hub main body) and before the hub main body is removed from the support portion, The outer side surface of the axial direction and the portion for externally fixing the inner ring are formed in a predetermined shape and size. For this reason, the center of rotation of the hub body does not deviate between when the axially outer surface of the rotation side flange is processed and when the portion where the inner ring is fitted and fixed is processed. And the part which carries out external fitting fixation of the said axial direction outer side surface and the said inner ring | wheel can be performed with the same rotation center of this hub main body. For this reason, the positional relationship of the inner ring raceway provided on the outer side surface of the inner ring that is fitted and fixed to the outer side surface in the axial direction of these rotation side flanges can be made a normal relationship.

請求項1に記載した発明を実施する場合に、例えば請求項2に記載した様に、複列の内輪軌道のうちで軸方向外側の内輪軌道をハブ本体の外周面に直接形成し、その外周面に軸方向内側の内輪軌道を有する内輪を、このハブ本体の内端部に形成された小径段部に外嵌固定する。そして、この小径段部の外周面及びこの小径段部の軸方向外端部に存在する段差面、並びに、上記軸方向外側の内輪軌道を、上記ハブ本体を加工装置の支持部に回転自在に支持した後、このハブ本体をこの支持部から取り外す以前に所定の形状に加工したものとする。
この様な構成を採用すれば、上記軸方向外側の内輪軌道と回転側フランジの軸方向外側面との位置関係を正確に規制できる。即ち、軸方向外側の内輪軌道を、ハブ本体とは別体の内輪の外周面に設ける構造の場合には、このハブ本体の外周面のうちでこの内輪を外嵌固定する部分を仕上加工した後、この部分に内輪を外嵌する必要がある。この結果、上記軸方向外側の内輪軌道と上記回転側フランジの軸方向外側面との位置関係がずれる可能性がある。上記請求項2に記載した様に、軸方向外側の内輪軌道をハブ本体の外周面に直接形成すれば、上述の様に、この軸方向外側の内輪軌道と上記回転側フランジの軸方向外側面との位置関係を正確に規制し易い。
When the invention described in claim 1 is carried out, as described in claim 2, for example, the inner ring raceway on the outer side in the axial direction among the double row inner ring raceways is formed directly on the outer peripheral face of the hub body, An inner ring having an inner ring raceway on the surface in the axial direction is externally fitted and fixed to a small-diameter step formed at the inner end of the hub body. Then, the outer peripheral surface of the small-diameter step portion, the step surface existing at the axially outer end portion of the small-diameter step portion, and the inner ring raceway on the outer side in the axial direction can be freely rotated by the hub body as a support portion of the processing apparatus. After the support, the hub body is processed into a predetermined shape before being removed from the support.
By adopting such a configuration, the positional relationship between the inner ring raceway on the outer side in the axial direction and the outer side surface in the axial direction of the rotation side flange can be accurately regulated. That is, in the case of a structure in which the inner ring raceway on the outer side in the axial direction is provided on the outer peripheral surface of the inner ring separate from the hub main body, the portion of the outer peripheral surface of the hub main body where the inner ring is fitted and fixed is finished. Later, it is necessary to externally fit the inner ring to this portion. As a result, there is a possibility that the positional relationship between the inner ring raceway on the outer side in the axial direction and the outer side surface in the axial direction of the rotation side flange may be shifted. If the inner ring raceway on the outer side in the axial direction is formed directly on the outer peripheral surface of the hub body as described in the second aspect, the inner ring raceway on the outer side in the axial direction and the outer side surface in the axial direction of the rotary flange as described above. It is easy to regulate the positional relationship with

又、本発明を実施する場合に好ましくは、請求項3に記載した様に、上記回転側フランジの軸方向外側面及び上記ハブ本体の外周面で内輪を外嵌固定する部分を、このハブ本体の軸方向両端部を互いに同心の1対のセンタにより回転自在に支持された状態で加工する。
この様に構成すれば、上記ハブ本体を、正確にその中心軸の周りで回転させる事ができる。そして、この中心軸に対する、上記回転側フランジの軸方向外側面及び上記内輪を外嵌固定する部分の位置関係を、正確に規制できる。
Preferably, when carrying out the present invention, preferably, as described in claim 3, a portion for fitting and fixing the inner ring on the axially outer side surface of the rotating side flange and the outer peripheral surface of the hub body is provided on the hub body. Both end portions in the axial direction are processed while being rotatably supported by a pair of concentric centers.
If comprised in this way, the said hub main body can be rotated around the center axis | shaft correctly. And the positional relationship of the axial direction outer side surface of the said rotation side flange with respect to this center axis | shaft and the part which carries out external fitting fixation of the said inner ring | wheel can be controlled correctly.

又、本発明を実施する場合に、例えば、請求項4に記載した様に、上記回転側フランジに形成した複数の取付孔にそれぞれスタッドの基端部を内嵌固定する。
或は、請求項5に記載した様に、上記回転側フランジに、この回転側フランジに対し制動用回転体及び車輪を取り付ける為のボルトを螺合する為の複数のねじ孔を形成する。
When the present invention is implemented, for example, as described in claim 4, the base end portions of the studs are fitted and fixed to the plurality of mounting holes formed in the rotation side flange, respectively.
Alternatively, as described in claim 5, a plurality of screw holes are formed in the rotating side flange for screwing a brake rotating body and a bolt for attaching a wheel to the rotating side flange.

このうちの請求項4に記載した車輪支持用転がり軸受ユニットを造る為に、例えば請求項7に記載した様に、上記回転側フランジに形成した複数の取付孔にそれぞれスタッドの基端部を圧入により内嵌固定した後に、この回転側フランジの軸方向外側面を、ハブ本体の中心軸に対し直交する方向の平坦面に加工する。
この様に構成すれば、上記各スタッドの基端部を上記各取付孔に圧入により内嵌する事に伴う、上記回転側フランジの軸方向外側面の変形分(反り及び膨出分)を、他の部分と合わせて削り取る事ができ、この変形に伴う、この軸方向外側面の直角度の悪化を防止できる。
Of these, in order to produce the wheel support rolling bearing unit according to claim 4, for example, as described in claim 7, the base end portion of the stud is press-fitted into each of the plurality of mounting holes formed in the rotation side flange. Then, the axially outer surface of the rotating flange is processed into a flat surface in a direction perpendicular to the central axis of the hub body.
If comprised in this way, the deformation | transformation part (warp and bulging part) of the axial direction outer side surface of the said rotation side flange accompanying the fitting of the base end part of each said stud to each said attachment hole by press-fitting, It can be cut off together with other parts, and the deterioration of the perpendicularity of the axially outer surface accompanying this deformation can be prevented.

或は、上記請求項4に記載した車輪支持用転がり軸受ユニットを造る為に、例えば請求項8に記載した様に、上記回転側フランジに形成した複数の取付孔にそれぞれスタッドの基端部を内嵌する以前にこの回転側フランジの軸方向外側面を、ハブ本体の中心軸に対し直交する方向の平坦面に加工する。その後、上記各取付孔に各スタッドの基端部を内嵌固定する。
この様に構成した場合、上記軸方向外側面の加工を容易に行なえる。但し、上記各取付孔に各スタッドの基端部を圧入により固定した場合には、この圧入に伴う、上記軸方向外側面の変形分を削り取る事はできない。この場合でも、この軸方向外側面で上記各取付孔を囲む部分に、この変形分を逃がす為の凹部を設ける事で、この変形分が上記軸方向外側面に装着したロータの軸方向振れに影響を及ぼす事を抑えられる。
或は、請求項9に記載した様に、各取付孔に各スタッドの基端部を隙間嵌で内嵌すると共に、接着により固定する事もできる。この場合には、これら各スタッドの基端部を上記各取付孔に内嵌固定する事に伴って、上記回転側フランジの軸方向外側面が変形する事はない。従って、上記変形分を逃がす為の凹部は、必ずしも形成する必要はない。
Alternatively, in order to manufacture the wheel-supporting rolling bearing unit described in claim 4, for example, as described in claim 8, the base end portions of the studs are respectively provided in the plurality of mounting holes formed in the rotation side flange. Before the inner fitting, the outer side surface in the axial direction of the rotation side flange is processed into a flat surface in a direction perpendicular to the central axis of the hub body. Thereafter, the base end portion of each stud is fitted and fixed in each mounting hole.
When configured in this manner, the outer side surface in the axial direction can be easily processed. However, when the base end portion of each stud is fixed to each mounting hole by press-fitting, the deformation of the axially outer surface associated with the press-fitting cannot be scraped off. Even in this case, by providing a recess for escaping this deformation in the portion surrounding each mounting hole on the outer surface in the axial direction, this deformation is caused by the axial runout of the rotor mounted on the outer surface in the axial direction. The influence can be suppressed.
Alternatively, as described in claim 9, the base end portion of each stud can be fitted into each mounting hole with a gap fit and can be fixed by adhesion. In this case, the axially outer side surface of the rotation side flange is not deformed as the base end portions of the studs are fitted and fixed in the mounting holes. Accordingly, it is not always necessary to form a recess for releasing the deformation.

一方、請求項5に記載した車輪支持用転がり軸受ユニットを造る為には、請求項10に記載した様に、上記回転側フランジに形成した複数のねじ孔にそれぞれボルトを螺合させない状態でこの回転側フランジの軸方向外側面を、ハブ本体の中心軸に対し直交する方向の平坦面に加工する。
この様に構成すれば、上記回転側フランジの軸方向外側面を、上記ハブ本体の中心軸に直交する、正確な平坦面に、容易に加工できる。
On the other hand, in order to manufacture the rolling bearing unit for supporting a wheel described in claim 5, as described in claim 10, the bolt is not screwed into the plurality of screw holes formed in the rotation side flange. The outer surface in the axial direction of the rotation side flange is processed into a flat surface in a direction perpendicular to the central axis of the hub body.
If comprised in this way, the axial direction outer side surface of the said rotation side flange can be easily processed into the exact flat surface orthogonal to the center axis | shaft of the said hub main body.

図1〜4は、請求項1〜4、6、7に対応する、本発明の実施例1を示している。本実施例の場合、先ず、図1に示す様なハブ本体9bを用意する。このハブ本体9bは、図4に示す様な、駆動輪用の車輪支持用転がり軸受ユニット5bを構成する為のものである。この様なハブ本体9bには、予め、鍛造加工、切削加工を施し、又、必要に応じて穿孔加工、研削加工等の機械加工、及び、熱処理、コーティング処理等の表面処理を施している。又、上記ハブ本体9bの外周面外端寄り部分に形成した回転側フランジ18には複数の取付孔27を、このハブ本体9bの中心軸をその中心とする同一円周上位置に、円周方向に関して互いに等間隔に、軸方向に形成している。この様な上記各取付孔27にはスタッド20を、軸方向内側から外側に向け挿通しており、これら各スタッド20の基端部に設けた雄セレーション部28を上記各取付孔27に圧入する事で、これら各スタッド20を上記回転側フランジ18に固定している。尚、上記回転側フランジ18の外側面で上記各取付孔27を形成した部分には凹部34を、全周に亙って形成している。この凹部34の幅は、これら各取付孔27の直径よりも十分に大きく、これら各取付孔27は、この凹部34の幅方向中央部に形成されている。上記各スタッド20の基端部に設けた上記雄セレーション部28を上記各取付孔27内に、軸方向内側から外側に圧入する事で、これら各取付孔27の周縁部が軸方向外方に膨出するが、この膨出部の高さは、上記凹部34の深さよりも十分に小さい。   1 to 4 show a first embodiment of the present invention corresponding to claims 1 to 4, 6, and 7. In this embodiment, first, a hub body 9b as shown in FIG. 1 is prepared. The hub body 9b is for constituting a wheel support rolling bearing unit 5b for driving wheels as shown in FIG. Such a hub main body 9b is subjected to forging and cutting in advance, and is subjected to mechanical processing such as drilling and grinding, and surface treatment such as heat treatment and coating as necessary. Further, a plurality of mounting holes 27 are formed in the rotation side flange 18 formed on the outer peripheral surface of the hub main body 9b near the outer end, and are arranged at the same circumferential position with the central axis of the hub main body 9b as the center. It forms in the axial direction at equal intervals with respect to the direction. In each of the mounting holes 27, the stud 20 is inserted from the inner side toward the outer side in the axial direction, and the male serration portion 28 provided at the base end portion of each stud 20 is press-fitted into the mounting hole 27. Thus, the studs 20 are fixed to the rotation side flange 18. In addition, the recessed part 34 is formed in the part which formed each said attachment hole 27 in the outer surface of the said rotation side flange 18 over the perimeter. The width of the recess 34 is sufficiently larger than the diameter of each of the mounting holes 27, and each of the mounting holes 27 is formed at the center in the width direction of the recess 34. By pressing the male serration portion 28 provided at the base end portion of each stud 20 into each mounting hole 27 from the inside in the axial direction to the outside, the peripheral edge of each mounting hole 27 is axially outward. Although it swells, the height of the bulge is sufficiently smaller than the depth of the recess 34.

上述の様に、上記回転側フランジ18に上記各スタッド20を固定したハブ本体9bは、次いで、図2に示す様に、互いに同心に配置された1対のセンタ29a、29bと、1組のチャック30とから成る両センタチャック機構により、軸方向の両側から支持しクランプする。そして、図示しない駆動機構により上記チャック30を回転させ、このチャック30と共に上記ハブ本体9bを回転させる。この様に、このハブ本体9bを回転状態としたまま、図2に示す様に、砥石31により、このハブ本体9bの外周面の軸方向中間部乃至内端寄り部分を同時に研削する。この砥石31は、厚肉円板状で、外周面の母線形状が、上記ハブ本体9bの外周面のうちで研削加工すべき部分の母線形状に合致する。具体的には、このハブ本体9bの外周面のうちで、軸方向外側のシールリング21a(図4参照)のシールリップの先端縁が摺接する、回転側フランジ18の根本部分と、軸方向外側の内輪軌道15a部分と、別体の内輪10(図4参照)を外嵌する小径段部12部分との、完成後の母線形状に合致する形状に、上記砥石31の外周面の母線形状を、図示しないトリマー等により整えている。尚、上記小径段部12と上記内輪軌道15aとの間部分に関しても、回転速度検出用のエンコーダを圧入固定する嵌合面となる場合には、上記砥石31により、必要な精度を確保する為の研削加工を施す。この様な砥石31は、上記両センタ29a、29bの中心軸αに対し傾斜方向に配置された中心軸の周りで回転しつつ、上記ハブ本体9bの外周面の必要個所を研削する。   As described above, the hub body 9b in which the studs 20 are fixed to the rotation-side flange 18 is, as shown in FIG. 2, a pair of centers 29a and 29b arranged concentrically with each other, and a pair of centers. It is supported and clamped from both sides in the axial direction by both center chuck mechanisms comprising the chuck 30. Then, the chuck 30 is rotated by a driving mechanism (not shown), and the hub body 9b is rotated together with the chuck 30. In this way, with the hub body 9b in a rotating state, as shown in FIG. 2, the intermediate portion from the axial direction to the inner end portion of the outer peripheral surface of the hub body 9b is ground simultaneously by the grindstone 31. The grindstone 31 has a thick disk shape, and the bus bar shape of the outer peripheral surface matches the bus bar shape of the portion to be ground in the outer peripheral surface of the hub body 9b. Specifically, in the outer peripheral surface of the hub body 9b, the root portion of the rotation side flange 18 in which the tip edge of the seal lip of the seal ring 21a (see FIG. 4) on the outer side in the axial direction is in sliding contact with the outer side in the axial direction. The shape of the bus bar on the outer peripheral surface of the grindstone 31 is matched to the shape of the bus bar after completion of the inner ring raceway 15a portion and the small-diameter stepped portion 12 portion to which the separate inner ring 10 (see FIG. 4) is fitted. It is arranged with a trimmer (not shown). In addition, in the portion between the small-diameter step portion 12 and the inner ring raceway 15a, when the fitting surface for press-fitting and fixing the encoder for detecting the rotational speed is used, the grindstone 31 ensures the necessary accuracy. Apply the grinding process. Such a grindstone 31 grinds a necessary portion of the outer peripheral surface of the hub body 9b while rotating around a central axis arranged in an inclined direction with respect to the central axis α of both the centers 29a and 29b.

図2に示す様にして、上記ハブ本体9bの外周面の必要個所を研削したならば、次いで、図3に示す様に、ロータ2(図26参照)の取付面である、上記回転側フランジ18の軸方向外側面19を、バイトの如き切削工具33により切削加工する。この切削加工を行なう際、前記チャック30を介して上記ハブ本体9bを回転させつつ、上記切削工具33の切り刃を上記回転側フランジ18の軸方向外側面19に突き当てる。そして、この切削工具33を、上記回転側フランジ18の径方向に関して、少しずつ移動させる。但し、径方向位置に関して前記各スタッド20に対応する部分では、上記切削工具33を上記回転側フランジ18の軸方向に退避させてから、この回転側フランジ18の径方向に移動させる(上記各スタッド20を跨ぐ)。上記各スタッド20から退避する場合を除き、上記切削工具33の先端の切り刃は、上記回転側フランジ18の軸方向に関して、常に同じ位置に存在する。この様な切削加工により、この回転側フランジ18の軸方向外側面19のうちで、前記凹部34を径方向両側から挟む部分を、上記ハブ本体9bの中心軸に対し直交する方向に存在する平坦面に加工できる。円周方向に隣り合うスタッド20同士の間部分を削り取る事はできないが、この部分は上記凹部34の底面部分である。そして、前記雄セレーション部28の圧入に伴って生じる膨出部を含め、この凹部34の底面が上記加工した平坦面よりも突出する事はない。従って、上記間部分を削り取れない事は、上記ロータ2の振れ防止を図る面から、特に差し支えはない。   As shown in FIG. 2, if the necessary portion of the outer peripheral surface of the hub main body 9b is ground, then, as shown in FIG. 3, the rotation-side flange which is the mounting surface of the rotor 2 (see FIG. 26). The eighteen axially outer surfaces 19 are cut by a cutting tool 33 such as a cutting tool. When performing this cutting process, the cutting blade of the cutting tool 33 is brought into contact with the axially outer side surface 19 of the rotation side flange 18 while rotating the hub body 9 b via the chuck 30. Then, the cutting tool 33 is moved little by little with respect to the radial direction of the rotation side flange 18. However, in the portion corresponding to each stud 20 with respect to the radial position, the cutting tool 33 is retracted in the axial direction of the rotary flange 18 and then moved in the radial direction of the rotary flange 18 (the studs described above). 20). Except when retracting from each stud 20, the cutting edge at the tip of the cutting tool 33 is always present at the same position with respect to the axial direction of the rotary flange 18. By such a cutting process, a portion of the axially outer surface 19 of the rotation side flange 18 that sandwiches the concave portion 34 from both sides in the radial direction exists in a direction perpendicular to the central axis of the hub body 9b. Can be processed into a surface. Although a portion between the studs 20 adjacent to each other in the circumferential direction cannot be scraped off, this portion is a bottom portion of the recess 34. The bottom surface of the concave portion 34 does not protrude beyond the processed flat surface, including the bulging portion that is generated when the male serration portion 28 is press-fitted. Accordingly, the fact that the above-mentioned portion cannot be cut off is not particularly problematic from the viewpoint of preventing the rotor 2 from swinging.

上述の様にして、その外周面の必要個所に研削加工を、上記回転側フランジ18の軸方向外側面19に切削加工を、それぞれ施した上記ハブ本体9bは、他の構成部材と組み合わせて、図4に示す様な車輪支持用転がり軸受ユニット5bとする。この車輪支持用転がり軸受ユニット5bには、更に必要に応じて、キャップや、ABS制御用の回転速度信号を得る為のエンコーダ及び回転検出センサを組み付ける。本実施例の場合には、上記ハブ本体9bの軸方向内端部の小径段部12に前記内輪10を外嵌した状態で、このハブ本体9bの軸方向内端部を径方向外方に塑性変形させて、かしめ部35を形成している。そして、このかしめ部35により、上記内輪10の軸方向内端面を抑え付けて、この内輪10を上記ハブ本体9bに固定し、ハブ11bを構成している。更に、このハブ11bを外輪6の内径側に、複列に配置した転動体16、16により、回転自在に支持している。   As described above, the hub main body 9b, which has been subjected to grinding processing on necessary portions of the outer peripheral surface thereof and cutting processing on the axially outer side surface 19 of the rotation side flange 18, respectively, is combined with other components. A wheel support rolling bearing unit 5b as shown in FIG. If necessary, the wheel support rolling bearing unit 5b is further assembled with a cap, an encoder for obtaining a rotational speed signal for ABS control, and a rotation detection sensor. In the case of this embodiment, with the inner ring 10 fitted on the small diameter step 12 at the axially inner end of the hub body 9b, the axially inner end of the hub body 9b is radially outward. The caulking portion 35 is formed by plastic deformation. The caulking portion 35 holds down the inner end surface in the axial direction of the inner ring 10 to fix the inner ring 10 to the hub body 9b, thereby forming the hub 11b. Further, the hub 11b is rotatably supported by rolling elements 16 and 16 arranged in double rows on the inner diameter side of the outer ring 6.

上述の様にして造られる、本実施例の車輪支持用転がり軸受ユニット5bを懸架装置に組み付け、上記回転側フランジ18の軸方向外側面19にロータ2を組み付けた場合、上記ハブ11bの回転に伴う、このロータ2の軸方向の振れを僅少に抑える事ができる。即ち、本実施例の場合、上記回転側フランジ18の軸方向外側面19のうちで、上記凹部34を径方向両側から挟む部分を、上記ハブ本体9bの中心軸に対し直交する方向に存在する平坦面としている。従って、この平坦面に、上記ロータ2の軸方向内側面の内径寄り部分を密に重ね合わせた状態で、このロータ2を上記回転側フランジ18に結合固定すれば、上記ハブ11bの回転に伴う、このロータ2の軸方向の振れを僅少に抑える事ができる。尚、上記凹部34の幅寸法を確保さえすれば、前記取付孔27に対する前記雄セレーション部28の圧入に伴う膨出部は、この凹部34内に留まる。但し、この凹部34の幅が狭かったり、この圧入締め代が過大で膨出する範囲が広くなる等により、上記膨出部が上記凹部34外にはみ出した場合でも、このはみ出し部分は、前記図3に示した切削加工時に削り取られる。従って、上記膨出部の存在により、上記ハブ11bの回転に伴う上記ロータ2の振れが大きくなる事はない。上記圧入に伴って、上記回転側フランジ18が反る方向に変形した場合も、この変形による影響は、上記切削加工により取り除かれる。この結果、前述した様な理由で制動時に発生する、ジャダーと呼ばれる振動及び騒音を抑えられる。   When the wheel-supporting rolling bearing unit 5b of the present embodiment, which is manufactured as described above, is assembled to a suspension device and the rotor 2 is assembled to the axially outer side surface 19 of the rotation side flange 18, the hub 11b is rotated. Along with this, the axial deflection of the rotor 2 can be minimized. That is, in the case of the present embodiment, a portion of the axially outer side surface 19 of the rotation side flange 18 that sandwiches the concave portion 34 from both radial sides exists in a direction orthogonal to the central axis of the hub body 9b. It is a flat surface. Therefore, if the rotor 2 is coupled and fixed to the rotation side flange 18 in a state where the inner diameter side portion of the inner surface in the axial direction of the rotor 2 is closely overlapped with the flat surface, the rotation of the hub 11b is accompanied. The axial deflection of the rotor 2 can be minimized. As long as the width dimension of the concave portion 34 is ensured, the bulging portion accompanying the press-fitting of the male serration portion 28 into the mounting hole 27 remains in the concave portion 34. However, even if the bulging portion protrudes out of the concave portion 34 due to the narrow width of the concave portion 34 or the wide range of the bulging due to the excessive press-fitting allowance, the protruding portion is It is scraped off during the cutting process shown in FIG. Therefore, due to the presence of the bulging portion, the runout of the rotor 2 accompanying the rotation of the hub 11b does not increase. Even when the rotation-side flange 18 is deformed in the warping direction with the press-fitting, the influence of the deformation is removed by the cutting process. As a result, vibration and noise called judder that occur during braking for the reasons described above can be suppressed.

又、図2に示した、上記ハブ本体9bの外周面に研削加工を施す工程から、図3に示した、上記回転側フランジ18の軸方向外側面19に切削加工を施す工程迄の間、上記ハブ本体9bは前記両センタチャック機構によって把握したままである。即ち、上記研削加工と上記切削加工とを、所謂ワンチャックで行なう。この為、これら両工程を移る過程で、上記ハブ本体9bの位置決め状態が変化し、上記ハブ本体9bの外周面と上記回転側フランジ18の軸方向外側面19との位置関係に関する精度が悪化する事を防止して、この軸方向外側面19の軸方向に関する振れを抑えられる。   Also, from the step of grinding the outer peripheral surface of the hub body 9b shown in FIG. 2 to the step of cutting the axially outer side surface 19 of the rotary flange 18 shown in FIG. The hub body 9b remains grasped by the both center chuck mechanisms. That is, the grinding process and the cutting process are performed by a so-called one chuck. For this reason, the positioning state of the hub main body 9b changes in the process of moving both of these steps, and the accuracy with respect to the positional relationship between the outer peripheral surface of the hub main body 9b and the axially outer side surface 19 of the rotation side flange 18 deteriorates. This prevents the axial outer side surface 19 from swinging in the axial direction.

又、本発明の場合には、上記研削加工と上記切削加工との2工程を、単一のセンタチャック機構を設けた製造装置部分で行なうので、上記ハブ本体9bの加工に必要な加工装置を削減できて、設備投資を抑える事が可能になる。又、この加工装置の設置面積並びに作業人員を削減できる等、上記ハブ本体9b、延いては前記車輪支持用転がり軸受ユニット5bの製造コストの低減を図れる。
尚、上記ハブ本体9bの中間部外周面に形成した内輪軌道15aに関しては、上記研削加工後に、耐久性向上の為の超仕上加工を施す場合がある。この様な超仕上加工を施す場合に、上記両センタチャック機構で上記ハブ本体9bをクランプしたまま、この超仕上加工を施す(研削加工→切削加工→超仕上加工をワンチャックで行なう)事もできる。この様に構成すれば、上記超仕上加工に伴う、上記位置関係の精度悪化も防止できる。
又、ハブ本体9bの外周面に施す仕上加工は、図2に示した様な研削加工に限らず、精密切削加工としても良い。又、前記回転側フランジ18の軸方向外側面19に施す仕上加工に関しても、切削加工に限らず、例えば研削加工等の他の機械加工、或はバニシ加工等の塑性加工としても、同様の効果を得られる。
In the case of the present invention, since the two steps of the grinding process and the cutting process are performed by a manufacturing apparatus portion provided with a single center chuck mechanism, a processing apparatus necessary for processing the hub body 9b is provided. It is possible to reduce the capital investment. In addition, the manufacturing cost of the hub body 9b and, moreover, the wheel bearing rolling bearing unit 5b can be reduced by reducing the installation area of the processing apparatus and the number of workers.
The inner ring raceway 15a formed on the outer peripheral surface of the intermediate part of the hub body 9b may be subjected to super finishing for improving durability after the grinding. When such super-finishing is performed, the super-finishing may be performed while the hub body 9b is clamped by the both center chuck mechanisms (grinding → cutting → super-finishing is performed with one chuck). it can. If comprised in this way, the precision deterioration of the said positional relationship accompanying the said super finishing process can also be prevented.
Further, the finishing process applied to the outer peripheral surface of the hub body 9b is not limited to the grinding process as shown in FIG. 2, but may be a precision cutting process. Further, the finishing process applied to the axially outer side surface 19 of the rotating flange 18 is not limited to the cutting process, and the same effect can be obtained not only in the cutting process but also in other machining processes such as grinding or plastic processing such as burnishing. Can be obtained.

更に、ハブ本体9bを支持した状態で回転させる構造に就いても、図2〜3に示した様な、チャック30によりハブ本体9bを回転させる構造に限らず、図5に示す様な、1対のセンタ29a、29bと回し金38とを備えた両センタ構造とする事もある。図5に示した両センタ構造は、1対のセンタ29a、29bにより上記ハブ本体9bを軸方向の両側から支持し、図示しない駆動機構により上記回し金38を回転させ、この回し金38により上記ハブ本体9bを回転させるものである。この回し金38の外周部には、このハブ本体9bの内周部に設けられた雌スプライン若しくは雌セレーションのピッチ円直径に比べて、同等若しくは少しだけ小さいピッチ円直径を有する、雄スプライン或は雄セレーション等の凸部を設けている。そして、この凸部を上記雌スプライン若しくは雌セレーションに係合させる事により上記回し金38の回転を上記ハブ本体9bに伝達して、このハブ本体9bを回転駆動自在としている。尚、上記回し金38の外周部に設けられている凸部の総数は、上記ハブ本体9bの内周部に設けられた雌スプライン若しくは雌セレーションの歯数と同数である必要はなく、円周方向に関して1箇所以上設けられていれば良い。
尚、上記図5に示した両センタ機構は、本実施例に限らず、後述する他の実施例に就いて適用する事もできる。
Further, the structure in which the hub body 9b is rotated while being supported is not limited to the structure in which the hub body 9b is rotated by the chuck 30 as shown in FIGS. A two-center structure having a pair of centers 29a and 29b and a turner 38 may be used. In the center structure shown in FIG. 5, the hub body 9b is supported from both sides in the axial direction by a pair of centers 29a and 29b, and the turning metal 38 is rotated by a driving mechanism (not shown). The hub body 9b is rotated. A male spline having a pitch circle diameter equal to or slightly smaller than the pitch circle diameter of the female spline or female serration provided on the inner peripheral portion of the hub main body 9b is provided on the outer peripheral portion of the rotating metal 38. Protrusions such as male serrations are provided. Then, by engaging this convex part with the female spline or female serration, the rotation of the rotary 38 is transmitted to the hub main body 9b so that the hub main body 9b can be driven to rotate. The total number of convex portions provided on the outer peripheral portion of the rotating metal 38 need not be the same as the number of teeth of the female spline or female serration provided on the inner peripheral portion of the hub body 9b. It is sufficient that one or more locations are provided in the direction.
Note that the two-center mechanism shown in FIG. 5 is not limited to this embodiment, and can be applied to other embodiments described later.

図6も、請求項1〜4、6、7に対応する、本発明の実施例2を示している。本実施例の場合には、ハブ本体9bの外周面の研削加工と、回転側フランジ18の軸方向外側面19の切削加工とを、同時に実施して、1個のハブ本体9bに必要な加工を施す為に要する時間(サイクルタイム)の短縮を図っている。
その他の構成及び作用は、上述した実施例1と同様であるから、重複する図示並びに説明は省略する。
FIG. 6 also shows a second embodiment of the present invention corresponding to claims 1 to 4, 6 and 7. In the case of the present embodiment, grinding of the outer peripheral surface of the hub main body 9b and cutting of the axially outer side surface 19 of the rotation-side flange 18 are simultaneously performed, and processing required for one hub main body 9b. The time (cycle time) required to apply is reduced.
Other configurations and operations are the same as those in the first embodiment described above, and thus overlapping illustrations and descriptions are omitted.

図7〜9は、請求項1〜4、6、8、9に対応する、本発明の実施例3を示している。本実施例の場合には、先ず、図7に示す様なハブ本体9bを用意する。このハブ本体9bの構造等に就いては、回転側フランジ18にスタッド20(図1〜6参照)を組み付けていない以外、上述した実施例1〜2のハブ本体9bと同様である。但し、本実施例の場合、上記回転側フランジ18に形成した取付孔27の内周面に、予め雌セレーション36を形成している。この雌セレーション36のピッチ円直径等の仕様は、上記スタッド20の基端部に設けた雄セレーション部28(図1〜4参照)のピッチ円直径等の仕様に比べて僅かに大きく、但し、ピッチ(歯数)は等しくしている。従って、上記雄セレーション部28は上記雌セレーション36に、隙間嵌でセレーション係合自在である。   7 to 9 show a third embodiment of the present invention corresponding to claims 1 to 4, 6, 8, and 9. FIG. In the case of this embodiment, first, a hub body 9b as shown in FIG. 7 is prepared. The structure of the hub main body 9b is the same as that of the hub main body 9b of the first and second embodiments described above except that the stud 20 (see FIGS. 1 to 6) is not assembled to the rotation side flange 18. However, in the case of the present embodiment, the female serration 36 is formed in advance on the inner peripheral surface of the mounting hole 27 formed in the rotation side flange 18. The specifications such as the pitch circle diameter of the female serration 36 are slightly larger than the specifications such as the pitch circle diameter of the male serration portion 28 (see FIGS. 1 to 4) provided at the proximal end portion of the stud 20. The pitch (number of teeth) is the same. Therefore, the male serration portion 28 can freely engage with the female serration 36 with a gap fit.

この様な雌セレーション36を形成した上記各取付孔27を備え、スタッド20を未装着のハブ本体9bは、図8に示す様に、互いに同心に配置された1対のセンタ29a、29bと、1組のチャック30とから成る両センタチャック機構により、軸方向の両側から支持し、更にクランプする。そして、上記ハブ本体9bを回転させつつ、このハブ本体9bの外周面の必要個所(具体的部位に就いては、前述した実施例1の場合と同様)に砥石31の外周面を押し付ける事により、この必要個所に研削加工を施す。   As shown in FIG. 8, the hub body 9b provided with the mounting holes 27 in which the female serrations 36 are formed and the stud 20 is not mounted has a pair of centers 29a and 29b arranged concentrically with each other. It is supported from both sides in the axial direction and further clamped by a center chuck mechanism comprising a pair of chucks 30. Then, while rotating the hub main body 9b, the outer peripheral surface of the grindstone 31 is pressed against a necessary portion of the outer peripheral surface of the hub main body 9b (for the specific part, as in the case of the first embodiment). Then, grinding is applied to this necessary part.

この様にして上記ハブ本体9bの外周面の必要個所に研削加工を施した後、図9に示す様に、ロータ2(図26参照)の取付面である、上記回転側フランジ18の軸方向外側面19を、バイトの如き切削工具33aにより切削加工する。上記ハブ本体9bを上記両センタチャック機構に装着したまま、上記研削加工から上記切削加工に移る点は、前述した実施例1の場合と同様である。本実施例の場合、前述した実施例1〜2の場合と異なり、上記回転側フランジ18にスタッド20を装着していないので、上記回転側フランジ18の軸方向外側面19に切削加工を施す際に、上記切削工具33aに、上記スタッド20との干渉を防止する為の退避動作を行なわせる必要はない。従って本実施例の場合には、上記切削工具33aを上記ハブ本体9bの中心軸に対し直交する方向に平行移動させるのみで、上記回転側フランジ18の軸方向外側面19を、上記ハブ本体9bの中心軸に対し直交する平坦面に、正確に加工できる。   After grinding the necessary portion of the outer peripheral surface of the hub body 9b in this way, as shown in FIG. 9, the axial direction of the rotary flange 18 which is the mounting surface of the rotor 2 (see FIG. 26). The outer side surface 19 is cut by a cutting tool 33a such as a cutting tool. The point of moving from the grinding process to the cutting process while the hub body 9b is mounted on the both center chuck mechanisms is the same as in the case of the first embodiment. In the case of the present embodiment, unlike the first and second embodiments described above, the stud 20 is not attached to the rotation side flange 18, and therefore when the axial outer surface 19 of the rotation side flange 18 is cut. Further, it is not necessary to cause the cutting tool 33a to perform a retreat operation for preventing interference with the stud 20. Therefore, in this embodiment, the axial outer surface 19 of the rotary flange 18 is moved to the hub body 9b only by translating the cutting tool 33a in a direction perpendicular to the central axis of the hub body 9b. Can be processed accurately on a flat surface perpendicular to the central axis of the plate.

この様にして上記回転側フランジ18の軸方向外側面19を切削加工した後、上記各取付孔27に、スタッド20の基端部を内嵌固定する。本実施例の場合、これら各取付孔27の内周面に設けた雌セレーション36の仕様が上記スタッド20の基端部に設けた雄セレーション部28の仕様に比べて大きい(大径である)ので、この雄セレーション部28は上記各取付孔27に、隙間嵌で内嵌される(セレーション係合する)。そこで、この雄セレーション部28と上記雌セレーション36との間に接着剤を介在させて、上記スタッド20を上記各取付孔27に接着固定する。この結果、前述の図4に示した様な車輪支持用転がり軸受ユニット5bを組み立てた後、この車輪支持用転がり軸受ユニット5bに車輪を結合固定する以前の状態でも、上記スタッド20が上記ハブ本体9bから脱落する事がなくなる。   After the axially outer side surface 19 of the rotation side flange 18 is cut in this manner, the base end portion of the stud 20 is fitted and fixed in each mounting hole 27. In the case of the present embodiment, the specification of the female serration 36 provided on the inner peripheral surface of each of the mounting holes 27 is larger than the specification of the male serration portion 28 provided at the proximal end portion of the stud 20 (has a large diameter). Therefore, the male serration portion 28 is fitted into each of the mounting holes 27 with a clearance fit (serration engagement). Therefore, an adhesive is interposed between the male serration portion 28 and the female serration 36 to bond and fix the stud 20 to each mounting hole 27. As a result, after the wheel support rolling bearing unit 5b as shown in FIG. 4 is assembled, the stud 20 remains in the hub body even in a state before the wheel is fixed to the wheel support rolling bearing unit 5b. It will not drop out of 9b.

尚、図示の実施例の場合、上記回転側フランジ18の軸方向外側面19のうちで上記各取付孔27を設置した部分に、前述の実施例1〜2と同様の凹部34を形成している。但し、本実施例の場合には、上記回転側フランジ18の軸方向外側面19に切削加工を施す際に、上記スタッド20から上記切削工具33aを退避させる必要がない為、上記凹部34を省略しても良い。但し、この凹部34を、上記ハブ本体9bの鍛造による荒加工時に形成しておけば、上記切削工具33aにより切削加工すべき部分の面積を狭くして、この切削加工に要する時間を短縮すると共に、上記切削工具33aの寿命延長を図れる。又、上記接着剤が上記回転側フランジ18の軸方向外側面19側に多少はみ出して硬化した場合でも、この軸方向外側面19とロータ2(図26参照)の側面とを(硬化した接着剤に邪魔される事なく)密着させて、このロータ2が軸方向に振れる事を防止できる。
その他の構成及び作用は、前述した実施例1と同様であるから、重複する説明は省略する。
In the case of the illustrated embodiment, a recess 34 similar to that of the first and second embodiments is formed in the portion of the axially outer side surface 19 of the rotating side flange 18 where the mounting holes 27 are installed. Yes. However, in the case of this embodiment, it is not necessary to retract the cutting tool 33a from the stud 20 when cutting the axially outer side surface 19 of the rotating side flange 18, and therefore the recess 34 is omitted. You may do it. However, if the concave portion 34 is formed at the time of roughing by forging the hub body 9b, the area of the portion to be cut by the cutting tool 33a is reduced, and the time required for the cutting is shortened. The life of the cutting tool 33a can be extended. Even when the adhesive protrudes somewhat toward the axially outer side surface 19 of the rotary flange 18, the axially outer side surface 19 and the side surface of the rotor 2 (see FIG. 26) are (cured adhesive). This makes it possible to prevent the rotor 2 from swinging in the axial direction.
Other configurations and operations are the same as those of the first embodiment described above, and thus redundant description is omitted.

図10も、請求項1〜4、6、8、9に対応する、本発明の実施例4を示している。本実施例の場合には、ハブ本体9bの外周面の研削加工と、回転側フランジ18の軸方向外側面19の切削加工とを、同時に実施して、1個のハブ本体9bに必要な加工を施す為に要する時間(サイクルタイム)の短縮を図っている。
その他の構成及び作用は、上述した実施例3と同様であるから、重複する図示並びに説明は省略する。
FIG. 10 also shows a fourth embodiment of the present invention corresponding to the first to fourth, sixth, eighth, and ninth aspects. In the case of the present embodiment, grinding of the outer peripheral surface of the hub main body 9b and cutting of the axially outer side surface 19 of the rotation-side flange 18 are simultaneously performed, and processing required for one hub main body 9b. The time (cycle time) required to apply is reduced.
Other configurations and operations are the same as those of the third embodiment described above, and thus overlapping illustrations and descriptions are omitted.

図11〜14は、請求項1、2、3、5、6、10に対応する、本発明の実施例5を示している。本実施例の場合には、ハブ本体9cの外周面に形成した回転側フランジ18に複数のねじ孔37を、このハブ本体9cの中心軸をその中心とする同一円周上位置に、円周方向に関して等間隔に、軸方向に形成している。この様な回転側フランジ18にホイール1及びロータ2(図26参照)を支持固定する場合には、これらホイール1及びロータ2の互いに整合する位置に形成した通孔にボルトを、軸方向外側から内側に挿通し、このボルトを上記ねじ孔37に螺合し更に緊締する。   FIGS. 11 to 14 show a fifth embodiment of the present invention corresponding to claims 1, 2, 3, 5, 6, and 10. In the case of the present embodiment, a plurality of screw holes 37 are formed in the rotation side flange 18 formed on the outer peripheral surface of the hub body 9c, and the circumferential direction is located at the same circumferential position with the central axis of the hub body 9c as the center. It forms in the axial direction at equal intervals with respect to the direction. When the wheel 1 and the rotor 2 (see FIG. 26) are supported and fixed to such a rotation-side flange 18, bolts are inserted into the through holes formed at positions where the wheel 1 and the rotor 2 are aligned with each other from the outside in the axial direction. The bolt is inserted into the inside, and the bolt is screwed into the screw hole 37 and further tightened.

この様なハブ本体9cに就いても、図12に示す様に外周面の必要個所に砥石31による研削加工を施した後、図13に示す様に、上記回転側フランジ18の軸方向外側面19に、切削工具33aによる切削加工を施す。本実施例の場合も、この切削加工の際にこの切削工具33aを、前述した実施例3の場合と同様に、上記ハブ本体9cの中心軸に対し直交する方向に平行移動させるのみで良い。
上述の様にして、その外周面の必要個所に研削加工を、上記回転側フランジ18の軸方向外側面19に切削加工を、それぞれ施した上記ハブ本体9cは、他の構成部材と組み合わせてハブ11cを構成し、図14に示す様な車輪支持用転がり軸受ユニット5cとする。
その他の構成及び作用は、前述した実施例1と同様であるから、重複する説明は省略する。
Even in such a hub main body 9c, after grinding with a grindstone 31 at a necessary portion of the outer peripheral surface as shown in FIG. 12, the outer side surface in the axial direction of the rotary flange 18 is shown in FIG. 19 is cut with a cutting tool 33a. Also in the case of the present embodiment, at the time of this cutting, it is only necessary to translate the cutting tool 33a in a direction perpendicular to the central axis of the hub body 9c, as in the case of the above-described third embodiment.
As described above, the hub body 9c, which has been subjected to grinding processing on necessary portions of the outer peripheral surface thereof and cutting processing on the axially outer side surface 19 of the rotation side flange 18, respectively, is combined with other constituent members as a hub. 11c is configured as a wheel bearing rolling bearing unit 5c as shown in FIG.
Other configurations and operations are the same as those of the first embodiment described above, and thus redundant description is omitted.

図15も、請求項1、2、3、5、6、10に対応する、本発明の実施例6を示している。本実施例の場合には、ハブ本体9cの外周面の研削加工と、回転側フランジ18の軸方向外側面19の切削加工とを、同時に実施して、1個のハブ本体9cに必要な加工を施す為に要する時間(サイクルタイム)の短縮を図っている。
その他の構成及び作用は、上述した実施例5と同様であるから、重複する図示並びに説明は省略する。
FIG. 15 also shows Embodiment 6 of the present invention corresponding to claims 1, 2, 3, 5, 6, and 10. In the case of the present embodiment, grinding of the outer peripheral surface of the hub main body 9c and cutting of the axially outer side surface 19 of the rotation-side flange 18 are simultaneously performed to perform processing necessary for one hub main body 9c. The time (cycle time) required to apply is reduced.
Other configurations and operations are the same as those of the above-described fifth embodiment, and thus overlapping illustrations and descriptions are omitted.

本発明は、以上に述べた実施例1〜6に示した様なハブ本体9b、9cを有する車輪支持用転がり軸受ユニットに限らず、ハブの外周面にホイール及びロータを支持固定する為の回転側フランジを設けた車輪支持用転がり軸受ユニットに関して実施できる。図16〜25は、そのうちの10例に就いて示している。
先ず、図16に示した構造は、前述の図4に示した構造からかしめ部35を省略し、ハブを構成する内輪を、単にハブ本体の内端部に形成した小径段部に締り嵌めで外嵌したものである。
又、図17に示した構造は、前述の図14に示した構造からかしめ部35を省略し、ハブを構成する内輪を、単にハブ本体の内端部に形成した小径段部に締り嵌めで外嵌したものである。
又、図18に示した構造は、スプライン孔を持たない(中実体の)ハブ本体を使用して、上記図4に示した如き構造を有する従動輪用の車輪支持用転がり軸受ユニットとしたものである。
又、図19に示した構造は、上記図18に示した構造で、回転側フランジからスタッドを省略する代わりに、この回転側フランジにねじ孔を形成したものである。
又、図20に示したものは、前述した図27と同様の、従動輪用の車輪支持用転がり軸受ユニットである。
又、図21に示した構造は、上記図20に示した構造で、回転側フランジからスタッドを省略する代わりに、この回転側フランジにねじ孔を形成したものである。
又、図22に示した構造は、上記図4に示した構造で、転動体を玉から円すいころに変え、これに合わせて、各外輪軌道及び各内輪軌道の形状を変えたものである。
又、図23に示した構造は、上記図14に示した構造で、転動体を玉から円すいころに変え、これに合わせて、各外輪軌道及び各内輪軌道の形状を変えたものである。
又、図24に示した構造は、上記図22に示した構造で、軸方向外側の内輪軌道も、ハブ本体と別体の内輪の外周面に形成したものである。
又、図25に示した構造は、上記図23に示した構造で、軸方向外側の内輪軌道も、ハブ本体と別体の内輪の外周面に形成したものである。
The present invention is not limited to the wheel bearing rolling bearing unit having the hub main bodies 9b and 9c as shown in the first to sixth embodiments described above, but the rotation for supporting and fixing the wheel and the rotor on the outer peripheral surface of the hub. It can be implemented with respect to a rolling bearing unit for supporting a wheel provided with a side flange. 16 to 25 show ten examples of them.
First, in the structure shown in FIG. 16, the caulking portion 35 is omitted from the structure shown in FIG. 4, and the inner ring constituting the hub is simply fitted into a small-diameter step portion formed on the inner end portion of the hub body. It is an external fit.
In the structure shown in FIG. 17, the caulking portion 35 is omitted from the structure shown in FIG. 14, and the inner ring constituting the hub is simply tightened on the small diameter step portion formed at the inner end portion of the hub body. It is an external fit.
Further, the structure shown in FIG. 18 is a wheel bearing rolling bearing unit for a driven wheel having a structure as shown in FIG. 4 using a (solid) hub body having no spline hole. It is.
Further, the structure shown in FIG. 19 is the structure shown in FIG. 18 described above, in which a screw hole is formed in the rotating side flange instead of omitting the stud from the rotating side flange.
Also, what is shown in FIG. 20 is a wheel bearing rolling bearing unit for a driven wheel, similar to FIG. 27 described above.
Further, the structure shown in FIG. 21 is the structure shown in FIG. 20 described above, in which a screw hole is formed in the rotating side flange instead of omitting the stud from the rotating side flange.
Further, the structure shown in FIG. 22 is the structure shown in FIG. 4 described above, in which the rolling elements are changed from balls to tapered rollers, and the shapes of the outer ring raceways and the inner ring raceways are changed accordingly.
Further, the structure shown in FIG. 23 is the structure shown in FIG. 14 described above, in which the rolling elements are changed from balls to tapered rollers, and the shapes of the outer ring raceways and the inner ring raceways are changed accordingly.
Further, the structure shown in FIG. 24 is the structure shown in FIG. 22, and the inner ring raceway on the outer side in the axial direction is also formed on the outer peripheral surface of the inner ring separate from the hub body.
The structure shown in FIG. 25 is the structure shown in FIG. 23, and the inner ring raceway on the outer side in the axial direction is also formed on the outer peripheral surface of the inner ring separate from the hub body.

本発明の実施例1を示す、ハブ本体の断面図。Sectional drawing of a hub main body which shows Example 1 of this invention. このハブ本体の外周面に研削加工を施す状態を示す断面図。Sectional drawing which shows the state which grinds to the outer peripheral surface of this hub main body. 同じく回転側フランジの軸方向外側面に切削加工を施す状態を示す断面図。Sectional drawing which shows the state which cuts the axial direction outer surface of a rotation side flange similarly. 完成後の車輪支持用転がり軸受ユニットの断面図。Sectional drawing of the rolling bearing unit for wheel support after completion. 両センタ機構の別例を示す断面図。Sectional drawing which shows another example of both center mechanisms. 本発明の実施例2で、ハブ本体の外周面に研削加工を施すと同時に回転側フランジの軸方向外側面に切削加工を施す状態を示す断面図。Sectional drawing which shows the state which grinds the outer peripheral surface of a hub main body, and cuts the axial direction outer surface of a rotation side flange simultaneously in Example 2 of this invention. 本発明の実施例3を示す、ハブ本体の断面図。Sectional drawing of a hub main body which shows Example 3 of this invention. このハブ本体の外周面に研削加工を施す状態を示す断面図。Sectional drawing which shows the state which grinds to the outer peripheral surface of this hub main body. 同じく回転側フランジの軸方向外側面に切削加工を施す状態を示す断面図。Sectional drawing which shows the state which cuts the axial direction outer surface of a rotation side flange similarly. 本発明の実施例4で、ハブ本体の外周面に研削加工を施すと同時に回転側フランジの軸方向外側面に切削加工を施す状態を示す断面図。Sectional drawing which shows the state which grinds the outer peripheral surface of a hub main body at the same time as cutting in the axial direction outer surface of a rotation side flange in Example 4 of this invention. 本発明の実施例5を示す、ハブ本体の断面図。Sectional drawing of a hub main body which shows Example 5 of this invention. このハブ本体の外周面に研削加工を施す状態を示す断面図。Sectional drawing which shows the state which grinds to the outer peripheral surface of this hub main body. 同じく回転側フランジの軸方向外側面に切削加工を施す状態を示す断面図。Sectional drawing which shows the state which cuts the axial direction outer surface of a rotation side flange similarly. 完成後の車輪支持用転がり軸受ユニットの断面図。Sectional drawing of the rolling bearing unit for wheel support after completion. 本発明の実施例6で、ハブ本体の外周面に研削加工を施すと同時に回転側フランジの軸方向外側面に切削加工を施す状態を示す断面図。Sectional drawing which shows the state which grinds the outer peripheral surface of a hub main body, and cuts the axial direction outer surface of a rotation side flange simultaneously in Example 6 of this invention. 本発明を実施可能な車輪支持用転がり軸受ユニットの別例の第1例を示す断面図。Sectional drawing which shows the 1st example of another example of the rolling bearing unit for wheel support which can implement this invention. 同第2例を示す断面図。Sectional drawing which shows the 2nd example. 同第3例を示す断面図。Sectional drawing which shows the 3rd example. 同第4例を示す断面図。Sectional drawing which shows the 4th example. 同第5例を示す断面図。Sectional drawing which shows the 5th example. 同第6例を示す断面図。Sectional drawing which shows the 6th example. 同第7例を示す断面図。Sectional drawing which shows the 7th example. 同第8例を示す断面図。Sectional drawing which shows the 8th example. 同第9例を示す断面図。Sectional drawing which shows the 9th example. 同第10例を示す断面図。Sectional drawing which shows the 10th example. 本発明の対象となる車輪支持用転がり軸受ユニットの組み付け状態の1例を示す断面図。Sectional drawing which shows one example of the assembly | attachment state of the rolling bearing unit for wheel support used as the object of this invention. 同じく本発明の対象となる車輪支持用転がり軸受ユニットの別例を示す断面図。Sectional drawing which shows the other example of the rolling bearing unit for wheel support which becomes the object of this invention similarly.

符号の説明Explanation of symbols

1 ホイール
2 ロータ
3 ナックル
4 支持孔
5、5a、5b、5c 車輪支持用転がり軸受ユニット
6 外輪
7 固定側フランジ
8 ボルト
9、9a、9b、9c ハブ本体
10 内輪
11、11a、11b、11c ハブ
12 小径段部
13 段差面
14a、14b 外輪軌道
15a、15b 内輪軌道
16 転動体
17 保持器
18 回転側フランジ
19 軸方向外側面
20 スタッド
21a、21b シールリング
22 スプライン孔
23 等速ジョイント
24 スプライン軸
25 雄ねじ部
26 ナット
27 取付孔
28 雄セレーション部
29a、29b センタ
30 チャック
31 砥石
32 ナット
33、33a 切削工具
34 凹部
35 かしめ部
36 雌セレーション
37 ねじ孔
38 回し金
DESCRIPTION OF SYMBOLS 1 Wheel 2 Rotor 3 Knuckle 4 Support hole 5, 5a, 5b, 5c Rolling bearing unit for wheel support 6 Outer ring 7 Fixed side flange 8 Bolt 9, 9a, 9b, 9c Hub body 10 Inner ring 11, 11a, 11b, 11c Hub 12 Small diameter step portion 13 Step surface 14a, 14b Outer ring raceway 15a, 15b Inner ring raceway 16 Rolling element 17 Cage 18 Rotating side flange 19 Axial outer surface 20 Stud 21a, 21b Seal ring 22 Spline hole 23 Constant velocity joint 24 Spline shaft 25 Male thread Part 26 Nut 27 Mounting hole 28 Male serration part 29a, 29b Center 30 Chuck 31 Grinding stone 32 Nut 33, 33a Cutting tool 34 Recess 35 Caulking part 36 Female serration 37 Screw hole 38 Screw

Claims (10)

内周面に複列の外輪軌道を有する外輪と、ハブ本体及びこのハブ本体に外嵌固定された少なくとも1個の内輪から成り、外周面に複列の内輪軌道を有するハブと、これら両内輪軌道と上記両外輪軌道との間にそれぞれ複数個ずつ転動自在に設けられた転動体とを備え、上記ハブの外周面の軸方向外端寄りで上記外輪の軸方向外端面よりも軸方向外方に突出した部分に、使用状態でその軸方向外側面に制動用回転体及び車輪を結合固定する回転側フランジを設けた車輪支持用転がり軸受ユニットに於いて、この回転側フランジの軸方向外側面、並びに、上記ハブ本体の外周面で上記内輪を外嵌固定する部分は、このハブ本体を加工装置の支持部に回転自在に支持した後、このハブ本体をこの支持部から取り外す以前に所定の形状に加工されたものである事を特徴とする車輪支持用転がり軸受ユニット。   An outer ring having a double row outer ring raceway on the inner peripheral surface, a hub body and at least one inner ring externally fitted and fixed to the hub main body, a hub having a double row inner ring raceway on the outer peripheral surface, and both inner rings A plurality of rolling elements provided in a freely rotatable manner between the raceway and the outer ring raceways, and closer to the axial outer end of the outer peripheral surface of the hub than in the axial outer end surface of the outer ring. In a rolling bearing unit for supporting a wheel provided with a rotating side flange for coupling and fixing a braking rotator and a wheel on the axially outer side surface in the state of use in an outward projecting portion, the axial direction of the rotating side flange The outer surface and the portion where the inner ring is fitted and fixed on the outer peripheral surface of the hub body are rotatably supported by the support part of the processing apparatus before the hub body is removed from the support part. Also processed into a predetermined shape Wheel supporting rolling bearing unit which is characterized in that it is. 複列の内輪軌道のうちで軸方向外側の内輪軌道がハブ本体の外周面に直接形成されており、その外周面に軸方向内側の内輪軌道を有する内輪が、このハブ本体の内端部に形成された小径段部に外嵌固定されており、この小径段部の外周面及びこの小径段部の軸方向外端部に存在する段差面、並びに、上記軸方向外側の内輪軌道が、上記ハブ本体を加工装置の支持部に回転自在に支持した後、このハブ本体をこの支持部から取り外す以前に所定の形状に加工されたものである、請求項1に記載した車輪支持用転がり軸受ユニット。   Of the double row inner ring raceways, the inner ring raceway on the outer side in the axial direction is formed directly on the outer peripheral surface of the hub body, and the inner ring having the inner ring raceway on the outer side in the axial direction is formed at the inner end of the hub main body. The outer diameter surface of the small diameter step portion, the step surface existing at the outer end portion in the axial direction of the small diameter step portion, and the inner ring raceway on the outer side in the axial direction are fixed to the formed small diameter step portion. The rolling bearing unit for wheel support according to claim 1, wherein the hub body is rotatably supported on a support portion of a processing apparatus and then processed into a predetermined shape before the hub body is removed from the support portion. . 回転側フランジの軸方向外側面及びハブ本体の外周面で内輪を外嵌固定する部分が、このハブ本体の軸方向両端部を互いに同心の1対のセンタにより回転自在に支持された状態で加工されたものである、請求項1又は請求項2に記載した車輪支持用転がり軸受ユニット。   The part where the inner ring is fitted and fixed on the axially outer side surface of the rotation side flange and the outer peripheral surface of the hub body is processed in a state where both axial ends of the hub body are rotatably supported by a pair of concentric centers. The rolling bearing unit for supporting a wheel according to claim 1 or 2, wherein the rolling bearing unit is a wheel bearing. 回転側フランジに形成した複数の取付孔にそれぞれスタッドの基端部を内嵌固定している、請求項1〜3の何れかに記載した車輪支持用転がり軸受ユニット。   The rolling bearing unit for wheel support according to any one of claims 1 to 3, wherein a base end portion of a stud is fitted and fixed to each of a plurality of mounting holes formed in the rotation side flange. 回転側フランジに、この回転側フランジに対し制動用回転体及び車輪を取り付ける為のボルトを螺合する為の複数のねじ孔を形成している、請求項1〜3の何れかに記載した車輪支持用転がり軸受ユニット。   The wheel according to any one of claims 1 to 3, wherein a plurality of screw holes for screwing bolts for attaching a rotating body for braking and a wheel to the rotation side flange are formed in the rotation side flange. Rolling bearing unit for support. 請求項1〜5の何れかに記載した車輪支持用転がり軸受ユニットを造る為に、ハブ本体を加工装置の支持部に回転自在に支持した後、このハブ本体をこの支持部から取り外す以前に、回転側フランジの軸方向外側面、並びに、このハブ本体の外周面で内輪を外嵌固定する部分を所定の形状に加工する、車輪支持用転がり軸受ユニットの製造方法。   In order to make the wheel bearing rolling bearing unit according to any one of claims 1 to 5, after the hub body is rotatably supported by the support portion of the processing apparatus, before the hub body is removed from the support portion, A method for manufacturing a wheel-supporting rolling bearing unit, wherein the axially outer side surface of the rotation side flange and the outer peripheral surface of the hub body are processed into a predetermined shape by fitting and fixing the inner ring. 請求項4に記載した車輪支持用転がり軸受ユニットを造る為に、回転側フランジに形成した複数の取付孔にそれぞれスタッドの基端部を圧入により内嵌固定した後にこの回転側フランジの軸方向外側面を、ハブ本体の中心軸に対し直交する方向の平坦面に加工する、請求項6に記載した車輪支持用転がり軸受ユニットの製造方法。   In order to manufacture the wheel-supporting rolling bearing unit according to claim 4, after the base end portion of the stud is fitted and fixed to each of the plurality of mounting holes formed in the rotation-side flange by press-fitting, the axially outer side of the rotation-side flange is fixed. The method for manufacturing a wheel-supporting rolling bearing unit according to claim 6, wherein the side surface is processed into a flat surface in a direction orthogonal to the central axis of the hub body. 請求項4に記載した車輪支持用転がり軸受ユニットを造る為に、回転側フランジに形成した複数の取付孔にそれぞれスタッドの基端部を内嵌固定する以前にこの回転側フランジの軸方向外側面を、ハブ本体の中心軸に対し直交する方向の平坦面に加工した後、上記各取付孔に各スタッドの基端部を内嵌固定する、請求項6に記載した車輪支持用転がり軸受ユニットの製造方法。   In order to manufacture the rolling bearing unit for supporting a wheel according to claim 4, the axially outer side surface of the rotating side flange is fixed to the plurality of mounting holes formed in the rotating side flange before the base end portions of the studs are fitted and fixed respectively. Of the rolling bearing unit for supporting a wheel according to claim 6, wherein the base end of each stud is fitted and fixed in each of the mounting holes after being processed into a flat surface perpendicular to the central axis of the hub body. Production method. 各取付孔に各スタッドの基端部を、隙間嵌で内嵌して接着により固定する、請求項8に記載した車輪支持用転がり軸受ユニットの製造方法。   The method for manufacturing a wheel-supporting rolling bearing unit according to claim 8, wherein a base end portion of each stud is fitted into each mounting hole by gap fitting and fixed by adhesion. 請求項5に記載した車輪支持用転がり軸受ユニットを造る為に、回転側フランジに形成した複数のねじ孔にそれぞれボルトを螺合させない状態でこの回転側フランジの軸方向外側面を、ハブ本体の中心軸に対し直交する方向の平坦面に加工する、請求項6に記載した車輪支持用転がり軸受ユニットの製造方法。
In order to manufacture the wheel bearing rolling bearing unit according to claim 5, the axially outer side surface of the rotating side flange is connected to the hub body in a state where the bolts are not screwed into the plurality of screw holes formed in the rotating side flange. The manufacturing method of the wheel bearing rolling bearing unit of Claim 6 processed into the flat surface of the direction orthogonal to a center axis | shaft.
JP2004200693A 2004-07-07 2004-07-07 Rolling bearing unit for supporting wheel and its manufacturing method Withdrawn JP2006021605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004200693A JP2006021605A (en) 2004-07-07 2004-07-07 Rolling bearing unit for supporting wheel and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004200693A JP2006021605A (en) 2004-07-07 2004-07-07 Rolling bearing unit for supporting wheel and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2006021605A true JP2006021605A (en) 2006-01-26
JP2006021605A5 JP2006021605A5 (en) 2007-08-16

Family

ID=35795195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004200693A Withdrawn JP2006021605A (en) 2004-07-07 2004-07-07 Rolling bearing unit for supporting wheel and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006021605A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068041A1 (en) * 2009-12-02 2011-06-09 Ntn株式会社 Processing method and bearing
JP2012180091A (en) * 2012-04-27 2012-09-20 Ntn Corp Bearing device for wheel
JP2019123265A (en) * 2018-01-12 2019-07-25 株式会社ジェイテクト Wheel bearing device and its manufacturing method
US11072201B2 (en) * 2018-06-08 2021-07-27 Aktiebolaget Skf Flanged inner ring optimized for orbital forming operation and associated tool

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068041A1 (en) * 2009-12-02 2011-06-09 Ntn株式会社 Processing method and bearing
JP2011115879A (en) * 2009-12-02 2011-06-16 Ntn Corp Processing method and bearing
CN102639286A (en) * 2009-12-02 2012-08-15 Ntn株式会社 Processing method and bearing
US9427832B2 (en) 2009-12-02 2016-08-30 Ntn Corporation Processing method and bearing
JP2012180091A (en) * 2012-04-27 2012-09-20 Ntn Corp Bearing device for wheel
JP2019123265A (en) * 2018-01-12 2019-07-25 株式会社ジェイテクト Wheel bearing device and its manufacturing method
JP7047388B2 (en) 2018-01-12 2022-04-05 株式会社ジェイテクト Wheel bearing device and its manufacturing method
US11072201B2 (en) * 2018-06-08 2021-07-27 Aktiebolaget Skf Flanged inner ring optimized for orbital forming operation and associated tool

Similar Documents

Publication Publication Date Title
JP2001233001A (en) Bearing unit for vehicle and manufacturing method for it
JP4543928B2 (en) Manufacturing method of wheel bearing unit
JP2006305715A (en) Bearing unit for wheel supporting and its manufacturing method
JP2000234624A (en) Bearing unit for wheel and manufacture thereof
US20050231025A1 (en) Wheel support rolling bearing unit and manufacturing method therefor
JP4855005B2 (en) Processing method of wheel bearing device
JP4696397B2 (en) Wheel bearing unit and manufacturing method thereof
JP4360372B2 (en) Manufacturing method of wheel bearing unit
JP2004092830A (en) Manufacturing method for bearing unit for wheel
JP4983154B2 (en) Manufacturing method of wheel bearing rolling bearing unit
JP2006194293A (en) Method for manufacturing bearing unit for wheel
JP4994617B2 (en) Processing method of wheel bearing device
JP2006021605A (en) Rolling bearing unit for supporting wheel and its manufacturing method
JP4701482B2 (en) Method of manufacturing wheel bearing unit with brake rotor
JP4647333B2 (en) Cutting method of braking surface of wheel bearing device with brake rotor
JP4554467B2 (en) Processing method of wheel bearing device with brake rotor
JP2004225752A (en) Manufacturing method for bearing unit for wheel
JP2006312371A (en) Bearing unit for supporting wheel and manufacturing method for bearing unit
JP2002347406A (en) Bearing unit for wheel and manufacturing method
JP4581129B2 (en) Processing method of wheel bearing device with brake rotor
JP2005195061A (en) Method for manufacturing bearing unit for wheel with disc, and device for manufacturing the same
JP2002370104A (en) Bearing unit for wheel and method of manufacturing the same
JP5023931B2 (en) Method for manufacturing wheel-supporting bearing unit
EP1470936A1 (en) Bearing unit for vehicle wheel
JP2003214443A (en) Bearing unit for wheel and method of manufacture

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20070411

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A521 Written amendment

Effective date: 20070702

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Effective date: 20070702

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090521