JP2006012702A - Manufacturing method of sealed battery - Google Patents

Manufacturing method of sealed battery Download PDF

Info

Publication number
JP2006012702A
JP2006012702A JP2004190813A JP2004190813A JP2006012702A JP 2006012702 A JP2006012702 A JP 2006012702A JP 2004190813 A JP2004190813 A JP 2004190813A JP 2004190813 A JP2004190813 A JP 2004190813A JP 2006012702 A JP2006012702 A JP 2006012702A
Authority
JP
Japan
Prior art keywords
battery
caulking
wall
pretreatment
stepped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004190813A
Other languages
Japanese (ja)
Other versions
JP4561199B2 (en
Inventor
Takenori Ishizu
竹規 石津
Mikio Oguma
幹男 小熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2004190813A priority Critical patent/JP4561199B2/en
Publication of JP2006012702A publication Critical patent/JP2006012702A/en
Application granted granted Critical
Publication of JP4561199B2 publication Critical patent/JP4561199B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a sealed battery with weight saving and space saving. <P>SOLUTION: A wound-round group 6 winding round a positive and a negative electrode plates is housed in a square battery can 7. A joggling part 15 is formed with a joggling supporter and a joggling roller on a battery can wall above the wound-round group 6. The joggling part 15 is wedge-shaped at cross section with one side at the top nearly at right angles with the battery can wall, and with a slanted side at the bottom nearly at 120° with the battery can wall. A caulking pretreatment part 16 is formed by having the battery can wall above the joggling part 15 bent outside with a caulking pretreatment concave die and a caulking pretreatment convex die. A battery lid 10 is made supported to the joggling part 15, and the caulking pretreatment part 16 and a peripheral part of the battery lid 10 are caulked and sealed to complete a lithium ion battery 20. The joggling part 15 is formed without the battery can 7 distorted, doing away with unnecessary support members. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は密閉電池の製造方法に係り、特に、電極群が収容された有底電池缶の開口部に電池蓋がかしめ固定され電池缶が封口された密閉電池の製造方法に関する。   The present invention relates to a method for manufacturing a sealed battery, and more particularly, to a method for manufacturing a sealed battery in which a battery lid is caulked and fixed to an opening of a bottomed battery can in which an electrode group is accommodated.

従来、密閉電池は家電製品に汎用されており、最近では、特にリチウム二次電池が携帯用端末機器等に数多く用いられるに至っている。密閉電池の封口方法としては、電池容器が金属製の場合には、工程簡略化及び低コスト化のため、かしめ封口法が多く用いられており、その他にレーザ溶接法や電子ビーム溶接法等も用いられている。このような密閉電池の形状は、円筒型と角型とに大別される。円筒型電池ではかしめ封口法が主流であるが、電池缶の外径が大きくなると同じ厚さの電池缶では外力により変形し易くなるため、大型の円筒型電池ではレーザ溶接法も用いられている。これに対して、角型電池では、周面の平面が外力により変形し易く、角部や平面部のかしめ封口が難しいため、レーザ溶接法が主に用いられている。   Conventionally, sealed batteries have been widely used in household electrical appliances, and recently, lithium secondary batteries have been used in many portable terminal devices and the like. As a sealing method for a sealed battery, when the battery container is made of metal, a caulking sealing method is often used to simplify the process and reduce the cost, and other methods such as laser welding and electron beam welding are also used. It is used. The shape of such a sealed battery is roughly classified into a cylindrical type and a square type. For cylindrical batteries, the caulking and sealing method is the mainstream, but when the outer diameter of the battery can increases, the battery can of the same thickness is easily deformed by an external force, so the laser welding method is also used for large cylindrical batteries. . On the other hand, in a square battery, a laser welding method is mainly used because the flat surface of the peripheral surface is easily deformed by an external force and it is difficult to crimp and seal the corner and the flat portion.

ところが、レーザ溶接法では、溶接工程の煩雑さ、絶縁のための部品数の増加や溶接自体による高コスト化が問題となるため、角型電池でもかしめ封口法を用いることが検討されている。例えば、電池缶周面の対向する平面間に架橋板を溶接で固定し、この架橋板で電池缶壁を支持して電池缶壁に内側に突出する突出部を形成する技術が開示されている(特許文献1参照)。また、周部をL字状に折り曲げた電池蓋を用い、電池缶壁を内側に略直角まで湾曲させる第1工程と、その後90度以上180度以下まで湾曲させてL字状の電池蓋と電池缶壁とをかしめ封口する第2工程とで密閉する技術が開示されている(例えば、特許文献2参照)。   However, in the laser welding method, since the complexity of the welding process, the increase in the number of parts for insulation, and the cost increase due to the welding itself are problems, the use of the caulking and sealing method for a rectangular battery has been studied. For example, a technique is disclosed in which a bridging plate is fixed by welding between opposing planes of a battery can peripheral surface, and a battery can wall is supported by the bridging plate to form a protruding portion projecting inward on the battery can wall. (See Patent Document 1). Also, a first step of bending the battery can wall inward to a substantially right angle using a battery lid with a peripheral portion bent in an L shape, and then bending to 90 degrees or more and 180 degrees or less to form an L-shaped battery lid A technique for sealing in a second step of caulking and sealing a battery can wall is disclosed (see, for example, Patent Document 2).

特開平8−195203号公報JP-A-8-195203 特開平8−195189号公報JP-A-8-195189

しかしながら、上述した特許文献1の技術では、架橋板を溶接するため、部材数の増加による重量増加や溶接工程の煩雑さ等の問題がある。また、電池内部に架橋板を配置するための空間が必要となる上、架橋板が電池缶と溶接されているため、電池缶を正極又は負極の外部端子として使用する場合には、架橋板を電池内部の他極から絶縁するための空間が更に必要となり電池体積が大きくなる、という問題もある。更に、上述した特許文献2の技術では、周部をL字状に折り曲げた電池蓋に対しては密閉性を確保できるが、これ以外の電池蓋に対してはL字状の先端部のように電池缶壁を折り曲げるための支点となる部分がないため、密閉封口することができない、という問題がある。   However, in the technique of Patent Document 1 described above, since the cross-linked plate is welded, there are problems such as an increase in weight due to an increase in the number of members and a complicated welding process. In addition, since a space for disposing the cross-linking plate inside the battery is required and the cross-linking plate is welded to the battery can, when the battery can is used as an external terminal of the positive electrode or the negative electrode, the cross-linking plate is used. There is also a problem that a space for insulating from the other electrode inside the battery is further required and the battery volume is increased. Furthermore, in the technique of Patent Document 2 described above, the sealing can be secured with respect to the battery lid whose peripheral portion is bent in an L shape, but for other battery lids, like the L-shaped tip portion. However, since there is no portion serving as a fulcrum for bending the battery can wall, there is a problem that it cannot be hermetically sealed.

上記事案に鑑み本発明は、軽量化及び省スペース化を図ることができる密閉電池の製造方法を提供することを課題とする。   In view of the above-described case, an object of the present invention is to provide a method for manufacturing a sealed battery that can achieve weight reduction and space saving.

上記課題を解決するために、本発明は、電極群が収容された有底電池缶の開口部に電池蓋がかしめ固定され前記電池缶が封口された密閉電池の製造方法であって、前記電池缶に前記電極群を収容後に、前記電極群より上方の電池缶壁の内側に当接具を当接させ前記電池缶壁の外側から圧接具を圧接して断面が楔状で該一辺が前記電池缶壁と略直角をなす突設部を形成し、前記突設部の一辺に前記電池蓋を支持させて前記突設部より上方の前記電池缶壁と前記電池蓋の周部とをかしめ固定する、ステップを含む。   In order to solve the above problems, the present invention provides a method for manufacturing a sealed battery in which a battery lid is caulked and fixed to an opening of a bottomed battery can in which an electrode group is accommodated, and the battery can is sealed. After accommodating the electrode group in the can, a contact tool is brought into contact with the inside of the battery can wall above the electrode group, and the pressure contact tool is pressed from the outside of the battery can wall so that the cross section is wedge-shaped and the one side is the battery. A protruding portion that is substantially perpendicular to the can wall is formed, and the battery lid is supported on one side of the protruding portion, and the battery can wall above the protruding portion and the peripheral portion of the battery lid are caulked and fixed. Including the steps.

本発明では、電池缶に電極群を収容後に、電極群より上方の電池缶壁の内側に当接具を当接させ外側から圧接具を圧接して突設部を形成するため、突設部の形成時に電池缶の歪みを防止することができ、形成された突設部は断面が楔状で該一辺が電池缶壁と略直角をなしており電池蓋を支持可能なため、電池缶内に電池蓋を支持するための部材の配置が不要となり軽量化を図ることができると共に、突設部より上方の電池缶壁と電池蓋の周部とをかしめ固定するので、省スペース化を図ることができる。   In the present invention, after accommodating the electrode group in the battery can, the abutment tool is brought into contact with the inside of the battery can wall above the electrode group, and the pressure contact tool is pressed from outside to form the projecting portion. The battery can can be prevented from being distorted at the time of forming, and the formed protrusion has a wedge-shaped cross section and one side thereof is substantially perpendicular to the battery can wall so that the battery lid can be supported. The arrangement of a member for supporting the battery lid is not required and the weight can be reduced, and the battery can wall above the projecting portion and the peripheral portion of the battery lid are caulked and fixed, thereby saving space. Can do.

この場合において、楔状の突設部の斜辺と、突設部より下方の電池缶壁とがなす外角を鈍角とすれば、突設部の形成時に、鈍角を有する圧接具の圧接に伴い突設部より下方の電池缶壁が突設部の先端に向けて斜め方向に変形するので、突設部の薄肉化を抑制することができる。また、電池缶の周面が曲面と平面とで構成されていてもよい。更に、電池蓋をかしめ固定するステップの前に、突設部より上方の電池缶壁の外側に凹型治具を当接させ内側から凸型治具を圧接して電池缶壁を外側方向に湾曲させるかしめ前処理を施すステップを含むようにすれば、湾曲させた電池缶壁を湾曲させた形状のまま内側に曲げることで、電池蓋周部の形状に沿ってかしめ固定されるので、略均等なかしめ形状を得ることができ密閉性を向上させることができる。   In this case, if the outer angle formed by the hypotenuse of the wedge-shaped projecting portion and the battery can wall below the projecting portion is an obtuse angle, the projecting portion is projected along with the press-contact of the press fitting having an obtuse angle when the projecting portion is formed. Since the battery can wall below the portion is deformed in an oblique direction toward the tip of the protruding portion, it is possible to suppress the thinning of the protruding portion. Further, the peripheral surface of the battery can may be constituted by a curved surface and a flat surface. Furthermore, before the step of caulking and fixing the battery lid, the concave jig is brought into contact with the outside of the battery can wall above the protruding portion, and the convex jig is pressed from the inside to bend the battery can wall outward. If the step of performing the pre-caulking process is included, the curved battery can wall is bent inward with the curved shape, so that it is caulked and fixed along the shape of the periphery of the battery lid. A caulking shape can be obtained and sealing performance can be improved.

本発明によれば、電池缶に電極群を収容後に、電極群より上方の電池缶壁の内側に当接具を当接させ外側から圧接具を圧接して突設部を形成するため、突設部の形成時に電池缶の歪みを防止することができ、形成された突設部は断面が楔状で該一辺が電池缶壁と略直角をなしており電池蓋を支持可能なため、電池缶内に電池蓋を支持するための部材の配置が不要となり軽量化を図ることができると共に、突設部より上方の電池缶壁と電池蓋の周部とをかしめ固定するので、省スペース化を図ることができる、という効果を得ることができる。   According to the present invention, after the electrode group is housed in the battery can, the contact tool is brought into contact with the inside of the battery can wall above the electrode group, and the pressure contact tool is pressed from the outside to form the protruding portion. The battery can can be prevented from being distorted at the time of forming the mounting portion, and the formed protruding portion has a wedge-shaped cross section and one side thereof is substantially perpendicular to the battery can wall so that the battery lid can be supported. It is not necessary to place a member to support the battery cover inside, and the weight can be reduced, and the battery can wall above the projecting part and the peripheral part of the battery cover are fixed by caulking so that space saving is achieved. The effect that it can plan can be acquired.

以下、図面を参照して、本発明の製造方法を角型リチウムイオン電池に適用した実施の形態について説明する。   Hereinafter, an embodiment in which a manufacturing method of the present invention is applied to a prismatic lithium ion battery will be described with reference to the drawings.

<正負極板作製>
正極板の作製では、正極活物質のリチウムマンガン複酸化物粉末と、導電材の鱗片状黒鉛と、結着剤のポリフッ化ビニリデン(以下、PVDFと略記する。)と、を重量比85:10:5で混合し、これに分散溶媒のN−メチルピロリドン(以下、NMPと略記する。)を添加、混練したスラリを、厚さ20μmのアルミニウム箔の両面に塗布した。このとき、アルミニウム箔の長寸方向一側の側縁に未塗布部を残した。その後、乾燥、プレス、裁断することで厚さ170μmの正極板を得た。側縁に残した未塗布部を櫛状に切り欠くことで正極リード片を形成した。
<Preparation of positive and negative electrode plates>
In the production of the positive electrode plate, a lithium manganese complex oxide powder as a positive electrode active material, a flaky graphite as a conductive material, and a polyvinylidene fluoride as a binder (hereinafter abbreviated as PVDF) in a weight ratio of 85:10. The mixture was mixed with 5 and the slurry N-methylpyrrolidone (hereinafter abbreviated as NMP) added thereto and kneaded was applied to both sides of an aluminum foil having a thickness of 20 μm. At this time, an uncoated portion was left on the side edge on one side in the longitudinal direction of the aluminum foil. Thereafter, drying, pressing, and cutting were performed to obtain a positive electrode plate having a thickness of 170 μm. The uncoated portion left on the side edge was cut out in a comb shape to form a positive electrode lead piece.

一方、負極板の作製では、負極活物質の非晶質炭素粉末90質量部に対し、結着剤のPVDFを10質量部添加し、これに分散溶媒のNMPを添加、混練したスラリを、厚さ10μmの電解銅箔の両面に塗布した。このとき、電解銅箔の長寸方向一側の側縁に未塗布部を残した。その後、乾燥、プレス、裁断することで厚さ130μmの負極板を得た。側縁に残した未塗布部に正極板と同様にして負極リード片を形成した。   On the other hand, in the production of the negative electrode plate, 10 parts by mass of PVDF as a binder is added to 90 parts by mass of the amorphous carbon powder of the negative electrode active material, and the slurry obtained by adding and kneading the dispersion solvent NMP is thickened. It apply | coated on both surfaces of 10-micrometer-thick electrolytic copper foil. At this time, an uncoated portion was left on the side edge on one side in the longitudinal direction of the electrolytic copper foil. Then, the 130-micrometer-thick negative electrode plate was obtained by drying, pressing, and cutting. A negative electrode lead piece was formed in the same manner as the positive electrode plate on the uncoated portion left on the side edge.

<電池組立>
図1に示すように、作製した正負極を、これら両極板が直接接触しないように、厚さ40μmのポリエチレン製セパレータと共に捲回して捲回群6を作製した。捲回中心には、ポリプロピレン製の中空扁平状の軸芯1を用いた。このとき、正極リード片2と負極リード片3とが、それぞれ捲回群6の互いに反対側に位置するようにした。軸芯1の上端部に扁平状の正極集電リング4の下端部を固定した。正極リード片2を変形させ、その全てを正極集電リング4の周囲から一体に張り出した鍔部周面付近に集合、接触させた後、正極リード片2と鍔部周面とを超音波溶接して正極リード片2を鍔部周面に接続した。正極集電リング4の上部に、予め複数枚のアルミニウム製のリボンを重ね合わせて構成した正極リード9の一端を溶接した。一方、扁平状の負極集電リング5と負極リード片3との接続操作も、正極集電リング4と正極リード片2との接続操作と同様に実施した。その後、正極集電リング4の鍔部周面全周に絶縁被覆を施し、捲回群6をニッケルメッキが施されたスチール製の有底角型の電池缶7内に挿入した。電池缶7には、長さ108mm、幅34mm、高さ117mmの寸法で、周面の角部がR状に形成されたものを用いた。このため、電池缶7の周面は、曲面と平面とで構成されている。負極集電リング5には、予め電気的導通のための負極リード板8を溶接しておき、電池缶7に捲回群6を挿入後、電池缶7の底部と負極リード板8とを溶接した。
<Battery assembly>
As shown in FIG. 1, the prepared positive and negative electrodes were wound together with a polyethylene separator having a thickness of 40 μm so that these bipolar plates were not in direct contact with each other, thereby producing a wound group 6. At the winding center, a hollow flat shaft core 1 made of polypropylene was used. At this time, the positive electrode lead piece 2 and the negative electrode lead piece 3 were respectively positioned on opposite sides of the wound group 6. The lower end portion of the flat positive electrode current collecting ring 4 was fixed to the upper end portion of the shaft core 1. The positive electrode lead piece 2 is deformed, and all of the positive electrode lead piece 2 is gathered and brought into contact with the vicinity of the buttocks circumferential surface integrally projecting from the periphery of the positive electrode current collecting ring 4, and then the positive electrode lead piece 2 and the buttocks circumferential surface are ultrasonically welded. Then, the positive electrode lead piece 2 was connected to the collar surface. One end of a positive electrode lead 9 formed by previously superposing a plurality of aluminum ribbons on the upper portion of the positive electrode current collecting ring 4 was welded. On the other hand, the connecting operation between the flat negative electrode current collecting ring 5 and the negative electrode lead piece 3 was performed in the same manner as the connecting operation between the positive electrode current collecting ring 4 and the positive electrode lead piece 2. Thereafter, an insulation coating was applied to the entire circumference of the collar peripheral surface of the positive electrode current collecting ring 4, and the wound group 6 was inserted into a bottomed prismatic battery can 7 made of steel plated with nickel. The battery can 7 used had a length of 108 mm, a width of 34 mm, and a height of 117 mm, and a corner portion of the peripheral surface formed in an R shape. For this reason, the peripheral surface of the battery can 7 is comprised by the curved surface and the plane. A negative electrode lead plate 8 for electrical continuity is welded to the negative electrode current collecting ring 5 in advance, and after the winding group 6 is inserted into the battery can 7, the bottom of the battery can 7 and the negative electrode lead plate 8 are welded. did.

(段付け部形成)
図2に示すように、捲回群6より上方の電池缶7の缶壁(以下、単に、電池缶壁という。)に、段付け支持具21と段付けローラ22とを用いて、電池缶壁を内側に突出させた段付け部15を以下のようにして形成した。すなわち、開口部を上方にして電池缶7の垂直方向を加圧した状態で、電池缶7の外部に配置された図示しない支柱に支持された段付け支持具21を電池缶7の内側に当接させて、その位置で固定(位置決め)した。その後、段付けローラ22を電池缶7の外側から徐々に押し込むことで、電池缶壁を内側に突出させた。使用した段付けローラ22は、円柱状のローラ部を有しており、ローラ部の外周面には断面略く字状の圧接部が突設されている。この圧接部は、ローラ部の軸芯方向と直交する方向(図2の横方向)に対して、先端部より上側の一辺の勾配が約0度、下側の斜辺の勾配が約30度に設定されている。このため、圧接部の斜辺と圧接部より下方のローラ部の外周面との外角は約120度の鈍角を形成している。段付け支持具21は角型筒状の支持体を有しており、支持体の下端部外側には段付けローラ22の圧接部の斜辺に対向するように楔状の突起部が形成されている。このため、段付け部15は断面が楔状に形成されて上側の一辺が電池缶壁と略直角をなすと共に、下側の斜辺と電池缶壁とがなす段付け部15の外角αが約120度(鈍角)に形成される。
(Stepped portion formation)
As shown in FIG. 2, a battery can is formed by using a step support 21 and a step roller 22 on a can wall (hereinafter simply referred to as a battery can wall) of a battery can 7 above the wound group 6. A stepped portion 15 having a wall protruding inward was formed as follows. That is, the stepped support 21 that is supported by a support column (not shown) disposed outside the battery can 7 is applied to the inside of the battery can 7 with the opening being upward and the vertical direction of the battery can 7 being pressurized. Contacted and fixed (positioned) at that position. Thereafter, the stepping roller 22 was gradually pushed from the outside of the battery can 7 to project the battery can wall inward. The used stepping roller 22 has a cylindrical roller portion, and a pressure contact portion having a substantially square cross section is projected from the outer peripheral surface of the roller portion. The pressure contact portion has a gradient of one side above the tip portion of about 0 degrees and a gradient of the lower hypotenuse of about 30 degrees with respect to the direction perpendicular to the axial direction of the roller portion (lateral direction in FIG. 2). Is set. For this reason, the external angle between the hypotenuse of the press contact portion and the outer peripheral surface of the roller portion below the press contact portion forms an obtuse angle of about 120 degrees. The step support 21 has a square cylindrical support, and a wedge-shaped protrusion is formed on the outer side of the lower end of the support so as to face the oblique side of the pressure contact portion of the step roller 22. . For this reason, the stepped portion 15 is formed in a wedge shape in cross section, the upper side is substantially perpendicular to the battery can wall, and the outer angle α of the stepped portion 15 formed by the lower oblique side and the battery can wall is about 120. It is formed at a degree (obtuse angle).

(かしめ前処理)
図3に示すように、段付け部15より上方の電池缶壁に、かしめ前処理凹型31とかしめ前処理凸型32とを用いてかしめ前処理を施し、かしめ前処理部16を形成した。すなわち、電池缶7の外部に配置された図示しない支柱に支持されたかしめ前処理凹型25を電池缶壁の外側に当接し、かしめ前処理凸型26を電池缶7の内側から圧接することで電池缶壁を湾曲させた。使用したかしめ前処理凹型25は角型筒状で下部の内周面に凹部が形成されており、かしめ前処理凸型26は柱状の支持体の下端部にかしめ前処理凹型25の凹部に対応する凸部が形成されている。このとき、電池缶壁の上端部がかしめ前処理を施す前より内側とならないようにした。このため、かしめ前処理部16は、電池缶壁が外側に湾曲した形状に形成される。
(Caulking pretreatment)
As shown in FIG. 3, a pre-caulking process was performed on the battery can wall above the stepped portion 15 by using a caulking pretreatment concave mold 31 and a caulking pretreatment convex mold 32 to form a caulking pretreatment section 16. That is, the caulking pretreatment concave mold 25 supported by a column (not shown) disposed outside the battery can 7 is brought into contact with the outside of the battery can wall, and the caulking pretreatment convex mold 26 is pressed from the inside of the battery can 7. The battery can wall was curved. The caulking pretreatment concave mold 25 used has a rectangular tube shape, and a concave portion is formed on the inner peripheral surface of the lower portion. The caulking pretreatment convex mold 26 corresponds to the concave portion of the caulking pretreatment concave mold 25 at the lower end portion of the columnar support. The convex part to be formed is formed. At this time, the upper end portion of the battery can wall was prevented from being inward from before the caulking pretreatment. For this reason, the caulking pretreatment unit 16 is formed in a shape in which the battery can wall is curved outward.

図1に示すように、段付け部15及びかしめ前処理部16を形成した後、正極リード9の他端を、電池缶7を封口するための電池蓋10の下面に溶接した。電池蓋10は、蓋ケースと、蓋キャップと、内圧上昇により開裂する開裂弁とが積層されて蓋ケースの周部をかしめ固定することで組立てられている。捲回群6全体を浸潤可能な非水電解液を電池缶7内に注液し、その後、正極リード9を折りたたむようにして電池蓋10をEPDM樹脂製ガスケットを介して段付け部15の上側に支持させた。かしめ前処理部16の下部を支点として電池缶壁を内側に曲げて電池缶壁と電池蓋10の周部とをかしめ封口することで電池缶7を密閉して容量10.0Ahのリチウムイオン電池20を完成させた。このため、かしめ前処理部16は電池蓋10の周部の形状に沿って上面内側に曲げられており、リチウムイオン電池20のかしめ封口部は上側に湾曲した形状に形成されている。なお、非水電解液には、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とジエチルカーボネート(DEC)とを体積比1:1:1の割合で混合した混合溶媒中へ6フッ化リン酸リチウム(LiPF)を1モル/リットル溶解したものを用いた。 As shown in FIG. 1, after forming the stepped portion 15 and the pre-caulking processing portion 16, the other end of the positive electrode lead 9 was welded to the lower surface of the battery lid 10 for sealing the battery can 7. The battery lid 10 is assembled by laminating a lid case, a lid cap, and a cleavage valve that cleaves when the internal pressure rises, and caulking and fixing the periphery of the lid case. A non-aqueous electrolyte that can infiltrate the entire wound group 6 is poured into the battery can 7, and then the battery lid 10 is placed above the stepped portion 15 via the EPDM resin gasket so that the positive electrode lead 9 is folded. Supported. The battery can 7 is sealed by sealing the battery can wall and the peripheral portion of the battery lid 10 by bending the battery can wall inward with the lower part of the pre-caulking treatment section 16 as a fulcrum, and a capacity of 10.0 Ah lithium ion battery 20 was completed. For this reason, the pre-caulking process part 16 is bent inside the upper surface along the shape of the peripheral part of the battery cover 10, and the caulking sealing part of the lithium ion battery 20 is formed in a shape curved upward. The non-aqueous electrolyte includes lithium hexafluorophosphate in a mixed solvent in which ethylene carbonate (EC), dimethyl carbonate (DMC), and diethyl carbonate (DEC) are mixed at a volume ratio of 1: 1: 1. were used as the (LiPF 6) was dissolved 1 mol / liter.

<作用等>
次に、本実施形態のリチウムイオン電池20の作用等について説明する。
<Action etc.>
Next, the operation and the like of the lithium ion battery 20 of the present embodiment will be described.

本実施形態のリチウムイオン電池20では、電池缶7の内側に段付け支持具21を当接し電池缶7の外側に段付けローラ22を圧接することで段付け部15が形成されている。このため、段付け支持具21が電池缶7の内側に挿入され位置決めされることで、段付けローラ22の圧接力による変位を起こすことなく、段付け部15を形成することができる。また、段付け支持具21を内側に当接するため、段付けローラ22を圧接したときに電池缶7の周面の平面が凹状に変形して歪むことなく段付け部15を形成することができ、かしめ封口するときに密閉性を確保可能とすることができる。更に、段付け部15の形成後に段付け支持具21を電池外へ取り出すことで、電池内部に余分な部品を残すことなく軽量化を図ることができると共に、段付け支持具21を繰り返し使用することができるため、低コスト化を図ることができる。   In the lithium ion battery 20 of the present embodiment, the stepped portion 15 is formed by contacting the stepped support 21 on the inside of the battery can 7 and pressing the stepping roller 22 on the outside of the battery can 7. For this reason, the stepped support member 21 is inserted and positioned inside the battery can 7, so that the stepped portion 15 can be formed without causing displacement due to the pressure contact force of the stepped roller 22. Further, since the stepping support 21 is brought into contact with the inner side, the stepped portion 15 can be formed without deforming and deforming the flat surface of the battery can 7 into a concave shape when the stepping roller 22 is pressed. When sealing by caulking, it is possible to ensure sealing performance. Further, by removing the stepped support 21 from the battery after the stepped portion 15 is formed, the weight can be reduced without leaving extra parts inside the battery, and the stepped support 21 is repeatedly used. Therefore, cost reduction can be achieved.

また、本実施形態のリチウムイオン電池20では、電池缶7の周面は、角部がR状に形成されており、曲面と平面とで構成されている。このため、段付けローラ22を圧接して段付け部15を形成するときに、角部でも略均等に段付け部15を形成することができる。   Moreover, in the lithium ion battery 20 of the present embodiment, the peripheral surface of the battery can 7 has a corner portion formed in an R shape, and is configured by a curved surface and a flat surface. For this reason, when forming the stepped portion 15 by pressing the stepped roller 22, the stepped portion 15 can be formed substantially evenly at the corner.

更に、本実施形態のリチウムイオン電池20では、段付け部15の上側の一辺が電池缶壁と略直角をなしている。このため、かしめ固定時に上方からかかる力を段付け部15の上側の一辺で支持することができる。また、本実施形態では、かしめ固定時に、段付け部15に電池蓋10を支持させる。このため、電池缶内に電池蓋10を支持するための部材を溶接固定する複雑な工程が不要となるため、低コスト化を図ることができると共に、余分な部材が不要となる分軽量化を図ることができる。更に、本実施形態では、段付け部15より上方の電池缶壁と電池蓋10の周部とをかしめ固定するため、省スペース化を図ることができる。   Furthermore, in the lithium ion battery 20 of this embodiment, the upper side of the stepped portion 15 is substantially perpendicular to the battery can wall. For this reason, the force applied from above at the time of caulking and fixing can be supported by one side above the stepped portion 15. In the present embodiment, the battery lid 10 is supported by the stepped portion 15 during caulking. For this reason, a complicated process of welding and fixing a member for supporting the battery lid 10 in the battery can is not required, so that the cost can be reduced and the weight can be reduced by the amount of unnecessary members. Can be planned. Furthermore, in this embodiment, since the battery can wall above the stepped portion 15 and the peripheral portion of the battery lid 10 are caulked and fixed, space saving can be achieved.

また更に、本実施形態のリチウムイオン電池20では、段付け部15の上方の電池缶壁にかしめ前処理部16が形成されている。湾曲したかしめ前処理部16の下部を支点として内側に曲げることで電池缶壁と電池蓋10の周部とがかしめ固定される。このため、かしめ前処理部16が電池蓋10の周部の形状に沿って曲げられるので、かしめ形状を略均等(良好)に形成することができ、密閉性の向上を図ることができる。また、かしめ前処理部16の形成時に電池缶壁の上端部が湾曲させる前より内側とならないようにするため、電池蓋10を電池缶7の内側に挿入するときに、かしめ前処理部16の上部が妨げとなることを防止することができる。   Furthermore, in the lithium ion battery 20 of the present embodiment, the pre-caulking part 16 is formed on the battery can wall above the stepped part 15. The battery can wall and the peripheral portion of the battery lid 10 are caulked and fixed by bending inward with the lower portion of the curved caulking pretreatment portion 16 as a fulcrum. For this reason, since the pre-caulking process part 16 is bent along the shape of the peripheral part of the battery cover 10, a caulking shape can be formed substantially equally (good), and a sealing performance can be improved. Further, when the battery lid 10 is inserted into the inside of the battery can 7 in order to prevent the upper end of the battery can wall from being curved before the caulking pretreatment section 16 is formed, It can prevent that the upper part becomes obstructive.

更にまた、本実施形態のリチウムイオン電池20では、段付け部15の下側の斜辺と、段付け部15より下方の電池缶壁とで鈍角の外角αが形成されている。このため、段付けローラ22で電池缶壁を徐々に内側に突出させる際に、段付けローラ22の先端部より下方の電池缶壁が段付けローラ22の圧接部下側の勾配に沿って(押し込み量に合わせて)段付け部15の先端方向にせり上がりながら変形するので、電池缶7の破断や極度な薄肉部を作ることなく段付け部15を形成することができると共に、電池不良を低減して生産性を向上させることができる。   Furthermore, in the lithium ion battery 20 of the present embodiment, the obtuse outer angle α is formed by the oblique side below the stepped portion 15 and the battery can wall below the stepped portion 15. For this reason, when the battery can wall is gradually protruded inward by the stepping roller 22, the battery can wall below the tip of the stepping roller 22 is pushed (indented) along the gradient below the pressure contact portion of the stepping roller 22. (According to the amount), the stepped portion 15 is deformed while rising up, so that the stepped portion 15 can be formed without rupturing the battery can 7 or making an extremely thin portion, and reducing battery defects. And productivity can be improved.

これに対して、従来のリチウムイオン電池では、電池周面の平面の外部応力に対する強度が曲面に比べ非常に低く、段付け部を形成するときに電池缶が段付けローラの圧接力で歪むため、段付け形状と異なる形状に変形する。また、段付け部の下側の辺と電池缶壁とが略直角をなすように段付けローラを圧接すると電池缶壁が薄肉化するため、電池缶が破断することもある。これらを回避するために、電池内に架橋板等を配置すると、電池全体の重量を増加させると共に、電池内に余分なスペースが必要となる。更に、架橋板等を電池缶内壁に溶接固定すると、絶縁部材等も電池内に配置することが必要となり電池体積が大きくなる。本実施形態のリチウムイオン電池20は、これらの問題を解決することができるものである。   On the other hand, in the conventional lithium ion battery, the strength against the external stress on the plane of the battery peripheral surface is very low compared to the curved surface, and the battery can is distorted by the pressure contact force of the stepping roller when forming the stepped portion. Deformation into a shape different from the stepped shape. Further, when the step roller is pressed so that the lower side of the stepped portion and the battery can wall form a substantially right angle, the battery can wall is thinned and the battery can may be broken. In order to avoid these problems, when a cross-linking plate or the like is disposed in the battery, the weight of the entire battery is increased, and an extra space is required in the battery. Furthermore, when a cross-linked plate or the like is fixed to the inner wall of the battery can by welding, it is necessary to dispose the insulating member in the battery, and the battery volume increases. The lithium ion battery 20 of the present embodiment can solve these problems.

なお、本実施形態では、電池缶の周面が曲面と平面とで構成される角型のリチウムイオン電池20を例示したが、本発明はこれに限定されるものではなく、例えば、円筒型の電池に適用してもよい。図4に示すように、円筒型リチウムイオン電池50では、上述したリチウムイオン電池20で用いた各部品を円筒型電池の作製に適した形状に変更することで、同様の工程で作製することができる。すなわち、中空円筒状の軸芯31の周囲に正負極板を捲回した捲回群36を円筒型の電池缶37に収容する。捲回群36より上方の電池缶壁に段付け部45を、段付け部45より上方にかしめ前処理部46を形成した後、電池蓋40とかしめ前処理部46とをかしめ固定する。このようにすれば、外径80mm、高さ90mmの寸法で、容量10.0Ahのリチウムイオン電池50を完成することができる。   In the present embodiment, the rectangular lithium ion battery 20 in which the peripheral surface of the battery can is composed of a curved surface and a flat surface is exemplified. However, the present invention is not limited to this, for example, a cylindrical type You may apply to a battery. As shown in FIG. 4, the cylindrical lithium ion battery 50 can be manufactured in the same process by changing each component used in the above-described lithium ion battery 20 into a shape suitable for manufacturing the cylindrical battery. it can. That is, a wound group 36 in which positive and negative electrode plates are wound around a hollow cylindrical shaft core 31 is accommodated in a cylindrical battery can 37. After the stepped portion 45 is formed on the battery can wall above the wound group 36 and the pre-caulking processing portion 46 is formed above the stepping portion 45, the battery lid 40 and the pre-caulking processing portion 46 are caulked and fixed. In this way, a lithium ion battery 50 having an outer diameter of 80 mm and a height of 90 mm and a capacity of 10.0 Ah can be completed.

角型、円筒型の形状にかかわらず電池が大型化すると、同じ厚さの電池缶壁でも外力に対する耐力が低下するため、段付け支持具を用いないで段付け部を形成することが難しくなり、また、かしめ封口部の面積も大きくなり密閉性が低下しやすくなる。本実施形態では、段付け支持具を用いて段付け部15、45を形成し、かしめ前処理を施すので、かしめ形状がほぼ均等に形成されてかしめ封口部が安定化されるため、密閉性の向上に効果的である。   Regardless of the square shape or cylindrical shape, if the battery size is increased, the resistance to external force will be reduced even if the battery can wall has the same thickness, making it difficult to form the stepped portion without using a stepped support. In addition, the area of the caulking sealing portion is increased, and the sealing performance is easily lowered. In the present embodiment, the stepped portions 15 and 45 are formed using the stepped support and the pre-caulking process is performed, so that the caulking shape is formed almost uniformly and the caulking sealing portion is stabilized, so that the sealing property is improved. It is effective for improvement.

また、本実施形態では、段付け部15の下側の斜辺と、段付け部15より下方の電池缶壁とで形成される外角αが約120度の例を示したが、本発明はこれに限定されるものではなく、外角αが鈍角であればよい。例えば、段付けローラ22の圧接部の形状を変えることで外角αの角度を変更することができる。   In this embodiment, an example in which the outer angle α formed by the hypotenuse on the lower side of the stepped portion 15 and the battery can wall below the stepped portion 15 is about 120 degrees is shown. However, the outer angle α may be an obtuse angle. For example, the outer angle α can be changed by changing the shape of the pressure contact portion of the stepping roller 22.

更に、本実施形態では、正負極を軸芯の周囲に捲回する捲回式の電池を例示したが、本発明はこれに限定されるものではなく正負極板を積層した電池に適用してもよい。また、本実施形態では、リチウムイオン電池20を例示したが、本発明はこれに限定されるものではなく、例えば、ニッケル水素電池、ニッケルカドミウム電池等のアルカリ電池や鉛蓄電池等に適用してもよい。   Furthermore, in the present embodiment, the winding type battery in which the positive and negative electrodes are wound around the shaft core is illustrated, but the present invention is not limited to this and is applied to a battery in which positive and negative electrode plates are laminated. Also good. Further, in the present embodiment, the lithium ion battery 20 is exemplified, but the present invention is not limited to this. For example, the present invention is applicable to alkaline batteries such as nickel metal hydride batteries and nickel cadmium batteries, lead storage batteries, and the like. Good.

また更に、本実施形態では、ニッケルメッキが施されたスチール製の電池缶を例示したが、本発明はこれに限定されるものではなく、例えば、材質がアルミニウム合金やステンレス鋼の電池缶に適用してもよい。   Furthermore, in the present embodiment, the steel battery can plated with nickel is illustrated, but the present invention is not limited to this, and for example, the battery can is made of an aluminum alloy or stainless steel. May be.

次に、本実施形態に従い作製したリチウムイオン電池20、50の実施例について説明する。なお、比較のために作製した比較例の電池についても併記する。   Next, examples of the lithium ion batteries 20 and 50 manufactured according to the present embodiment will be described. In addition, it describes together about the battery of the comparative example produced for the comparison.

(実施例1)
実施例1では、角型の電池缶7を用い、段付け部15及びかしめ前処理部16を形成し作製した(図1参照)。
Example 1
In Example 1, the square battery can 7 was used to form the stepped portion 15 and the pre-caulking processing portion 16 (see FIG. 1).

(実施例2)
実施例2では、かしめ前処理部16を形成しないこと以外は実施例1と同様にして作製した。
(Example 2)
In Example 2, it produced similarly to Example 1 except not forming the caulking pre-processing part 16.

(実施例3)
実施例3では、円筒型の電池缶37を用い、段付け部45及びかしめ前処理部46を形成し作製した(図4参照)。
Example 3
In Example 3, a cylindrical battery can 37 was used to form a stepped portion 45 and a pre-caulking processing portion 46 (see FIG. 4).

(実施例4)
実施例4では、かしめ前処理部46を形成しないこと以外は実施例3と同様にして作製した。
Example 4
In Example 4, it produced like Example 3 except not forming the pre-caulking process part 46. FIG.

(比較例1)
比較例1では、段付け支持具21を用いず段付けローラ22のみで段付け部を形成し、かしめ前処理部16を形成しないこと以外は実施例1と同様にした。
(Comparative Example 1)
Comparative Example 1 was the same as Example 1 except that the stepped portion was formed only by the stepped roller 22 without using the stepped support 21 and the pre-caulking processing portion 16 was not formed.

(比較例2)
比較例2では、段付け支持具21を用いず段付けローラ22のみで段付け部を形成し、かしめ前処理部46を形成しないこと以外は実施例3と同様にした。
(Comparative Example 2)
Comparative Example 2 was the same as Example 3 except that the stepped portion was formed only by the stepped roller 22 without using the stepped support 21 and the pre-caulking processing portion 46 was not formed.

(試験・評価)
作製した実施例及び比較例の各電池について、次の試験を行った。まず、各電池を100個作製するときに、電池缶の破断やかしめ形状の不良等の作製不良の電池数を調べた。また、100個の作製電池を90°Cの環境下で95時間保存後、−40°Cの環境下で5時間保存する保存試験を10回繰り返した後の漏液発生の電池数を調べた。試験結果を表1に示す。
(Examination / Evaluation)
The following tests were performed on the batteries of the produced examples and comparative examples. First, when 100 batteries were produced, the number of production defects such as breakage of the battery can and poor caulking shape was examined. In addition, after the storage test of storing 100 manufactured batteries for 95 hours in an environment of 90 ° C. for 5 hours and then for 5 hours in an environment of −40 ° C. was repeated, the number of batteries in which leakage occurred was examined. . The test results are shown in Table 1.

表1に示すように、段付け支持具21を用いずに段付け部を形成しかしめ前処理部16、46を形成していない比較例1、比較例2の電池では、作製時の不良が多く、漏液発生も多くの電池で認められた。これに対して、段付け支持具21を用いて段付け部15、45を形成し、かしめ前処理部16、46を形成した実施例1、実施例3の電池では、作製時の不良はなく、漏液発生も認められなかった。また、かしめ前処理部16、46を形成していない実施例2、実施例4の電池では、段付け部15、45より上方の電池缶壁と電池蓋10、40とをかしめ固定するときにかしめ形状に若干の歪みが生じ、一部の電池で漏液発生が認められた。   As shown in Table 1, in the batteries of Comparative Example 1 and Comparative Example 2 in which the stepped portion is formed without using the stepped support tool 21 but the pre-processing portions 16 and 46 are not formed, defects during manufacture are Many leaks were observed in many batteries. On the other hand, in the batteries of Examples 1 and 3 in which the stepped portions 15 and 45 are formed using the stepped support tool 21 and the caulking pretreatment units 16 and 46 are formed, there is no defect during manufacture. Furthermore, no leakage was observed. Further, in the batteries of Examples 2 and 4 in which the pre-caulking processing portions 16 and 46 are not formed, when the battery can wall and the battery lids 10 and 40 above the stepped portions 15 and 45 are caulked and fixed, Some distortion occurred in the caulking shape, and liquid leakage was observed in some batteries.

以上の結果から、電池缶7、37の内側に段付け支持具21を当接し電池缶7、37の外側から段付けローラ22を圧接することで、電池缶7、37に歪みが生ずることなく段付け部15、45を形成することができ、外角αを鈍角とすることで、電池缶7、37の破断や密閉不良を防止することができることが判った。また、比較例1、比較例2の電池の漏液発生状況から判断して、電池缶の周面が曲面と平面とで構成される電池に対して特に有効であることが判った。更に、段付け部15、45の上方にかしめ前処理部16、46を形成することで、かしめ封口時の不良を起こさず、かしめ形状を良好に形成することができ密閉性を向上できることが判明した。   From the above results, the battery cans 7 and 37 are not distorted by bringing the stepping support 21 into contact with the inside of the battery cans 7 and 37 and pressing the stepping roller 22 from the outside of the battery cans 7 and 37. It was found that the stepped portions 15 and 45 can be formed, and the battery cans 7 and 37 can be prevented from being broken or hermetically sealed by making the outer angle α an obtuse angle. Further, judging from the leakage occurrence state of the batteries of Comparative Examples 1 and 2, it was found that the battery can is particularly effective for batteries in which the peripheral surface of the battery can is a curved surface and a flat surface. Furthermore, by forming the pre-caulking processing parts 16 and 46 above the stepped parts 15 and 45, it has been found that the caulking shape can be satisfactorily formed without causing defects during caulking and sealing and the sealing performance can be improved. did.

本発明は、軽量化及び省スペース化を図ることができる密閉電池の製造方法を提供するものであり、製造、販売に寄与し、産業上利用することができる。   The present invention provides a manufacturing method of a sealed battery that can achieve weight reduction and space saving, contributes to manufacturing and sales, and can be used industrially.

本発明が適用可能な実施形態の角型リチウムイオン電池の断面図である。It is sectional drawing of the prismatic lithium ion battery of embodiment which can apply this invention. 実施形態のリチウムイオン電池に段付け部を形成するときの電池缶に対する段付け支持具と段付けローラとの位置関係を示す部分断面図である。It is a fragmentary sectional view which shows the positional relationship of the setting support with respect to a battery can and a setting roller when forming a setting part in the lithium ion battery of embodiment. 実施形態のリチウムイオン電池にかしめ前処理部を形成するときの電池缶に対するかしめ前処理凹型とかしめ前処理凸型との位置関係を示す部分断面図である。It is a fragmentary sectional view which shows the positional relationship of the caulking pre-processing concave type with respect to the battery can when forming the caulking pre-processing part in the lithium ion battery of embodiment, and a caulking pre-processing convex type. 本発明が適用可能な実施例3の円筒型リチウムイオン電池の断面図である。It is sectional drawing of the cylindrical lithium ion battery of Example 3 which can apply this invention.

符号の説明Explanation of symbols

6 捲回群(電極群)
7 電池缶
10 電池蓋
15 段付け部(突設部)
16 かしめ前処理部
20 リチウムイオン電池(密閉電池)
21 段付け支持具(当接具)
22 段付けローラ(圧接具)
6 Winding group (electrode group)
7 Battery can 10 Battery cover 15 Stepped part (projecting part)
16 Caulking pretreatment section 20 Lithium ion battery (sealed battery)
21 Step support (contact tool)
22 Step roller (Pressure contact)

Claims (4)

電極群が収容された有底電池缶の開口部に電池蓋がかしめ固定され前記電池缶が封口された密閉電池の製造方法であって、
前記電池缶に前記電極群を収容後に、前記電極群より上方の電池缶壁の内側に当接具を当接させ前記電池缶壁の外側から圧接具を圧接して断面が楔状で該一辺が前記電池缶壁と略直角をなす突設部を形成し、
前記突設部の一辺に前記電池蓋を支持させて前記突設部より上方の前記電池缶壁と前記電池蓋の周部とをかしめ固定する、
ステップを含むことを特徴とする製造方法。
A method for producing a sealed battery in which a battery lid is caulked and fixed to an opening of a bottomed battery can in which an electrode group is accommodated, and the battery can is sealed,
After the electrode group is housed in the battery can, a contact tool is brought into contact with the inside of the battery can wall above the electrode group, the pressure contact tool is pressed from the outside of the battery can wall, and the cross section is wedge-shaped and the one side is Forming a projecting portion substantially perpendicular to the battery can wall;
Caulking and fixing the battery can wall above the projecting part and the peripheral part of the battery cover by supporting the battery cover on one side of the projecting part;
The manufacturing method characterized by including a step.
前記楔状の突設部の斜辺と、前記突設部より下方の電池缶壁とがなす外角が鈍角であることを特徴とする請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein an outer angle formed between a hypotenuse of the wedge-shaped projecting portion and a battery can wall below the projecting portion is an obtuse angle. 前記電池缶の周面が曲面と平面とで構成されていることを特徴とする請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein a peripheral surface of the battery can is constituted by a curved surface and a flat surface. 前記電池蓋をかしめ固定するステップの前に、更に、前記突設部より上方の前記電池缶壁の外側に凹型治具を当接させ内側から凸型治具を圧接して前記電池缶壁を外側方向に湾曲させるかしめ前処理を施すステップを含むことを特徴とする請求項1に記載の製造方法。   Before the step of caulking and fixing the battery lid, the concave jig is brought into contact with the outside of the battery can wall above the projecting portion, and the convex jig is pressed from the inside to press the battery can wall. The manufacturing method according to claim 1, further comprising a step of pre-caulking to bend outward.
JP2004190813A 2004-06-29 2004-06-29 Manufacturing method of sealed battery Expired - Fee Related JP4561199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004190813A JP4561199B2 (en) 2004-06-29 2004-06-29 Manufacturing method of sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004190813A JP4561199B2 (en) 2004-06-29 2004-06-29 Manufacturing method of sealed battery

Publications (2)

Publication Number Publication Date
JP2006012702A true JP2006012702A (en) 2006-01-12
JP4561199B2 JP4561199B2 (en) 2010-10-13

Family

ID=35779687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004190813A Expired - Fee Related JP4561199B2 (en) 2004-06-29 2004-06-29 Manufacturing method of sealed battery

Country Status (1)

Country Link
JP (1) JP4561199B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088287A1 (en) * 2014-12-03 2016-06-09 パナソニックIpマネジメント株式会社 Manufacturing method for sealed type battery and sealed type battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04144054A (en) * 1990-10-05 1992-05-18 Toshiba Battery Co Ltd Manufacture of cylindrical battery
JPH09199092A (en) * 1996-01-16 1997-07-31 Matsushita Electric Ind Co Ltd Cylindrical battery and its manufacture
JPH1076338A (en) * 1996-07-09 1998-03-24 Matsushita Electric Ind Co Ltd Manufacture of elliptical sealed cell case, and cell by the manufacture
JPH10154489A (en) * 1996-11-26 1998-06-09 Sony Corp Bead processing method and apparatus for cylindrical battery
JPH10314875A (en) * 1997-05-19 1998-12-02 Matsushita Electric Ind Co Ltd Device and method for working battery case can and battery
JP2002208380A (en) * 2001-01-09 2002-07-26 Matsushita Electric Ind Co Ltd Battery and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04144054A (en) * 1990-10-05 1992-05-18 Toshiba Battery Co Ltd Manufacture of cylindrical battery
JPH09199092A (en) * 1996-01-16 1997-07-31 Matsushita Electric Ind Co Ltd Cylindrical battery and its manufacture
JPH1076338A (en) * 1996-07-09 1998-03-24 Matsushita Electric Ind Co Ltd Manufacture of elliptical sealed cell case, and cell by the manufacture
JPH10154489A (en) * 1996-11-26 1998-06-09 Sony Corp Bead processing method and apparatus for cylindrical battery
JPH10314875A (en) * 1997-05-19 1998-12-02 Matsushita Electric Ind Co Ltd Device and method for working battery case can and battery
JP2002208380A (en) * 2001-01-09 2002-07-26 Matsushita Electric Ind Co Ltd Battery and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088287A1 (en) * 2014-12-03 2016-06-09 パナソニックIpマネジメント株式会社 Manufacturing method for sealed type battery and sealed type battery

Also Published As

Publication number Publication date
JP4561199B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
EP2445036B1 (en) Terminal for sealed battery and manufacturing method therefor
JP6208687B2 (en) Cylindrical secondary battery and manufacturing method thereof
JP5368345B2 (en) Non-aqueous electrolyte cylindrical battery
JP5538262B2 (en) Method for manufacturing prismatic secondary battery
JP5110958B2 (en) Sealed battery
JP5159076B2 (en) Cylindrical storage battery and manufacturing method thereof
JP5364512B2 (en) Cylindrical battery
JP2008159357A (en) Cylindrical secondary battery
JP3820876B2 (en) Cylindrical secondary battery manufacturing method
JP2004134204A (en) Sealed type battery
JP2010086781A (en) Exterior can for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same, and method for manufacturing the nonaqueous electrolyte secondary battery
JP2018055812A (en) Collector load, manufacturing method of alkaline secondary battery with collector lead, and alkaline secondary battery manufactured by manufacturing method
JP4561199B2 (en) Manufacturing method of sealed battery
JP2002208380A (en) Battery and its manufacturing method
JP5196824B2 (en) Cylindrical battery and manufacturing method thereof
JP2003187779A (en) Battery
US7687196B2 (en) Prismatic battery and method for manufacturing the same
JPH0696748A (en) Elliptical sealed battery
JP4563001B2 (en) Flat rectangular battery
EP4250441A1 (en) Cylindrical battery
JPH09213361A (en) Manufacture of spiral plate group
WO2023157595A1 (en) Cylindrical battery and method for manufacturing same
JP4035710B2 (en) Flat battery
US20240136675A1 (en) Cylindrical battery
JP4505711B2 (en) Flat rectangular battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees