JP2006012685A - Paste type manganese dry battery - Google Patents

Paste type manganese dry battery Download PDF

Info

Publication number
JP2006012685A
JP2006012685A JP2004190169A JP2004190169A JP2006012685A JP 2006012685 A JP2006012685 A JP 2006012685A JP 2004190169 A JP2004190169 A JP 2004190169A JP 2004190169 A JP2004190169 A JP 2004190169A JP 2006012685 A JP2006012685 A JP 2006012685A
Authority
JP
Japan
Prior art keywords
paste
bismuth
negative electrode
dry battery
type manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004190169A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Sakamoto
光洋 坂元
Tsutomu Ishida
努 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004190169A priority Critical patent/JP2006012685A/en
Priority to CNB2005800126988A priority patent/CN100472861C/en
Priority to PCT/JP2005/011324 priority patent/WO2006001269A1/en
Priority to PE2005000740A priority patent/PE20060514A1/en
Publication of JP2006012685A publication Critical patent/JP2006012685A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/08Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with cup-shaped electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/168Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/22Immobilising of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a paste type manganese dry battery having high discharge characteristics and high storage characteristics by continuing corrosion resistance of a negative electrode can from the initial stage for a long time. <P>SOLUTION: An electrolyte in a paste layer in the paste type manganese dry battery contains 10 wt% or more ammonium chloride, and the paste layer contains bismuth equivalent to 0.0005-0.5 wt% of the electrolyte contained in the paste layer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、無水銀の糊式マンガン乾電池に関し、さらに詳しくは放電特性および保存特性の改良に関するものである。   The present invention relates to an anhydrous silver paste-type manganese dry battery, and more particularly to improvement of discharge characteristics and storage characteristics.

従来より、糊式マンガン乾電池では、自己放電を抑制するために糊層中に0.01〜0.1重量%の塩化第二水銀等の水銀化合物が添加される。このような水銀化合物を添加することにより、亜鉛表面がアマルガム化され、水素過電圧が高い状態に保たれるため、亜鉛の腐食を防止することができる。   Conventionally, in paste-type manganese batteries, 0.01 to 0.1% by weight of a mercury compound such as mercuric chloride is added to the paste layer in order to suppress self-discharge. By adding such a mercury compound, the zinc surface is amalgamated and the hydrogen overvoltage is maintained at a high level, so that corrosion of zinc can be prevented.

しかし、地球の環境汚染に対する問題意識は日増しに高まっており、糊式マンガン乾電池についても無水銀化が望まれている。水銀を用いずに負極亜鉛缶の耐食性を向上させる手段として、糊層中にインジウム塩化物を添加することが提案されている(例えば、特許文献1)。   However, awareness of environmental pollution on the earth is increasing day by day, and silver-free manganese paste batteries are also desired. As a means for improving the corrosion resistance of the negative electrode zinc can without using mercury, it has been proposed to add indium chloride into the glue layer (for example, Patent Document 1).

ところで、負極缶の耐食性を改善するために、通常、負極缶には鉛を0.4重量%含む亜鉛合金が用いられている。さらに環境対策として負極缶中の鉛量を0.4重量%未満に減量すると、負極缶の耐食性を維持するためには、インジウム塩化物が多量に必要となる。その結果、負極缶表面がインジウムの被膜で覆われることにより、内部抵抗が上昇し、放電特性が低下する。また、多量のインジウム塩化物を必要とするため、コストが増大する。
特開平6−163019号公報
By the way, in order to improve the corrosion resistance of the negative electrode can, a zinc alloy containing 0.4% by weight of lead is usually used for the negative electrode can. Furthermore, if the amount of lead in the negative electrode can is reduced to less than 0.4% by weight as an environmental measure, a large amount of indium chloride is required to maintain the corrosion resistance of the negative electrode can. As a result, the negative electrode can surface is covered with an indium coating, whereby the internal resistance increases and the discharge characteristics deteriorate. Further, since a large amount of indium chloride is required, the cost increases.
JP-A-6-163019

そこで、本発明は上記従来の問題を解決するために、水銀および鉛を用いることなく、負極缶の耐食性を初期から長期間にわたり持続させることにより、優れた放電特性および保存特性を有する糊式マンガン乾電池を提供することを目的とする。   Therefore, in order to solve the above-mentioned conventional problems, the present invention maintains the corrosion resistance of the negative electrode can for a long period from the beginning without using mercury and lead, and has a paste type manganese having excellent discharge characteristics and storage characteristics. An object is to provide a dry battery.

本発明の糊式マンガン乾電池は、二酸化マンガンを含む正極合剤;亜鉛を含む負極缶;ならびに前記正極合剤と負極缶とを隔離する、デンプン、水溶性糊剤および電解液を含む糊層を具備する糊式マンガン乾電池であって、前記糊層中の電解液が、塩化アンモニウムを10重量%以上含み、前記糊層が、糊層中に含まれる電解液の0.0005〜0.5重量%に相当するビスマスを含むことを特徴とする。   The paste-type manganese dry battery of the present invention comprises a positive electrode mixture containing manganese dioxide; a negative electrode can containing zinc; and a paste layer containing starch, a water-soluble paste, and an electrolyte that separates the positive electrode mixture and the negative electrode can. A paste-type manganese dry battery, wherein the electrolyte solution in the paste layer contains 10% by weight or more of ammonium chloride, and the paste layer is 0.0005 to 0.5% by weight of the electrolyte solution contained in the paste layer. % Bismuth.

前記ビスマスをビスマス化合物として含むのが好ましい。
前記ビスマス化合物が、ビスマス塩化物およびビスマス酸化物からなる群より選ばれた少なくとも1種であるのが好ましい。
前記糊層が、さらに糊層中に含まれる電解液の0.001〜0.5重量%に相当するインジウムを含むインジウム塩化物を含有するのが好ましい。
前記負極缶が、鉛無添加の亜鉛または亜鉛合金からなるのが好ましい。
The bismuth is preferably included as a bismuth compound.
The bismuth compound is preferably at least one selected from the group consisting of bismuth chloride and bismuth oxide.
It is preferable that the paste layer further contains indium chloride containing indium corresponding to 0.001 to 0.5% by weight of the electrolyte contained in the paste layer.
The negative electrode can is preferably made of zinc or a zinc alloy containing no lead.

本発明によれば、水銀および鉛を用いることなく、負極缶の耐食性を初期から長期にわたり持続させることにより、優れた放電特性および保存特性を有する糊式マンガン乾電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the paste-type manganese dry battery which has the outstanding discharge characteristic and storage characteristic can be provided by maintaining the corrosion resistance of a negative electrode can over the long term from the beginning, without using mercury and lead.

本発明は、糊式マンガン乾電池における正極と負極とを隔離するセパレータである糊層が、ビスマスを含む点に特徴を有する。この糊層は、デンプン、水溶性糊剤、および電解液からなる。電解液は、塩化亜鉛および塩化アンモニウムの水溶液である。ビスマスは、ビスマス化合物として糊層中に添加される。水溶性糊剤としては、例えば、ポリエチレングリコール系アルキルフェノールが用いられる。   The present invention is characterized in that the adhesive layer, which is a separator that separates the positive electrode and the negative electrode in the paste-type manganese dry battery, contains bismuth. This glue layer consists of starch, a water-soluble glue, and an electrolyte solution. The electrolyte is an aqueous solution of zinc chloride and ammonium chloride. Bismuth is added to the glue layer as a bismuth compound. As the water-soluble paste, for example, polyethylene glycol alkylphenol is used.

この糊層中においてビスマス化合物は電解液中のアンモニウムイオンと反応し、ビスマスのアンモニウム塩として存在すると考えられる。このアンモニウム塩が速やかに亜鉛表面で金属亜鉛との電子交換反応により金属ビスマスとして析出し、亜鉛表面の水素過電圧を高めることができる。このように、ビスマス化合物は、水銀と同様に亜鉛負極缶の腐食を抑制し、自己放電を抑制する効果を発揮する。   In this adhesive layer, the bismuth compound reacts with ammonium ions in the electrolytic solution and is considered to exist as an ammonium salt of bismuth. This ammonium salt quickly precipitates as metal bismuth by an electron exchange reaction with metal zinc on the zinc surface, and the hydrogen overvoltage on the zinc surface can be increased. Thus, the bismuth compound exhibits the effect of suppressing the corrosion of the zinc negative electrode can and suppressing self-discharge, like mercury.

前記糊層中の電解液が、塩化アンモニウムを10重量%以上含み、前記糊層が、糊層中に含まれる電解液の0.0005〜0.5重量%に相当するビスマスを含有する。このとき、優れた放電性能が得られ、特に長期保存後においても優れた放電性能が得られ、保存特性が向上する。
ビスマスの含有量が0.5重量%を超えると、内部抵抗が上昇し、放電性能が低下する。一方、ビスマスの含有量が0.0005重量%未満では、負極缶の耐食性の効果が不充分となる。
The electrolyte solution in the glue layer contains 10% by weight or more of ammonium chloride, and the glue layer contains bismuth corresponding to 0.0005 to 0.5% by weight of the electrolyte solution contained in the glue layer. At this time, excellent discharge performance is obtained, and in particular, excellent discharge performance is obtained even after long-term storage, and storage characteristics are improved.
When the bismuth content exceeds 0.5% by weight, the internal resistance increases and the discharge performance decreases. On the other hand, if the bismuth content is less than 0.0005% by weight, the effect of the corrosion resistance of the negative electrode can becomes insufficient.

ビスマス化合物は、ビスマス塩化物およびビスマス酸化物からなる群より選ばれた少なくとも1種であるのが好ましい。ビスマス塩化物としては、BiCl3が挙げられる。ビスマス酸化物としてはBi23が挙げられる。
また、電解液中の塩化アンモニウムの濃度が10重量%未満では、ビスマスが電解液に溶けにくくなるため、負極缶へのビスマスの析出量が減少し、ビスマス添加による負極缶の耐食性向上の効果が小さくなる。
The bismuth compound is preferably at least one selected from the group consisting of bismuth chloride and bismuth oxide. The bismuth chloride include BiCl 3. Bi 2 O 3 is an example of the bismuth oxide.
In addition, when the concentration of ammonium chloride in the electrolytic solution is less than 10% by weight, bismuth is difficult to dissolve in the electrolytic solution, so the amount of bismuth deposited on the negative electrode can decreases, and the effect of improving the corrosion resistance of the negative electrode can by adding bismuth is effective. Get smaller.

前記糊層が、さらに糊層中に含まれる電解液の0.001〜0.5重量%に相当するインジウムを含むインジウム塩化物を含有するのが好ましい。
糊層にビスマス化合物のみを添加した場合は、水銀を添加した場合に比べて製品の電圧ばらつきが若干大きくなるが、ビスマス化合物にさらにインジウム塩化物を添加すると負極缶表面がインジウムやビスマスからなる層で均一に覆われるため、水銀を添加した場合と同等レベルに電圧ばらつきを抑えることができる。
It is preferable that the paste layer further contains indium chloride containing indium corresponding to 0.001 to 0.5% by weight of the electrolyte contained in the paste layer.
When only the bismuth compound is added to the glue layer, the voltage variation of the product is slightly larger than when mercury is added. However, when indium chloride is further added to the bismuth compound, the surface of the negative electrode can is made of indium or bismuth. Therefore, the voltage variation can be suppressed to the same level as when mercury is added.

インジウムを添加することによる電圧ばらつきの抑制のメカニズムについては、以下のように推定される。
電解液中にビスマスのアンモニウム塩が存在すると金属ビスマスが亜鉛負極缶表面に偏在して析出する。金属ビスマスは延性に乏しく、電子伝導性が低い性質を有する。しかし、ビスマスとインジウムが共存すると、延性が高く、電子伝導性の高い金属インジウムがビスマスとともに析出するため、亜鉛負極缶の表面が両金属で均一に覆われ、安定した耐食性が得られるものと考えられる。
The mechanism of suppressing voltage variation by adding indium is estimated as follows.
When an ammonium salt of bismuth is present in the electrolytic solution, metal bismuth is unevenly distributed on the surface of the zinc negative electrode can. Metal bismuth has a low ductility and low electronic conductivity. However, when bismuth and indium coexist, metal indium with high ductility and high electron conductivity is deposited together with bismuth, so the surface of the zinc negative electrode can be uniformly covered with both metals and stable corrosion resistance is obtained. It is done.

インジウム塩化物としては、例えば、InCl、InCl3、In2Cl3、In4Cl7、およびIn5Cl9が挙げられる。他のハロゲン化物でも同様の効果が得られ、例えば、InBr3、InF3、InI3が挙げられる。
負極缶には、従来より負極缶の耐食性を向上させる目的で鉛を4重量%含む亜鉛合金が用いられているが、環境に配慮して鉛を減らした場合または鉛を無添加とした場合でも、上記の糊層を用いることにより耐食性に優れた負極缶が得られ、放電特性および保存特性に優れた糊式マンガン乾電池が得られる。すなわち、本発明では、鉛および水銀を使用しない糊式マンガン乾電池を得ることができ、環境面において優れた電池を構成することができる。
Examples of indium chloride include InCl, InCl 3 , In 2 Cl 3 , In 4 Cl 7 , and In 5 Cl 9 . Similar effects can be obtained with other halides, and examples thereof include InBr 3 , InF 3 , and InI 3 .
For the negative electrode can, a zinc alloy containing 4% by weight of lead is conventionally used for the purpose of improving the corrosion resistance of the negative electrode can, but even when lead is reduced or no lead is added in consideration of the environment. By using the paste layer, a negative electrode can excellent in corrosion resistance is obtained, and a paste-type manganese dry battery excellent in discharge characteristics and storage characteristics is obtained. That is, in the present invention, a paste-type manganese dry battery that does not use lead and mercury can be obtained, and a battery that is excellent in terms of environment can be configured.

以下、本発明の実施例を詳細に説明する。
《実施例1〜4および比較例1〜3》
ビスマスが電解液中に溶解しているかどうかを以下に示す方法により調べた。
塩化亜鉛、塩化アンモニウムおよび水を表1に示す割合で混合し、電解液を得た。電解液中にビスマスをBiCl3またはBi23として亜鉛板重量に対して0.1重量%添加した後攪拌した。そして、この電解液中に亜鉛板を投入した。1時間放置した後、亜鉛板表面に析出したビスマスの量を測定した。その結果を表1に示す。
Hereinafter, embodiments of the present invention will be described in detail.
<< Examples 1-4 and Comparative Examples 1-3 >>
Whether bismuth was dissolved in the electrolytic solution was examined by the following method.
Zinc chloride, ammonium chloride and water were mixed in the proportions shown in Table 1 to obtain an electrolytic solution. Bismuth was added to the electrolyte as BiCl 3 or Bi 2 O 3 in an amount of 0.1% by weight with respect to the weight of the zinc plate, and then stirred. And the zinc plate was thrown into this electrolyte solution. After being left for 1 hour, the amount of bismuth deposited on the surface of the zinc plate was measured. The results are shown in Table 1.

Figure 2006012685
Figure 2006012685

塩化アンモニウムを10重量%以上含む電解液において、ビスマスがBiCl3の場合では0.06重量%以上、Bi23の場合では0.04重量%以上析出していることがわかった。一方、塩化アンモニウムの濃度が10重量%未満では、ビスマスの析出量が0.01重量%以下であることから、塩化アンモニウムの濃度が10重量%未満では、電解液中にビスマスが溶けにくく、ビスマスが亜鉛板上に析出しにくいことがわかった。 It was found that in the electrolytic solution containing 10% by weight or more of ammonium chloride, 0.06% by weight or more was deposited when the bismuth was BiCl 3 and 0.04% by weight or more when Bi 2 O 3 was used. On the other hand, when the concentration of ammonium chloride is less than 10% by weight, the amount of bismuth deposited is 0.01% by weight or less. Therefore, when the concentration of ammonium chloride is less than 10% by weight, bismuth is difficult to dissolve in the electrolytic solution. It was found that is difficult to deposit on the zinc plate.

なお、実施例1〜3では、24時間放置後、実施例4では96時間放置後にほぼ完全にビスマスが亜鉛板に析出した。これにより、塩化アンモニウムの濃度が10重量%以上の電解液を用いた場合に、電解液中にビスマスが十分溶解し、ビスマスを完全に亜鉛板上に析出させることができ、有効かつ効果的にビスマスを利用することができるという事実を見出した。   In Examples 1 to 3, bismuth was deposited almost completely on the zinc plate after being left for 24 hours and in Example 4 after being left for 96 hours. As a result, when an electrolytic solution having an ammonium chloride concentration of 10% by weight or more is used, bismuth is sufficiently dissolved in the electrolytic solution, and bismuth can be completely deposited on the zinc plate, effectively and effectively. Found the fact that bismuth can be used.

《実施例5〜23および比較例4〜7》
(1)糊層用ペーストの作製
塩化亜鉛、塩化アンモニウム、および水を、重量比10:20:70の割合で混合し、電解液を得た。そして、この電解液、デンプン粉、および水溶性糊剤を、重量比75:24:1の割合で混合し、この混合物に、電解液量に対して表2に示す割合の化合物を添加し、糊層用ペーストを得た。なお、表2中のInCl3、BiCl3、およびBi23の添加量は、それぞれインジウムまたはビスマス量に換算した値である。
<< Examples 5 to 23 and Comparative Examples 4 to 7 >>
(1) Preparation of paste layer paste Zinc chloride, ammonium chloride, and water were mixed at a weight ratio of 10:20:70 to obtain an electrolytic solution. And this electrolyte solution, starch powder, and a water-soluble paste are mixed in the ratio of weight ratio 75: 24: 1, The compound of the ratio shown in Table 2 with respect to the amount of electrolyte solution is added to this mixture, A paste for paste layer was obtained. In Table 2, the addition amounts of InCl 3 , BiCl 3 , and Bi 2 O 3 are values converted into indium or bismuth amounts, respectively.

Figure 2006012685
Figure 2006012685

(2)糊式マンガン乾電池の組み立て
以下に示す手順で糊式マンガン乾電池を作製した。本発明の糊式マンガン乾電池の一部を断面にした正面図を図1に示す。
鉛を0.4重量%含有する亜鉛合金を有底円筒状に成形し、負極缶3を得た。この負極缶3の内底面に底紙5を配した後、糊層用ペーストを充填した。ついで、あらかじめカーボン粉末を焼結して得られた炭素棒1が差し込まれた正極合剤2を収納し、正極合剤2と負極缶3との間に糊層4が配された状態にした。ここで、正極合剤2には、活物質として二酸化マンガンと、導電材としてアセチレンブラックと、塩化亜鉛の30重量%水溶液からなる電解液とを、重量比50:10:40で混合したものを用いた。
(2) Assembly of paste-type manganese dry battery A paste-type manganese dry battery was produced according to the following procedure. FIG. 1 is a front view showing a cross section of a part of the paste-type manganese battery of the present invention.
A zinc alloy containing 0.4% by weight of lead was molded into a bottomed cylindrical shape, and a negative electrode can 3 was obtained. After placing the bottom paper 5 on the inner bottom surface of the negative electrode can 3, the paste for paste layer was filled. Next, the positive electrode mixture 2 into which the carbon rod 1 obtained by sintering carbon powder in advance was inserted, and the paste layer 4 was arranged between the positive electrode mixture 2 and the negative electrode can 3. . Here, the positive electrode mixture 2 is a mixture of manganese dioxide as an active material, acetylene black as a conductive material, and an electrolytic solution composed of a 30 wt% aqueous solution of zinc chloride in a weight ratio of 50:10:40. Using.

ポリオレフィン系樹脂からなる封口体9の中央部に、炭素棒1を挿入させる孔を設けた。この封口体9の孔に炭素棒1を圧入させ、封口体9の周縁部を負極缶3の開口端部に嵌合させた。そして、正極の集電体である炭素棒1の上部に正極端子6を嵌着させた。
負極缶3の外周には、絶縁を確保するための熱収縮性を有する樹脂フィルムからなる樹脂チューブ11を配し、その上端部で、封口体9の外周部上面を覆い、その下端部でシールリング13の下面を覆った。封口体9の上部に封口板7を配した。
A hole for inserting the carbon rod 1 was provided at the center of the sealing body 9 made of polyolefin resin. The carbon rod 1 was press-fitted into the hole of the sealing body 9, and the peripheral portion of the sealing body 9 was fitted to the opening end of the negative electrode can 3. And the positive electrode terminal 6 was made to fit on the upper part of the carbon rod 1 which is a collector of a positive electrode.
A resin tube 11 made of a heat-shrinkable resin film is provided on the outer periphery of the negative electrode can 3 to cover the upper surface of the outer peripheral portion of the sealing body 9 at its upper end and to be sealed at its lower end. The lower surface of the ring 13 was covered. A sealing plate 7 was disposed on the upper part of the sealing body 9.

ブリキ板で作製した正極端子6には、炭素棒1の上端部に被せるキャップ状の中央部および平板状の鍔部を有する形状を持たせた。この正極端子6の平板状の鍔部には、樹脂製の絶縁リング8を配し、封口板7と隔離させた。負極缶3の底面に負極端子を兼ねる底板10を配し、底板10の平板状外周部の外面側にシールリング13を配置した。
筒状のブリキ板で作製された外装缶12を、樹脂チューブ11の外側に配置し、その下端部を内側に折り曲げ、その上端部を内方にカールさせるとともに、その上端部の先端を封口板7の外周端部にかしめた。
The positive electrode terminal 6 made of a tin plate was provided with a shape having a cap-shaped central portion and a flat plate-shaped flange portion that covers the upper end portion of the carbon rod 1. A resin-made insulating ring 8 was disposed on the flat collar portion of the positive electrode terminal 6 and separated from the sealing plate 7. A bottom plate 10 also serving as a negative electrode terminal was disposed on the bottom surface of the negative electrode can 3, and a seal ring 13 was disposed on the outer surface side of the flat plate-like outer peripheral portion of the bottom plate 10.
An outer can 12 made of a cylindrical tin plate is placed outside the resin tube 11, its lower end is bent inward, its upper end is curled inward, and the tip of its upper end is a sealing plate 7 was crimped to the outer peripheral edge.

[評価]
(イ)初期特性の評価
製造直後の電池について2.2Ωの負荷で放電し、放電時間を測定した。このとき、終止電圧は0.8Vとした。電池の試験数は5個とし、このときの平均値を各電池における放電時間とした。放電時間が125分以上の場合に放電特性が良好であると評価した。
[Evaluation]
(A) Evaluation of initial characteristics The battery immediately after production was discharged with a load of 2.2Ω, and the discharge time was measured. At this time, the end voltage was 0.8V. The number of battery tests was five, and the average value at this time was defined as the discharge time in each battery. When the discharge time was 125 minutes or more, it was evaluated that the discharge characteristics were good.

(ロ)保存特性の評価
製造直後の電池について電池電圧を測定した後、室温で12ヶ月保存した。保存後の電池について電池電圧を再度測定し、初期に対する保存後の電池電圧の低下幅を調べた。電池の試験数は100個とし、このときの平均値を各電池における電池電圧の低下幅とした。電池電圧の低下幅が45mV以下の時、保存特性が良好であると評価した。
また、保存後の電池について電池電圧のばらつきを求めた。電池の試験数は100個とし、電池電圧の最大値と最小値との差をばらつきとして求めた。
これらの結果を表3に示す。
(B) Evaluation of storage characteristics After measuring the battery voltage of the battery immediately after production, it was stored at room temperature for 12 months. The battery voltage was measured again for the battery after storage, and the decrease in battery voltage after storage relative to the initial stage was examined. The number of tests of the battery was 100, and the average value at this time was defined as the decrease in battery voltage in each battery. When the battery voltage drop was 45 mV or less, it was evaluated that the storage characteristics were good.
Moreover, the variation in battery voltage was determined for the battery after storage. The number of battery tests was 100, and the difference between the maximum value and the minimum value of the battery voltage was determined as variation.
These results are shown in Table 3.

Figure 2006012685
Figure 2006012685

(A)糊層にビスマス化合物を添加した場合
比較例5では、比較例4に比べて負極缶の耐食性が向上したため、保存時の電池電圧の低下が抑制され、保存後の電池電圧のばらつきも小さくなった。
糊層にビスマス化合物を添加した実施例5〜13では、比較例5よりも負極缶の耐食性が向上し、保存時の電池電圧の低下が抑制された。また、実施例5〜13では、比較例5よりも優れた初期特性が得られた。比較例7では、ビスマスの含有量が多いため、内部抵抗が増大して放電特性が低下した。比較例6では、ビスマスの含有量が少ないため、負極缶の耐食性が不充分であり、保存後の電池電圧の低下幅が増大した。
(A) When a bismuth compound is added to the adhesive layer In Comparative Example 5, since the corrosion resistance of the negative electrode can was improved compared to Comparative Example 4, a decrease in battery voltage during storage was suppressed, and variations in battery voltage after storage were also observed. It has become smaller.
In Examples 5 to 13 in which a bismuth compound was added to the adhesive layer, the corrosion resistance of the negative electrode can was improved as compared with Comparative Example 5, and the decrease in battery voltage during storage was suppressed. In Examples 5 to 13, initial characteristics superior to those of Comparative Example 5 were obtained. In Comparative Example 7, since the bismuth content was large, the internal resistance increased and the discharge characteristics deteriorated. In Comparative Example 6, since the bismuth content was small, the corrosion resistance of the negative electrode can was insufficient, and the battery voltage decrease after storage increased.

(B)ビスマス化合物を含む糊層にさらにインジウム塩化物を添加した場合
糊層にビスマス化合物にさらにインジウム塩化物を添加した実施例14〜23においても、負極缶の耐食性が向上し、保存時の電池電圧の低下が抑制された。実施例14では、インジウム塩化物の添加量が少ないため、保存後の電池電圧のばらつきを抑制する効果が小さかった。実施例21では、保存後の電池電圧のばらつきは抑制されたが、インジウム塩化物の添加量が多くなり、内部抵抗が増大したため、放電特性が低下した。実施例15〜20、22、および23では、初期の放電特性および保存特性が良好であると同時に、保存後の電池電圧のばらつきも抑制された。
(B) In the case where indium chloride is further added to the paste layer containing the bismuth compound In Examples 14 to 23, in which the indium chloride is further added to the bismuth compound in the paste layer, the corrosion resistance of the negative electrode can is improved, and during storage The decrease in battery voltage was suppressed. In Example 14, since the amount of indium chloride added was small, the effect of suppressing variation in battery voltage after storage was small. In Example 21, although the variation in battery voltage after storage was suppressed, the amount of indium chloride added was increased and the internal resistance increased, so the discharge characteristics deteriorated. In Examples 15 to 20, 22, and 23, initial discharge characteristics and storage characteristics were good, and variations in battery voltage after storage were also suppressed.

《実施例24〜39および比較例8〜9》
負極缶中の鉛の含有量および糊層中のビスマス塩化物やインジウム塩化物の添加量を表4のように変えた以外は、実施例5と同様の方法により、糊式マンガン乾電池を作製し、初期特性および保存特性を評価した。なお、表4中のInCl3およびBiCl3の添加量は、それぞれインジウムまたはビスマス量に換算した値である。その結果を表5に示す。
<< Examples 24-39 and Comparative Examples 8-9 >>
A paste-type manganese dry battery was prepared in the same manner as in Example 5 except that the lead content in the negative electrode can and the addition amount of bismuth chloride and indium chloride in the glue layer were changed as shown in Table 4. Initial properties and storage properties were evaluated. In Table 4, the added amounts of InCl 3 and BiCl 3 are values converted into indium or bismuth amounts, respectively. The results are shown in Table 5.

Figure 2006012685
Figure 2006012685

Figure 2006012685
Figure 2006012685

(C)負極缶中の鉛量を低減し、糊層にビスマス化合物を添加した場合
比較例8では、ビスマスの含有量が少ないため、負極缶の耐食性の効果が不充分となり、保存後に電池電圧が大きく低下した。比較例9では、ビスマスの含有量が多くなり、内部抵抗が増大したため、初期の放電特性が低下した。
一方、負極缶中の鉛量を低減した実施例22〜24および鉛を含まない実施例27〜32では、少量のビスマスの添加により良好な初期の放電特性および保存特性が得られた。
(C) When the amount of lead in the negative electrode can is reduced and a bismuth compound is added to the adhesive layer In Comparative Example 8, since the bismuth content is small, the corrosion resistance effect of the negative electrode can becomes insufficient, and the battery voltage after storage Decreased significantly. In Comparative Example 9, since the bismuth content was increased and the internal resistance was increased, the initial discharge characteristics were deteriorated.
On the other hand, in Examples 22 to 24 in which the amount of lead in the negative electrode can was reduced and Examples 27 to 32 not containing lead, good initial discharge characteristics and storage characteristics were obtained by adding a small amount of bismuth.

(D)負極缶中の鉛量を低減し、ビスマス化合物を含む糊層にさらにインジウム塩化物を添加した場合
鉛を含まない実施例34〜38では、少量のビスマス量の添加により良好な初期の放電特性および保存特性が得られると同時に、インジウム塩化物の添加により保存後の電池電圧のばらつきが抑制された。
(D) When the amount of lead in the negative electrode can is reduced and indium chloride is further added to the paste layer containing the bismuth compound In Examples 34 to 38 that do not contain lead, the addition of a small amount of bismuth provides a good initial Discharge characteristics and storage characteristics were obtained, and at the same time, variation in battery voltage after storage was suppressed by the addition of indium chloride.

実施例33では、インジウム塩化物の添加量が少ないため、保存後の電池電圧のばらつきを抑制する効果が小さかった。実施例39では、保存後の電池電圧のばらつきは抑制されたが、インジウム塩化物の添加量が多くなり、内部抵抗が増大したため、放電特性が低下した。   In Example 33, since the amount of indium chloride added was small, the effect of suppressing variations in battery voltage after storage was small. In Example 39, the variation in battery voltage after storage was suppressed, but the amount of indium chloride added increased and the internal resistance increased, so the discharge characteristics deteriorated.

以上のように本発明の糊式マンガン乾電池は、優れた放電特性および保存特性を有するため、高性能の小型電子機器、携帯機器等の電源に適用することができる。   As described above, the paste-type manganese dry battery of the present invention has excellent discharge characteristics and storage characteristics, and therefore can be applied to power supplies for high-performance small electronic devices and portable devices.

本発明の実施例における糊式マンガン乾電池の一部を断面にした正面図である。It is the front view which made a part of paste type manganese dry battery in the example of the present invention a section.

符号の説明Explanation of symbols

1 炭素棒
2 正極合剤
3 負極缶
4 糊層
5 底紙
6 正極端子
7 封口板
8 絶縁リング
9 封口体
10 底板
11 樹脂チューブ
12 外装缶
13 シールリング
DESCRIPTION OF SYMBOLS 1 Carbon rod 2 Positive electrode mixture 3 Negative electrode can 4 Glue layer 5 Bottom paper 6 Positive electrode terminal 7 Sealing plate 8 Insulating ring 9 Sealing body 10 Bottom plate 11 Resin tube 12 Exterior can 13 Seal ring

Claims (5)

二酸化マンガンを含む正極合剤;亜鉛を含む負極缶;ならびに前記正極合剤と負極缶とを隔離する、デンプン、水溶性糊剤および電解液を含む糊層を具備する糊式マンガン乾電池であって、
前記糊層中の電解液が、塩化アンモニウムを10重量%以上含み、
前記糊層が、糊層中に含まれる電解液の0.0005〜0.5重量%に相当するビスマスを含むことを特徴とする糊式マンガン乾電池。
A paste-type manganese dry battery comprising a positive electrode mixture containing manganese dioxide; a negative electrode can containing zinc; and a paste layer containing starch, a water-soluble paste, and an electrolyte that separates the positive electrode mixture and the negative electrode can. ,
The electrolyte solution in the glue layer contains 10% by weight or more of ammonium chloride,
The paste-type manganese dry battery characterized in that the paste layer contains bismuth corresponding to 0.0005 to 0.5% by weight of the electrolyte contained in the paste layer.
前記ビスマスをビスマス化合物として含む請求項1記載の糊式マンガン乾電池。   The paste-type manganese dry battery according to claim 1, comprising the bismuth as a bismuth compound. 前記ビスマス化合物が、ビスマス塩化物およびビスマス酸化物からなる群より選ばれた少なくとも1種である請求項2記載の糊式マンガン乾電池。   The paste-type manganese dry battery according to claim 2, wherein the bismuth compound is at least one selected from the group consisting of bismuth chloride and bismuth oxide. 前記糊層が、さらに糊層中に含まれる電解液の0.001〜0.5重量%に相当するインジウムを含むインジウム塩化物を含有する請求項1記載の糊式マンガン乾電池。   The paste-type manganese dry battery according to claim 1, wherein the glue layer further contains indium chloride containing indium corresponding to 0.001 to 0.5% by weight of the electrolyte contained in the glue layer. 前記負極缶が、鉛無添加の亜鉛または亜鉛合金からなる請求項1記載の糊式マンガン乾電池。   The paste-type manganese dry battery according to claim 1, wherein the negative electrode can is made of zinc or zinc alloy containing no lead.
JP2004190169A 2004-06-28 2004-06-28 Paste type manganese dry battery Pending JP2006012685A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004190169A JP2006012685A (en) 2004-06-28 2004-06-28 Paste type manganese dry battery
CNB2005800126988A CN100472861C (en) 2004-06-28 2005-06-21 Manganese dry cell
PCT/JP2005/011324 WO2006001269A1 (en) 2004-06-28 2005-06-21 Manganese dry cell
PE2005000740A PE20060514A1 (en) 2004-06-28 2005-06-27 DRY PILE OF MANGANESE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004190169A JP2006012685A (en) 2004-06-28 2004-06-28 Paste type manganese dry battery

Publications (1)

Publication Number Publication Date
JP2006012685A true JP2006012685A (en) 2006-01-12

Family

ID=35779671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004190169A Pending JP2006012685A (en) 2004-06-28 2004-06-28 Paste type manganese dry battery

Country Status (4)

Country Link
JP (1) JP2006012685A (en)
CN (1) CN100472861C (en)
PE (1) PE20060514A1 (en)
WO (1) WO2006001269A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0613906A2 (en) * 2005-08-09 2016-11-22 Matsushita Electric Ind Co Ltd dry manganese battery
US8974973B2 (en) * 2010-05-27 2015-03-10 Wing Fai Leung Starch-based battery system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3651852B2 (en) * 1992-07-01 2005-05-25 東芝電池株式会社 Manganese battery
JP2964802B2 (en) * 1992-11-19 1999-10-18 松下電器産業株式会社 Glue-type manganese dry battery
JPH06325771A (en) * 1993-05-14 1994-11-25 Toshiba Battery Co Ltd Manganese dry cell

Also Published As

Publication number Publication date
CN1947295A (en) 2007-04-11
PE20060514A1 (en) 2006-07-15
WO2006001269A1 (en) 2006-01-05
CN100472861C (en) 2009-03-25

Similar Documents

Publication Publication Date Title
US4994333A (en) Galvanic primary cell
JP5172181B2 (en) Zinc alkaline battery
JP2006012685A (en) Paste type manganese dry battery
US4891282A (en) Organic electrolyte cell
JPH0119622B2 (en)
JPH0317181B2 (en)
JP2780949B2 (en) Manganese dry cell
JPH0136669B2 (en)
JP3087536B2 (en) Manganese dry cell
JP4309311B2 (en) Aluminum battery
JP3968248B2 (en) Aluminum battery
JP2006019090A (en) Manganese dry cell
JPH0724215B2 (en) Dry cell
JP2964802B2 (en) Glue-type manganese dry battery
JPH1040902A (en) Battery
JPH0763016B2 (en) Organic electrolyte battery
JP4733816B2 (en) Negative electrode for alkaline battery and alkaline battery using the same
JP2563106B2 (en) Alkaline battery
JPH06223829A (en) Zinc alkaline battery
JP2563108B2 (en) Alkaline battery
JP2992781B2 (en) Manganese dry cell
JP2005129297A (en) Manganese dry cell
JPH08335463A (en) Manganese dry battery
JPH08153520A (en) Manganese dry battery
JP2001028269A (en) Layered manganese dry battery