JP5023931B2 - Method for manufacturing wheel-supporting bearing unit - Google Patents

Method for manufacturing wheel-supporting bearing unit Download PDF

Info

Publication number
JP5023931B2
JP5023931B2 JP2007252890A JP2007252890A JP5023931B2 JP 5023931 B2 JP5023931 B2 JP 5023931B2 JP 2007252890 A JP2007252890 A JP 2007252890A JP 2007252890 A JP2007252890 A JP 2007252890A JP 5023931 B2 JP5023931 B2 JP 5023931B2
Authority
JP
Japan
Prior art keywords
axially
mounting flange
inner ring
cylindrical surface
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007252890A
Other languages
Japanese (ja)
Other versions
JP2009085254A (en
Inventor
幸雄 山崎
達男 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2007252890A priority Critical patent/JP5023931B2/en
Publication of JP2009085254A publication Critical patent/JP2009085254A/en
Application granted granted Critical
Publication of JP5023931B2 publication Critical patent/JP5023931B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2235/00Turning of brake discs, drums or hubs
    • B23B2235/16Machining of hubs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2235/00Turning of brake discs, drums or hubs
    • B23B2235/21Compensation of run out

Landscapes

  • Rolling Contact Bearings (AREA)

Description

この発明は、自動車等の車両の車輪を懸架装置に対して回転自在に支持する為に使用する車輪支持用軸受ユニットの製造方法の改良に関する。 The present invention relates to an improvement in a method of manufacturing a wheel support bearing unit used for rotatably supporting a wheel of a vehicle such as an automobile with respect to a suspension device.

自動車の車輪を構成するホイール1、及び、制動用回転部材であって制動装置であるディスクブレーキを構成するロータ2は、例えば図6に示す様な構造により、懸架装置を構成するナックル3に回転自在に支持している。即ち、このナックル3に形成した円形の支持孔4部分に、車輪支持用軸受ユニット5を構成する外輪6を、複数本のボルト7により固定している。一方、この車輪支持用軸受ユニット5を構成するハブ8に上記ホイール1及びロータ2を、複数本のスタッド9とナット10とにより結合固定している。   A wheel 1 constituting an automobile wheel and a rotor 2 constituting a disc brake as a braking device, which is a braking rotating member, rotate to a knuckle 3 constituting a suspension device, for example, by a structure as shown in FIG. Supports freely. That is, the outer ring 6 constituting the wheel support bearing unit 5 is fixed to the circular support hole 4 formed in the knuckle 3 by a plurality of bolts 7. On the other hand, the wheel 1 and the rotor 2 are coupled and fixed to a hub 8 constituting the wheel support bearing unit 5 by a plurality of studs 9 and nuts 10.

上記外輪6の内周面には複列の外輪軌道11a、11bを、外周面には結合フランジ12を、それぞれ形成している。この様な外輪6は、この結合フランジ12を上記ナックル3に、上記各ボルト7で結合する事により、このナックル3に対し固定している。一方、上記ハブ8は、ハブ本体13と内輪14とから成る。このうちのハブ本体13の外周面の一部で、上記外輪6の軸方向外端(軸方向に関して「外」とは、自動車への組み付け状態で車両の幅方向外側となる、各図の左側を言う。反対に、自動車への組み付け状態で車両の幅方向中央側となる、各図の右側を、軸方向に関して「内」と言う。本明細書及び特許請求の範囲の全体で同じ。)開口から突出した部分には、取付フランジ15を形成している。又、上記ハブ本体13の軸方向外端部には、パイロット部と呼ばれる円筒部16を、このハブ本体13と同心に設けている。上記ホイール1及びロータ2は、この円筒部16に外嵌する事により径方向の位置決めを図った状態で、上記取付フランジ15の軸方向外側面に結合固定している。この為に、上記取付フランジ15の円周方向複数個所に取付孔17を形成すると共に、これら各取付孔17にそれぞれ、上記スタッド9の基端寄り部分に存在するセレーション部18を圧入固定している。そして、これら各スタッド9と上記各ナット10とにより、上記ホイール1及びロータ2を、上記取付フランジ15の軸方向外側面に結合固定している。   Double row outer ring raceways 11a and 11b are formed on the inner peripheral surface of the outer ring 6, and a coupling flange 12 is formed on the outer peripheral surface. Such an outer ring 6 is fixed to the knuckle 3 by connecting the connecting flange 12 to the knuckle 3 with the bolts 7. On the other hand, the hub 8 includes a hub body 13 and an inner ring 14. Of these, a part of the outer peripheral surface of the hub body 13 is an outer end in the axial direction of the outer ring 6 ("outer" in relation to the axial direction is the outer side in the width direction of the vehicle in the assembled state in the automobile) (Conversely, the right side of each figure, which is the center side in the width direction of the vehicle in the state where it is assembled to an automobile, is referred to as “inside” with respect to the axial direction. The same applies throughout the present specification and claims.) A mounting flange 15 is formed in a portion protruding from the opening. A cylindrical portion 16 called a pilot portion is provided concentrically with the hub main body 13 at the axially outer end portion of the hub main body 13. The wheel 1 and the rotor 2 are coupled and fixed to the outer surface in the axial direction of the mounting flange 15 in a state in which the wheel 1 and the rotor 2 are externally fitted to the cylindrical portion 16 so as to be positioned in the radial direction. For this purpose, mounting holes 17 are formed at a plurality of locations in the circumferential direction of the mounting flange 15, and serration portions 18 existing near the base end of the stud 9 are press-fitted and fixed in the mounting holes 17. Yes. Then, the wheel 1 and the rotor 2 are coupled and fixed to the outer surface in the axial direction of the mounting flange 15 by the studs 9 and the nuts 10.

又、上記ハブ本体13の外周面の軸方向中間部には、上記複列の外輪軌道11a、11bのうちの軸方向外側の外輪軌道11aに対向する、軸方向外側の内輪軌道19aを、同じく軸方向内端部には、この内輪軌道19aを形成した部分よりも外径寸法が小さい嵌合用円筒面部20を、それぞれ形成している。そして、この嵌合用円筒面部20に上記内輪14を、締り嵌めで外嵌固定している。又、この状態で、この内輪14の軸方向外端面を、上記嵌合用円筒面部20の軸方向外端部に存在する段差面21に突き当てる事で、この内輪14の軸方向の位置決めを図っている。この内輪14の外周面には、上記複列の外輪軌道11a、11bのうちの軸方向内側の外輪軌道11bに対向する、軸方向内側の内輪軌道19bを形成している。そして、上記各外輪軌道11a、11bと上記各内輪軌道19a、19bとの間に転動体22、22を、それぞれ複数個ずつ転動自在に設けている。尚、図示の例では、これら各転動体22、22として玉を使用しているが、重量の嵩む自動車用の軸受ユニットの場合には、円すいころを使用する場合もある。又、これら各転動体22、22を設置した円筒状の空間の軸方向両端開口部は、それぞれシールリング23a、23bにより密閉している。 In addition, an axially outer inner ring raceway 19a facing the outer outer ring raceway 11a in the axial direction of the double row outer ring raceways 11a and 11b is also formed in the axially intermediate portion of the outer peripheral surface of the hub body 13. On the inner end in the axial direction, a fitting cylindrical surface portion 20 having an outer diameter smaller than that of the portion where the inner ring raceway 19a is formed is formed. The inner ring 14 is externally fixed to the fitting cylindrical surface portion 20 by an interference fit. Further, in this state, the axially outer end surface of the inner ring 14 is abutted against the stepped surface 21 existing at the axially outer end of the fitting cylindrical surface portion 20, thereby positioning the inner ring 14 in the axial direction. ing. An inner ring raceway 19b on the inner side in the axial direction is formed on the outer peripheral surface of the inner ring 14 to face the outer ring raceway 11b on the inner side in the axial direction of the double row outer ring raceways 11a and 11b. A plurality of rolling elements 22, 22 are provided between the outer ring raceways 11a, 11b and the inner ring raceways 19a, 19b. In the illustrated example, balls are used as the rolling elements 22 and 22. However, in the case of an automobile bearing unit that is heavy in weight, a tapered roller may be used. Moreover, the axial direction both ends opening part of the cylindrical space which installed these each rolling elements 22 and 22 is sealed with the seal rings 23a and 23b, respectively.

又、図示の例は、駆動輪(FF車の前輪、FR車及びRR車の後輪、4WD車の全車輪)用の車輪支持用軸受ユニット5である為、上記ハブ8の中心部に、スプライン孔24を形成している。そして、このスプライン孔24に、等速ジョイント用外輪25の外端面に固設したスプライン軸26を挿入している。これと共に、このスプライン軸26の先端部にナット27を螺合し、更に締め付ける事により、上記ハブ本体13を、このナット27
と上記等速ジョイント用外輪25との間に挟持している。
The illustrated example is a wheel support bearing unit 5 for driving wheels (front wheels of FF vehicles, rear wheels of FR and RR vehicles, all wheels of 4WD vehicles). A spline hole 24 is formed. A spline shaft 26 fixed to the outer end surface of the constant velocity joint outer ring 25 is inserted into the spline hole 24. At the same time, a nut 27 is screwed onto the tip of the spline shaft 26 and further tightened , so that the hub body 13 is attached to the nut 27.
And the constant velocity joint outer ring 25.

尚、図示の例では、上記車輪支持用軸受ユニット5の耐久性を確保すべく、所定の部位を硬化させている。具体的には、上記外輪6の内周面のうちで、軸方向外側の外輪軌道11aから軸方向内側の外輪軌道11bまでの連続した部分の全周(図6に斜格子を付して示す部分)と、上記ハブ本体13の外周面のうちで、上記取付フランジ15の軸方向内側の根元部分(軸方向外側のシールリング23aの先端縁の摺接部)から上記嵌合用円筒面部20の軸方向内端寄り部分までの連続した部分の全周(図6に斜格子を付して示す部分)とに、それぞれ熱処理の一種である高周波焼入れ処理を施す事により、当該各部分に硬化層を形成している。又、上記内輪14を、心部まで焼き入れ硬化させている。   In the illustrated example, a predetermined portion is hardened to ensure the durability of the wheel support bearing unit 5. Specifically, in the inner peripheral surface of the outer ring 6, the entire circumference of the continuous portion from the outer ring raceway 11a on the outer side in the axial direction to the outer ring raceway 11b on the inner side in the axial direction (shown with a diagonal grid in FIG. 6). Portion) and the outer peripheral surface of the hub body 13 from the base portion on the inner side in the axial direction of the mounting flange 15 (the sliding contact portion of the tip end edge of the seal ring 23a on the outer side in the axial direction) of the cylindrical surface portion 20 for fitting. By applying induction hardening treatment, which is a kind of heat treatment, to the entire circumference of the continuous portion up to the portion near the inner end in the axial direction (portion shown with a diagonal grid in FIG. 6), a hardened layer is formed on each portion. Is forming. The inner ring 14 is hardened and hardened to the center.

ところで、上述の様な車輪支持部の構造に於いて、自動車の走行時(上記ハブ8の回転時)の、上記ロータ2の側面のアキシアル振れ(軸方向の振れ)が大きいと、制動時に、ジャダーと呼ばれる、不快な騒音を伴う振動が発生し易くなる。このジャダーの発生を抑えるべく、上記ロータ2の側面のアキシアル振れを抑える為には、上記ハブ8の回転中心に対する取付フランジ15の軸方向外側面の直角度と、この軸方向外側面自体の面精度とを向上させる必要がある。   By the way, in the structure of the wheel support portion as described above, if the axial runout (axial runout) of the side surface of the rotor 2 during driving of the automobile (when the hub 8 rotates) is large, Vibration with unpleasant noise, called judder, is likely to occur. In order to suppress the occurrence of this judder, the axial runout of the side surface of the rotor 2 is suppressed, the perpendicularity of the axially outer surface of the mounting flange 15 with respect to the center of rotation of the hub 8 and the surface of the axially outer surface itself. There is a need to improve accuracy.

この様な事情に鑑みて考えられた、車輪支持用軸受ユニットの製造方法として、特許文献1に記載された発明がある。この特許文献1に記載された発明に就いて、図7により説明する。尚、上述の図6に示した従来構造と同様の部分には同一符号を付して、重複する図示並びに説明を省略する。上記特許文献1に記載された発明の場合、ハブ本体13を造る際には、先ず、金属素材に鍛造加工及び切削加工を施して、このハブ本体13の大まかな形状を造る。その後、このハブ本体13の外周面のうちで、取付フランジ15の軸方向内側の根元部分から嵌合用円筒面部20の軸方向中間部内端寄り部分までの連続した部分の全周(図7に斜格子を付して示す部分)に、高周波焼入れ処理を施す事により、当該部分に硬化層を形成する。その後、この高周波焼入れ処理に基づいて変形した、上記取付フランジ15の軸方向外側面に、旋削加工を施す事により、この軸方向外側面を平坦面とする。即ち、この軸方向外側面の面精度を向上させる。   As a method for manufacturing a wheel-supporting bearing unit considered in view of such circumstances, there is an invention described in Patent Document 1. The invention described in Patent Document 1 will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the part similar to the conventional structure shown in the above-mentioned FIG. 6, and the overlapping illustration and description are abbreviate | omitted. In the case of the invention described in Patent Document 1, when the hub main body 13 is manufactured, first, a rough shape of the hub main body 13 is manufactured by subjecting a metal material to forging and cutting. Thereafter, of the outer peripheral surface of the hub body 13, the entire circumference of the continuous portion from the base portion on the inner side in the axial direction of the mounting flange 15 to the inner end portion in the axial direction intermediate portion of the fitting cylindrical surface portion 20 (inclined in FIG. 7). By applying an induction hardening process to a portion indicated by a lattice, a hardened layer is formed in the portion. Thereafter, the outer side surface in the axial direction of the mounting flange 15 deformed based on the induction hardening process is turned to make the outer side surface in the axial direction flat. That is, the surface accuracy of the outer surface in the axial direction is improved.

その後、図7に示す様に、上記ハブ本体13の外周面のうちで軸方向外側の内輪軌道19aと上記嵌合用円筒面部20との間に存在する円筒面部28にシュー29を摺接させる事により、上記ハブ本体13の径方向の位置決めを図る。これと共に、上記取付フランジ15の軸方向外側面にバッキングプレート30を吸着(例えば磁気吸着)させた状態で、このバッキングプレート30と共に上記ハブ本体13を、上記取付フランジ15の軸方向外側面と直交する軸(このハブ本体13の中心軸)を中心として回転させる。そして、この状態で、上記ハブ本体13の外周面のうち、上記高周波焼入れ処理に基づいて変形した、上記取付フランジ15の軸方向内側の根元部分及び上記軸方向外側の内輪軌道19aと、上記嵌合用円筒面部20及びその段差面21とに、それぞれ研削加工を施す。これにより、これら各面の面精度を改善すると共に、上記軸方向外側の内輪軌道19a及び嵌合用円筒面部20の中心軸に対する、上記取付フランジ15の軸方向外側面の直角度を高める。そして、これに基づき、車輪支持用軸受ユニット5(図6参照)を組み立てた状態での、ハブ8の回転中心に対する上記取付フランジ15の軸方向外側面の直角度を向上させる。 Thereafter, as shown in FIG. 7, the shoe 29 is slidably brought into contact with the cylindrical surface portion 28 existing between the inner ring raceway 19 a on the axially outer side of the outer peripheral surface of the hub body 13 and the cylindrical surface portion 20 for fitting. Thus, the hub body 13 is positioned in the radial direction. At the same time, in a state where the backing plate 30 is attracted (for example, magnetically attracted) to the outer surface in the axial direction of the mounting flange 15, the hub main body 13 is orthogonal to the outer surface in the axial direction of the mounting flange 15 together with the backing plate 30. The shaft is rotated about the axis (the central axis of the hub body 13). In this state, of the outer peripheral surface of the hub main body 13, the axially inner root portion of the mounting flange 15 and the axially outer inner ring raceway 19a, which are deformed based on the induction hardening process, and the fitting Grinding is performed on the combined cylindrical surface portion 20 and the stepped surface 21 thereof. As a result, the surface accuracy of these surfaces is improved, and the perpendicularity of the axially outer surface of the mounting flange 15 with respect to the central axis of the inner ring raceway 19a and the fitting cylindrical surface part 20 is increased. Based on this, the squareness of the outer surface in the axial direction of the mounting flange 15 with respect to the center of rotation of the hub 8 in the assembled state of the wheel support bearing unit 5 (see FIG. 6) is improved.

上述の様に、特許文献1に記載された発明によれば、ハブ8の回転中心に対する取付フランジ15の軸方向外側面の直角度と、この軸方向外側面自体の面精度とを向上させる事ができる。この為、この軸方向外側面に結合固定するロータ2の側面のアキシアル振れを抑える事ができ、制動時にジャダーの発生を抑えられる。   As described above, according to the invention described in Patent Document 1, the perpendicularity of the axially outer surface of the mounting flange 15 with respect to the rotation center of the hub 8 and the surface accuracy of the axially outer surface itself can be improved. Can do. For this reason, axial runout of the side surface of the rotor 2 coupled and fixed to the axially outer side surface can be suppressed, and judder generation can be suppressed during braking.

ところが、上述の特許文献1に記載された発明の場合には、次の様な改善すべき点がある。即ち、上記ハブ本体13の外周面のうち、上記円筒面部28は、上記高周波焼入れ処理に基づく変形により、面精度が悪化している部位である。この為、上述の様に軸方向外側の内輪軌道19a及び嵌合用円筒面部20に研削加工を施す際に、上記円筒面部28に上記シュー29を摺接させる事によって上記ハブ本体13の径方向の位置決めを図ると、この径方向の位置決め精度が悪くなる。これに対し、上述の特許文献1に記載した発明を実施する場合に、例えば単一の砥石により、上記円筒面部28にも、上記軸方向外側の内輪軌道19a及び嵌合用円筒面部20と同時に研削加工を施せば、この研削加工時の上記円筒面部28の面精度を良好にできる。但し、この場合には、上記高周波焼入れ処理に基づく変形により、研削加工前の上記円筒面部28の表面に存在する黒皮の真円度が悪くなっていると、上記ハブ本体13の回転中心が、研削加工の前後で若干ずれると言った不具合が生じる。そして、この様な不具合が生じた場合には、やはり上記ハブ本体13の径方向の位置決め精度が悪くなる。 However, in the case of the invention described in Patent Document 1 described above, there are the following points to be improved. That is, of the outer peripheral surface of the hub body 13, the cylindrical surface portion 28 is a portion whose surface accuracy is deteriorated due to deformation based on the induction hardening process. For this reason, when the inner ring raceway 19a on the axially outer side and the cylindrical surface portion 20 for fitting are ground as described above, the shoe 29 is brought into sliding contact with the cylindrical surface portion 28 so that the radial direction of the hub body 13 is increased. If positioning is attempted, this radial positioning accuracy will deteriorate. On the other hand, when the invention described in the above-mentioned Patent Document 1 is implemented, the cylindrical surface portion 28 is ground on the cylindrical surface portion 28 simultaneously with the axially outer inner ring raceway 19a and the fitting cylindrical surface portion 20, for example, by a single grindstone. If the processing is performed, the surface accuracy of the cylindrical surface portion 28 at the time of grinding can be improved. However, in this case, if the roundness of the black skin existing on the surface of the cylindrical surface portion 28 before grinding is deteriorated due to the deformation based on the induction hardening process, the center of rotation of the hub body 13 is changed. The problem of being slightly shifted before and after the grinding process occurs. And when such a malfunction arises, the positioning accuracy of the radial direction of the said hub main body 13 will worsen too.

何れにしても、上記軸方向外側の内輪軌道19a及び嵌合用円筒面部20に研削加工を施す際の、上記ハブ本体13の径方向の位置決め精度が悪くなると、この研削加工が完了した状態で、上記内輪軌道19a及び嵌合用円筒面部20と、上記ハブ本体13の軸方向外端部に存在する円筒部16との間に、芯ずれが生じる。この結果、自動車の走行時に、この円筒部16の外周面にラジアル振れ(径方向の振れ)が生じる様になる。これに伴い、この円筒部16に外嵌した、慣性質量の大きなロータ2(図6参照)にもラジアル振れが生じ、結果として、このロータ2の回転アンバランスに基づく振動が発生する様になる。 In any case, if the positioning accuracy in the radial direction of the hub body 13 when grinding is performed on the axially outer inner ring raceway 19a and the fitting cylindrical surface portion 20, the grinding process is completed, A misalignment occurs between the inner ring raceway 19a and the fitting cylindrical surface portion 20 and the cylindrical portion 16 existing at the outer axial end portion of the hub body 13. As a result, radial run-out (radial run-out) occurs on the outer peripheral surface of the cylindrical portion 16 when the automobile is running. Along with this, radial vibration also occurs in the rotor 2 (see FIG. 6) having a large inertial mass that is fitted on the cylindrical portion 16, and as a result, vibration based on the rotational unbalance of the rotor 2 is generated. .

特開2000−234624号公報JP 2000-234624 A

本発明は、上述の様な事情に鑑み、取付フランジの軸方向外側面に結合したロータのアキシアル振れだけでなく、ラジアル振れをも十分に抑制できる、車輪支持用軸受ユニットの製造方法を実現すべく発明したものである。 In view of the circumstances as described above, the present invention realizes a method of manufacturing a wheel support bearing unit that can sufficiently suppress not only axial runout of a rotor coupled to an axial outer surface of a mounting flange but also radial runout. Invented accordingly.

本発明の対象となる車輪支持用軸受ユニットは、外周面に軸方向内側の内輪軌道を形成した内輪と、外周面の軸方向外端寄り部分に車輪及び制動用回転部材を取り付ける為の取付フランジを、同じく軸方向中間部に軸方向外側の内輪軌道を、同じく軸方向内端部に上記内輪を外嵌固定する為の嵌合用円筒面部を、軸方向外端部に上記車輪及び制動用回転部材を外嵌する為の円筒部を、それぞれ形成すると共に、外周面のうちで上記取付フランジの軸方向内側の根元部分から上記嵌合用円筒面部までの連続した部分の全周に熱処理硬化層を形成しているハブ本体とを備え、且つ、上記軸方向内側の内輪軌道の直径を、上記軸方向外側の内輪軌道の直径よりも小さくしている。 A bearing unit for supporting a wheel, which is an object of the present invention, includes an inner ring having an inner ring raceway on the outer peripheral surface formed on an inner side in the axial direction, and a mounting flange for mounting a wheel and a brake rotating member on the outer peripheral surface near the axial outer end. and also axial inner ring raceway of the axially outward direction intermediate portion, also a fitting cylindrical surface portion for externally secured to the inner ring axially inner end, for rotation the wheel and the brake axially outer end portion A cylindrical portion for externally fitting the members is formed, and a heat treatment hardened layer is formed on the entire circumference of the continuous portion from the axially inner root portion of the mounting flange to the fitting cylindrical surface portion of the outer peripheral surface. And a diameter of the inner ring raceway on the inner side in the axial direction is smaller than a diameter of the inner ring raceway on the outer side in the axial direction.

特に、本発明のうち、請求項1に記載した車輪支持用軸受ユニットの製造方法の場合には、上記ハブ本体を造る際に、上記熱処理硬化層を形成した後、このハブ本体の一部を基準面として、上記取付フランジの軸方向外側面及び上記円筒部の外周面に旋削加工を施すと共に、上記ハブ本体の外周面のうちで上記軸方向外側の内輪軌道と上記嵌合用円筒面部との間部分に旋削加工を施して当該部分に基準円筒面部を形成する。その後、この基準円筒面部にシューを摺接させる事により、上記ハブ本体の径方向の位置決めを図りつつ、上記取付フランジの軸方向外側面にバッキングプレートを吸着させた状態で、このバッキングプレートと共に上記ハブ本体を、上記取付フランジの軸方向外側面と直交する軸を中心として回転させながら、上記軸方向外側の内輪軌道と上記嵌合用円筒面部と(好ましくは、上記ハブ本体の外周面のうち、使用時にシールリングの先端縁を摺接させる部分である、上記取付フランジの軸方向内側の根元部分と)に、それぞれ研削加工を施し、且つ、この研削加工の際に上記基準円筒面部には研削加工を施さないParticularly, in the case of the wheel support bearing unit manufacturing method according to the first aspect of the present invention, when the hub body is manufactured , after the heat treatment hardened layer is formed, a part of the hub body is formed. As a reference surface, the axial outer surface of the mounting flange and the outer peripheral surface of the cylindrical portion are turned, and among the outer peripheral surfaces of the hub body, the axially outer inner ring raceway and the fitting cylindrical surface portion The intermediate portion is turned to form a reference cylindrical surface portion in the portion. Thereafter, the shoe is brought into sliding contact with the reference cylindrical surface portion so that the hub body is positioned in the radial direction while the backing plate is adsorbed to the outer surface in the axial direction of the mounting flange, together with the backing plate. While rotating the hub body around an axis orthogonal to the axially outer surface of the mounting flange, the axially outer inner ring raceway and the fitting cylindrical surface part (preferably, of the outer peripheral surface of the hub body, a portion for sliding contact with the tip edge of the seal ring during use, axially and inner root portion) of the mounting flange, respectively facilities grinding, and, to the reference cylindrical surface during the grinding is Do not grind .

又、本発明のうち、請求項2に記載した車輪支持用軸受ユニットの製造方法の場合には、上記ハブ本体を造る際に、上記熱処理硬化層を形成した後、このハブ本体の一部を基準面として上記取付フランジの軸方向外側面及び上記円筒部の外周面に旋削加工を施す作業と、上記ハブ本体の一部を基準面として上記ハブ本体の外周面のうちで上記軸方向外側の内輪軌道と上記嵌合用円筒面部との間部分に旋削加工を施して当該部分に基準円筒面部を形成する作業とのうちの、何れか一方の作業を行う。その後、この一方の作業により旋削加工を施された面を上記基準面として他方の作業を行う。その後、上記基準円筒面部にシューを摺接させる事により上記ハブ本体の径方向の位置決めを図りつつ、上記取付フランジの軸方向外側面にバッキングプレートを吸着させた状態でこのバッキングプレートと共に上記ハブ本体を、上記取付フランジの軸方向外側面と直交する軸を中心として回転させながら、上記軸方向外側の内輪軌道と上記嵌合用円筒面部と(好ましくは、上記ハブ本体の外周面のうち、使用時にシールリングの先端縁を摺接させる部分である、上記取付フランジの軸方向内側の根元部分と)に、それぞれ研削加工を施し、且つ、この研削加工の際に上記基準円筒面部には研削加工を施さないIn the method of manufacturing a wheel support bearing unit according to the second aspect of the present invention, when the hub main body is manufactured , after the heat treatment hardened layer is formed, a part of the hub main body is formed. Turning the axially outer surface of the mounting flange and the outer peripheral surface of the cylindrical portion as a reference surface, and a portion of the hub body as a reference surface , Any one of the operations of turning a portion between the inner ring raceway and the fitting cylindrical surface portion to form a reference cylindrical surface portion in the portion is performed. Thereafter, the other work is performed using the surface that has been turned by the one work as the reference surface. Thereafter, the hub main body is mounted together with the backing plate in a state where the backing plate is adsorbed to the outer surface in the axial direction of the mounting flange while positioning the hub main body in the radial direction by sliding the shoe against the reference cylindrical surface portion. Are rotated around an axis orthogonal to the axially outer surface of the mounting flange, while the inner ring raceway on the axially outer side and the cylindrical surface portion for fitting (preferably, of the outer peripheral surface of the hub body, during use) a portion for sliding contact with the tip edge of the seal ring, in the axial direction inside the base portion of the mounting flange), respectively facilities grinding, and, to the reference cylindrical surface during the grinding grinding Do not give .

上述の請求項1、2に記載した発明を実施する場合に、好ましくは、請求項3に記載した発明の様に、上記熱処理硬化層を形成した後、上記ハブ本体の一部を基準面として上記取付フランジの軸方向外側面に旋削加工を施す前に、この取付フランジの円周方向複数個所に形成された取付孔に、それぞれ軸方向内側からスタッドのセレーション部を圧入する作業を行う。 When carrying out the invention described in claims 1 and 2 , preferably, after forming the heat-treated cured layer as in the invention described in claim 3 , a part of the hub body is used as a reference plane. Before turning the outer side surface of the mounting flange in the axial direction, an operation of press-fitting the serration portion of the stud from the inner side in the axial direction is performed in the mounting holes formed in a plurality of circumferential directions of the mounting flange.

上述の様な本発明の車輪支持用軸受ユニットの製造方法の場合には、熱処理硬化層を形成する事に基づいて、取付フランジの軸方向外側面及び嵌合用円筒面部が変形したり(請求項1、2の場合)、或いは、上記取付フランジに形成した複数の取付孔にそれぞれ軸方向内側からスタッドのセレーション部を圧入する事に基づいて、上記取付フランジの軸方向外側面が変形したとしても(請求項3の場合)、その後、これら各面に旋削加工を施す為、これら各面の面精度を改善できる。 In the case of the method for manufacturing the wheel supporting bearing unit of the present invention as described above, the axially outer surface of the mounting flange and the cylindrical surface portion for fitting are deformed based on the formation of the heat-treated hardened layer ( claims). 1 or 2 ) or even if the axially outer surface of the mounting flange is deformed based on the press-fitting of the serration portion of the stud from the axially inner side into a plurality of mounting holes formed in the mounting flange. (In the case of claim 3 ) Thereafter, since each of these surfaces is turned, the surface accuracy of these surfaces can be improved.

又、本発明の場合には、上記取付フランジの軸方向外側面及び円筒部の外周面に旋削加工を施す作業と、旋削加工により上記基準円筒面部を形成する作業とを、同一の基準面を基準として行う(請求項1の場合)か、或いは、これら各作業のうちの何れか一方の作業を行った後、この一方の作業により旋削加工を施された面を基準面として他方の作業を行う(請求項2の場合)。この為、上記基準円筒面部の面精度を良好にできると共に、この基準円筒面部の中心軸に対する上記取付フランジの軸方向外側面の直角度と、この基準円筒面部に対する上記円筒部の外周面の同心度とを、それぞれ良好にできる。 In the case of the present invention, the same reference surface is used for the operation of turning the axially outer surface of the mounting flange and the outer peripheral surface of the cylindrical portion and the operation of forming the reference cylindrical surface portion by turning. After performing either one of these operations as a reference (in the case of claim 1 ), the other operation is performed with the surface turned by this one operation as a reference surface. ( Claim 2 ). Therefore, the surface accuracy of the reference cylindrical surface portion can be improved, the perpendicularity of the axial outer surface of the mounting flange with respect to the central axis of the reference cylindrical surface portion, and the concentricity of the outer peripheral surface of the cylindrical portion with respect to the reference cylindrical surface portion The degree can be improved.

又、本発明の場合には、上記基準円筒面部にシューを摺接させる事によりハブ本体の径方向の位置決めを図りつつ、上記取付フランジの軸方向外側面にバッキングプレートを吸着させた状態で、このバッキングプレートと共に上記ハブ本体を、上記取付フランジの軸方向外側面と直交する軸を中心として回転させながら、軸方向外側の内輪軌道と、上記嵌合用円筒面部とに、それぞれ研削加工を施す。この為、これら軸方向外側の内輪軌道及び嵌合用円筒面部の中心軸に対する上記取付フランジの軸方向外側面の直角度と、これら軸方向外側の内輪軌道及び嵌合用円筒面部と上記円筒部の外周面との互いの同心度とを、それぞれ良好にできる。 In the case of the present invention, while positioning the hub main body in the radial direction by sliding the shoe on the reference cylindrical surface portion, the backing plate is adsorbed on the axially outer surface of the mounting flange. While rotating the hub body together with the backing plate about an axis orthogonal to the axially outer surface of the mounting flange, the inner ring raceway on the axially outer side and the fitting cylindrical surface part are respectively ground. For this reason, the perpendicularity of the axially outer surface of the mounting flange with respect to the central axis of the axially outer inner ring raceway and the fitting cylindrical surface part, and the outer circumference of the axially outer inner ring raceway, the fitting cylindrical surface part and the cylindrical part The degree of concentricity with the surface can be improved.

従って、本発明の場合には、車両の走行時(上記ハブ本体の回転時)に、上記取付フランジの軸方向外側面のアキシアル振れを抑えられる。この結果、この取付フランジの軸方向外側面に結合固定する制動用回転部材の側面のアキシアル振れを抑える事ができ、制動時にジャダーが発生する事を抑えられる。
これと共に、車両の走行時に、上記円筒部の外周面のラジアル振れを抑えられる。この結果、この円筒部に外嵌する制動用回転部材のラジアル振れを抑える事ができ、この制動用回転部材の回転アンバランスに基づく振動が発生する事を抑えられる。
Therefore, in the case of the present invention, when the vehicle travels (when the hub body rotates), axial runout of the outer surface in the axial direction of the mounting flange can be suppressed. As a result, it is possible to suppress the axial deflection of the side surface of the braking rotating member that is coupled and fixed to the axially outer side surface of the mounting flange, and to suppress the occurrence of judder during braking.
At the same time, radial runout of the outer peripheral surface of the cylindrical portion can be suppressed when the vehicle is traveling. As a result, it is possible to suppress radial deflection of the braking rotary member fitted on the cylindrical portion, and it is possible to suppress the occurrence of vibration based on the rotational unbalance of the braking rotary member.

本発明に関連する参考例の第1例
図1〜2は、本発明に関連する参考例の第1例を示している。尚、本参考例の特徴は、ハブ本体13aの加工方法にある。このハブ本体13aを含んで構成する車輪支持用軸受ユニットの全体構造等、その他の部分の構造及び作用は、前述図6に示した従来構造の場合とほぼ同様である。この為、同等部分に関する図示並びに説明は省略若しくは簡略にし、以下、本参考例の特徴部分を中心に説明する。
[ First example of reference example related to the present invention ]
1 and 2 show a first example of a reference example related to the present invention . The feature of this reference example is the processing method of the hub body 13a . Overall structure or the like of the wheel supporting bearing unit configured to include the hub body 13a, the structure and function of the other parts are substantially the same as that of the conventional construction shown in FIG. 6 above. For this reason, illustrations and explanations of equivalent parts are omitted or simplified, and the following description will focus on the characteristic parts of this reference example .

本参考例の場合、上記ハブ本体13aを造る際には、先ず、金属素材に鍛造加工及び切削加工を施して、このハブ本体13aの大まかな形状を造る。その後、このハブ本体13aの外周面のうちで、取付フランジ15の軸方向内側の根元部分{シールリング23a(図6参照)の先端縁の摺接部}から嵌合用円筒面部20の軸方向内端寄り部分までの連続した部分の全周(図1〜2に斜格子を付して示す部分)に、高周波焼入れ処理を施す事により、当該部分に硬化層を形成する。 In the case of this reference example , when the hub main body 13a is manufactured, first, a rough shape of the hub main body 13a is manufactured by forging and cutting a metal material. After that, in the outer peripheral surface of the hub main body 13a, the axially inner root portion {the sliding contact portion of the tip edge of the seal ring 23a (see FIG. 6)} of the mounting flange 15 in the axial direction of the fitting cylindrical surface portion 20 A hardened layer is formed on the perimeter of the continuous portion up to the end portion by subjecting the whole portion of the continuous portion (the portion shown with a diagonal grid in FIGS. 1 and 2) to induction hardening.

その後、図1に示す様に、上記嵌合用円筒面部20をチャック31aにより掴んだ状態で(この嵌合用円筒面部20を基準面として)、このチャック31aと共に上記ハブ本体13aを回転させる。そして、この状態で、上記高周波焼入れ処理に基づいて変形した、上記取付フランジ15の軸方向外側面と、円筒部16の外周面{この外周面のうち、少なくともロータ2(図6参照)を外嵌する軸方向内半部}とに、それぞれ旋削加工を施す。これと共に、上記ハブ本体13aの外周面のうち、上記嵌合用円筒面部20の段差面21の軸方向外側に隣接する部分に旋削加工を施す事で、当該部分に基準円筒面部32を形成する。そして、この様な各旋削加工を施す事により、上記取付フランジ15の軸方向外側面及び上記円筒部16の外周面の面精度を改善し、且つ、上記基準円筒面部32の面精度を良好にする。これと共に、この基準円筒面部32の中心軸に対する上記取付フランジ15の軸方向外側面の直角度と、この基準円筒面部32に対する上記円筒部16の外周面の同心度とを、それぞれ良好にする。   Thereafter, as shown in FIG. 1, the hub main body 13a is rotated together with the chuck 31a in a state where the fitting cylindrical surface portion 20 is gripped by the chuck 31a (using the fitting cylindrical surface portion 20 as a reference surface). In this state, the axially outer side surface of the mounting flange 15 and the outer peripheral surface of the cylindrical portion 16 deformed based on the induction hardening process, at least the rotor 2 (see FIG. 6) of the outer peripheral surface is removed. Turning is performed on each of the inner half portions in the axial direction. At the same time, by turning a portion of the outer peripheral surface of the hub main body 13a adjacent to the outer side in the axial direction of the stepped surface 21 of the fitting cylindrical surface portion 20, the reference cylindrical surface portion 32 is formed in the portion. Then, by performing each of such turning processes, the surface accuracy of the axially outer surface of the mounting flange 15 and the outer peripheral surface of the cylindrical portion 16 is improved, and the surface accuracy of the reference cylindrical surface portion 32 is improved. To do. At the same time, the perpendicularity of the axially outer surface of the mounting flange 15 with respect to the central axis of the reference cylindrical surface portion 32 and the concentricity of the outer peripheral surface of the cylindrical portion 16 with respect to the reference cylindrical surface portion 32 are improved.

尚、本参考例の場合には、上述の様な各旋削加工を施す際に、上記ハブ本体13aの回転中心軸がずれるのを防止すべく、このハブ本体13aの中心孔の軸方向外端部に、このハブ本体13aと共に回転自在なセンター抑え33の先端部を係合させている。又、本参考例の場合には、上述の様にハブ本体13aの一部(上記嵌合用円筒面部20)を、上記チャック31aにより、径方向外側から掴む方法を採用している。この為、このチャック31aにより掴む作業を自動化し易い。又、このチャック31aにより掴む面が、上記ハブ本体13aの外周面(上記嵌合用円筒面部20)である。この為、切粉の除去がし易く、この外周面と上記チャック31aとの間に切粉が挟まりにくい。 In the case of this reference example , the axial outer end of the center hole of the hub body 13a is prevented in order to prevent the rotation center axis of the hub body 13a from shifting when each of the above-described turning processes is performed. The front end portion of the center holding member 33 that is rotatable together with the hub main body 13a is engaged with the portion. In the case of this reference example , as described above, a method of gripping a part of the hub main body 13a (the fitting cylindrical surface portion 20) from the radially outer side by the chuck 31a is adopted. For this reason, it is easy to automate the work of gripping by the chuck 31a. The surface gripped by the chuck 31a is the outer peripheral surface (the fitting cylindrical surface portion 20) of the hub body 13a. For this reason, it is easy to remove the chips, and it is difficult for the chips to be caught between the outer peripheral surface and the chuck 31a.

上述の様にして、取付フランジ15の軸方向外側面及び円筒部16の外周面と、基準円筒部32との旋削加工を行ったならば、その後、図2に示す様に、この基準円筒面部32にシュー29を摺接させる事により、上記ハブ本体13aの径方向の位置決めを図る。これと共に、上記取付フランジ15の軸方向外側面にバッキングプレート30を吸着(例えば磁気吸着)させた状態で、このバッキングプレート30と共に上記ハブ本体13aを、上記取付フランジ15の軸方向外側面と直交する軸(このハブ本体13aの中心軸)を中心として回転させる。そして、この状態で、このハブ本体13aの外周面のうち、上記高周波焼入れ処理に基づいて変形した、上記取付フランジ15の軸方向内側の根元部分及び軸方向外側の内輪軌道19aと、上記嵌合用円筒面部20及びその段差面21とに、それぞれ研削加工を施す。これにより、これら各面の面精度を改善する。尚、本参考例の場合には、この研削加工の際に、上記基準円筒面部32には研削加工を施さない。これと共に、上記軸方向外側の内輪軌道19a及び嵌合用円筒面部20の中心軸に対する上記取付フランジ15の軸方向外側面の直角度と、これら軸方向外側の内輪軌道19a及び嵌合用円筒面部20と上記円筒部16の外周面との互いの同心度とを、それぞれ高める。そして、これに基づき、車輪支持用ハブユニットを組み立てた状態での、ハブ8(図6参照)の回転中心に対する上記取付フランジ15の軸方向外側面の直角度を向上させると共に、上記ハブ8の回転中心と上記円筒部16の外周面の回転中心との同心度を向上させる。 If the turning of the axially outer side surface of the mounting flange 15 and the outer peripheral surface of the cylindrical portion 16 and the reference cylindrical portion 32 is performed as described above, then, as shown in FIG. By slidably contacting the shoe 29 to 32, the hub body 13a is positioned in the radial direction. At the same time, with the backing plate 30 attracted (for example, magnetically attracted) to the axially outer surface of the mounting flange 15, the hub body 13 a is orthogonal to the axially outer surface of the mounting flange 15 together with the backing plate 30. The shaft is rotated about the axis (the central axis of the hub body 13a). In this state, of the outer peripheral surface of the hub body 13a, the base portion on the inner side in the axial direction of the mounting flange 15 and the inner ring raceway 19a on the outer side in the axial direction, which are deformed based on the induction hardening process, and the fitting ring The cylindrical surface portion 20 and the stepped surface 21 are each ground. Thereby, the surface accuracy of each of these surfaces is improved. In the case of this reference example, the reference cylindrical surface portion 32 is not ground during this grinding process. At the same time, the perpendicularity of the axially outer side surface of the mounting flange 15 with respect to the central axis of the inner ring raceway 19a and the fitting cylindrical surface part 20 on the axially outer side, the inner ring raceway 19a and the fitting cylindrical surface part 20 on the axially outer side, The concentricity with the outer peripheral surface of the cylindrical portion 16 is increased. Based on this, the squareness of the axially outer surface of the mounting flange 15 with respect to the center of rotation of the hub 8 (see FIG. 6) in a state where the wheel support hub unit is assembled is improved, and the hub 8 The concentricity between the rotation center and the rotation center of the outer peripheral surface of the cylindrical portion 16 is improved.

上述の様に、本参考例の車輪支持用軸受ユニットの製造方法の場合には、ハブ8の回転中心に対する取付フランジ15の軸方向外側面の直角度と、この軸方向外側面自体の面精度とを向上させる事ができる。この為、この軸方向外側面に結合固定するロータ2(図2参照)の側面のアキシアル振れを抑える事ができ、制動時にジャダーの発生を抑えられる。又、上述の様に、本参考例の場合には、上記ハブ8の回転中心と上記円筒部16の外周面の回転中心との同心度を向上させる事ができる。この為、この円筒部16に外嵌するロータ2(図6参照)のラジアル振れを抑える事ができ、このロータ2の回転アンバランスに基づく振動が発生する事を抑えられる。 As described above, in the case of the manufacturing method of the wheel support bearing unit of the present reference example, the perpendicularity of the axial outer surface of the mounting flange 15 with respect to the rotation center of the hub 8 and the surface accuracy of the axial outer surface itself. And can be improved. For this reason, it is possible to suppress the axial vibration of the side surface of the rotor 2 (see FIG. 2) coupled and fixed to the outer surface in the axial direction, and to suppress the occurrence of judder during braking. Further, as described above, in the case of this reference example , the concentricity between the rotation center of the hub 8 and the rotation center of the outer peripheral surface of the cylindrical portion 16 can be improved. For this reason, radial runout of the rotor 2 (see FIG. 6) fitted on the cylindrical portion 16 can be suppressed, and occurrence of vibration based on the rotational unbalance of the rotor 2 can be suppressed.

尚、本参考例の場合、上記取付フランジ15の円周方向複数個所に形成された取付孔17に、それぞれ軸方向内側からスタッド9のセレーション部18(図6参照)を圧入する作業を、上記取付フランジ15の軸方向外側面に旋削加工を施した後に行う。但し、上記圧入を行うと、これに基づいて、上記取付フランジ15の軸方向外側面が変形する事が懸念される。従って、この様な変形が生じた場合でも、その後、上記取付フランジ15の軸方向外側面の面精度を改善できる様にすべく、上記圧入を、この軸方向外側面に旋削加工を施す前に行っても良い。 In the case of this reference example , the operation of press-fitting the serration portion 18 (see FIG. 6) of the stud 9 into the mounting holes 17 formed at a plurality of locations in the circumferential direction of the mounting flange 15 from the inner side in the axial direction, This is performed after turning the outer side surface of the mounting flange 15 in the axial direction. However, if the press fitting is performed, there is a concern that the axially outer surface of the mounting flange 15 may be deformed based on this. Therefore, even when such deformation occurs, the press-fitting is performed before turning the outer side surface in the axial direction so that the surface accuracy of the outer side surface in the axial direction of the mounting flange 15 can be improved thereafter. You can go.

本発明に関連する参考例の第2例
図3は、本発明に関連する参考例の第2例を示している。上述した参考例の第1例の場合には、図1に示す様に、同一の基準面(嵌合用円筒面部20)を基準として、取付フランジ15の軸方向外側面及び円筒部16の外周面に旋削作業を施す作業と、旋削加工により基準円筒面部32を形成する作業とを、それぞれ行う方法を採用した。これに対し、本参考例の場合には、先に(例えば上述の図1に示す様に、嵌合用円筒面部20を基準として)、旋削加工により基準円筒面部32を形成する作業を行う。その後、図3に示す様に、この基準円筒面部32をチャック31aにより掴んだ状態で(この基準円筒面部32を基準面として)、このチャック31aと共にハブ本体13aを回転させる。そして、この状態で、取付フランジ15の軸方向外側面及び円筒部16の外周面に旋削加工を施す。そして、この様な順番で各旋削加工を施す事により、上記基準円筒面部32の面精度を良好にし、且つ、上記取付フランジ15の軸方向外側面及び上記円筒部16の外周面の面精度を改善する。これと共に、上記基準円筒面部32の中心軸に対する上記取付フランジ15の軸方向外側面の直角度と、上記基準円筒面部32に対する上記円筒部16の外周面の同心度とを、それぞれ良好にする。その他の構成及び作用は、上述した参考例の第1例の場合と同様である。
[ Second example of reference example related to the present invention ]
FIG. 3 shows a second example of a reference example related to the present invention . In the case of the first example of the reference example described above, as shown in FIG. 1, the axially outer side surface of the mounting flange 15 and the outer peripheral surface of the cylindrical portion 16 with the same reference surface (cylindrical cylindrical surface portion 20) as a reference. A method of performing a turning operation on the workpiece and a work of forming the reference cylindrical surface portion 32 by the turning operation are employed. On the other hand, in the case of the present reference example , first, for example, as shown in FIG. 1 described above, the reference cylindrical surface portion 32 is formed by turning processing. Thereafter, as shown in FIG. 3, the hub main body 13a is rotated together with the chuck 31a while the reference cylindrical surface portion 32 is gripped by the chuck 31a (using the reference cylindrical surface portion 32 as a reference surface). In this state, the axially outer side surface of the mounting flange 15 and the outer peripheral surface of the cylindrical portion 16 are turned. Then, by performing each turning in this order, the surface accuracy of the reference cylindrical surface portion 32 is improved, and the surface accuracy of the outer surface in the axial direction of the mounting flange 15 and the outer peripheral surface of the cylindrical portion 16 is improved. Improve. At the same time, the perpendicularity of the axially outer surface of the mounting flange 15 with respect to the central axis of the reference cylindrical surface portion 32 and the concentricity of the outer peripheral surface of the cylindrical portion 16 with respect to the reference cylindrical surface portion 32 are improved. Other configurations and operations are the same as those of the first example of the reference example described above.

本発明に関連する参考例の第3例
図4は、本発明に関連する参考例の第3例を示している。前述の図1〜2に示した参考例の第1例の場合には、図1に示す様に、同一の基準面(嵌合用円筒面部20)を基準として、取付フランジ15の軸方向外側面及び円筒部16の外周面に旋削作業を施す作業と、旋削加工により基準円筒面部32を形成する作業とを、それぞれ行う方法を採用した。これに対し、本参考例の場合には、先に(例えば図1に示す様に、嵌合用円筒面部20を基準として)、取付フランジ15の軸方向外側面及び円筒部16の外周面に旋削加工を施す。その後、図4に示す様に、チャック31bの先端面を上記取付フランジ15の軸方向外側面に密接させつつ、このチャック31bにより上記円筒部16の外周面を掴んだ状態で(これら軸方向外側面及び外周面を基準面として)、このチャック31bと共にハブ本体13aを回転させる。そして、この状態で、旋削加工により基準円筒面部32を形成する。そして、この様な順番で各旋削加工を行う事により、上記取付フランジ15の軸方向外側面及び上記円筒部16の外周面の面精度を改善し、且つ、上記基準円筒面部32の面精度を良好にする。これと共に、この基準円筒面部32の中心軸に対する上記取付フランジ15の軸方向外側面の直角度と、この基準円筒面部32に対する上記円筒部16の外周面の同心度とを、それぞれ良好にする。その他の構成及び作用は、前述した参考例の第1例の場合と同様である。
[ Third example of reference example related to the present invention ]
FIG. 4 shows a third example of the reference example related to the present invention . In the case of the first example of the reference example shown in FIGS. 1 and 2, the axially outer side surface of the mounting flange 15 with reference to the same reference surface (fitting cylindrical surface portion 20) as shown in FIG. And the method of performing the operation | work which performs the turning operation | work on the outer peripheral surface of the cylindrical part 16, and the operation | work which forms the reference | standard cylindrical surface part 32 by a turning process was employ | adopted, respectively. On the other hand, in the case of this reference example , the turning is first performed on the axially outer side surface of the mounting flange 15 and the outer peripheral surface of the cylindrical portion 16 (for example, with reference to the fitting cylindrical surface portion 20 as shown in FIG. 1). Apply processing. Thereafter, as shown in FIG. 4, while the tip end surface of the chuck 31b is in close contact with the outer surface in the axial direction of the mounting flange 15, the chuck 31b grips the outer peripheral surface of the cylindrical portion 16 (the outer surfaces in the axial direction). The hub body 13a is rotated together with the chuck 31b using the side surface and the outer peripheral surface as reference surfaces. In this state, the reference cylindrical surface portion 32 is formed by turning. Then, by performing each turning in such an order, the surface accuracy of the axially outer surface of the mounting flange 15 and the outer peripheral surface of the cylindrical portion 16 is improved, and the surface accuracy of the reference cylindrical surface portion 32 is improved. Make good. At the same time, the perpendicularity of the axially outer surface of the mounting flange 15 with respect to the central axis of the reference cylindrical surface portion 32 and the concentricity of the outer peripheral surface of the cylindrical portion 16 with respect to the reference cylindrical surface portion 32 are improved. Other configurations and operations are the same as those of the first example of the reference example described above.

[実施の形態の1例
図5は、本発明の実施の形態の1例を示している。本例の対象となる、車輪支持用軸受ユニット5aは、軸方向外側の軌道(外輪軌道11a、内輪軌道19a)の直径を、軸方向内側の軌道(外輪軌道11b、内輪軌道19b)の直径よりも大きくしている。これにより、上記軸方向外側の外輪軌道11aと内輪軌道19aとの間に設けた各転動体22、22のピッチ円直径を、上記軸方向内側の外輪軌道11bと内輪軌道19bとの間に設けた各転動体22、22のピッチ円直径よりも大きくしている。そして、この様な構成を採用する事により、上記車輪支持用軸受ユニット5aの剛性を高めている。又、図示の例は、従動輪(FF車の後輪、FR車及びRR車の前輪)用の車輪支持用軸受ユニット5aである為、ハブ8aの中心部にスプライン孔を形成していない。又、図示の例では、内輪14の軸方向内端面を、上記ハブ8aの軸方向内端部に形成したかしめ部34により抑え付けている。この様な構造を有する本例の対象となる車輪支持用軸受ユニット5aの場合も、ハブ本体13bの外周面のうち、嵌合用円筒面部20の段差面21の軸方向外側に隣接する部分に、基準円筒面部32を形成している。上記ハブ本体13bの製造過程で、このハブ本体13bの外周面のうち、高周波焼入れ処理に基づいて変形した、取付フランジ15の軸方向内側の根元部分及び上記軸方向外側の内輪軌道19aと、上記嵌合用円筒面部20及びその段差面21とに、それぞれ研削加工を施す際に、上記基準円筒面部32には研削加工を施さない点を含めて、その他の構成及び作用は、上述した参考例の第1〜3例の場合とほぼ同様である。この為、同等部分には同一符号を付して、重複する説明を省略する。
[ Example of Embodiment]
FIG. 5 shows an example of an embodiment of the present invention. The wheel support bearing unit 5a, which is the object of this example, has a diameter of the outer track in the axial direction (outer ring track 11a, inner ring track 19a) that is larger than the diameter of the inner track in the axial direction (outer ring track 11b, inner ring track 19b). It is also bigger. As a result, the pitch circle diameters of the rolling elements 22, 22 provided between the outer ring raceway 11a and the inner ring raceway 19a on the outer side in the axial direction are provided between the outer ring raceway 11b and the inner ring raceway 19b on the inner side in the axial direction. The rolling elements 22 and 22 are larger than the pitch circle diameter. And the rigidity of the said wheel support bearing unit 5a is improved by employ | adopting such a structure. Further, since the illustrated example is a wheel support bearing unit 5a for a driven wheel (rear wheel of FF vehicle, front wheel of FR vehicle and RR vehicle), a spline hole is not formed at the center of the hub 8a. In the illustrated example, the inner end surface in the axial direction of the inner ring 14 is held down by a caulking portion 34 formed at the inner end portion in the axial direction of the hub 8a. Also in the case of the wheel support bearing unit 5a that is the subject of this example having such a structure, in the outer peripheral surface of the hub main body 13b, the portion adjacent to the axially outer side of the step surface 21 of the fitting cylindrical surface portion 20, A reference cylindrical surface portion 32 is formed. In the manufacturing process of the hub main body 13b, the axially inner root portion of the mounting flange 15 and the axially outer inner ring raceway 19a, which are deformed based on the induction hardening process, of the outer peripheral surface of the hub main body 13b, When the grinding cylindrical surface portion 20 and the stepped surface 21 thereof are each ground, other configurations and operations including the point that the reference cylindrical surface portion 32 is not ground are the same as those of the reference example described above. This is almost the same as in the first to third examples . For this reason , the same code | symbol is attached | subjected to an equivalent part and the overlapping description is abbreviate | omitted.

本発明に関連する参考例の第1例で、取付フランジの軸方向外側面及び円筒部の外周面に旋削加工を施すと共に、旋削加工により基準円筒面部を形成する工程を示す断面図。Sectional drawing which shows the process of forming a reference | standard cylindrical surface part by turning in the axial direction outer side surface of a mounting flange, and the outer peripheral surface of a cylindrical part in 1st example of the reference example relevant to this invention . 同じく、軸方向外側の内輪軌道及び嵌合用円筒面部に研削加工を施す工程を示す断面図。Similarly, sectional drawing which shows the process of grinding to the inner ring raceway and the cylindrical surface part for a fitting of an axial direction outer side. 本発明に関連する参考例の第2例で、取付フランジの軸方向外側面及び円筒部の外周面に旋削加工を施す工程を示す断面図。Sectional drawing which shows the process of turning to the axial direction outer side surface of a mounting flange, and the outer peripheral surface of a cylindrical part in the 2nd example of the reference example relevant to this invention . 同第3例で、旋削加工により基準円筒面部を形成する工程を示す断面図。Sectional drawing which shows the process of forming a reference | standard cylindrical surface part by turning in the 3rd example. 本発明の実施の形態の1例を示す断面図。Sectional drawing which shows one example of embodiment of this invention . 車輪支持用軸受ユニットの従来構造の1例を、車両に組み付けた状態で示す断面図。Sectional drawing which shows one example of the conventional structure of the bearing unit for wheel support in the state assembled | attached to the vehicle. 従来の車輪支持用軸受ユニットの製造方法で、ハブ本体の外周面に形成した軸方向外側の内輪軌道及び嵌合用円筒面に研削加工を施す工程を示す断面図。Sectional drawing which shows the process of grinding to the axial ring outer side inner ring raceway and the cylindrical surface for fitting which were formed in the outer peripheral surface of a hub main body with the manufacturing method of the conventional wheel support bearing unit.

1 ホイール
2 ロータ
3 ナックル
4 支持孔
5、5a 車輪支持用軸受ユニット
6、6a 外輪
7 ボルト
8、8a ハブ
9 スタッド
10 ナット
11a、11b 外輪軌道
12 結合フランジ
13、13a、13b ハブ本体
14 内輪
15 取付フランジ
16 円筒部
17 取付孔
18 セレーション部
19a、19b 内輪軌道
20 嵌合用円筒面部
21 段差面
22 転動体
23a、23b シールリング
24 スプライン孔
25 等速ジョイント用外輪
26 スプライン軸
27 ナット
28 円筒面部
29 シュー
30 バッキングプレート
31a、31b チャック
32 基準円筒面部
33 センター抑え
34 かしめ部
DESCRIPTION OF SYMBOLS 1 Wheel 2 Rotor 3 Knuckle 4 Support hole 5, 5a Wheel support bearing unit 6, 6a Outer ring 7 Bolt 8, 8a Hub 9 Stud 10 Nut 11a, 11b Outer ring track 12 Coupling flange 13, 13a, 13b Hub main body 14 Inner ring 15 Installation Flange 16 Cylindrical portion 17 Mounting hole 18 Serration portion 19a, 19b Inner ring raceway 20 Fitting cylindrical surface portion 21 Stepped surface 22 Rolling elements 23a, 23b Seal ring 24 Spline hole 25 Outer ring for constant velocity joint 26 Spline shaft 27 Nut 28 Cylindrical surface portion 29 Shoe 30 Backing plate 31a, 31b Chuck 32 Reference cylindrical surface part 33 Center restraint 34 Caulking part

Claims (3)

外周面に軸方向内側の内輪軌道を形成した内輪と、外周面の軸方向外端寄り部分に車輪及び制動用回転部材を取り付ける為の取付フランジを、同じく軸方向中間部に軸方向外側の内輪軌道を、同じく軸方向内端部に上記内輪を外嵌固定する為の嵌合用円筒面部を、軸方向外端部に上記車輪及び制動用回転部材を外嵌する為の円筒部を、それぞれ形成すると共に、外周面のうちで上記取付フランジの軸方向内側の根元部分から上記嵌合用円筒面部までの連続した部分の全周に熱処理硬化層を形成しているハブ本体とを備え、且つ、上記軸方向内側の内輪軌道の直径を上記軸方向外側の内輪軌道の直径よりも小さくしている車輪支持用軸受ユニットの製造方法であって、上記ハブ本体を造る際に、上記熱処理硬化層を形成した後、このハブ本体の一部を基準面として、上記取付フランジの軸方向外側面及び上記円筒部の外周面に旋削加工を施すと共に、上記ハブ本体の外周面のうちで上記軸方向外側の内輪軌道と上記嵌合用円筒面部との間部分に旋削加工を施して当該部分に基準円筒面部を形成し、その後、この基準円筒面部にシューを摺接させる事により上記ハブ本体の径方向の位置決めを図りつつ、上記取付フランジの軸方向外側面にバッキングプレートを吸着させた状態でこのバッキングプレートと共に上記ハブ本体を、上記取付フランジの軸方向外側面と直交する軸を中心として回転させながら、上記軸方向外側の内輪軌道と上記嵌合用円筒面部とに、それぞれ研削加工を施し、且つ、この研削加工の際に上記基準円筒面部には研削加工を施さない事を特徴とする車輪支持用軸受ユニットの製造方法。 An inner ring formed an inner ring raceway of the axially inner to the outer peripheral surface, a mounting flange for mounting to axially outer end portion close of the outer peripheral surface of the wheel and the braking rotary member, the inner race of the axially outer likewise axially intermediate portion orbit, the fitting cylindrical surface portion for also fitted to the inner ring axially inner end fixed to the cylindrical portion for fitting outside the wheel and the braking rotary member axially outer end portion, respectively And a hub body in which a heat treatment hardened layer is formed on the entire circumference of the continuous portion from the axially inner root portion of the mounting flange to the fitting cylindrical surface portion of the outer peripheral surface , and the diameter of the inner ring raceway of the axially inner a method of manufacturing a wheel supporting bearing unit that is smaller than the diameter of the inner ring raceway of the axially outward, when making the hub body, forming the heat-treated hardened layer After this hub body Parts as a reference surface, is performed with the turning on an outer peripheral surface of the axial outer side and the cylindrical portion of the mounting flange, the axially outward of the inner ring raceway and the fitting cylindrical surface among the outer peripheral surface of the hub body And turning the portion between the two and forming a reference cylindrical surface portion on the portion, and then slidably contacting the shoe with the reference cylindrical surface portion, while positioning the hub body in the radial direction, While the backing plate is adsorbed to the outer surface in the axial direction, the hub body is rotated together with the backing plate about an axis perpendicular to the outer surface in the axial direction of the mounting flange, and the inner ring raceway on the outer side in the axial direction and the above in the fitting cylindrical surface portion, respectively facilities grinding, and, wheel supporting shaft, characterized in that this is to the reference cylindrical surface during grinding is not subjected to grinding Method of manufacturing the unit. 外周面に軸方向内側の内輪軌道を形成した内輪と、外周面の軸方向外端寄り部分に車輪及び制動用回転部材を取り付ける為の取付フランジを、同じく軸方向中間部に軸方向外側の内輪軌道を、同じく軸方向内端部に上記内輪を外嵌固定する為の嵌合用円筒面部を、軸方向外端部に上記車輪及び制動用回転部材を外嵌する為の円筒部を、それぞれ形成すると共に、外周面のうちで上記取付フランジの軸方向内側の根元部分から上記嵌合用円筒面部までの連続した部分の全周に熱処理硬化層を形成しているハブ本体とを備え、且つ、上記軸方向内側の内輪軌道の直径を上記軸方向外側の内輪軌道の直径よりも小さくしている車輪支持用軸受ユニットの製造方法であって、上記ハブ本体を造る際に、上記熱処理硬化層を形成した後、このハブ本体の一部を基準面として上記取付フランジの軸方向外側面及び上記円筒部の外周面に旋削加工を施す作業と、上記ハブ本体の一部を基準面として上記ハブ本体の外周面のうちで上記軸方向外側の内輪軌道と上記嵌合用円筒面部との間部分に旋削加工を施して当該部分に基準円筒面部を形成する作業とのうちの、何れか一方の作業を行い、その後、この一方の作業により旋削加工を施された面を上記基準面として他方の作業を行い、その後、上記基準円筒面部にシューを摺接させる事により上記ハブ本体の径方向の位置決めを図りつつ、上記取付フランジの軸方向外側面にバッキングプレートを吸着させた状態でこのバッキングプレートと共に上記ハブ本体を、上記取付フランジの軸方向外側面と直交する軸を中心として回転させながら、上記軸方向外側の内輪軌道と上記嵌合用円筒面部とに、それぞれ研削加工を施し、且つ、この研削加工の際に上記基準円筒面部には研削加工を施さない事を特徴とする車輪支持用軸受ユニットの製造方法。 An inner ring formed an inner ring raceway of the axially inner to the outer peripheral surface, a mounting flange for mounting to axially outer end portion close of the outer peripheral surface of the wheel and the braking rotary member, the inner race of the axially outer likewise axially intermediate portion orbit, the fitting cylindrical surface portion for also fitted to the inner ring axially inner end fixed to the cylindrical portion for fitting outside the wheel and the braking rotary member axially outer end portion, respectively And a hub body in which a heat treatment hardened layer is formed on the entire circumference of the continuous portion from the axially inner root portion of the mounting flange to the fitting cylindrical surface portion of the outer peripheral surface , and the diameter of the inner ring raceway of the axially inner a method of manufacturing a wheel supporting bearing unit that is smaller than the diameter of the inner ring raceway of the axially outward, when making the hub body, forming the heat-treated hardened layer After this hub body Parts and work performing turning the outer peripheral surface of the axial outer side and the cylindrical portion of the mounting flange as a reference plane, the axial direction in the outer peripheral surface of the hub main body part of the hub main body as a reference plane One of the operations of turning the portion between the outer ring raceway and the fitting cylindrical surface portion to form the reference cylindrical surface portion in the portion is performed, and thereafter, by this one operation Perform the other work using the turned surface as the reference surface, and then position the hub main body in the radial direction by sliding the shoe against the reference cylindrical surface portion, and the axial direction of the mounting flange. the hub body with the backing plate to the backing plate to the outer surface in a state of being adsorbed, while rotating about an axis perpendicular to the axial direction outer surface of the mounting flange, the shaft side The inner ring raceway of the outer and the said fitting cylindrical surface, respectively facilities grinding, and, of the wheel supporting bearing unit, characterized in that the not subjected to grinding to the reference cylindrical surface during the grinding Production method. 熱処理硬化層を形成した後、ハブ本体の一部を基準面として取付フランジの軸方向外側面に旋削加工を施す前に、この取付フランジの円周方向複数個所に形成された取付孔にそれぞれ軸方向内側からスタッドのセレーション部を圧入する作業を行う、請求項1〜2のうちの何れか1項に記載した車輪支持用軸受ユニットの製造方法。   After forming the heat-treated hardened layer, before turning the axially outer surface of the mounting flange with a part of the hub body as the reference surface, each of the mounting holes formed in the circumferential direction of the mounting flange has shafts. The manufacturing method of the bearing unit for wheel support described in any one of Claims 1-2 which performs the operation | work which press-fits the serration part of a stud from the direction inner side.
JP2007252890A 2007-09-28 2007-09-28 Method for manufacturing wheel-supporting bearing unit Expired - Fee Related JP5023931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007252890A JP5023931B2 (en) 2007-09-28 2007-09-28 Method for manufacturing wheel-supporting bearing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007252890A JP5023931B2 (en) 2007-09-28 2007-09-28 Method for manufacturing wheel-supporting bearing unit

Publications (2)

Publication Number Publication Date
JP2009085254A JP2009085254A (en) 2009-04-23
JP5023931B2 true JP5023931B2 (en) 2012-09-12

Family

ID=40658939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007252890A Expired - Fee Related JP5023931B2 (en) 2007-09-28 2007-09-28 Method for manufacturing wheel-supporting bearing unit

Country Status (1)

Country Link
JP (1) JP5023931B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000234624A (en) * 1999-02-17 2000-08-29 Nsk Ltd Bearing unit for wheel and manufacture thereof
AU2003280828A1 (en) * 2003-01-29 2004-08-23 Nsk Ltd. Wheel bearing unit and method of manufacturing the bearing unit

Also Published As

Publication number Publication date
JP2009085254A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
JP3896751B2 (en) Manufacturing method of wheel bearing unit
JP2006305715A (en) Bearing unit for wheel supporting and its manufacturing method
JP4543928B2 (en) Manufacturing method of wheel bearing unit
JP2000234624A (en) Bearing unit for wheel and manufacture thereof
JP4696397B2 (en) Wheel bearing unit and manufacturing method thereof
JP4360372B2 (en) Manufacturing method of wheel bearing unit
JP4983154B2 (en) Manufacturing method of wheel bearing rolling bearing unit
JP2004092830A (en) Manufacturing method for bearing unit for wheel
JP2006194293A (en) Method for manufacturing bearing unit for wheel
JP6366233B2 (en) Wheel bearing device
JP2008173995A (en) Bearing device for wheel
JP5023931B2 (en) Method for manufacturing wheel-supporting bearing unit
JP6348309B2 (en) Wheel bearing device and method of manufacturing outer member thereof
JP4701482B2 (en) Method of manufacturing wheel bearing unit with brake rotor
JP2004225752A (en) Manufacturing method for bearing unit for wheel
JP2006021605A (en) Rolling bearing unit for supporting wheel and its manufacturing method
JP2002347406A (en) Bearing unit for wheel and manufacturing method
JP4554467B2 (en) Processing method of wheel bearing device with brake rotor
JP2002370104A (en) Bearing unit for wheel and method of manufacturing the same
JP5408271B2 (en) Manufacturing method of wheel bearing rolling bearing unit
JP2023131280A (en) Outer ring for hub unit bearing and method for manufacturing the same
WO2003064185A1 (en) Bearing unit for vehicle wheel
JP2005119383A (en) Bearing device for wheel
JP2003240029A (en) Bearing unit for wheel and its manufacturing method
JP2002316505A (en) Bearing unit for wheel

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100311

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5023931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees