JP2964802B2 - Glue-type manganese dry battery - Google Patents

Glue-type manganese dry battery

Info

Publication number
JP2964802B2
JP2964802B2 JP30993892A JP30993892A JP2964802B2 JP 2964802 B2 JP2964802 B2 JP 2964802B2 JP 30993892 A JP30993892 A JP 30993892A JP 30993892 A JP30993892 A JP 30993892A JP 2964802 B2 JP2964802 B2 JP 2964802B2
Authority
JP
Japan
Prior art keywords
indium
glue
chloride
zinc
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30993892A
Other languages
Japanese (ja)
Other versions
JPH06163019A (en
Inventor
一幸 畑田
村上  元
安彦 小路
良平 芦原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30993892A priority Critical patent/JP2964802B2/en
Publication of JPH06163019A publication Critical patent/JPH06163019A/en
Application granted granted Critical
Publication of JP2964802B2 publication Critical patent/JP2964802B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02E60/12

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は無水銀の糊式マンガン乾
電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mercury-free glue type manganese dry battery.

【0002】[0002]

【従来の技術】従来の技術では糊式マンガン乾電池の自
己放電を抑制するために糊層中に0.01〜0.1重量
%の塩化第二水銀等の水銀化合物が添加されていた。こ
れらの水銀化合物を添加する目的は、亜鉛表面をアマル
ガム化し、水素過電圧の高い状態に保つことにより亜鉛
の防食効果を持たせることにあった。
2. Description of the Related Art In the prior art, 0.01 to 0.1% by weight of a mercury compound such as mercuric chloride is added to a paste layer in order to suppress self-discharge of a paste type manganese dry battery. The purpose of adding these mercury compounds was to amalgamate the zinc surface and to maintain the hydrogen overpotential at a high level so that the zinc had an anticorrosive effect.

【0003】現在糊式乾電池は日本国内ではほとんど生
産されていないが、世界的な視野で見ると乾電池生産数
の半数以上を占めている。各国の乾電池に対する地球環
境汚染の問題意識は日増しに高まり、糊式乾電池の無水
銀化が望まれていたが、未だ有効な手段が見出せていな
いのが現状である。
At present, almost no glue type dry battery is produced in Japan, but it accounts for more than half of the dry battery production from a global perspective. The awareness of the problem of global environmental pollution of dry cells in each country has been increasing day by day, and it has been desired that mercury type dry cells be mercury-free. However, at present, no effective means has been found yet.

【0004】一方、日本国内においてマンガン乾電池の
主流であるペーパーラインド方式の塩化亜鉛型乾電池
は、多数の技術発表がなされ、現在では日本国内で生産
されているペーパーラインド方式のマンガン乾電池は既
に無水銀化が確立され、製造・販売されている。
On the other hand, a number of technical announcements have been made on paper-lined zinc chloride type dry batteries, which are the mainstream of manganese dry batteries in Japan, and the paper-lined manganese dry batteries currently produced in Japan are already mercury-free. Has been established and is being manufactured and sold.

【0005】例えばこれらの技術の中の一つに、水銀と
同じように水素過電圧の高い金属であるインジウムをイ
ンジウム塩の形で正極合剤中もしくは包紙の糊中に添加
し、インジウムを亜鉛表面に存在させ、水素過電圧の高
い状態を保つ方法が報告されている(例えば特開昭61
−224265、特開昭61−78051号公報)。水
素過電圧の高い金属を亜鉛表面に存在させて、亜鉛の腐
食を抑制することは周知の事実であるが、これらの作用
は電解液にインジウム塩を溶かし、インジウムイオンと
亜鉛との電子交換反応で亜鉛表面にインジウムを析出さ
せようとするものである。しかし、塩化亜鉛型の乾電池
で使用される電解液中では、これらのインジウム塩は難
溶であり、イオンとして微量しか存在せず、効果的な亜
鉛表面へのインジウムの析出は不十分であり、水銀を使
用しない乾電池の保存特性を改善するに至っていないの
が実際である。
For example, one of these technologies is to add indium, which is a metal having a high hydrogen overvoltage like mercury, in the form of an indium salt in a positive electrode mixture or paste of wrapping paper, and add indium to zinc. A method has been reported in which a hydrogen overvoltage is maintained at a high level on the surface (see, for example,
224265, JP-A-61-78051). It is a well-known fact that a metal with a high hydrogen overvoltage is present on the zinc surface to suppress the corrosion of zinc, but these actions dissolve the indium salt in the electrolytic solution and perform an electron exchange reaction between indium ions and zinc. The purpose is to deposit indium on the zinc surface. However, in the electrolytic solution used in zinc chloride type dry batteries, these indium salts are hardly soluble, and only a small amount is present as ions, and the effective indium deposition on the zinc surface is insufficient. In fact, it has not been possible to improve the storage characteristics of batteries that do not use mercury.

【0006】[0006]

【発明が解決しようとする課題】糊式乾電池において亜
鉛の防食剤である水銀が糊層中に添加されなかった場
合、亜鉛の腐食が激しく、例えば室温にて1年間貯蔵す
ると亜鉛缶に局部的な腐食が発生し、この腐食が貫通孔
に至り、正極合剤の乾燥が始まり、放電性能が著しく劣
化してしまうという問題があった。
When mercury, which is a corrosion inhibitor for zinc, is not added to a paste layer in a paste-type dry battery, the corrosion of zinc is severe. This leads to a problem that the corrosion of the positive electrode mixture starts drying and the discharge performance is significantly deteriorated.

【0007】本発明は上記課題を解決するもので、保存
特性及び放電性能において優れた無水銀の乾電池を提供
することを目的とするものである。
An object of the present invention is to solve the above problems and to provide a mercury-free dry battery excellent in storage characteristics and discharge performance.

【0008】[0008]

【課題を解決するための手段】本発明は上記の課題を解
消するもので、糊式マンガン乾電池の糊層中にインジウ
ム塩化物を添加するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and is to add indium chloride to a paste layer of a paste-type manganese dry battery.

【0009】そして種々のインジウム塩が塩化亜鉛型の
電解液では難溶であるが、塩化アンモニウム型の電解液
においてはインジウム塩化物を容易に溶かすことが可能
であることを見出した。
Further, it has been found that various indium salts are hardly soluble in a zinc chloride type electrolyte, but it is possible to easily dissolve indium chloride in an ammonium chloride type electrolyte.

【0010】この事実から、特に電解液組成比における
塩化アンモニウム濃度が10%以上のもので構成される
塩化アンモニウム型の電解液に可溶な塩化インジウム等
のインジウム塩化物をペースト状の糊層に添加して、イ
ンジウムイオンと亜鉛との電子交換反応で亜鉛表面にイ
ンジウムを析出させ、亜鉛表面の水素過電圧を高め防食
効果を持たせることを特徴としている。
From this fact, in particular, an indium chloride such as indium chloride, which is soluble in an ammonium chloride type electrolytic solution composed of those having an ammonium chloride concentration of 10% or more in the composition ratio of the electrolytic solution, is added to the paste-like paste layer. In addition, indium is deposited on the zinc surface by an electron exchange reaction between indium ions and zinc, thereby increasing the hydrogen overvoltage on the zinc surface and imparting an anticorrosive effect.

【0011】[0011]

【作用】上記の技術手段におけるインジウム塩化物の作
用を説明する。糊層中に添加されたインジウム塩化物は
液組成中の塩化アンモニウム濃度が10%以上で構成さ
れる電解液に溶けて糊層中でインジウムイオンとして存
在する。そしてこのインジウムイオンが速やかに亜鉛表
面で金属亜鉛との電子交換反応により金属インジウムと
して析出し、亜鉛表面の水素過電圧を高めることができ
る。従って自己放電を抑制し水銀と同じように腐食抑制
の作用がある。
The function of indium chloride in the above technical means will be described. The indium chloride added to the paste layer dissolves in the electrolytic solution having an ammonium chloride concentration of 10% or more in the liquid composition and exists as indium ions in the paste layer. Then, the indium ions are quickly precipitated as metal indium by an electron exchange reaction with the metal zinc on the zinc surface, and the hydrogen overvoltage on the zinc surface can be increased. Therefore, it has the effect of suppressing self-discharge and inhibiting corrosion in the same manner as mercury.

【0012】[0012]

【実施例】まずインジウムが電解液中にて溶解している
事実を表1に示す。
EXAMPLES First, the fact that indium is dissolved in the electrolyte is shown in Table 1.

【0013】[0013]

【表1】 [Table 1]

【0014】塩化亜鉛、塩化アンモニウム及び水から構
成した各電解液の液組成を表1に示す状態にしておき、
塩化インジウムからなるインジウムをそれぞれの電解液
に0.01重量%添加し、撹拌して放置し、電解液中の
インジウムイオン濃度を測定した結果は表中に示す通り
であった。これらによると電解液組成において塩化アン
モニウム濃度が10%以上の電解液にはインジウムが完
全に溶解していることが分かった。一方塩化アンモニウ
ム濃度が5%以下の電解液にはインジウムが0.002
%以下しか溶解していないことから、塩化亜鉛型の電解
液においてはインジウムが難溶であることは明らかであ
る。なお電解液4及び5においてはインジウムを0.5
重量%添加しても全て可溶であった。
The composition of each electrolytic solution composed of zinc chloride, ammonium chloride and water is as shown in Table 1,
0.01% by weight of indium composed of indium chloride was added to each of the electrolyte solutions, stirred and allowed to stand, and the indium ion concentration in the electrolyte solutions was measured. The results are as shown in the table. According to these, it was found that indium was completely dissolved in the electrolyte having an ammonium chloride concentration of 10% or more in the composition of the electrolyte. On the other hand, in an electrolyte having an ammonium chloride concentration of 5% or less, indium contains 0.002%.
% Or less, it is clear that indium is hardly soluble in the zinc chloride type electrolyte. In electrolytes 4 and 5, indium was 0.5
All were soluble even when added by weight%.

【0015】これにより塩化アンモニウム濃度が10%
以上の電解液を用いたときに添加したインジウムは全て
インジウムイオンとして糊層中に存在し、亜鉛近傍にて
インジウムイオン濃度を高めることができ、インジウム
をより有効かつ効果的に析出できる事実を見出した。
Thus, the ammonium chloride concentration is 10%
All indium added when using the above electrolytic solution is present in the glue layer as indium ions, the indium ion concentration can be increased near zinc, and the fact that indium can be deposited more effectively and effectively has been found. Was.

【0016】代表的な糊式乾電池の構造について図1を
用いて説明する。図1は金属外装缶を用いた代表的な糊
式乾電池の半載側面図である。内部に炭素棒1と合剤2
からなる正極、亜鉛缶3からなる負極、そして両極を隔
離させるための糊層4及び底紙5からなる状態で、亜鉛
缶開口部を樹脂封口体9で覆い、底板10とシール・リ
ング13を用い、電池全体を樹脂チューブ11で包み、
上部にキャップ6と封口板7と絶縁リング8を用い封口
し、金属外装缶12により全体を覆って構成されてい
る。
The structure of a typical glue-type dry battery will be described with reference to FIG. FIG. 1 is a half-mounted side view of a typical glue-type dry battery using a metal outer can. Carbon rod 1 and mixture 2 inside
The opening of the zinc can is covered with a resin sealing body 9 in the state of a positive electrode made of, a negative electrode made of a zinc can 3, a glue layer 4 for separating the two electrodes and a bottom paper 5, and the bottom plate 10 and the seal ring 13 are separated. Use, wrap the whole battery in the resin tube 11,
The upper part is closed using a cap 6, a sealing plate 7, and an insulating ring 8, and is entirely covered with a metal outer can 12.

【0017】そこで以下に示す実施例にはインジウムが
十分溶解できる塩化アンモニウム濃度が10%以上の電
解液を用い、糊層を構成させることにした。
Therefore, in the examples described below, an electrolyte solution having an ammonium chloride concentration of 10% or more which can sufficiently dissolve indium was used to form the paste layer.

【0018】塩化亜鉛:10%、塩化アンモニウム:2
0%及び水:70%の組成にて構成される電解液を75
%、デンプン粉24%、水溶性糊剤1%を混合、撹拌し
て得られるペーストに表2に示すような塩化第二水銀及
び塩化インジウムを所定量添加して、糊層4を構成させ
た。
Zinc chloride: 10%, ammonium chloride: 2
75% electrolytic solution composed of 0% and 70% water
%, Starch powder 24%, and water-soluble sizing agent 1% were mixed and a predetermined amount of mercuric chloride and indium chloride as shown in Table 2 was added to a paste obtained by stirring to form a sizing layer 4. .

【0019】[0019]

【表2】 [Table 2]

【0020】表2において従来の塩化第二水銀からなる
水銀を0.05重量%添加したものを比較例とし、実施
例による塩化インジウムからなるインジウムを0〜1.
0重量%添加したものは実施例1〜7に示した。それぞ
れの状態のものを20個ずつ構成し、室温にて1年間保
存後に電池を分解し、亜鉛缶の腐食状態を確認したとこ
ろ、表3に示す結果となった。
In Table 2, a comparative example in which 0.05% by weight of conventional mercury chloride containing mercuric chloride was added was used as a comparative example.
Those added with 0% by weight are shown in Examples 1 to 7. The battery was disassembled after 20 years of each state and stored at room temperature for one year, and the corrosion state of the zinc can was confirmed. The results shown in Table 3 were obtained.

【0021】[0021]

【表3】 [Table 3]

【0022】表3にはそれぞれの実施例により構成され
た電池を20個ずつ分解して、取り出した亜鉛缶につい
て、部分的な腐食で貫通孔に至った電池の数と電池1個
当りの貫通孔の平均個数を表している。
Table 3 shows that the number of batteries that reached the through-holes due to partial corrosion and the number of batteries per one battery were determined for each of the zinc cans taken out by disassembling 20 batteries constructed according to each embodiment. It represents the average number of holes.

【0023】表3の結果から塩化インジウムからなるイ
ンジウムを0.01重量%から1.0重量%添加した実
施例3から7のものは塩化第二水銀を添加した比較例と
同等、もしくはそれ以上の保存性能が得られた。
From the results shown in Table 3, those of Examples 3 to 7 in which indium consisting of indium chloride was added in an amount of 0.01% by weight to 1.0% by weight were equal to or more than the comparative examples in which mercuric chloride was added. Storage performance was obtained.

【0024】次に表2の状態における放電性能を比較す
るためにそれぞれ20個ずつ構成し、構成直後及び室温
保存1年後の電池放電性能結果を表4に示す。
Next, in order to compare the discharge performances in the states shown in Table 2, 20 batteries were constructed, and the results of the battery discharge performance immediately after the construction and one year after storage at room temperature are shown in Table 4.

【0025】[0025]

【表4】 [Table 4]

【0026】表4には構成直後及び室温にて1年間保存
後に各10個の電池を40Ωの抵抗にて1日4時間ずつ
使用した場合の状態にて0.9Vまで電池電圧が降下す
るまでの平均放電時間を示してある。
Table 4 shows that immediately after the configuration and after storage at room temperature for one year, the battery voltage dropped to 0.9 V when 10 batteries were used at a resistance of 40Ω for 4 hours a day. The average discharge time is shown.

【0027】この表4から明らかなように塩化インジウ
ムからなるインジウムを0.01重量%から1.0重量
%添加した実施例3から実施例7までの状態であれば従
来の塩化第二水銀を添加した比較例と同等の放電性能を
有していた。
As is clear from Table 4, in the state of Examples 3 to 7 in which indium consisting of indium chloride was added in an amount of 0.01% by weight to 1.0% by weight, the conventional mercuric chloride was used. It had the same discharge performance as the comparative example to which it was added.

【0028】以上のように本実施例によれば、塩化イン
ジウムからなるインジウムが糊層重量に対して0.01
重量%以上添加されていれば従来の水銀を添加した乾電
池と同等の保存性能及び放電性能が得られる。
As described above, according to the present embodiment, indium composed of indium chloride is added in an amount of 0.01 to the weight of the adhesive layer.
If it is added in an amount of at least% by weight, the same storage performance and discharge performance as those of a conventional dry cell to which mercury is added can be obtained.

【0029】しかし塩化インジウムからなるインジウム
の添加量が0.5重量%を越える場合でも効果が認めら
れたがこれ以上の添加量は製造コスト増が問題点とな
る。
However, even when the amount of indium composed of indium chloride exceeds 0.5% by weight, the effect is recognized, but if the amount is more than this, the production cost increases.

【0030】なお、本実施例ではインジウム塩化物とし
て塩化インジウム(InCl3)を使用して説明した
が、他のインジウム塩化物InCl,In2Cl3,In
4Cl7,In5Cl9を使用した場合も同様の効果を示し
た。
Although the present embodiment has been described using indium chloride (InCl 3 ) as the indium chloride, other indium chlorides InCl, In 2 Cl 3 , In
Similar effects were obtained when 4 Cl 7 and In 5 Cl 9 were used.

【0031】[0031]

【発明の効果】以上のように本発明のインジウム塩化物
を添加する糊式乾電池は従来の水銀化合物を添加する糊
式乾電池と同等の貯蔵性能、放電性能を有し、無公害電
池を生産可能にしたものである。
As described above, the paste-type dry battery of the present invention to which indium chloride is added has the same storage performance and discharge performance as the conventional paste-type dry cell to which a mercury compound is added, and can produce a pollution-free battery. It was made.

【図面の簡単な説明】[Brief description of the drawings]

【図1】代表的な糊式乾電池の半載側面図FIG. 1 is a half-mounted side view of a typical glue-type dry battery.

【符号の説明】[Explanation of symbols]

1 炭素棒 2 合剤 3 亜鉛缶 4 糊層 5 底紙 6 キャップ 7 封口坂 8 絶縁リング 9 樹脂封口体 10 底板 11 樹脂チューブ 12 外装缶 13 シール・リング DESCRIPTION OF SYMBOLS 1 Carbon rod 2 Mixture 3 Zinc can 4 Adhesive layer 5 Bottom paper 6 Cap 7 Sealing slope 8 Insulating ring 9 Resin sealing body 10 Bottom plate 11 Resin tube 12 Outer can 13 Seal ring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 芦原 良平 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭61−78051(JP,A) 特開 昭61−224265(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 2/14 ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Ryohei Ashihara 1006 Kazuma Kadoma, Kadoma City, Osaka Inside Matsushita Electric Industrial Co., Ltd. (56) References JP-A-61-78051 (JP, A) JP-A-61- 224265 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) H01M 2/14

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】外側の円筒型亜鉛缶と、内側の二酸化マン
ガン、炭素粉末、電解液からなる正極合剤とを隔離する
デンプン質と水溶性糊剤及び電解液にて構成されるペー
スト状の隔離層(以下、糊層という)の中にインジウム
塩化物を添加した糊式マンガン乾電池であって、前記糊
層の電解液組成における塩化アンモニウム濃度が、10
%以上のもので構成される電解液を用い、糊層に含まれ
る電解液の重量に対してインジウム塩化物中のインジウ
ムを0.01〜0.5重量%の範囲で糊層中に添加する
ことを特徴とする糊式マンガン乾電池。
1. A paste made of starch, a water-soluble glue, and an electrolytic solution for separating an outer cylindrical zinc can from an inner positive electrode mixture comprising manganese dioxide, carbon powder, and an electrolytic solution. A glue-type manganese dry battery in which indium chloride is added in an isolation layer (hereinafter, referred to as a glue layer),
The ammonium chloride concentration in the electrolyte composition of the layer is 10
% Of the electrolyte solution that is composed of
Indium chloride in indium chloride relative to the weight of the electrolyte
A glue-type manganese dry battery , wherein the glue layer is added to the glue layer in a range of 0.01 to 0.5% by weight .
JP30993892A 1992-11-19 1992-11-19 Glue-type manganese dry battery Expired - Fee Related JP2964802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30993892A JP2964802B2 (en) 1992-11-19 1992-11-19 Glue-type manganese dry battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30993892A JP2964802B2 (en) 1992-11-19 1992-11-19 Glue-type manganese dry battery

Publications (2)

Publication Number Publication Date
JPH06163019A JPH06163019A (en) 1994-06-10
JP2964802B2 true JP2964802B2 (en) 1999-10-18

Family

ID=17999160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30993892A Expired - Fee Related JP2964802B2 (en) 1992-11-19 1992-11-19 Glue-type manganese dry battery

Country Status (1)

Country Link
JP (1) JP2964802B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19580593C2 (en) * 1994-04-27 2001-07-26 Fdk Corp Anode zinc cup, process for its manufacture and use of the anode zinc cup for a manganese dry battery
JP2006012685A (en) * 2004-06-28 2006-01-12 Matsushita Electric Ind Co Ltd Paste type manganese dry battery

Also Published As

Publication number Publication date
JPH06163019A (en) 1994-06-10

Similar Documents

Publication Publication Date Title
US5626988A (en) Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture
US3508967A (en) Negative lithium electrode and electrochemical battery containing the same
CA1066763A (en) Metal-halogen electrochemical cell
US3413154A (en) Organic electrolyte cells
WO1997017737A1 (en) Rechargeable alkaline cells containing zinc anodes without added mercury
JP2003526877A (en) Rechargeable nickel zinc battery
US2897250A (en) Corrosion inhibitors for dry cells
JP2735842B2 (en) Non-aqueous electrolyte secondary battery
JP2964802B2 (en) Glue-type manganese dry battery
US3174880A (en) Dual electrolyte battery cells
KR100322140B1 (en) Manganese dry batteries
US2814663A (en) Primary cell
US3040114A (en) Primary battery cell
JP4060540B2 (en) Aluminum battery
JP2780949B2 (en) Manganese dry cell
JP3087536B2 (en) Manganese dry cell
WO2006001269A1 (en) Manganese dry cell
US3502508A (en) Cathode for a deferred action battery having a high capacity depolarizer encased in a humidity resistant depolarizer material
JPH0136669B2 (en)
JPH08222209A (en) Nonaqueous electrolyte battery and manufacture of its positive electrode
JP3094589B2 (en) Manganese dry battery manufacturing method
JPH0724215B2 (en) Dry cell
JP2552438B2 (en) Non-aqueous electrolyte battery
JP3086313B2 (en) Manganese dry cell
JPS62126558A (en) Battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees