JP2006011385A - トナーの製造方法、これを用いた二成分現像剤及び画像形成装置 - Google Patents

トナーの製造方法、これを用いた二成分現像剤及び画像形成装置 Download PDF

Info

Publication number
JP2006011385A
JP2006011385A JP2005137639A JP2005137639A JP2006011385A JP 2006011385 A JP2006011385 A JP 2006011385A JP 2005137639 A JP2005137639 A JP 2005137639A JP 2005137639 A JP2005137639 A JP 2005137639A JP 2006011385 A JP2006011385 A JP 2006011385A
Authority
JP
Japan
Prior art keywords
particles
toner
resin
wax
particle dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005137639A
Other languages
English (en)
Other versions
JP4482481B2 (ja
Inventor
Yasuhito Yuasa
安仁 湯浅
Hidekazu Arase
秀和 荒瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005137639A priority Critical patent/JP4482481B2/ja
Publication of JP2006011385A publication Critical patent/JP2006011385A/ja
Application granted granted Critical
Publication of JP4482481B2 publication Critical patent/JP4482481B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

【課題】シャープな粒度分布を有する小粒径のトナーを分級工程不要で作成でき、オイルレス定着でき、キャリアへのトナー成分のスペントもなく長寿命化ができ、転写時の中抜けや飛び散りを防止し、高転写効率を得るトナー又は二成分現像剤を提供する。
【解決手段】樹脂粒子を分散させた樹脂粒子分散液、着色剤粒子を分散させた着色剤粒子分散液及びワックス粒子を分散させたワックス粒子分散液の混合分散液を作成し、前記混合分散液のpHを9.5〜12.2の範囲に調整し、水溶性無機塩を添加し、加熱処理して前記樹脂粒子、前記着色剤粒子及び前記ワックス粒子が凝集した少なくとも一部が溶融した凝集粒子を形成し、前記凝集粒子が形成されたときのpHが7.0〜9.5の範囲とし、その後pHを2.2〜6.8の範囲に調整し、加熱処理してトナーを得る。
【選択図】 図1

Description

本発明は複写機、レーザプリンタ、普通紙FAX、カラーPPC、カラーレーザプリンタ、カラーFAX及びこれらの複合機に用いられるトナーの製造方法、二成分現像剤及び画像形成装置に関するものである。
近年、電子写真装置はオフィスユースの目的からパーソナルユースへと移行しつつあり、小型化、高速化、高画質化、メンテナンスフリーなどを実現する技術が求められている。そのため転写残の廃トナーをクリーニングせずに、現像において廃トナーを回収するクリーナーレスプロセスや、カラー画像の高速出力を可能とするタンデムカラープロセス、また定着時にオフセット防止のための定着オイルを使用せずとも高光沢性、高透光性を有する鮮明なカラー画像と非オフセット性を両立させるオイルレス定着が良メンテナンス性、低オゾン排気などの条件とともに要求されている。そしてこれらの機能は同時に両立させる必要があり、プロセスのみならずトナーの特性向上が重要なファクターである。
カラープリンタでは、像担持体(以下感光体と称す)を、帯電チャージャーによるコロナ放電で帯電させ、その後、各色の潜像を光信号として感光体に照射し、静電潜像を形成し、第1色、例えばイエロートナーで現像し、潜像を顕像化する。その後、感光体にイエロートナーの帯電と逆極性に帯電された転写体を当接し、感光体上に形成されたイエロートナー像を転写する。感光体は転写時に残留したトナーをクリーニングしたのち除電され、第1のカラートナーの現像、転写を終える。その後、マゼンタ、シアンなどのトナーに対してもイエロートナーと同様な操作を繰り返し、各色のトナー像を転写体上で重ね合わせてカラー像を形成する方法が取られている。そしてこれらの重畳したトナー像はトナーと逆極性に帯電した紙に転写される4パス方式のカラープロセスが実用化されている。
また、帯電器、感光体、現像部等を有する像形成ステーションを複数並べて配置し、感光体に無端状の転写体を当接させて、転写体に順次各色のトナーを連続して転写させる一次転写プロセスを実行して、転写体に多層の転写カラートナー画像を形成し、その後、転写体に形成した多層のトナー像を、一括して紙やOHP等の転写媒体に一括転写させる二次転写プロセスが実行されるよう構成されたタンデムカラープロセスや、転写体を用いずに直接紙やオーバーヘッドプロジェクター(OHP)の転写媒体に連続して転写するタンデムカラープロセスが提案されている。
定着プロセスにおいては、カラー画像ではカラートナーを溶融混色させ透光性を上げる必要がある。トナーの溶融不良が起こるとトナー画像表面又は内部に於いて光の散乱が生じて、トナー色素本来の色調が損なわれると共に、重なった部分では下層まで光が入射せず、色再現性が低下する。従って、トナーには完全溶融特性を有し、色調を妨げないような透光性を有することが必要条件である。OHP用紙での光透過性がカラーでのプレゼンテーション機会の増加で、その必要はより大きくなっている。
カラー画像を得る際に、定着ローラ表面にトナーが付着してオフセットが生じるため定着ローラに多量のオイル等を塗布しなければならず、取扱や、機器の構成が複雑になる。そのため機器の小型化、メンテフリー化、低コスト化のために、後述する定着時にオイルを使用しないオイルレス定着の実現が要求される。これを可能とするため、シャープメルト特性を有する結着樹脂中にワックス等の離型剤を添加する構成が実用化されつつある。
しかし、このようなトナーの構成での課題は、トナーの凝集性が強い特質を有するため、転写時のトナー像乱れ、転写不良の傾向がより顕著に生じ、転写と定着の両立が困難となる。また二成分現像として使用する際に、粒子間の衝突、摩擦、又は粒子と現像器との衝突、摩擦等の機械的な衝突、摩擦による発熱により、キャリア表面にトナーの低融点成分が付着するスペントが生じ易く、キャリアの帯電能力を低下させ現像剤の長寿命化の妨げとなる。
下記特許文献1には、正帯電型トナ−に対し、被覆層のシリコ−ン樹脂にフッ素置換アルキル基を導入したキャリアが提案されている。さらには、下記特許文献2では、高速プロセスにおいて、現像能力が高く、それが長期において劣化しないものとして、導電性カ−ボンと架橋型フッ素変性シリコ−ン樹脂を含有するコ−ティングキャリアが提案されている。シリコ−ン樹脂の優れた帯電特性を生かすとともにフッ素置換アルキル基によって、滑り性・剥離性・撥水性等の特性を付与し、摩耗・はがれ・クラック等が発生しにくい上、スペント化も防止できるとしているが、摩耗・はがれ・クラック等についても満足の行くものではない上に、正帯電性を有するトナ−においては適正な帯電量が得られるものの、負帯電性を有するトナ−を用いた場合、帯電量が低過ぎ、逆帯電性トナ−(正帯電性を有するトナ−)が多量に発生し、カブリやトナ−飛散等の悪化が生じ、使用に耐えるものではなかった。
またトナーにおいて、種々の構成が提案されている。周知のように電子写真方法に使用される静電荷現像用のトナ−は一般的に結着樹脂である樹脂成分、顔料もしくは染料からなる着色成分および可塑剤、電荷制御剤、更に必要に応じて離型剤などの添加成分によって構成されている。樹脂成分として天然または合成樹脂が単独あるいは適時混合して使用される。
そして、上記添加剤を適当な割合で予備混合し、熱溶融によって加熱混練し、気流式衝突板方式により微粉砕し、微粉分級されてトナー母体が完成する。また化学重合的な方法によりトナー母体が作成される方法もある。その後このトナー母体に例えば疎水性シリカなどの外添剤を外添処理してトナーが完成する。一成分現像では、トナーのみで構成されるが、トナーと磁性粒子からなるキャリアと混合することによって二成分現像剤が得られる。
しかし、従来の混練粉砕法における粉砕・分級操作では、小粒径化といっても経済的、性能的に現実に提供できる粒子径は約8μm程度までである。現在、種々の方法による小粒径トナーを製造する方法が検討されている。またトナーの溶融混練時に低軟化点の樹脂中にワックス等の離型剤を配合してオイルレス定着を実現させる方法が検討されている。しかし配合できるワックス量には限界があり添加量を多くするに従ってトナーの流動性の低下、転写時の中抜けの増大、感光体への融着の増加等の弊害が生じてくる。
そのために、混練粉砕法とは異なる種々の重合法を用いたトナーの製造方法が検討されている。例えば、懸濁重合法によりトナーを調製すると、トナーの粒度分布を制御しようとしても混練粉砕法の域を出ることはできず、多くの場合はさらなる分級操作を必要とする。また、これらの方法で得たトナーは、その形状がほぼ真球状であるため、感光体等に残留するトナーのクリーニング性が極めて悪く、画質信頼性を損ねるという問題がある。
また、乳化重合法を用いたトナーの調製法は、少なくとも樹脂粒子を分散させてなる分散液中で凝集粒子を形成し凝集粒子分散液を調製する工程、凝集粒子分散液中に樹脂微粒子を分散させてなる樹脂微粒子分散液を添加混合して凝集粒子に樹脂微粒子を付着させて付着粒子を形成する工程及び付着粒子を加熱して融合する工程により製造される。
下記特許文献3では、極性を有する分散剤中に樹脂粒子を分散させてなる樹脂粒子分散液と、極性を有する分散剤中に着色剤粒子を分散させてなる着色剤粒子分散液とを少なくとも混合して混合液を調製する混合液調製工程、前記混合液中において含まれる分散剤の極性が同極性とすることで、帯電性及び発色性に優れた信頼性の高い静電荷像現像用トナーを容易にかつ簡便に製造し得ることが開示されている。
また、下記特許文献4では、離型剤が、炭素数が12〜30の高級アルコール及び炭素数12〜30の高級脂肪酸の少なくとも一方からなるエステルを少なくとも1種含み、かつ、該樹脂粒子が、分子量が異なる少なくとも2種の樹脂粒子を含むことで、定着性、発色性、透明性、混色性等に優れることが開示されている。
離型剤としては、ポリエチレン、ポリプロピレン、ポリブテン等の低分子量ポリオレフィン類;シリコーン類、オレイン酸アミド、エルカ酸アミド、リシノール酸アミド、ステアリン酸アミド等のような脂肪酸アミド類;カルナウバワックス、ライスワックス、キャンデリラワックス、木ロウ、ホホバ油等のような植物系ワックス;ミツロウのごとき動物系ワックス;モンタンワックス、オゾケライト、セレシン、パラフィンワックス、マイクロクリスタリンワックス、フィッシャートロプシュワックス等のような鉱物系、石油系のワックス、及びそれらの変性物が開示されている。
しかし、離型剤を添加してその分散性が悪化すると、定着時に溶融したトナー画像において色濁りが生じ易い傾向にある。それと共に顔料の分散度も悪化し、トナーの発色性が不十分になってしまう。また次の工程において凝集体表面にさらに樹脂微粒子を付着融合する際にその離型剤等の分散性低下が樹脂微粒子の付着を不安定なものとなってしまう。また一度樹脂と凝集した離型剤が分離して水系中に遊離する。離型剤の分散は使用するワックス等の極性、融点等の熱特性が混合凝集時の凝集に与える影響は大きい。さらには定着時にオイルを使用しないオイルレス定着を実現するため、特定のワックスを多量に添加する構成となる。そして融点、軟化点、粘弾性が異なる樹脂と凝集させ、加熱により融合する際に均一な状態を保持したまま融合することが困難となる。特に一定の酸価、官能基を有する離型剤を使用することで、オイルレス定着と、現像時のカブリの低減や、転写効率との両立を図ることが可能となるが、逆に製造時の水系中での樹脂微粒子、顔料微粒子との均一な混合凝集が妨げられ、水系中で凝集にかかわらない浮遊した離型剤の存在、また顔料においても浮遊顔料の存在を増大させる傾向にある。
特許第2801507号公報 特開2002−23429号公報 特開平10−198070号公報 特開平10−301332号公報
本発明は、シャープな粒度分布を有する小粒径のトナーを、分級工程不要で作成できることを第1番目の目的とする。第2番目の目的は、定着ローラにオイルを使用しないオイルレス定着において、トナー中にワックス等の離型剤を使用して低温定着と、高温オフセット性と貯蔵安定性の両立を実現することである。第3番目の目的は、ワックス等の離型剤を含有したトナーと組合せた使用においてもスペント化による劣化も生じない高い耐久性のある長寿命の二成分現像剤を提供することである。第4番目の目的は、転写時の中抜けや、飛び散りを防止し、高転写効率が得られる画像形成装置を提供することである。
本発明のトナーの製造方法は、水系媒体中において、少なくとも、樹脂粒子を分散させた樹脂粒子分散液、着色剤粒子を分散させた着色剤粒子分散液及びワックス粒子を分散させたワックス粒子分散液とを混合し、凝集加熱により水系中でトナーを作成するトナー製造方法であって、少なくとも、前記樹脂粒子を分散させた樹脂粒子分散液、前記着色剤粒子を分散させた着色剤粒子分散液及び前記ワックス粒子を分散させたワックス粒子分散液の混合分散液を作成する工程と、前記混合分散液のpHを9.5〜12.2の範囲に調整し、水溶性無機塩を添加し、加熱処理して前記樹脂粒子、前記着色剤粒子及び前記ワックス粒子が凝集した少なくとも一部が溶融した凝集粒子を形成し、前記凝集粒子が形成されたときのpHが7.0〜9.5の範囲である工程と、その後pHを2.2〜6.8の範囲に調整し、加熱処理する工程とを含む。
また、本発明の別のトナーの製造方法は、水系媒体中において、少なくとも、樹脂粒子を分散させた樹脂粒子分散液、着色剤粒子を分散させた着色剤粒子分散液及びワックス粒子を分散させたワックス粒子分散液とを混合し、加熱凝集により水系中でトナーを作成するトナー製造方法であって、少なくとも、前記樹脂粒子を分散させた樹脂粒子分散液、前記着色剤粒子を分散させた着色剤粒子分散液及び前記ワックス粒子を分散させたワックス粒子分散液の混合分散液を作成する工程と、前記混合分散液のpHを9.5〜12.2の範囲に調整し、水溶性無機塩を添加し、加熱処理して前記樹脂粒子、前記着色剤粒子及び前記ワックス粒子が凝集した少なくとも一部が溶融した凝集粒子を形成し、前記凝集粒子が形成されたときのpHが7.0〜9.5の範囲である工程と、その後pHを2.2〜6.8の範囲に調整し、加熱処理して芯粒子を形成する工程と、前記芯粒子が分散した芯粒子分散液に、さらに第二の樹脂粒子を分散させた第二の樹脂粒子分散液を添加する工程と、pHを5.2〜8.8の範囲に調整する工程と、前記第二の樹脂粒子のガラス転移点温度以上の温度で加熱処理する工程と、pHを2.2〜6.8の範囲に調整する工程と、さらに、前記第二の樹脂粒子のガラス転移点温度以上の温度で加熱処理して前記芯粒子に、前記第二の樹脂粒子を融着する工程とを含む。
本発明のさらに別のトナーの製造方法は、水系媒体中において、少なくとも、第一の樹脂粒子を分散させた第一の樹脂粒子分散液、着色剤粒子を分散させた着色剤粒子分散液及びワックス粒子を分散させたワックス粒子分散液とを混合し、加熱凝集により水系中でトナーを作成するトナー製造方法であって、少なくとも、前記第一の樹脂粒子を分散させた第一の樹脂粒子分散液、前記着色剤粒子を分散させた着色剤粒子分散液及び前記ワックス粒子を分散させたワックス粒子分散液の混合分散液を作成する工程と、前記混合分散液のpHを9.5〜12.2の範囲に調整し、水溶性無機塩を添加し、加熱処理して前記第一の樹脂粒子、前記着色剤粒子及び前記ワックス粒子が凝集した少なくとも一部が溶融した凝集粒子を形成し、前記凝集粒子が形成されたときのpHが7.0〜9.5の範囲である工程と、その後pHを2.2〜6.8の範囲に調整し、加熱処理して芯粒子を形成する工程と、前記芯粒子が分散した芯粒子分散液のpH値をHSとすると、分散液のpH値をHS+2〜HS−5の範囲に調整した第ニの樹脂粒子を分散させた第二の樹脂粒子分散液を、前記芯粒子が分散した芯粒子分散液に添加混合する工程とを含む。
本発明の二成分現像剤は、前記の製造方法で製造されたトナー母体粒子に、平均粒子径が6nm〜200nmの範囲の無機微粉末を前記トナー母体粒子100重量部に対し1〜6重量部の範囲で添加されるトナーと、硬化させたバインダー樹脂と磁性体微粒子とからなる磁性粒子であり、前記磁性体微粒子の含有量が80〜99wt%、数平均粒子径が10〜60μmであり、かつ前記磁性粒子の表面がアミノシランカップリング剤を含むフッ素変性シリコーン樹脂により被覆された磁性粒子を含むキャリアとを含むことを特徴とする。
本発明の画像形成装置は、少なくとも像担持体と前記像担持体に静電潜像を形成する帯電手段とトナー担持体を含むトナー像形成ステーションを複数個有し、前記像担持体上に形成した静電潜像を前記の二成分現像剤により顕像化し、静電潜像を顕像化した前記トナー像を、順次連続して転写媒体に転写させる転写プロセスが実行されるよう構成された転写システムを具備し、前記転写プロセスが、第1の転写位置から第2の転写位置までの距離、又は第2の転写位置から第3の転写位置までの距離、又は第3の転写位置から第4の転写位置までの距離をd1(mm)、感光体の周速度をv(mm/s)とした場合、d1/v≦0.65(sec)の条件を満足することを特徴とする。
本発明は、シャープな粒度分布を有する小粒径のトナーを、分級工程不要で作成できる。
本発明方法は、樹脂粒子を分散させた樹脂粒子分散液と、着色剤粒子を分散させた着色剤粒子分散液及びワックスを分散させたワックス粒子分散液とを水系中で混合凝集し、加熱して生成されるトナー母体であって、水系中で凝集にかかわらない浮遊したワックスの粒子の存在をなくし、顔料も浮遊顔料の存在をなくし、小粒径でかつ均一で狭い範囲でシャープな粒度分布を有する小粒径のトナーを、分級工程不要で作成することができる。
また本発明は、オイルの塗布を必要とせずにオフセット性を防止し、低温で定着できる。さらに、ワックス等の離型剤を含有したトナーと組合せた使用においても、スペント化による劣化も生じない耐久性のある二成分現像剤を実現できる。
また複数の感光体及び現像部を有する像形成ステーションを並べて配置し、転写体に順次各色のトナーを連続して転写プロセスを実行するタンデムカラープロセスにおいて、転写時の中抜けや逆転写を防止し、高転写効率を得ることが出来る。
本発明は、オイルレス定着で高光沢性、高透光性を有し、好適な帯電特性及び環境依存性、クリーニング性、転写性を有し、かつシャープな粒度分布を有する小粒子径の静電荷像現像用トナー、二成分現像剤を提供し、かつ、トナーの飛散、かぶり等の無い高画質で信頼性の高いカラー画像の形成を可能にする画像形成を提供することについて鋭意検討した。
(1)重合方法
樹脂粒子分散液の調製は、ビニル系単量体をイオン性界面活性剤中で乳化重合やシード重合等することにより、ビニル系単量体の単独重合体又は共重合体(ビニル系樹脂)の樹脂粒子をイオン性界面活性剤に分散させてなる分散液が調製される。その手段としては、例えば、高速回転型乳化装置、高圧乳化装置、コロイド型乳化装置、メデイアを有するボールミル、サンドミル、ダイノミルなどのそれ自体公知の分散装置が挙げられる。
樹脂粒子における樹脂が、前記ビニル系単量体の単独重合体又は共重合体以外の樹脂である場合には、該樹脂が、水への溶解度が比較的低い油性溶剤に溶解するのであれば、該樹脂を該油性溶剤に溶解させ、この溶液を、ホモジナイザー等の分散機を用いてイオン性界面活性剤や高分子電解質と共に水中に微粒子分散し、その後、加熱又は減圧して該油性溶剤を蒸散させることにより、ビニル系樹脂以外の樹脂製の樹脂粒子をイオン性界面活性剤に分散させてなる分散液が調製される。
重合開始剤としては、2,2’−アゾビスー(2,4−ジメチルバレロニトリル)、2,2’−アゾビスイソブチロニトリル、1,1’−アゾビス(シクロヘキサンー1−カルボニトリル)、2,2’−アゾビスー4−メトキシ−2,4−ジメチルバレロニトリル、アゾビスイソブチロニトリル等のアゾ系又はジアゾ系重合開始剤、や過硫酸塩(過硫酸カリウム、過硫酸アンモニウム等)、アゾ系化合物(4,4'−アゾビス4−シアノ吉草酸及びその塩、2,2'−アゾビス(2−アミジノプロパン)塩等)、パーオキシド化合物等が挙げられる。
着色剤粒子分散液は、界面活性剤を添加した水中に着色剤粒子を添加し、前記した分散の手段を用いて分散させることにより調製される。
ワックス粒子分散液は、界面活性剤を添加した水中にワックスを添加し、前記した分散の手段を用いて分散させることにより調製される。
本実施形態のトナーは、水系媒体中で樹脂粒子を分散させた樹脂粒子分散液と、着色剤粒子を分散させた着色剤粒子分散液及びワックスの粒子分散液とを水系中で混合凝集し、加熱してトナー母体粒子を生成する。
本発明の好ましい第一の製造方法の構成としては、水系媒体中で樹脂粒子を分散させた樹脂粒子分散液と、着色剤粒子を分散させた着色剤粒子分散液及びワックスの粒子分散液の混合分散液に水溶性無機塩を添加し、樹脂のガラス転移点温度(Tg)以上に加熱することで一定の粒径を有した凝集粒子(芯粒子と称することもある)生成される。
このとき水溶性無機塩の添加前及び加熱前に、混合分散液のpHを9.5〜12.2の範囲に調整することが好ましい。1NのNaOHを添加することでpHの調整が可能である。pHを調整することにより、添加する水溶性無機塩との関係から、樹脂、着色剤及びワックス粒子同士の凝集を促進するとともに、過度の凝集を抑制して、小粒径で狭い粒度分布の粒子形成を可能とするためである。pHが9.5未満であると、形成された粒子が粗大化する傾向となる。また、pHが12.2を超えると、樹脂、着色剤及びワックス粒子同士の凝集が進まず、遊離したワックス粒子、着色剤粒子が多くなり、ワックスを均一に内包化することが困難になる。
pH調整後に、水溶性無機塩を添加し、加熱処理して少なくとも樹脂粒子、着色剤粒子及びワックス粒子が凝集した所定の体積平均粒径(例えば3〜6μm)の凝集粒子が形成される。この所定の体積平均粒径の凝集粒子が形成されたときの液のpHを7.0〜9.5の範囲に保持することにより、着色剤やワックスの遊離が少なく、ワックスが内包された狭い粒度分布の凝集粒子が形成できる。添加するNaOH量、凝集剤種や量、乳化重合樹脂分散液のpH、着色剤分散液のpH、ワックス分散液のpHの設定値や、加熱温度、時間は適宜選択する。
混合分散液を加熱処理することによりシャープメルト性を有するワックスの溶融が始まり、溶融したワックス同士の凝集が始まる。樹脂のガラス転移点(Tg)は30〜70℃であるが、水系媒体が樹脂のTg以上の温度でも、樹脂はワックスのようにシャープに溶融が始まるわけではなく、表面が徐々に溶融が進む。そして溶融したワックスを取り囲むように樹脂及び顔料の微粒子が凝集し、凝集した樹脂も熱により溶融し融着する。そして低融点のワックスが樹脂によって内包化される状態が形成される。
凝集粒子が形成されたときの液のpHが7.0未満であると、凝集粒子が粗大化する傾向になる。pHが9.5を超えると、凝集不良で着色剤やワックスの遊離が多くなる傾向になる。
その後さらにpHを2.2〜6.8の範囲に調整し加熱処理して凝集粒子であるトナー母体粒子を生成することが好ましい。この範囲に調整して加熱処理を施すことにより、凝集粒子相互の二次凝集を抑制しながら、かつ粒子形状の球形化を進めることができ、また粒度分布をよりシャープに絞り込めることが出来る。このような方法で生成したトナー母体粒子を洗浄乾燥後に外添処理を施してトナーが作成される。pHが2.2未満であると、界面活性剤の効果が消されてしまう。pHが6.8を超えると、加熱により凝集粒子の二次凝集が生じて粒子径が大きくなるとともに、粒度分布もブロードになる。
また、樹脂粒子を分散させた樹脂粒子分散液と、着色剤粒子を分散させた着色剤粒子分散液及びワックスの粒子分散液を混合した混合分散液のpHを6.0以下とした混合分散液を作成することが好ましい。乳化重合樹脂を重合生成する際に重合開始剤として過硫酸カリウム等の過硫酸塩を使用した際、その残留分が加熱凝集工程時の熱により分解してpHを下げてしまうことがあるためである。樹脂の乳化重合した後に一定温度以上(残留分を十分に分解させておくために80℃以上が好ましい)で、一定時間(1〜5時間程度が好ましい)加熱処理を施すことが好ましい。このときの乳化重合樹脂の分散液のpHは4以下、更に好ましくは1.8以下とすることが好ましい。混合分散液を作成したときのpHが6.0を超えていると、加熱して着色樹脂粒子を形成する際に、重合開始剤の過硫酸塩の残留分が分解し、液中のpH変動(pH減少現象)が大きくなり、加熱凝集して得られた粒子が粗大化する傾向となる。
本発明の好ましい第ニの製造方法の構成としては、第一の製造方法により生成した凝集粒子(芯粒子とも称する)が分散した凝集粒子分散液に、第二の樹脂粒子を分散させた第二の樹脂粒子分散液を混合し、加熱融着することで、樹脂の表面層を形成する構成である。これによりトナーの耐久性や、オフセット性をより良好なものとすることが出来る。
芯粒子の表面に第二の樹脂を付着させて、その第二の樹脂のTg以上に加熱して樹脂表面融着層を形成する際には、第二の樹脂粒子を遊離させることなく、かつ芯粒子の二次凝集を防いで、芯粒子表面に均一に付着させることが必要である。
その芯粒子が分散した芯粒子分散液に、第二の樹脂粒子を分散させた第二の樹脂粒子分散液を添加し、第二の樹脂粒子分散液が添加された芯粒子分散液のpHを5.2〜8.8の範囲に調整し、その後、第二の樹脂粒子のガラス転移点温度以上の温度で0.5〜2時間加熱処理することが好ましい。pH調整の目的は、芯粒子表面に粒子径が2桁異なる第二の樹脂粒子の付着を促進させ、かつ第二の樹脂粒子同士や芯粒子同士の凝集を防ぐためである。pH調整により粒子間の反発力や、凝集力を調整できる。
この工程により、第二の樹脂粒子を芯粒子表面に浮遊粒子を抑えて均一に付着させることが可能となる。pHが5.2未満であると、第二の樹脂粒子の付着が起こりにくく、遊離樹脂粒子が増加する傾向になる。pHが8.8を超えると、芯粒子同士の二次凝集が発生しやすくなる。処理時間を2時間以上長くすると、粒子の粗大化と粒度分布がブロードになる傾向にある。
その後にさらにpHを3.2〜6.8の範囲に調整した後、さらに第二の樹脂粒子のガラス転移点温度以上の温度で2〜6時間加熱処理して、前記芯粒子に第二の樹脂粒子を融着させることが好ましい。
第二の樹脂粒子分散液を添加した芯粒子分散液を、液pHを調整する工程を少なくとも2段階以上有し、その工程において、2回目の液pHの調整が1回目に調整した液のpH値より少ない値に調整する。これはそのままのpH値の状態で加熱処理を進めると芯粒子同士の凝集が進み粒径が粗大化してしまう。しかし、加熱処理を進めないと、芯粒子表面に付着した第二の樹脂粒子の融着が進まず、表面が凹凸状のままとなり、現像、転写性に課題を残すことになる。第1回目のpHを5.2〜8.8の範囲に調整する目的は、芯粒子に第二の樹脂粒子の付着を促進させることを狙いとするもので、そのため液のpH値を中性付近にシフトさせることが効果的である。
そしてさらに、その後にpHを3.2〜6.8の範囲に再度調整する目的は、第二の樹脂粒子が付着した芯粒子同士が二次凝集を生じて、粒子が粗大化することを防ぐことを狙いし、二次凝集を起こさずに、芯粒子に第二の樹脂粒子を融着させて狭い粒度分布の粒子を生成することが可能となる。
この工程により、芯粒子相互、或いは第二の樹脂粒子相互の二次凝集を起こさず、芯粒子に第二の樹脂粒子を融着させて狭い粒度分布の粒子を得ることが出来る。pHが3.2未満であると、一旦付着した樹脂粒子が遊離する場合がある。pHが6.8を超えると、芯粒子の二次凝集が発生しやすくなる。
芯粒子と、第二の樹脂粒子が芯粒子に付着融着した粒子との体積平均粒子径の差が0.5〜2μmであることが好ましい。0.5μm未満であると、第二の樹脂の付着状態が不良で、水分の影響、第二の樹脂自体の強度が不足する。2μmを超えると定着性、光沢性を低下させる。
本発明の好ましい第三の製造方法の構成としては、芯粒子が分散した芯粒子分散液に、第二の樹脂粒子を分散させた第二の樹脂粒子分散液を添加混合し、第二の樹脂粒子のガラス転移点温度以上の温度で加熱処理して芯粒子に、第二の樹脂粒子を芯粒子に融着させる樹脂融着層を形成することによりトナー母体粒子を生成する構成であって、生成された芯粒子分散液に、第二の樹脂粒子分散液を添加する際、芯粒子が分散した芯粒子分散液のpH値をHSとすると、第ニの樹脂粒子を分散させた第二の樹脂粒子分散液のpHをHS+2〜HS−5の範囲に調整して添加する構成である。
芯粒子分散液に酸性の強い第二の樹脂粒子分散液等を添加すると、水溶性無機塩の凝集剤としての効果が弱まり、芯粒子と樹脂粒子との付着が妨げられる。また芯粒子分散液にpH値が離れた樹脂粒子分散液等を添加すると、液のpHのバランスが急に乱されるため、芯粒子への樹脂粒子の付着が生じないばかりか、芯粒子同士の二次凝集を発生させる結果となってしまう。このような現象を抑えるために、第二の樹脂粒子分散液のpHを調整することが効果的である。
この構成により、第ニの樹脂粒子の浮遊粒子の発生が低減され、第ニの樹脂粒子の芯粒子表面への均一な付着が行える。また芯粒子への付着が促進され、付着溶融の処理時間が早くなり、生産性を向上させることができる。また、第ニの樹脂粒子の芯粒子への付着溶融の際、粒子の急激な粗大化を防ぐことができ、小粒径でシャープな粒度分布を形成することができる。HS+2よりも大きいと、粒子が粗大化し、粒度分布がブロードになる傾向にある。HS−5よりも小さいと、第ニの樹脂粒子の凝集粒子への付着が進まず、処理に長時間要すだけでなく、第ニの樹脂粒子が水系中に浮遊したままで、白濁のまま進行しない傾向にある。
本発明の好ましい第三の製造方法の構成において、生成された芯粒子分散液に添加する第ニの樹脂粒子を分散させた第二の樹脂粒子分散液のpH値は、芯粒子が分散した芯粒子分散液のpH値にかかわりなく、3.5〜10.5の範囲に調整して添加する構成が好ましい。
pHが3.5よりも小さくなると第ニの樹脂粒子の芯粒子表面への付着が進行せず、第ニの樹脂粒子が水系中で浮遊したままで、液は白濁したままである。pHが10.5よりも大きいと、生成される粒子が急激に粗大化する傾向にある。
その後、任意の洗浄工程、固液分離工程、及び乾燥工程を経て、トナーを得ることができる。この洗浄工程においては、帯電性を向上させる観点より、十分にイオン交換水による置換洗浄を行うのが好ましい。前記固液分離工程における分離方法としては、特に制限はなく、生産性の観点から、吸引濾過法や加圧濾過法などの公知のろ過方法が好ましく挙げられる。前記乾燥工程における乾燥方法としては、特に制限はなく、生産性の観点から、フラッシュジェット乾燥方法、流動乾燥方法、及び振動型流動乾燥方法などの公知の乾燥方法が好ましく挙げられる。
水溶性無機塩としては、アルカリ金属塩及びアルカリ土類金属塩を挙げることができる。アルカリ金属としては、リチウム、カリウム、ナトリウム等が挙げられ、アルカリ土類金属としては、マグネシウム、カルシウム、ストロンチウム、バリウム等が挙げられる。これらのうち、カリウム、ナトリウム、マグネシウム、カルシウム、バリウムが好ましい。前記アルカリ金属又はアルカリ土類金属の対イオン(塩を構成する陰イオン)としては、塩化物イオン、臭化物イオン、ヨウ化物イオン、炭酸イオン、硫酸イオン等が挙げられる。
水に無限溶解する有機溶媒としては、メタノール、エタノール、1−プロパノール、2−プロパノール、エチレングリコール、グリセリン、アセトン等が挙げられる。これらのうち、メタノール、エタノール、1−プロパノール、2−プロパノールなどの炭素数が3以下のアルコールが好ましく、特に2−プロパノールが好ましい。極性を有する分散剤としては、極性界面活性剤を含有する水系媒体などが挙げられる。水系媒体としては、蒸留水、イオン交換水等の水、アルコール類などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。前記極性を有する分散剤における前記極性界面活性剤の含有量としては、一概に規定することはできず、目的に応じて適宜選択することができる。
極性界面活性剤としては、例えば、硫酸エステル塩系、スルホン酸塩系、リン酸エステル系、せっけん系等のアニオン界面活性剤、アミン塩型、4級アンモニウム塩型等のカチオン界面活性剤などが挙げられる。
前記アニオン界面活性剤の具体例としては、ドデシルベンゼンスルホン酸ナトリウム、ドデシル硫酸ナトリウム、アルキルナフタレンスルホン酸ナトリウム、ジアルキルスルホコハク酸ナトリウムなどが挙げられる。前記カチオン界面活性剤の具体例としては、アルキルベンゼンジメチルアンモニウムクロライド、アルキルトリメチルアンモニウムクロライド、ジステアリルアンモニウムクロライドなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
また本発明においては、これらの極性界面活性剤と、非極性界面活性剤とを併用することできる。前記非極性界面活性剤としては、例えば、ポリエチレングリコール系、アルキルフェノールエチレンオキサイド付加物系、多価アルコール系等の非イオン系界面活性剤などが挙げられる。
(2)ワックス
本実施形態のトナーにおけるワックスとして好ましい第一の構成は、ヨウ素価が25以下、けん化価が30〜300からなる構成のワックスを使用する構成である。これによりオイルを塗布せずとも、オフセット性を防止して低温定着で、高光沢性、透光性を有するオイルレス定着を実現できる。またトナー多層転写時にトナーの電荷作用による反発が緩和され、転写効率の低下、転写時の文字の中抜け、逆転写を抑えることができる。また後述するキャリアと組合せた使用によりキャリアへのスペントの発生を抑制でき、現像剤の長寿命化を可能とできる。また現像器内でのハンドリング性が向上し、現像の奥側と、手前側で画像の均一性が向上する。また現像メモリー発生を低減できる。
ヨウ素価が25より大きいと、水系中での浮遊物が増大し、凝集粒子表面への均一付着性が低下する。これがトナーに残留してしまうと、感光体等のフィルミングを生じさせる。一次転写でのトナー多層転写時にトナーの電荷作用による反発が緩和されにくくなる。環境依存性が大きく、また長期連続使用時に材料の帯電性の変化が大きくなり画像の安定性を阻害する。また現像メモリーも発生しやすくなる。けん化価が30より小さくなると、不けん化物、炭化水素の存在が増加し、感光体フィルミング、トナーの帯電性の悪化を生じる。フィルミングや連続使用時の帯電性の低下を招く。300より大きくなると水系中での浮遊物が増大し、凝集粒子表面への均一付着性が低下する。トナーの電荷作用による反発が緩和されにくくなる。またカブリやトナー飛散の増大を招く。
そのワックスの220℃における加熱減量は8重量%以下であることが好ましい。加熱減量が8重量%より大きくなると、トナーのガラス転移点を低下させ、トナーの貯蔵安定性を損なう。現像特性に悪影響を与え、カブリや感光体フィルミングを生じさせる。生成されるトナーの粒度分布がブロードになってしまう。
ゲル浸透クロマトグラフィー(GPC)における分子量特性、数平均分子量が100〜5000、重量平均分子量が200〜10000、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が1.01〜8、Z平均分子量と数平均分子量の比(Z平均分子量/数平均分子量)が1.02〜10、分子量5×102〜1×104の領域に少なくとも一つの分子量極大ピークを有していることが好ましい。より好ましくは数平均分子量が500〜4500、重量平均分子量が600〜9000、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が1.01〜7、Z平均分子量と数平均分子量の比(Z平均分子量/数平均分子量)が1.02〜9、さらに好ましくは数平均分子量が700〜4000、重量平均分子量が800〜8000、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が1.01〜6、Z平均分子量と数平均分子量の比(Z平均分子量/数平均分子量)が1.02〜8である。
数平均分子量が100より小さく、重量平均分子量が200より小さく、分子量極大ピークが5×102よりも小さい範囲に位置しているとなると保存安定性が悪化する。また現像器内でのハンドリング性が低下し、トナー濃度の均一性保持を阻害する。トナーの感光体フィルミングを生じてしまう。生成されるトナーの粒度分布がブロードになってしまう。
数平均分子量が5000より大きく、重量平均分子量が10000より大きく、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が8より大きく、Z平均分子量と数平均分子量の比(Z平均分子量/数平均分子量)が10より大きく、分子量極大ピークが1×104の領域よりも大きい範囲に位置していると、離型作用が弱くなり定着性、耐オフセット性等の定着性機能が低下する。ワックスの乳化分散粒子生成時の生成粒子の粒径を小さくできにくくなる。
DSC法による吸熱ピーク温度(融点Tmw)が50〜100℃のものが好ましい。好ましくは55〜95℃、さらに好ましくは、65〜85℃のものである。50℃よりも低いと、トナーの貯蔵安定性が悪化する。100℃よりも高いと乳化分散粒子生成時の生成粒子の粒径を小さくできにくくなる。凝集粒子表面への均一付着性が低下する。
さらに融点以上の温度での10℃変化時の容積増加率が2〜30%の材料が好ましい。固体から液体に変わるとき急激に膨張することで定着時の熱で溶融したとき、トナー相互の接着性がより強化され、より定着性が向上し、また定着ローラとの離型性も良くなり耐オフセット性も向上する。
添加量としては、結着樹脂100重量部に対して2〜90重量部添加が好ましい。好ましくは結着樹脂100重量部に対して5〜80重量部、より好ましくは10〜50重量部、さらに好ましくは15〜20重量部添加が好ましい。2重量部以下であると、定着性向上の効果が得られず、90重量部以上では貯蔵安定性に難点がある。
ワックスとしては、メドウフォーム油誘導体、カルナウバワックス誘導体、ホホバ油誘導体、木ロウ、ミツロウ、オゾケライト、カルナウバワックス、キャンデリアワックス、セレシンワックス、ライスワックス等の材料も好ましく、またこれらの誘導体も好適に使用される。そして一種類又は二種類以上組み合わせての使用も可能である。
メドウフォーム油誘導体としては、メドウフォーム油脂肪酸、メドウフォーム油脂肪酸の金属塩、メドウフォーム油脂肪酸エステル、水素添加メドウフォーム油、メドウフォーム油アミド、ホモメドウフォーム油アミド、メドウフォーム油トリエステル、エポキシ化メドウフォーム油のマレイン酸誘導体、メドウフォーム油脂肪酸多価アルコールエステルのイソシアネート重合物、ハロゲン化変性メドウフォーム油も好ましく使用できる。小粒径の均一な粒度分布の乳化分散体を作成することができる。凝集粒子表面への均一な付着性が得られる。
オイルレス定着と現像剤の長寿命化、転写性改良に効果が得られる好ましい材料である。これらは1種又は2種以上組み合せての使用が可能である。
メドウフォーム油をけん化分解して得られるメドウフォーム油脂肪酸は4〜30個の炭素原子を有する脂肪酸からなるものが好ましい。その金属塩はナトリウム、カリウム、カルシウム、マグネシウム、バリウム、亜鉛、鉛、マンガン、鉄、ニッケル、コバルト、アルミニウムなどの金属塩が使用することが出来る。高温での耐オフセット性が良好である。
メドウフォーム油脂肪酸エステルとしては例えば、メチル、エチル、ブチルやグリセリン、ペンタエリスリトール、ポリプロピレングリコール、トリメチロールプロパンなどのエステルであり、特に、メドウフォーム油脂肪酸ペンタエリスリトールモノエステル、メドウフォーム油脂肪酸ペンタエリスリトールトリエステル、メドウフォーム油脂肪酸トリメチロールプロパンエステルなどが好ましい。高温での耐オフセット性とともに耐コールドオフセット性が良好である。
さらには、メドウフォーム油脂肪酸とグリセリン、ペンタエリスリトール、トリメチロールプロパン等の多価アルコールとのエステル化反応物を、トリレンジイソシアネート(TDI)、ジフェニルメタン−4,4’−ジイソシアネート(MDI)、等のイソシアネートで架橋して得られるメドウフォーム油脂肪酸多価アルコールエステルのイソシアネート重合物も好ましく使用できる。キャリアへのスペント性が少なく、二成分現像剤のより長寿命化が可能となる。
水素添加メドウフォーム油はメドウフォーム油に水素添加して不飽和結合を飽和結合としたものである。耐オフセット性とともに、光沢性、透光性を向上できる。
メドウフォーム油アミドはメドウフォーム油を加水分解した後、エステル化することにより脂肪酸メチルエステルとし、その後、濃アンモニア水と塩化アンモニウムとの混合物と反応して得られる。さらにこれに水素添加することにより融点を調節することが可能となる。また加水分解する前に水素添加することも可能である。融点が75〜120℃の物が得られる。ホモメドウフォーム油アミドは、メドウフォーム油を加水分解後還元してアルコールとした後、二トリルを経て得られる。耐オフセット性とともに、光沢性、透光性を向上できる。
ホホバ油誘導体としては、ホホバ油脂肪酸、ホホバ油脂肪酸の金属塩、ホホバ油脂肪酸エステル、水素添加ホホバ油、ホホバ油アミド、ホモホホバ油アミド、ホホバ油トリエステル、エポキシ化ホホバ油のマレイン酸誘導体、ホホバ油脂肪酸多価アルコールエステルのイソシアネート重合物、ハロゲン化変性ホホバ油も好ましく使用できる。小粒径の均一な粒度分布の乳化分散体を作成することができる。凝集粒子表面への均一な付着性が得られる。また樹脂とワックスの均一混合分散が行いやすい。オイルレス定着と現像剤の長寿命化、転写性改良に効果が得られる好ましい材料である。これらは1種又は2種以上組み合せての使用が可能である。
ホホバ油をけん化分解して得られるホホバ油脂肪酸は4〜30個の炭素原子を有する脂肪酸からなる。その金属塩はナトリウム、カリウム、カルシウム、マグネシウム、バリウム、亜鉛、鉛、マンガン、鉄、ニッケル、コバルト、アルミニウムなどの金属塩が使用することが出来る。高温での耐オフセット性が良好である。
ホホバ油脂肪酸エステルとしては例えば、メチル、エチル、ブチルやグリセリン、ペンタエリスリトール、ポリプロピレングリコール、トリメチロールプロパンなどのエステルであり、特に、ホホバ油脂肪酸ペンタエリスリトールモノエステル、ホホバ油脂肪酸ペンタエリスリトールトリエステル、ホホバ油脂肪酸トリメチロールプロパンエステルなどが好ましい。高温での耐オフセット性とともに耐コールドオフセット性が良好である。
さらには、ホホバ油脂肪酸とグリセリン、ペンタエリスリトール、トリメチロールプロパン等の多価アルコールとのエステル化反応物を、トリレンジイソシアネート(TDI)、ジフェニルメタン−4,4'−ジシソシアネート(MDI)、等のイソシアネートで架橋して得られるホホバ油脂肪酸多価アルコールエステルのイソシアネート重合物も好ましく使用できる。キャリアへのスペント性が少なく、二成分現像剤のより長寿命化が可能となる。
水素添加ホホバ油はホホバ油に水素添加して不飽和結合を飽和結合としたものである。耐オフセット性とともに、光沢性、透光性を向上できる。
ホホバ油アミドはホホバ油を加水分解した後、エステル化することにより脂肪酸メチルエステルとし、その後、濃アンモニア水と塩化アンモニウムとの混合物と反応して得られる。さらにこれに水素添加することにより融点を調節することが可能となる。また加水分解する前に水素添加することも可能である。融点が75〜120℃の物が得られる。ホモホホバ油アミドは、ホホバ油を加水分解後還元してアルコールとした後、二トリルを経て得られる。耐オフセット性とともに、光沢性、透光性を向上できる。
ケン化価は、試料の1gをけん化するのに要する水酸化カリウムKOHのミリグラム数をいう。酸価とエステル価の和にあたる。ケン化価値を測定するには約0.5Nの水酸化カリウムのアルコール溶液中で試料をケン化した後、0.5Nの塩酸で過剰の水酸化カリウムを滴定する。
ヨウ素価は試料にハロゲンを作用させたときに、吸収されるハロゲンの量をヨウ素に換算し、試料100gに対するg数で表したものをいう。脂肪100gに吸収されるヨウ素のグラム数であり、この値が大きいほど試料中の脂肪酸の不飽和度が高いことを示す。試料のクロロホルム又は四塩化炭素溶液にヨウ素と塩化水銀(II)のアルコール溶液又は塩化ヨウ素の氷酢酸溶液を加えて、放置後反応しないで残ったヨウ素をチオ硫酸ナトリウム標準液で滴定して吸収ヨウ素量を算出する。
加熱減量の測定は試料セルの重量を0.1mgまで精秤(W1mg)し、これに試料10〜15mgを入れ、0.1mgまで精秤する(W2mg)。試料セルを示差熱天秤にセットし、秤量感度を5mgにして測定開始する。測定後、チャートにより試料温度が220℃になった時点での重量減を0.1mgまで読み取る(W3mg)。装置は、真空理工製TGD−3000、昇温速度は10℃/min、最高温度は220℃、保持時間は1minで、加熱減量(%)=W3/(W2−W1)×100、で求められる。
これによりカラー画像における透光性を改善すると共にローラへの耐オフセット性を向上させることが可能となる。またキャリアへのスペントの発生を抑制でき現像剤の長寿命化を可能とできる。
また、本実施形態のトナーにおいて使用するワックスとして好ましい第ニの構成は、長鎖アルキルアルコール、不飽和多価カルボン酸又はその無水物及び合成炭化水素系ワックスとの反応により得られるワックスが好ましい。炭素数4〜30の長鎖アルキル基が好ましく、酸価10〜80mgKOH/gのワックスを使用する構成である。
このワックスは、炭素数4〜30の長鎖アルキルアルコールと不飽和多価カルボン酸又はその無水物及び不飽和炭化水素系ワックスとの反応により得られるワックスが好ましい。
また、長鎖アルキルアミンと不飽和多価カルボン酸又はその無水物及び不飽和炭化水素系ワックスとの反応により得られワックス、又は長鎖フルオロアルキルアルコールと不飽和多価カルボン酸又はその無水物及び不飽和炭化水素系ワックスとの反応により得られるワックスも好適に使用できる。効果は長鎖アルキル基による離型作用の増進、エステル基による樹脂との分散相性を良くし、ビニル基による耐久性、オフセット性の良化効果が考えられる。
このワックスのGPCにおける分子量分布において、重量平均分子量が1000〜6000、Z平均分子量が1500〜9000、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が1.1〜3.8、Z平均分子量と数平均分子量の比(Z平均分子量/数平均分子量)が1.5〜6.5、1×103〜3×104の領域に少なくとも一つの分子量極大ピークを有し、酸価10〜80mgKOH/g、融点50〜120℃、25℃における針入度が4以下であることが好ましい。
より好ましくは重量平均分子量が1000〜5000、Z平均分子量が1700〜8000、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が1.1〜2.8、Z平均分子量と数平均分子量の比(Z平均分子量/数平均分子量)が1.5〜4.5、1×103〜1×104の領域に少なくとも一つの分子量極大ピークを有し、酸価10〜50mgKOH/g、融点60〜110℃が好ましく、
更に好ましくは重量平均分子量が1000〜2500、Z平均分子量が1900〜3000、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が1.2〜1.8、Z平均分子量と数平均分子量の比(Z平均分子量/数平均分子量)が1.7〜2.5、1×103〜3×103の領域に少なくとも一つの分子量極大ピークを有し、酸価35〜50mgKOH/g、融点65〜95℃である。
オイルレス定着における非オフセット性と高光沢性、OHPの高透光性を発現でき、高温保存性を低下させることがない。薄紙に3層のカラートナーが形成された画像において、定着ローラやベルトとの紙の分離性向上に特に効果がある。
また極性を有する分散剤中での乳化分散が均一な小粒径粒子の作成が可能となり、混合凝集により樹脂顔料との均一凝集が可能となり、浮遊物の存在をなくし、色濁りを抑えられる。また凝集粒子表面への均一な付着性が得られる。これによりオイルを塗布せずとも、オフセット性を防止して低温定着で、高光沢性、透光性を有するオイルレス定着を実現できる。
後述したキャリアと組合せた使用により、オイルレス定着と共にスペントの発生を抑制でき現像剤の長寿命化が図られ、また現像器内での均一性が保持でき、現像メモリーの発生も抑制できる。さらには連続使用時の帯電安定性が得られ、定着性と現像安定性との両立が可能となる。
ここで、ワックスの長鎖アルキルの炭素数が4より小さいと離型作用が弱くなり分離性、高温非オフセット性が低下する。長鎖アルキルの炭素数が30より大きいと樹脂との混合凝集性が悪くなり、分散性が低下する。酸価が10mgKOH/gより小さいとトナーの長期使用時の帯電量低下を招く。酸価が80mgKOH/gより大きいと耐湿性が低下し、高湿下でのかぶりが増大する。高いと乳化分散粒子生成時の生成粒子の粒径を小さくできにくくなる。凝集粒子表面への均一付着性が低下する。
融点が50℃より小さいとトナーの貯蔵安定性が低下する。融点が120℃より大きいと離型作用が弱くなり非オフセット温度幅が狭くなる。高いと乳化分散粒子生成時の生成粒子の粒径を小さくできにくくなる。
25℃における針入度が4より大きいと強靭性が低下し、長期使用中に感光体フィルミングを生じる。
重量平均分子量が1000よりも小さく、Z平均分子量が1500より小さく、重量平均分子量/数平均分子量が1.1よりも小さく、Z平均分子量/数平均分子量が1.5よりも小さく、分子量極大ピークが1×103よりも小さい範囲に位置していると、トナーの保存性が低下、感光体や中間転写体にフィルミングを発生する。また現像器内でのハンドリング性が低下し、トナー濃度の均一性を低下させる。また現像メモリーを生じ易くなる。高速回転による高せん断力作用時の乳化分散粒子生成時の生成粒子の粒度分布がブロ−ドになってしまう。
重量平均分子量が6000よりも大きく、Z平均分子量が9000よりも大きく、重量平均分子量/数平均分子量が3.8よりも大きく、Z平均分子量/数平均分子量が6.5よりも大きく、分子量極大ピークが3×104の領域よりも大きい範囲に位置していると、離型作用が弱くなり定着オフセット性が低下する。乳化分散粒子生成時の生成粒子の粒径を小さくできにくくなる。
アルコールとしてはオクタノール(C8H17OH)、ドデカノール(C12H25OH)、ステアリルアルコール(C18H37OH)、ノナコサノール(C29H59OH)、ペンタデカノール(C15H31OH)等の炭素数4〜30の範囲のアルキル鎖を持つものが使用できる。またアミン類としてN−メチルヘキシルアミン、ノニルアミン、ステアリルアミン、ノナデシルアミン等が好適に使用できる。フルオロアルキルアルコールとしては、1−メトキシ−(パーフルオロー2−メチル−1−プロペン)、ヘキサフルオロアセトン、3−パーフルオロオクチルー1,2−エポキシプロパン等が好適に使用できる。
不飽和多価カルボン酸又はその無水物としては、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、シトラコン酸、無水シトラコン酸等が一種又は二種以上使用できる。なかでもマレイン酸、無水マレイン酸がより好ましい。
合成炭化水素系ワックスとしては、ポリエチレン、ポリプロピレン、フィシャートッロプッシュワックス、α―オレフィン等が好適に使用できる。
不飽和多価カルボン酸又はその無水物をアルコール又はアミンを用いて重合させ、次にこれをジクルミパーオキサイドやターシャリーブチルパーオキシイソプロピルモノカルボネート等の存在下で合成炭化水素系ワックスに付加させることにより得ることができる。
また、本実施形態のトナーにおいて使用するワックスとして好ましい第三の構成は、ヒドロキシステアリン酸の誘導体、グリセリン脂肪酸エステル、グリコール脂肪酸エステル、ソルビタン脂肪酸エステル等の材料が好ましく、一種類又は二種類以上組合せての使用も有効である。均一な乳化分散の小粒径粒子の作成が可能となり、凝集粒子表面への均一な付着性が得られ、オイルを塗布せずとも、オフセット性を防止して低温定着で、高光沢性、透光性を有するオイルレス定着を実現できる。またオイルレス定着と共に現像剤の長寿命化が図られ、また現像器内での均一性が保持でき、現像メモリーの発生も抑制できる。
ヒドロキシステアリン酸の誘導体としては、12−ヒドロキシステアリン酸メチル、12−ヒドロキシステアリン酸ブチル、プロピレングリコールモノ12−ヒドロキシステアラート、グリセリンモノ12−ヒドロキシステアラート、エチレングリコールモノ12−ヒドロキシステアラート等が好適な材料である。オイルレス定着における紙の巻付き防止効果と、フィルミング防止効果がある。
グリセリン脂肪酸エステルとしてはグリセリンステアラート、グリセリンジステアラート、グリセリントリステアラート、グリセリンモノパルミタート、グリセリンジパルミタート、グリセリントリパルミタート、グリセリンベヘナート、グリセリンジベヘナート、グリセリントリベヘナート、グリセリンモノミリスタート、グリセリンジミリスタート、グリセリントリミリスタート等が好適な材料である。オイルレス定着における低温時のコールドオフセット性緩和と、転写性低下防止効果がある。
グリコール脂肪酸エステルとしては、プロピレングリコールモノパルミタート、プロピレングリコールモノステアラート等のプロピレングリコール脂肪酸エステル、エチレングリコールモノステアラート、エチレングリコールモノパルミタート等のエチレングリコール脂肪酸エステルが好適な材料である。オイルレス定着性とともに、現像での滑りを良くしキャリアスペント防止の効果がある。
ソルビタン脂肪酸エステルとしては、ソルビタンモノパルミタート、ソルビタンモノステアラート、ソルビタントリパルミタート、ソルビタントリステアラートが好適な材料である。さらには、ペンタエリスリトールのステアリン酸エステル、アジピン酸とステアリン酸又はオレイン酸の混合エステル類等の材料が好ましく、一種類又は二種類以上組み合わせての使用も可能である。オイルレス定着における紙の巻付き防止効果と、フィルミング防止効果がある。
また、本実施形態のトナーにおいて使用するワックスとして好ましい第四の構成は、脂肪族アミド系のワックスの使用も好ましい。均一な乳化分散の小粒径粒子の作成が可能となり、凝集粒子表面への均一な付着性が得られ、オイルを塗布せずとも、オフセット性を防止して低温定着で、高光沢性、透光性を有するオイルレス定着を実現できる。またオイルレス定着と共に現像剤の長寿命化が図られ、また現像器内での均一性が保持でき、現像メモリーの発生も抑制できる。
カラー画像における透光性を向上できる。特に定着画像表面の平滑性を促進させ高画質のカラー像を得ることが可能となる。さらには定着時の複写用紙の定着ローラへの巻き付きを防止することができ、透光性と耐オフセット性の両立、転写時の中抜けを防止することが可能となる。
脂肪族アミド系のワックスとしては、パルミチン酸アミド、パルミトレイン酸アミド、ステアリン酸アミド、オレイン酸アミド、アラキジン酸アミド、エイコセン酸アミド、ベヘニン酸アミド、エルカ酸アミド、リグリノセリン酸アミド等の炭素数4〜30を有する飽和又は1価の不飽和の脂肪族アミドで、融点が50〜120℃が好ましい。より好ましくは70〜100℃、さらに好ましくは75〜95℃である。融点が50℃より小さくとなるとトナーの貯蔵安定性が悪化する。感光体へのフィルミングが発生しやすくなる。融点が120℃より大きいと、乳化分散粒子生成時の生成粒子の粒径を小さくできにくくなる。凝集粒子表面への均一付着性が低下する。定着画像表面の平滑性が低下し、透光性を悪化させる。
添加量としては、結着樹脂100重量部に対して2〜90重量部添加が好ましい。好ましくは結着樹脂100重量部に対して5〜50重量部、より好ましくは10〜30重量部、さらに好ましくは15〜20重量部添加が好ましい。1重量部以下であると、定着性向上の効果が得られず、90重量部以上では貯蔵安定性に難点がある。
さらにはメチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド、プロピレンビスステアリン酸アミド、ブチレンビスステアリン酸アミド、メチレンビスオレイン酸アミド、エチレンビスオレイン酸アミド、プロピレンビスオレイン酸アミド、ブチレンビスオレイン酸アミド、メチレンビスラウリン酸アミド、エチレンビスラウリン酸アミド、プロピレンビスラウリン酸アミド、ブチレンビスラウリン酸アミド、メチレンビスミリスチン酸アミド、エチレンビスミリスチン酸アミド、プロピレンビスミリスチン酸アミド、ブチレンビスミリスチン酸アミド、メチレンビスパルミチン酸アミド、エチレンビスパルミチン酸アミド、プロピレンビスパルミチン酸アミド、ブチレンビスパルミチン酸アミド、メチレンビスパルミトレイン酸アミド、エチレンビスパルミトレイン酸アミド、プロピレンビスパルミトレイン酸アミド、ブチレンビスパルミトレイン酸アミド、メチレンビスアラキジン酸アミド、エチレンビスアラキジン酸アミド、プロピレンビスアラキジン酸アミド、ブチレンビスアラキジン酸アミド、メチレンビスエイコセン酸アミド、エチレンビスエイコセン酸アミド、プロピレンビスエイコセン酸アミド、ブチレンビスエイコセン酸アミド、メチレンビスベヘニン酸アミド、エチレンビスベヘニン酸アミド、プロピレンビスベヘニン酸アミド、ブチレンビスベヘニン酸アミド、メチレンビスエルカ酸アミド、エチレンビスエルカ酸アミド、プロピレンビスエルカ酸アミド、ブチレンビスエルカ酸アミド等の飽和又は1〜2価の不飽和の脂肪酸のアルキレンビス脂肪酸アミド系のワックスが好ましい。
融点は50〜120℃が好ましい。より好ましくは70〜100℃、さらに好ましくは75〜95℃である。融点が50℃より小さくとなるとトナーの貯蔵安定性が悪化する。感光体へのフィルミングが発生しやすくなる。融点が120℃より大きいと、乳化分散粒子生成時の生成粒子の粒径を小さくできにくくなる。凝集粒子表面への均一付着性が低下する。定着画像表面の平滑性が低下し、透光性を悪化させる。
添加量としては、結着樹脂100重量部に対して2〜90重量部添加が好ましい。好ましくは結着樹脂100重量部に対して5〜50重量部、より好ましくは10〜30重量部、さらに好ましくは15〜20重量部添加が好ましい。1重量部以下であると、定着性向上の効果が得られず、90重量部以上では貯蔵安定性に難点がある。
これらのワックスを混合凝集時に脱離浮遊させず、均一に樹脂中に内包化するためには、ワックスの分散粒度分布、ワックスの組成、ワックスの溶融特性も影響される。
樹脂粒子としてスチレンアクリル系の共重合体を使用するに際しては、ポリプロピレンやポリエチレン等のビニル系のワックスよりも、一定の酸価やヨウ素価を有するエステル系ワックスの使用により、混合凝集時に脱離浮遊させず、均一に樹脂中に略一箇所に集めた形で内包化できる。遊離ワックスの影響を排除でき、OPCや転写ベルトへのフィルミング、キャリアスペントを防止でき、かつ転写時の中抜け、逆転写を効果的に防ぐことが可能となる。
前述したワックスの構成において、ワックス粒子分散液は、界面活性剤を添加した水系媒体中にワックスをイオン交換水中で加熱し、溶融させ分散させることにより調製される。
このときワックスの分散粒子径は小粒径側から積算したときの体積粒径積算分布において16%径(PR16)が20〜200nm、50%径(PR50)が40〜300nm、84%径(PR84)が400nm以下、PR84/PR16が1.2〜2.0の大きさにまで乳化分散し、200nm以下の粒子が65体積%以上、500nmを越える粒子が10体積%以下であることが好ましい。
好ましくは、小粒径側から積算したときの体積粒径積算分における16%径(PR16)が20〜100nm、50%径(PR50)が40〜160nm、84%径(PR84)が260nm以下、PR84/PR16が1.2〜1.8である。150nm以下の粒子が65体積%以上、400nmを越える粒子が10体積%以下であることが好ましい。
さらに好ましくは、小粒径側から積算したときの体積粒径積算分における16%径(PR16)が20〜60nm、50%径(PR50)が40〜120nm、84%径(PR84)が220nm以下、PR84/PR16が1.2〜1.8である。130nm以下の粒子が65体積%以上、300nmを越える粒子が10体積%以下であることが好ましい。
樹脂粒子分散液と着色剤粒子分散液及びワックス粒子分散液とを混合凝集して凝集粒子を形成するとき、50%径(PR50)が20〜200nmと微細分散とすることにより、ワックスが樹脂粒子間に取り込まれやすくワックス自体同士での凝集を防止でき、分散が均一に行える。樹脂粒子に取り込まれ水中に浮遊する粒子をなくすことができる。
さらに凝集粒子を水系中で加熱して溶融した凝集粒子を得る際に、表面張力の関係から溶融した樹脂粒子が溶融したワックス粒子を取り囲み、包含する形となり、樹脂中に離型剤が内包されやすくなる。
PR16が160nmより大きく、50%径(PR50)が200nmより大きく、PR84が300nmよりも大きく、PR84/PR16が2.0よりも大きく、200nm以下の粒子が65体積%より多く、500nmを越える粒子が10体積%より多くなると、ワックスが樹脂粒子間に取り込まれにくくワックス自体同士のみでの凝集が多発する傾向となる。また、樹脂粒子に取り込まれず、水中に浮遊する粒子が増大する傾向にある。凝集粒子を水系中で加熱して溶融した凝集粒子を得る際に、溶融した樹脂粒子が溶融したワックス粒子を包含する形となりにくく、樹脂中にワックスが内包されにくくなる。さらに樹脂を付着融合させる際にトナー母体表面に露出遊離するワックス量が多くなり、感光体へのフィルミング、キャリアへのスペントの増加、現像でのハンドリング性が低下し、また現像メモリーが発生しやすくなる。
PR16が20nmより小さく、50%径(PR50)が40nmより小さく、PR84/PR16が1.2よりも小さくしようとすると、分散状態を維持しづらく、放置時にワックスの再凝集が発生し、粒度分布の放置安定性が低下する傾向となる。また分散時に負荷が大きくなり、発熱が大きくなり、生産性が低下する傾向となる。
またワックス粒子分散液中に分散させたワックス粒子の小粒径側から積算したときの体積粒径積算分における50%径(PR50)が、凝集粒子を形成する際の樹脂粒子の50%径(PR50)よりも小さくすることで、ワックスが樹脂粒子間に取り込まれやすくワックス自体同士での凝集を防止でき、分散が均一に行える。樹脂粒子に取り込まれ水中に浮遊する粒子をなくすことができる。凝集粒子を水系中で加熱して溶融した凝集粒子を得る際に、表面張力の関係から溶融した樹脂粒子が溶融したワックス粒子を包含する形となり、樹脂中にワックスが内包されやすくなる。より好ましくは、樹脂粒子の50%径(PR50)よりも20%以上小さくすることである。
ワックスの融点以上の温度に保持された分散剤を添加した媒体中に、前記ワックスをワックス濃度40wt%以下で溶融させたワックス溶融液を、固定体と一定のギャップを介して高速回転する回転体により生じる高せん断力作用により乳化分散させることにより、ワックス粒子を微細に分散できる。
図3、4に示す一定容量の槽内の槽壁に、0.1mm〜10mm程度のギャップを設けて、回転体を30m/s以上、好ましくは40m/s以上、より好ましくは50m/s以上の高速で回転することにより、水系に強力なずりせん断力が作用し、微細な粒径の乳化分散体が得られる。処理時間は30s〜5min程度の処理で分散体が形成できる。
また図5、6に示すような固定した固定体に対し、1〜100μm程度のギャップを設けて30m/s以上、好ましくは40m/s以上、より好ましくは50m/s以上で回転する回転体との強いせん断力作用を付加することにより、微細な分散体を作成することができる。
高圧ホモジナイザーのような高圧式の分散機よりも微細な粒子の粒度分布をより狭小化シャープに形成できる。また長時間の放置でも分散体を形成した微粒子が再凝集することなく、安定した分散状態を保つことができ、粒度分布の放置安定性が向上する。
ワックスの融点が高い場合は、高圧状態で加熱することにより溶融した液を作成する。またワックスを油性溶剤に溶解させる。この溶液を図3、4、5、6に示した分散機を用いて界面活性剤や高分子電解質と共に水中に微粒子分散し、その後、加熱又は減圧して該油性溶剤を蒸散させることにより得られる。
粒度測定は堀場製作所レーザ回折粒度測定器(LA920)、島津製作所レーザ回折粒度測定器(SALD2100)などを用いて測定することができる。
(3)樹脂
本実施形態のトナーの樹脂微粒子としては、例えば熱可塑性結着樹脂が挙げられる。具体的には、スチレン、パラクロロスチレン、α−メチルスチレン等のスチレン類;アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸ラウリル、アクリル酸2−エチルヘキシル等アクリル系単量体;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸ラウリル、メタクリル酸2−エチルヘキシル等のメタクリル系単量体;さらにアクリル酸、メタクリル酸、スチレンスルフォン酸ナトリウム等のエチレン性不飽和酸単量体;さらにアクリロニトリル、メタクリロニトリル等のビニルニトリル類;ビニルメチルエーテル、ビニルイソブチルエーテル等のビニルエーテル類;ビニルメチルケトン、ビニルエチルケトン、ビニルイソプロペニルケトン等のビニルケトン類;エチレン、プロピレン、ブタジエンなどのオレフィン類などの単量体などの単独重合体、それらの単量体を2種以上組み合せた共重合体、又はそれらの混合物、さらには、エポキシ樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、セルロース樹脂、ポリエーテル樹脂等、非ビニル縮合系樹脂、又は、それらと前記ビニル系樹脂との混合物、これらの共存下でビニル系単量体を重合して得られるグラフト重合体等を挙げることができる。
これらの樹脂の中でもビニル系樹脂が特に好ましい。ビニル系樹脂の場合、イオン性界面活性剤などを用いて乳化重合やシード重合により樹脂粒子分散液を容易に調製することができる点で有利である。前記ビニル系モノマーとしては、例えば、アクリル酸、メタクリル酸、マレイン酸、ケイ皮酸、フマル酸、ビニルスルフォン酸、エチレンイミン、ビニルピリジン、ビニルアミンなどのビニル系高分子酸やビニル系高分子塩基の原料となるモノマーが挙げられる。本発明においては、前記樹脂粒子が、前記ビニル系モノマーをモノマー成分として含有するのが好ましい。本発明においては、これらのビニル系モノマーの中でも、ビニル系樹脂の形成反応の容易性等の点でビニル系高分子酸がより好ましく、具体的にはアクリル酸、メタクリル酸、マレイン酸、ケイ皮酸、フマル酸などのカルボキシル基を解離基として有する解離性ビニル系モノマーが、重合度やガラス転移点の制御の点で特に好ましい。
樹脂粒子分散液における前記樹脂粒子の含有量としては、通常5〜50重量%であり、好ましくは10〜30重量%である。
樹脂、ワックス及びトナーの分子量は、数種の単分散ポリスチレンを標準サンプルとするゲル浸透クロマトグラフィー(GPC)によって測定された値である。
装置は、東ソー社製HPLC8120シリーズ、カラムはTSKgel superHM−H H4000/H3000/H2000(7.8mm径、150mm×3)、溶離液THF(テトラヒドロフラン)、流量0.6ml/min、試料濃度0.1%、注入量20μL、検出器RI、測定温度40℃、測定前処理は試料をTHFに溶解後0.45μmのフィルターでろ過しシリカ等の添加剤を除去した樹脂成分を測定する。測定条件は、対象試料の分子量分布が、数種の単分散ポリスチレン標準試料により得られる検量線における分子量の対数とカウント数が直線となる範囲内に包含される条件である。
また炭素数4〜30の長鎖アルキルアルコール、不飽和多価カルボン酸又はその無水物及び不飽和炭化水素系ワックスとの反応により得られるワックスの測定は、装置はWATERS製GPC−150C、カラムはShodex HT−806M(8.0mmI.D.−30cm×2)、溶離液はo−ジクロロベンゼン、流量は1.0mL/min、試料濃度は0.3%、注入量は200μL、検出器はRI、測定温度は130℃、測定前処理は試料を溶媒に溶解後0.5μmの金属焼結フィルターでろ過処理した。測定条件は、対象試料の分子量分布が、数種の単分散ポリスチレン標準試料により得られる検量線における分子量の対数とカウント数が直線となる範囲内に包含される条件である。
また、結着樹脂の軟化点は、島津製作所の定荷重押出し形細管式レオメータフローテスタ(CFT500)により、1cm3の試料を昇温速度6℃/分で加熱しながらプランジャーにより約9.8×105N/m2の荷重を与え、直径1mm、長さ1mmのダイから押し出して、このプランジャーのピストンストロークと温度との関係における昇温温度特性との関係から、ピストンストロークが立上り始める温度が流出開始温度(Tfb)、曲線の最低値と流出終了点の差の1/2を求め、それと曲線の最低値を加えた点の位置における温度を1/2法における溶融温度(軟化点Tm)となる。
また樹脂のガラス転移点は示差走査熱量計(島津製作所DSC−50)を用い、100℃まで昇温し、その温度にて3分間放置した後、降温速度10℃/minで室温まで冷却したサンプルを、昇温速度10℃/minで昇温して熱履歴を測定した際に、ガラス転移点以下のベースラインの延長線とピークの立上り部分からピークの頂点までの間での最大傾斜を示す接線との交点の温度を言う。
ワックスのDSCによる吸熱ピークの融点は、示差走査熱量計(島津製作所DSC−50)を用い、5℃/minで200℃まで昇温し、5分間保温10℃まで急冷後、15分間放置後5℃/minで昇温させ、吸熱(融解)ピークから求めた。セルに投入するサンプル量は10mg±2mgとした。
(4)電荷制御剤
電荷制御剤としては、アクリルスルホン酸系の重合体で、スチレン系モノマーと極性基としてスルホン酸基を有するアクリル酸系モノマーとのビニル共重合体が好ましい。特にはアクリルアミド−2−メチルプロパンスルホン酸との共重合体が好ましい特性を発揮できる。後述するキャリアと組合せて使用することにより、現像器内でのハンドリング性を向上し、トナー濃度の均一性が向上する。さらに現像メモリーの発生を抑制できる。また、好ましい材料としてはサリチル酸誘導体の金属塩が用いられる。この構成により、定着時での帯電作用による画像乱れを防止できる。これはワックスのもつ酸価を有する官能基と金属塩の帯電極性の効果と思われる。また連続使用時での帯電量の低下を防止できる。
これらは乳化重合時の樹脂モノマー(例えばスチレンモノマーが好適)に溶融させ、モノマーを乳化重合させることで、CCAが添加された樹脂微粒子分散体を作成することができる。
添加量は樹脂100重量部に対し、0.1〜5重量部が好ましい。より好ましくは0.1〜2重量部、さらに好ましくは0.5〜1.5重量部である。0.1重量部よりも少ないと、帯電作用効果が無くなる。5重部よりも多くなると分散が均一化しない。カラー画像での色濁りが目立ってくる。
(5)顔料
本実施形態に使用される着色剤(顔料)として、黒顔料としては、カーボンブラック、鉄黒、グラファイト、ニグロシン、アゾ染料の金属錯体が好ましく使用できる。
イエロー顔料としては、C.I.ピグメント・イエロー1,3,74,97又は98等のアセト酢酸アリールアミド系モノアゾ黄色顔料、C.I.ピグメント・イエロー12,13,14,17等のアセト酢酸アリールアミド系ジスアゾ黄色顔料、C.I.ソルベンイエロー19,77,79又はC.I.ディスパース・イエロー164が配合され、特に好ましくはC.I.ピグメント・イエロー93,180,185のベンズイミダゾロン系顔料が好適である。
またマゼンタ顔料としては、C.I.ピグメント・レッド48,49:1,53:1,57,57:1,81,122,5等の赤色顔料、C.I.ソルベント・レッド49,52,58,8等の赤色染料が好ましく使用できる。
シアン顔料としては、C.I.ピグネント・ブルー15:3等のフタロシアニン及びその誘導体の青色染顔料が好ましく使用できる。添加量は結着樹脂100重量部に対し、3〜8重量部が好ましい。
各粒子のメジアン径としては、通常1μm以下であり、0.01〜1μmであるのが好ましい。前記メジアン径が1μmを超えると、最終的に得られる静電荷像現像用トナーの粒径分布が広くなったり、遊離粒子が発生し、性能や信頼性の低下を招き易い。一方、前記メジアン径が前記範囲内にあると前記欠点がない上、トナー間の偏在が減少し、トナー中の分散が良好となり、性能や信頼性のバラツキが小さくなる点で有利である。なお、前記メジアン径は、例えば堀場製作所レーザ回折粒度測定器(LA920)などを用いて測定することができる。
(6)外添剤
本実施形態では外添剤として、シリカ、アルミナ、酸化チタン、ジルコニア、マグネシア、フェライト、マグネタイト等の金属酸化物微粉末、チタン酸バリウム、チタン酸カルシウム、チタン酸ストロンチウム等のチタン酸塩、ジルコン酸バリウム、ジルコン酸カルシウム、ジルコン酸ストロンチウム等のジルコン酸塩あるいはこれらの混合物が用いられる。外添剤は必要に応じて疎水化処理される。
外添剤が処理されるシリコーンオイル系の材料としては、(化3)に示されるものが好ましい。
Figure 2006011385
(但し、R2は炭素数1〜3のアルキル基、R3は炭素数1〜3のアルキル基、ハロゲン変性アルキル基、フェニル基、又は置換フェニル基、R1は炭素数1〜3のアルキル基、又は炭素数1〜3のアルコキシ基、m及びnは1以上100以下の整数を示す。)
例えばジメチルシリコーンオイル、メチルハイドロジェンシリコーンオイル、メチルフェニルシリコーンオイル、環状ジメチルシリコーンオイル、エポキシ変性シリコーンオイル、カルボキシル変性シリコーンオイル、カルビノール変性シリコーンオイル、メタクリル変性シリコーンオイル、メルカプト変性シリコーンオイル、ポリエーテル変性シリコーンオイル、メチルスチリル変性シリコーンオイル、アルキル変性シリコーンオイル、フッ素変性シリコーンオイル、アミノ変性シリコーンオイル、クロルフェニル変成シリコーンオイルのうちの少なくとも1種類以上で処理される外添剤が好適に使用される。例えば東レダウコーニングシリコーン社のSH200、SH510、SF230、SH203、BY16―823、BY16―855B等が挙げられる。処理は外添剤とシリコーンオイル等の材料とをヘンシェルミキサ等の混合機により混合する方法や、外添剤へシリコーンオイル系の材料を噴霧する方法、溶剤にシリコーンオイル系の材料を溶解或いは分散させた後、外添剤と混合した後、溶剤を除去して作成する方法等がある。外添剤粉末100重量部に対して、シリコーンオイル系の材料は1〜20重量部配合されるのが好ましい。
シランカップリング剤としては、ジメチルジクロロシラン、トリメチルクロルシラン、アリルジメチルクロルシラン、ヘキサメチルジシラザン、アリルフェニルジクロルシラン、ベンジルメチルクロルシラン、ビニルトリエトキシシラン、γ−メタクリルオキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、ジビニルクロルシラン、ジメチルビニルクロルシラン等がある。シランカップリング剤処理は、外添剤粉体を攪拌等によりクラウド状としたものに気化したシランカップリング剤を反応させる乾式処理又は、外添剤粉体を溶媒中に分散させたシランカップリング剤を滴下反応させる湿式法等により処理される。
またシランカップリング処理した後にシリコーンオイル系の材料を処理することも好ましい。
正極帯電性を有する外添剤はアミノシランや、下記式(化4)に示されるアミノ変性シリコーンオイル、エポキシ変性シリコーンオイルで処理される。
Figure 2006011385
(但し、R1及びR6は水素、炭素数1〜3のアルキル基、アルコキシ基、又はアリール基、R2は炭素数1〜3のアルキレン基、又はフェニレン基、R3は窒素複素環を含む有機基、R4及びR5は水素、炭素数1〜3のアルキル基、又はアリール基、mは1以上の数、n及びqは0を含む正の整数、n+1は1以上の正の数を示す。)
また、疎水性処理を高めるため、ヘキサメチルジシラザンやジメチルジクロロシラン、他のシリコーンオイルによる処理の併用も好ましい。例えば、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、アルキル変性シリコーンオイルのうちの少なくとも1種類以上で処理することが好ましい。
また、脂肪酸エステル、脂肪酸アミド、脂肪酸金属塩により無機微粉末の表面を処理することも好ましい。いずれか1種又は2種以上を表面処理したシリカ又は酸化チタン微粉末がより好ましい。
脂肪酸、脂肪酸金属塩としては、カプリル酸、カプリン酸、ウンデシル酸、ラウリル酸、ミスチリン酸、パリミチン酸、ステアリン酸、ベヘン酸、モンタン酸、ラクセル酸、オレイン酸、エルカ酸、ソルビン酸、リノール酸等が挙げられる。中でも炭素数14〜20の脂肪酸が好ましい。
また脂肪酸金属塩を構成する金属としては、アルミニウム、亜鉛、カルシウム、マグネシウム、リチウム、ナトリウム、鉛、バリウムが挙げられ、中でもアルミニウム、亜鉛、ナトリウムが好ましい。特に好ましくはジステアリン酸アルミニウム(Al(OH)(C17H35COO)2)、又はモノステアリン酸アルミニウム(Al(OH)2(C17H35COO))、等のジ脂肪酸アルミニウム、モノ脂肪酸アルミニウムが好ましい。OH基を有することが過帯電を防止し、転写不良を抑えることができる。また処理時にシリカ等の無機微粉末との処理性が向上するものと考えられる。
また、小粒径トナーのハンドリング性を向上でき、現像、転写において高画質化と転写性向上の両立を図ることができる。現像においては潜像をより忠実に再現できる。そして転写の際のトナー粒子の転写率を悪化させることなく転写できる。またタンデム転写においても再転写を防止でき、中抜けの発生の抑制が可能となる。さらには現像量を少なくしても高画像濃度を得ることができる。また後述するキャリアと組合せた使用により、耐スペント性をより向上でき、現像器内でのハンドリング性を向上させトナー濃度の均一性を上げることが出きる。また現像メモリー発生を抑制できる。
外添剤として、平均粒子径6nm〜200nmである無機微粉末をトナー母体粒子100重量部に対し1〜6重量部外添処理する構成が好ましい。平均粒子径6nmよりも小さいと、シリカ浮遊や感光体へのフィルミングが生じ易い。転写時の逆転写の発生を抑さえ切れない。200nmよりも大きくなると、トナーの流動性が悪化する。1.5重量部よりも少ないとトナーの流動性が悪化する。転写時の逆転写の発生を抑さえ切れない。6重量部よりも多いとシリカ浮遊や感光体へのフィルミングが生じ易い。高温オフセット性を悪化される。
さらには、平均粒子径が6nm〜20nmである無機微粉末をトナー母体粒子100重量部に対し0.5〜2.5重量部と、20nm〜200nmである無機微粉末をトナー母体粒子100重量部に対し0.5〜3.5重量部とを少なくとも外添処理する構成が好ましい。この構成により機能分離したシリカの使用で、現像でのハンドリング性、転写時の逆転写、中抜け、飛散りに対しよりマージンが取れる。またキャリアへのスペントを防止できる。このとき平均粒子径が6nm〜20nmの無機微粉末の強熱減量が1.5〜25wt%、平均粒子径が20nm〜200nmの強熱減量が0.5〜23wt%であることが好ましい。
シリカの強熱減量を特定することにより、転写時の逆転写、中抜け、飛散りに対しよりマージンが取れる。また先述したキャリアやワックスと組合せた使用により、耐スペント性をより向上でき、現像器内でのハンドリング性を向上させトナー濃度の均一性を上げることが出きる。また現像メモリー発生を抑制できる。
平均粒子径が6nm〜20nmの強熱減量が1.5wt%よりも少ないと、逆転写、中抜けに対する転写マージンが狭くなる。25wt%よりも多くなると、表面処理がムラになり、帯電のバラツキが生じる。好ましくは強熱減量が1.5〜20wt%、より好ましくは5〜19wt%である。
平均粒子径が20nm〜200nmの強熱減量が0.5wt%よりも少ないと、逆転写、中抜けに対する転写マージンが狭くなる。23wt%よりも多くなると、表面処理がムラになり、帯電のバラツキが生じる。好ましくは強熱減量が1.5〜18wt%、より好ましくは5〜16wt%である。
さらには、平均粒子径6nm〜200nm、強熱減量が0.5〜25wt%である正帯電性無機微粉末をさらにトナー母体粒子100重量部に対し0.2〜1.5重量部を外添処理する構成も好ましい。
正帯電性無機微粉末を添加する効果は、トナーが長期連続使用の際に過帯電になることを抑え、より現像剤寿命を延ばすことが可能となる。さらには過帯電による転写時の飛散りを抑える効果も得られる。またキャリアへのスペントを防止できる。0.2重量部よりも少ないとその効果が得にくい。1.5重量部よりも多くなると、現像でのかぶりが増大する。強熱減量は好ましくは1.5〜20wt%、より好ましくは5〜19wt%である。
乾燥減量(%)は、予め乾燥、放冷、精秤した容器に試料約1gを取り、精秤する。熱風乾燥器(105℃±1℃)で2時間乾燥する。デシケータ中で30分間放冷後その重量を精秤し次式より算出する。
乾燥減量(%)=[乾燥による減量(g)/試料量(g)]×100
強熱減量は、予め乾燥、放冷、精秤した磁性ルツボに試料約1gを取り、精秤する。500℃に設定した電気炉中で2時間強熱する。デシケータ中で1時間放冷後その重量を精秤し次式より算出する。
強熱減量(%)=[強熱による減量(g)/試料量(g)]×100
また処理された無機微粉末の水分吸着量が1wt%以下であることが好ましい。さらに好ましくは0.5wt%以下、より好ましくは0.1wt%以下、とくに好ましくは0.05wt%以下である。1wt%より多いと、帯電性の低下、耐久時の感光体へのフィルミングを生じる。水分吸着量の測定は、水吸着装置については、連続蒸気吸着装置(BELSORP18:日本ベル株式会社)にて測定した。
疎水化度の測定は、250mlのビーカー中に装入した蒸留水50mlに試験すべき生成物0.2gを秤取する。先端に、液体中に浸威しているビュレットからメタノールを無機微粉末の総量がぬれるまで滴下する。その際不断に電磁攪拌機でゆっくりと攪拌する。完全に濡らすために必須なメタノール量a(ml)から次式により疎水化度が算出される。
疎水化度=(a/(50+a))×100(%)
(7)トナーの粉体物性
本実施形態では、結着樹脂、着色剤及びワックスを含むトナー母体粒子の体積平均粒径が3〜7μm、個数分布における2.52〜4μmの粒径を有するトナー母体粒子の含有量が10〜75個数%、体積分布における4〜6.06μmの粒径を有するトナ−母体粒子が25〜75体積%であり、体積分布における8μm以上の粒径を有するトナ−母体粒子が5体積%以下で含有し、体積分布における4〜6.06μmの粒径を有するトナ−母体粒子の体積%をV46とし、個数分布における4〜6.06μmの粒径を有するトナ−母体粒子の個数%をP46としたとき、P46/V46が0.5〜1.5の範囲にあり、体積平均粒径における変動係数は10〜25%、個数粒径分布の変動係数が10〜28%であることが好ましい。
好ましくは、トナー母体粒子の体積平均粒径が3〜6.5μm、個数分布における2.52〜4μmの粒径を有するトナー母体粒子の含有量が20〜75個数%、体積分布における4〜6.06μmの粒径を有するトナ−母体粒子が35〜75体積%であり、体積分布における8μm以上の粒径を有するトナ−母体粒子が3体積%以下で含有し、体積分布における4〜6.06μmの粒径を有するトナ−母体粒子の体積%をV46とし、個数分布における4〜6.06μmの粒径を有するトナ−母体粒子の個数%をP46としたとき、P46/V46が0.5〜1.3の範囲にあり、体積平均粒径における変動係数は10〜20%、個数粒径分布の変動係数が10〜23%であることが好ましい。
さらに、好ましくは、トナー母体粒子の体積平均粒径が3〜5μm、個数分布における2.52〜4μmの粒径を有するトナー母体粒子の含有量が40〜75個数%、体積分布における4〜6.06μmの粒径を有するトナ−母体粒子が45〜75体積%であり、体積分布における8μm以上の粒径を有するトナ−母体粒子が3体積%以下で含有し、体積分布における4〜6.06μmの粒径を有するトナ−母体粒子の体積%をV46とし、個数分布における4〜6.06μmの粒径を有するトナ−母体粒子の個数%をP46としたとき、P46/V46が0.5〜0.9の範囲にあり、体積平均粒径における変動係数は10〜15%、個数粒径分布の変動係数が10〜18%であることが好ましい。
高解像度画質、さらにはタンデム転写における逆転写の防止、中抜けを防止し、オイルレス定着との両立を図ることを可能とできる。トナー中の微粉はトナーの流動性、画質、貯蔵安定性、感光体や現像ローラ、転写体ヘのフィルミング、経時特性、転写性、特にタンデム方式での多層転写性に影響する。さらにはオイルレス定着での非オフセット性、光沢性、透光性に影響する。オイルレス定着実現のためにワックス等のワックスを配合したトナーにおいて、タンデム転写性との両立において微粉量が影響する。
体積平均粒径が7μmを超えると画質と転写の両立が図れない。体積平均粒径が3μm未満であると現像でのトナー粒子のハンドリグ性が困難となる。
個数分布における2.52〜4μmの粒径を有するトナー母体粒子の含有量が10個数%未満になると、画質と転写の両立が図れない。75個数%を超えると、現像でのトナー母体粒子のハンドリグ性が困難となる。また感光体、現像ローラ、転写体へのフィルミングが発生しやすくなる。さらに微粉は熱ローラとの付着性も大きいためオフセットしやすい傾向にある。またタンデム方式において、トナーの凝集が強くなりやすく、多層転写時に2色目の転写不良を生じ易くなる。適当な範囲が必要となる。
体積分布における4〜6.06μmの粒径を有するトナ−母体粒子が75体積%を超えると、画質と転写の両立が図れない。30体積%未満になると、画質の低下が生じる。
体積分布における8μm以上の粒径を有するトナ−母体粒子が5体積%を越えて含有すると、画質の低下が生じる。転写不良の原因となる。
体積分布における4〜6.06μmの粒径を有するトナ−母体粒子の体積%をV46とし、個数分布における4〜6.06μmの粒径を有するトナ−母体粒子の個数%をP46としたとき、P46/V46が0.5よりも小さいとき、微粉存在量が過多になり、流動性の低下、転写性の悪化、地カブリが悪化する。1.5よりも大きいときは、大きい粒子が多く存在しかつ粒度分布がブロードになり、高画質化が図ることが出来ない。
P46/V46を規定する目的は、トナー粒子を小粒径にして、かつその粒度分布を狭くするための指標とできるものである。
変動係数とはトナーの粒径における標準偏差を平均粒径で割ったものである。コールターカウンタ(コールター社)を使用して測定した粒子径をもとにしたものである。標準偏差は、n個の粒子系の測定を行なった時の、各測定値の平均値からの差の2乗を(n−1)で割った値の平方根であらわされる。
つまり変動係数とは粒度分布の広がり具合を表したもので、体積粒径分布の変動係数が10%未満、又は個数粒径分布の変動係数が10%未満となると、生産的に困難であり、コストアップの要因となる。体積粒径分布の変動係数が25%より大、又は個数粒径分布の変動係数が28%より大きくなると、粒度分布がブロードとなり、トナーの凝集性が強くなり、感光体へのフィルミング、転写不良、クリーナーレスプロセスでの残留トナーの回収が困難となる。
粒度分布測定は、コールターカウンタTA−II型(コールターカウンタ社)を用い、個数分布、体積分布を出力するインターフェイス(日科機製)及びパーソナルコンピュータを接続して測定する。電解液は濃度1%となるよう界面活性剤(ラウリル硫酸ナトリウム)を加えたもの50ml程度に被測定トナーを2mg程度加え、試料を懸濁した電解液は超音波分散器で約3分間分散処理を行い、コールターカウンタTA−II型にてアパーチャー70μmのアパーチャーを用いた。70μmのアパーチャー系では、粒度分布測定範囲は1.26μm〜50.8μmであるが、2.0μm未満の領域は外来ノイズ等の影響で測定精度や測定の再現性が低いため実用的ではない。よって測定領域を2.0μm〜50.8μmとした。
また、静嵩密度と動嵩密度から算出されるのが圧縮度で、トナー流動性の指標の一つである。トナーの流動性はトナーの粒度分布、トナー粒子形状、外添剤、ワックスの種類や量に影響される。トナーの粒度分布が狭く微粉が少ない場合、トナーの表面に凹凸が少なく形状が球形に近い場合、外添剤の添加量が多い場合、外添剤の粒径が小さい場合は、圧縮度が小さくなりトナーの流動性は高くなる。圧縮度は5〜40%が好ましい。より好ましくは、10〜30%である。オイルレス定着と、タンデム方式多層転写との両立を図ることが可能となる。5%より小さいと、定着性が低下し、特に透光性が悪化しやすい。現像ロ−ラからトナー飛散が多くなりやすい。40%よりも大きい転写性が低下し、タンデム方式での中抜け、転写不良を生じる。
(8)キャリア
本実施形態のキャリアは、少なくとも磁性体粒子とバインダー樹脂とを有する複合磁性粒子であって、その磁性粒子表面がアミノシランカップリング剤を含有したフッ素変性シリコーン系樹脂からなる樹脂により被覆されているキャリアが好適に使用される。
本発明における磁性粒子を構成するバインダー樹脂としては、熱硬化性樹脂が好ましい。熱硬化性樹脂としては、フェノール系樹脂、エポキシ樹脂、ポリアミド樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、キシレン樹脂、アセトグアナミン樹脂、フラン樹脂、シリコーン系樹脂、ポリイミド樹脂、ウレタン樹脂があり、これらの樹脂は単独でも2種以上を混合しても構わないが、少なくともフェノール樹脂を含有していることが好ましい。
本発明における複合体粒子は、平均粒子径が好ましくは10〜50μm、より好ましくは10〜40μm、さらに好ましくは10〜30μm、最も好ましくは15〜30μmの球状粒子であることが好ましい。さらにその特性は比重が2.5〜4.5、特に2.5〜4.0であり、キャリアの窒素吸着によるBET比表面積が0.03〜0.3m2/gであることが好ましい。キャリアの平均粒径が10μm未満では、キャリア粒子の分布において微粒子の存在率が高くなり、それらのキャリア粒子はキャリア1粒子当たりの磁化が低くなるため、キャリアが感光体に現像されやすくなる。また、キャリアの平均粒子が50μmを超えると、キャリア粒子の比表面積が小さくなり、トナ−保持力が弱くなるため、トナー飛散が発生する。また、ベタ部分の多いフルカラーでは、特にベタ部の再現が悪く好ましくない。
従来のフェライト系をコア粒子とするキャリアでは、比重が5〜6と大きく、また粒子径も50〜80μmと大きいため、BET比表面積が小さい値となっており、トナーとの攪拌時の混合性が弱く、トナーが補給されたときの帯電立ち上がり性が不十分でトナーが多く消費され、多量のトナーが補給されたとき、カブリの発生が多く見られる傾向にあった。またトナーとキャリアとの濃度比率を狭い範囲で制御しないと、画像濃度とカブリ、トナー飛散低減の両立を図ることが困難であった。しかし比表面積値の大きいキャリアの使用により、トナーとキャリアとの濃度比率を広い範囲で制御しても画質の悪化が生じにくく、トナー濃度制御がラフに行えることが出来る。
また前述したトナーは球形に近い形をしており、比表面積値もキャリアに近づいている。そのためトナーとの攪拌時の混合性がより均一に行えることができ。トナーが補給されたとき、良好な帯電立ち上がり性を有し、トナーとキャリアとの濃度比率をより広い範囲で制御しても画質の悪化が生じにくく、画像濃度とカブリ、トナー飛散低減の両立を図ることが出来る。
このときトナーの比表面積値をTS(m2/g)、キャリアの比表面積値をCS(m2/g)とすると、TS/CSが2〜110の関係を満たすことにより、画質の安定性を図ることが出来る。好ましくは2〜50、より好ましくは2〜30である。2よりの小さいと、キャリア付着が生じやすくなる。また110よりも大きいと、画像濃度とカブリ、トナー飛散低減の両立を図るためのトナーとキャリアとの濃度比率が狭くなってしまい、画質の悪化が生じやすくなる。従来のフェライト系をコア粒子とするキャリアでは、比表面積が小さい値であり、また従来の粉砕方式のトナーでは形状が不定形であり、比表面積値が大きい値となっている。
複合磁性粒子は、磁性体粒子及び塩基性触媒の存在下で、フェノール類とアルデヒド類とを水性媒体中で撹拌しながら、フェノール類とアルデヒド類とを反応・硬化させて、磁性粒子とフェノール樹脂とを含有する磁性粒子を生成する方法により製造することが出来る。
得られる複合磁性粒子の平均粒子径の制御は、使用する水の量によって適当な剪断・圧密がかかるように撹拌装置の撹拌翼周速度を調整することによって、調整が可能である。
バインダー樹脂としてエポキシ樹脂を用いた複合体粒子の製造は、例えば、水性媒体中にビスフェノール類とエピハロヒドリンと親油化処理を行なった無機化合物粒子粉末を分散させ、アルカリ水性媒体中で反応させる方法が挙げられる。
本発明における複合磁性粒子の磁性体微粒子と、バインダー樹脂との含有割合は、バインダー樹脂1〜20質量%と磁性体粒子80〜99質量%であることが好ましい。磁性体粒子の含有量が80wt%未満の場合には、飽和磁化値が小さくなり、99wt%を越える場合には、フェノール樹脂による磁性体微粒子間の結着が弱くなりやすい。複合磁性粒子の強度を考慮すると、97wt%以下であることが好ましい。
磁性体微粒子としては、マグネタイト、ガンマ酸化鉄等のスピネルフェライト、鉄以外の金属(Mn、Ni、Zn、Mg、Cu等)を一種又は二種以上含有するスピネルフェライト、バリウムフェライト等のマグネトプランバイト型フェライト、表面に酸化層を有する鉄や合金の微粒子粉末を用いることができる。その形状は、粒状、球状、針状のいずれであってもよい。特に、高磁化を要する場合には、鉄等の強磁性微粒子粉末を用いることができるが、化学的な安定性を考慮すると、マグネタイト、ガンマ酸化鉄を含むスピネルフェライトやバリウムフェライト等のマグネトプランバイト型フェライトの強磁性体微粒子粉末を用いることが好ましい。強磁性体微粒子粉末の種類及び含有量を適宜選択することにより、所望の飽和磁化を有する複合体粒子を得ることができる。
1000エルステッド(79.57kA/m)の磁界下での測定において、磁化の強さが30〜70Am2/kg、好ましくは35〜60Am2/kgであり、残留磁化(σr)が0.1〜20Am2/kg、好ましくは0.1〜10Am2/kgであり、比抵抗値が1×106〜1×1014Ωcm、好ましくは5×106〜5×1013Ωcm、さらに好ましくは5×106〜5×109Ωcmであることが好ましい。
本発明にかかるキャリアの製造方法においては、水性媒体中でフェノール類とアルデヒド類を塩基性触媒の存在下、磁性体粒子、懸濁安定剤を共存させて反応させる。
ここで使用されるフェノール類としては、フェノールの他、m−クレゾール、p−tert−ブチルフェノール、o−プロピルフェノール、レゾルシノール、ビスフェノールA等のアルキルフェノール類、及びベンゼン核又はアルキル基の一部又は全部が塩素原子又は臭素原子で置換されたハロゲン化フェノール類等のフェノール性水酸基を有する化合物が挙げられるが、この中でフェノールが最も好ましい。フェノール類としてフェノール以外の化合物を用いた場合には、粒子が生成し難かったり、粒子が生成したとしても不定形状であったりすることがあるので、形状性を考慮すれば、フェノールが最も好ましい。
また、本発明における複合体粒子の製造法で用いられるアルデヒド類としては、ホルマリン又はパラホルムアルデヒドのいずれかの形態のホルムアルデヒド及びフルフラール等が挙げられるが、ホルムアルデヒドが特に好ましい。
また、本発明の樹脂被覆層に用いる樹脂としては、フッ素変性シリコーン系樹脂が必須である。そのフッ素変性シリコーン系樹脂としては、パーフロロアルキル基含有の有機ケイ素化合物とポリオルガノシロキサンとの反応から得られる架橋性フッ素変性シリコ−ン樹脂が好ましい。ポリオルガノシロキサンとパーフロロアルキル基含有の有機ケイ素化合物との配合比は、ポリオルガノシロキサン100重量部に対して、パーフロロアルキル基含有の有機ケイ素化合物が3重量部以上20重量部以下であることが好ましい。従来のフェライトコア粒子への被覆に比べて、硬化型樹脂中に磁性体粒子を分散した複合磁性粒子における接着性が強まり、後述する帯電性とともに、耐久性向上の効果が発揮される。
ポリオルガノシロキサンは下記式(化5)及び(化6)から選ばれる少なくとも一つの繰り返し単位を示すものが好ましい。
Figure 2006011385
(但し、R1,R2は水素原子、ハロゲン原子、ヒドロキシ基、メトキシ基、炭素数1〜4のアルキル基またはフェニル基、R3,R4は炭素数1〜4のアルキル基またはフェニル基を示し、mは平均重合度であり正の整数(好ましくは2以上500以下の範囲、さらに好ましくは5以上200以下の範囲)を示す。)
Figure 2006011385
(但し、R1,R2はそれぞれ水素原子、ハロゲン原子、ヒドロキシ基、メトキシ基、炭素数1〜4のアルキル基、フェニル基、R3,R4,R5,R6は炭素数1〜4のアルキル基またはフェニル基を示し、nは平均重合度であり正の整数(好ましくは2以上500以下の範囲、さらに好ましくは5以上200以下の範囲)を示す。)
パーフロロアルキル基含有の有機ケイ素化合物の例としては、CF3CH2CH2Si(OCH33、C49CH2CH2Si(CH3)(OCH32、C817CH2CH2Si(OCH33、C817CH2CH2Si(OC253、(CF32CF(CF28CH2CH2Si(OCH33等が挙げられるが、特にトリフロロプロピル基を有するものが好ましい。
また、本実施形態においては、アミノシランカップリング剤を被覆樹脂層に含有させる。このアミノシランカップリング剤としては公知のものでよく、例えばγ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、オクタデシルメチル〔3−(トリメトキシシリル)プロピル〕アンモニウムクロライド(上からSH6020、SZ6023、AY43−021:共に東レダウコーニングシリコーン社製商品名)、KBM602、KBM603、KBE903、KBM573(信越シリコーン社製商品名)等が挙げられるが、特に、1級アミンが好ましい。メチル基、エチル基、フェニル基等で置換された2級又は3級のアミンでは極性が弱く、トナーとの帯電立ち上がり特性に対して効果が少ない。また、アミノ基の部分が、アミノメチル基、アミノエチル基、アミノフェニル基になると、シランカップリング剤の最先端は、1級アミンであるが、シランから伸びる直鎖の有機基中のアミノ基は、トナーとの帯電立ち上がり特性に寄与せず、逆に高湿時に水分の影響を受けるため、最先端のアミノ基により初期のトナーとの帯電付与能力は有するものの、耐刷時に帯電付与能力が下がり、最終的には寿命が短いものとなる。
そこでこのようなアミノシランカップリング剤とフッ素変性シリコ−ン樹脂を併用して用いることにより、トナーに対して、シャ−プな帯電量分布を確保したまま、負帯電性を付与でき、かつ補給されたトナーに対し、早い帯電立ち上がり性を有し、トナー消費量を低減させることができる。さらに、アミノシランカップリング剤が架橋剤の如き効果を発現し、ベ−ス樹脂であるフッ素変性シリコ−ン樹脂層の架橋度を向上させ、被膜樹脂硬度をさらに向上させ、長期使用での摩耗・剥離等が低減でき、耐スペント性を向上させ、帯電付与能力の低下が抑えられて帯電の安定化が図られ、耐久性が向上する。
さらに前述したトナーの構成において、低融点のワックスを一定量以上添加したトナー表面は略樹脂のみであるため、帯電性がやや不安定な面がある。例えば帯電性が弱く、また帯電立ち上がり性が遅くなるケ−スが想定され、カブリ、全面ベタ画像の均一性が低下し、また転写時に文字飛び、中抜けが発生しやすくなるが、トナーと本キャリアを組合せて使用することにより、上記課題が改善され、現像器内でのハンドリング性が向上し、ベタ画像採取後に履歴が残るいわゆる現像メモリーも低減できる。
アミノシランカップリング剤の使用割合としては、樹脂に対して、5〜40重量%、好ましくは10〜30重量%である。5重量%未満であるとアミノシランカップリング剤の効果がなく、40重量%を越えると樹脂被覆層の架橋度が高くなり過ぎ、チャ−ジアップ現象を引き起こし易くなり、現像性不足等の画像欠陥の発生原因となることがある。
また、帯電安定化のため,チャージアップを防止するため、樹脂被覆層には導電性微粒子を含有することも可能である。導電性微粒子としては、オイルファーネスカーボンやアセチレンブラックのカーボンブラック、酸化チタン、酸化亜鉛などの半導電性酸化物、酸化チタン、酸化亜鉛、硫酸バリウム、ホウ酸アルミニウム、チタン酸カリウム等の粉末表面を酸化スズやカーボンブラック、金属で被覆したもの等が挙げられ、その固有抵抗が1010Ω・cm以下のものが好ましい。導電性微粒子を用いる場合の含有量は1〜15重量%が好ましい。導電性微粒子は、樹脂被覆層に対し、ある程度の含有量であれば、フィラ−効果により樹脂被覆層の硬度の向上をもたらすが、15重量%を越えると、逆に樹脂被覆層の形成を阻害し、密着性・硬度の低下の原因となる。さらには、フルカラ−現像剤における導電性微粒子の過剰の含有量は、紙面上に転写・定着されたトナ−の色汚れの原因となる。
複合磁性粒子上に被覆層を形成する方法には、特に制限はなく、公知の被覆方法、例えば、複合磁性粒子である粉末を、被膜層形成用溶液中に浸漬する浸漬法、被膜層形成用溶液を複合磁性粒子の表面に噴霧するスプレー法、複合磁性粒子を流動エアーにより浮遊させた状態で被膜層形成用溶液を噴霧する流動床法、ニーダーコーター中で複合磁性粒子と被膜層形成用溶液を混合し、溶剤を除去するニーダーコーター法等の湿式被覆方法の他、粉末状の樹脂と複合磁性粒子とを高速混合し、その摩擦熱を利用することで樹脂粉末を複合磁性粒子表面に融着被覆する乾式被覆方法等が挙げられ、いずれも適用することができるが、本発明におけるアミノシランカップリング剤を含有するフッ素変性シリコ−ン系樹脂の被覆においては、湿式被覆方法が特に好ましく用いられる。
被膜層形成用塗布液に使用する溶剤は、前記コート樹脂を溶解するものであれば特に限定されるものではなく、用いられるコート樹脂に適合するように選択することができる。一般的には、例えば、トルエン、キシレン等の芳香族炭化水素類、アセトン、メチルエチルケトン等のケトン類、テトラヒドロフラン、ジオキサンなどのエーテル類が使用できる。
樹脂被覆量は複合磁性粒子に対し、0.2〜6.0重量%が好ましく、より好ましくは0.5〜5.0重量%、さらに好ましくは0.6〜4.0重量%、0.7〜3重量%である。樹脂の被覆量が0.2重量%未満になると、複合磁性粒子表面に均一な被覆を形成することができず複合磁性粒子の特性の影響を大きく受けてしまい、本発明のフッ素変性シリコ−ン樹脂とアミノシランカップリング剤の効果を充分に発揮できない。6.0重量%を超えると被覆層が厚くなり過ぎ、複合磁性粒子同士の造粒が発生し、均一な複合磁性粒子が得られない傾向にある。
このようにして、複合磁性粒子表面にアミノシランカップリング剤を含有するフッ素変性シリコ−ン樹脂を被覆した後には、焼き付け処理を施すことが好ましい。焼き付け処理を施す手段としては、特に制限はなく、外部加熱方式又は内部加熱方式のいずれでもよく、例えば、固定式又は流動式電気炉、ロ−タリ−キルン式電気炉、バ−ナ−炉でもよく、もしくはマイクロ波による焼き付けでもよい。ただし、焼き付け処理の温度に関しては、樹脂被覆層の耐スペント性を向上さるというフッ素シリコ−ンの効果を効率よく発現させるために、200〜350℃の高温で処理することが好ましく、より好ましくは、220〜280℃である。処理時間は1.5〜2.5時間が好ましい。処理温度が低いと被膜樹脂自体の硬度が低下する。処理温度が高すぎると帯電低下が生じる。
(9)二成分現像
現像プロセスでは、感光体と現像ローラ間には直流バイアスと共に交流バイアスを印加する。そのときの周波数が1〜10kHz、交流バイアスが1.0〜2.5kV(p−p)であり、かつ感光体と現像ローラ間の周速度比が1:1.2〜1:2であることが好ましい。より好ましくは周波数が3.5〜8kHz、交流バイアスが1.2〜2.0kV(p−p)であり、かつ感光体と現像ローラ間の周速度比が1:1.5〜1:1.8である。更に好ましくは周波数が5.5〜7kHz、交流バイアスが1.5〜2.0kV(p−p)であり、かつ感光体と現像ローラ間の周速度比が1:1.6〜1:1.8である。
この現像プロセス構成と本実施形態のトナー又は二成分現像剤の使用により、ドットを忠実に再現でき、原稿濃度と出力された画像の濃度比例させる(現像γ特性をねかせる特性ともいう。)ことができる。高画質画像とオイルレス定着性を両立できる。また高抵抗キャリアでも低湿下でのチャージアップを防止でき、連続使用においても高画像濃度を得ることができる。
トナー表面が略樹脂主体であっても、本キャリア組成と交流バイアスとの併用により、キャリアとの付着力を低減でき画像濃度を維持できると共にカブリを低減でき、ドットをも忠実に再現できるものと思われる。
周波数が1kHzより小さいと、ドット再現性が悪化し、中間調再現性が悪化する。周波数が10kHzより大きくなると、現像領域での追随ができず、効果が現れない。この周波数の領域では高抵抗キャリアを使用した二成分現像において、現像ローラと感光体間よりもキャリアとトナー間での往復作用に働き、トナーをキャリアから微少に遊離させる効果があり、これによりドット再現性、中間調再現性が良好に行われ、かつ高画像濃度を出すことが可能になる。
交流バイアスが1.0kV(p−p)より小さくなると、チャージアップの抑制の効果が得られず、交流バイアスが2.5kV(p−p)より大きくなるとカブリが増大する。感光体と現像ローラ間の周速度比が1:1.2より小さいと(現像ローラが遅くなる)画像濃度が得にくい。感光体と現像ローラ間の周速度比が1:2より大きくなると(現像ローラ速度が上がる)とトナー飛散が多くなる。
(10)タンデムカラープロセス
高速にカラー画像を形成するために、本実施形態では、感光体と帯電手段とトナー担持体を含むトナー像形成ステーションを複数個有し、像担持体上に形成した静電潜像を顕像化したトナー像を、前記像担持体に無端状の転写体を当接させて前記転写体に転写させる一次転写プロセスが順次連続して実行して、前記転写体に多層の転写トナー画像を形成し、その後前記転写体に形成した多層のトナー像を、一括して紙やOHP等の転写媒体に一括転写させる二次転写プロセスが実行されるよう構成された転写プロセスにおいて、第1の一次転写位置から第2の一次転写位置までの距離をd1(mm)、感光体の周速度をv(mm/s)とした場合、d1/v≦0.65となる転写位置構成を取る構成で、マシンの小型化と印字速度の両立を図るものである。毎分20枚(A4)以上処理でき、かつマシンがSOHO用途として使用できる大きさの小型化を実現するためには、複数のトナー像形成ステーション間を短く、かつプロセス速度を高める構成が必須である。その小型化と印字速度の両立のためには上記値が0.65以下とする構成がミニマムと考えられる。
しかし、このトナー像形成ステーション間を短い構成をとるとき、例えば1色目のイエロートナーが一次転写された後、次の2色目のマゼンタトナーが一次転写されるまでの時間が極めて短く、転写体の帯電緩和又は転写されたトナーの電荷緩和が殆ど生じず、イエロートナーの上にマゼンタトナーを転写する際に、マゼンタトナーがイエロートナーの電荷作用により反発され、転写効率の低下、転写時の文字の中抜けという問題が生じる。さらに第3色目のシアントナーの一次転写の時、前のイエロー、マゼンタトナーの上に転写される際にシアントナーの飛び散り、転写不良、転写中抜けが顕著に発生する。さらに繰り返し使用しているうちに特定粒径のトナーが選択的に現像され、トナー粒子個々の流動性が大きく異なると摩擦帯電する機会が異なるため、帯電量のバラツキが生じ、より転写性の劣化を招いてしまう。
そこで、本実施形態のトナー又は二成分現像剤を使用することにより、帯電分布が安定化しトナーの過帯電を抑えると共に、流動性変動を抑えることができる。そのため定着特性を犠牲にすることなく、転写効率の低下、転写時の文字の中抜け、逆転写を防止することができる。
(11)クリーナレスプロセス
本実施形態では、転写プロセス後に感光体上に残留したトナーをクリーニングにより回収するクリーニングプロセス工程を有さずに、次の帯電、露光、現像プロセスを行うクリーナーレスプロセスを基本構成とする電子写真装置にも好適に使用される。
本実施形態のトナー又は二成分現像剤の使用により、トナーの凝集を抑え、過帯電を防止し、帯電性の安定化が得られ、高転写効率を得ることが可能となる。また樹脂中での均一分散性の向上、良好な帯電性、材料の有する離型性により、非画像部に残留したトナーの現像での回収が良好に行える。そのため、非画像部の前の画像パターンが残る現像メモリーも発生もない。
(12)オイルレスカラー定着
本実施形態では、トナーを定着する手段にオイルを使用しないオイルレス定着構成の定着プロセスを具備する電子写真装置に好適に使用される。その加熱手段としては電磁誘導加熱がウオームアップ時間の短縮、省エネの観点から好ましい構成である。磁場発生手段と、電磁誘導により発生する発熱層及び離型層を少なくとも有する回転加熱部材と、該回転加熱部材と一定のニップを形成している回転加圧部材とを少なくとも有する加熱加圧手段を使用して、回転加熱部材と回転加圧部材間にトナーが転写された複写紙等の転写媒体を通過させ、定着させる構成である。その特徴として、回転加熱部材のウオームアップ時間が従来のハロゲンランプを使用している場合に比べて、非常に早い立ち上がり性を示す。そのため回転加圧部材が十分に昇温していない状態で複写の動作に入るため、低温定着と広範囲な耐オフセット性が要求される。
構成としては、加熱部材と定着部材を分離した定着ベルトを使用した構成も好ましく使用される。そのベルトとしては耐熱性と変形自在性とを有するニッケル電鋳ベルトやポリイミドベルトの耐熱ベルトが好適に用いられる。離形性を向上するために表面層としてシリコーンゴム、フッ素ゴム、フッ素樹脂を用いるのが好ましい。
これらの定着においては、従来は離型オイルを塗布してオフセットを防止してきた。オイルを使用せずに離型性を有するトナーにより、離型オイルを塗布する必要はなくなった。しかし、離型オイルを塗布しないと帯電しやすく、未定着のトナー像が加熱部材又は定着部材と近接すると帯電の影響により、トナー飛びが生じる場合がある。特に低温低湿下において発生しやすい。
そこで、本実施形態のトナーの使用により、オイルを使用せずとも低温定着と広範囲な耐オフセット性を実現でき、カラー高透光性を得ることができる。またトナーの過帯電性を抑制でき加熱部材又は定着部材との帯電作用によるトナーの飛びを抑えられる。
(キャリア芯材製造例)
1リットルのフラスコに、フェノール52g、37%ホルマリン75g、平均粒径が0.24μmの球状マグネタイト粒子粉末粒子400g、28%アンモニア水15g、フッ化カルシウム1.0g及び水50gを仕込み、撹拌しながら60分間で85℃に上昇させた後、同温度で120分間反応・硬化させることにより、フェノール樹脂と球状マグネタイト粒子からなる複合磁性粒子の生成を行った。
次に、フラスコ内の内容物を30℃に冷却した後、この中に0.5リットルの水を添加した後、上澄み液を除去し、さらに下層の沈殿物を水洗し、風乾した。次いで、これを減圧下(5mmHg以下)に、50〜60℃で乾燥して複合磁性粒子(キャリア芯材A)を得た。
1リットルのフラスコに、フェノール50g、37%ホルマリン65g、平均粒径が0.24μmの球状マグネタイト粒子粉末粒子450g、28%アンモニア水15g、フッ化カルシウム1.0g及び水50gを仕込み、撹拌しながら60分間で85℃に上昇させた後、同温度で120分間反応・硬化させることにより、フェノール樹脂と球状マグネタイト粒子からなる複合磁性粒子の生成を行った。
次に、フラスコ内の内容物を30℃に冷却した後、この中に0.5リットルの水を添加した後、上澄み液を除去し、さらに下層の沈殿物を水洗し、風乾した。次いで、これを減圧下(5mmHg以下)に、50〜60℃で乾燥して複合磁性粒子(キャリア芯材B)を得た。
1リットルのフラスコに、フェノール47.5g、37%ホルマリン62g、平均粒径が0.24μmの球状マグネタイト粒子粉末粒子480g、28%アンモニア水15g、フッ化カルシウム1.0g及び水50gを仕込み、撹拌しながら60分間で85℃に上昇させた後、同温度で120分間反応・硬化させることにより、フェノール樹脂と球状マグネタイト粒子からなる複合磁性粒子の生成を行った。
次に、フラスコ内の内容物を30℃に冷却した後、この中に0.5リットルの水を添加した後、上澄み液を除去し、さらに下層の沈殿物を水洗し、風乾した。次いで、これを減圧下(5mmHg以下)に、50〜60℃で乾燥して複合磁性粒子(キャリア芯材C)を得た。
比較例として、平均粒径80μm、印加磁場が238.74kA/m(3000エルステット)の時の飽和磁化が65Am2/kgであるフェライト粒子の芯材dを用いた。
(キャリア製造例1)
次に、下記式(化7)で示されるR1、R2がメチル基、すなわち(CH32SiO2/2単位が15.4mol%、下記式(化8)で示されるR3がメチル基、すなわちCH3SiO3/2単位が84.6mol%であるポリオルガノシロキサン250gと、CF3CH2CH2Si(OCH3321gとを反応させフッ素変性シリコーン樹脂を得た。さらにそのフッ素変性シリコーン樹脂を固形分換算で100gとアミノシランカップリング剤(γ−アミノプロピルトリエトキシシラン)10gとを秤量し、300ccのトルエン溶剤に溶解させた。
Figure 2006011385
(但し、R1,R2,R3,R4はメチル基、mは平均重合度であり100である。)
Figure 2006011385
(但し、R1,R2,R3,R4,R5,R6はメチル基、nは平均重合度であり80である。)
前記キャリア芯材A10kgに対し、液浸乾燥式被覆装置を用い、上記被覆樹脂溶液を20分間攪拌することによりコーティングを行った。その後260℃で1時間焼き付けを行い、キャリアA1を得た。
キャリアA1は、球状マグネタイト粒子の含有量が80.4質量%の球状粒子であり、平均粒子径が30μm、比重が3.05であって、磁化値が61Am2/kg、体積固有抵抗が3×109Ωcm、比表面積0.098m2/gであった。
(キャリア製造例2)
製造例1において、キャリア芯材Bを使用し、CF3CH2CH2Si(OCH33をC817CH2CH2Si(OCH33に変更した以外は、製造例1と同様の工程でキャリアB1を得た。
キャリアB1は、球状マグネタイト粒子の含有量が88.4質量%の球状粒子であり、平均粒子径が45μm、比重が3.56であって、磁化値が65Am2/kg、体積固有抵抗が8×1010Ωcm、比表面積0.057m2/gであった。
(キャリア製造例3)
製造例1において、キャリア芯材Cを使用し、導電性カーボン(ケッチェンブラックインタ−ナショナル社製 EC)を樹脂固形分に対し5wt%をボールミルにて分散した以外は、製造例1と同様の工程でキャリアC1を製造した。
キャリアC1は、球状マグネタイト粒子の含有量が92.5質量%の球状粒子であり、平均粒子径が48μm、比重が3.98であって、磁化値が69Am2/kg、体積固有抵抗が2×107Ωcm、比表面積0.043m2/gであった。
(キャリア製造例4)
製造例1において、アミノシランカップリング剤の添加量を30gに変更した以外は、製造例1と同様の工程でキャリアA2を製造した。
キャリアA2は、球状マグネタイト粒子の含有量が80.4質量%の球状粒子であり、平均粒子径が30μm、比重が3.05であって、磁化値が61Am2/kg、体積固有抵抗が2×1010Ωcm、比表面積0.01m2/gであった。
(キャリア製造例5)
アミノシランカップリング剤の添加量を50gに変更した以外は、製造例1と同様の工程でコア材を製造し、コーティングを行い、キャリアa1を得た。
(キャリア製造例6)
被覆樹脂をストレートシリコーン(東レ・ダウコーニング社製 SR−2411)を固形分換算で100g、を秤量し、300ccのトルエン溶剤に溶解させた。フェライト粒子d10kgに対し、液浸乾燥式被覆装置を用い、上記被覆樹脂溶液を20分間攪拌することによりコーティングを行った。その後210℃で1時間焼き付けを行い、キャリアd2を得た。平均粒子径が80μm、比重が6であって、磁化値が75Am2/kg、体積固有抵抗が2×1012Ωcm、比表面積0.024m2/gであった。
(キャリア製造例7)
被覆樹脂をアクリル変性シリコーン樹脂(信越化学社製 KR−9706)を固形分換算で100gを秤量し、300ccのトルエン溶剤に溶解させた。前記フェライト粒子d10kgに対し、液浸乾燥式被覆装置を用い、上記被覆樹脂溶液を20分間攪拌することによりコーティングを行った。その後210℃で1時間焼き付けを行い、キャリアd3を得た。平均粒子径が80μm、比重が6であって、磁化値が75Am2/kg、体積固有抵抗が2×1011Ωcm、比表面積0.022m2/gであった。
(実施例1)
次に本発明のトナーの実施例について説明するが、本発明はこれらの実施例に何ら限定されるものではない。
[樹脂分散体の作成]
(表1)に使用した樹脂の特性を示す。Mnは数平均分子量、Mwは重量平均分子量,MzはZ平均分子量、Mpは分子量のピーク値、Tm(℃)は軟化点,Tg(℃)はガラス転移点を示す。スチレン、n−ブチルアクリレート、アクリル酸は配合量(g)を示す。
Figure 2006011385
(1)樹脂粒子分散液RL1の調製
スチレン96gと、n−ブチルアクリレート24gと、アクリル酸3.6gとからなるモノマー液を、イオン交換水200g中にアニオン性界面活性剤(第1工業製薬社製:ネオゲンRK)3g、ドデカンチオール6g、四臭化炭素1.2gを用いて分散し、これに過硫酸カリウム1.2gを加えて、70℃で6時間乳化重合を行った。その後さらに90℃で3時間熟成処理を行い、Mnが3900、Mwが10900、Mzが37800、Mpが8100、Tmが115℃、Tgが43℃、中位径が0.12μmの樹脂粒子が分散した樹脂粒子分散液RL1を調製した。
(2)樹脂粒子分散液RL2の調製
スチレン204gと、n−ブチルアクリレート36gと、アクリル酸3.6gとからなるモノマー液を、イオン交換水400g中にアニオン性界面活性剤(第1工業製薬社製:ネオゲンRK)6g、ドデカンチオール6g、四臭化炭素1.2gを用いて分散し、これに過硫酸カリウム1.2gを加えて、70℃で5時間乳化重合を行った。その後さらに90℃で5時間熟成処理を行い、Mnが6600、Mwが60300、Mzが259000、Mpが8100、Tmが128℃、Tgが55℃、中位径が0.18μmの樹脂粒子が分散した樹脂粒子分散液RL2を調製した。
(3)樹脂粒子分散液RL3の調製
スチレン204gと、n−ブチルアクリレート36gと、アクリル酸3.6gとからなるモノマー液を、イオン交換水400g中にアニオン性界面活性剤(第1工業製薬社製:ネオゲンRK)6g、ドデカンチオール12g、四臭化炭素2.4gを用いて分散し、これに過硫酸カリウム1.2gを加えて、70℃で5時間乳化重合を行った。その後さらに90℃で2時間熟成処理を行い、Mnが2600、Mwが18300、Mzが96200、Mpが2700、Tmが109℃、Tgが45℃、中位径が0.18μmの樹脂粒子が分散した、樹脂粒子分散液RL3を調製した。
(4)樹脂粒子分散液RH4の調製
スチレン102gと、n−ブチルアクリレート18gと、アクリル酸1.8gとからなるモノマー液を、イオン交換水200g中にアニオン性界面活性剤(第1工業製薬社製:ネオゲンRK)3g、ドデカンチオール0g、四臭化炭素0gを用いて分散し、これに過硫酸カリウム1.2gを加えて、70℃で5時間乳化重合を行い、Mnが43300、Mwが262000、Mzが577000、Mpが182000、Tmが197℃、Tgが77℃、中位径が0.12μmの樹脂粒子が分散した樹脂粒子分散液RH4を調製した。
(5)樹脂粒子分散液RH5の調製
サリチル酸アルミニウム金属錯体(オリエント化学社製:E88)を4g溶融したスチレン102gと、n−ブチルアクリレート18gと、アクリル酸1.8gとからなるモノマー液を、イオン交換水200g中にアニオン性界面活性剤(第1工業製薬社製:ネオゲンRK)3g、ドデカンチオール0g、四臭化炭素0gを用いて分散し、これに過硫酸カリウム1.2gを加えて、70℃で5時間乳化重合を行い、Mnが41000、Mwが242000、Mzが575000、Mpが154000、Tmが193℃、Tgが76℃、中位径が0.22μmの樹脂粒子が分散した樹脂粒子分散液RH5を調製した。
(実施例2)
[顔料分散体の作成]
(表2)に使用した顔料を示す。
Figure 2006011385
(1)着色剤粒子分散液PM1の調製
マゼンタ顔料20g(大日本インキ社製KETRED309)、アニオン性界面活性剤2g(第一工業製薬社製ネオゲンR)、イオン交換水78gを混合し、超音波分散機を用いて発振周波数30kHzで20分間分散を行って、中位径が0.12μmの着色剤粒子が分散した着色剤粒子分散液PM1を調製した。
(2)着色剤粒子分散液PC1の調製
シアン顔料20g(大日本インキ社製KETBLUE111)、アニオン性界面活性剤2g(第一工業製薬社製ネオゲンR)、イオン交換水78gを混合し、超音波分散機を用いて発振周波数30kHzで20分間分散を行って、中位径が0.12μmの着色剤粒子が分散した着色剤粒子分散液PC1を調製した。
(3)着色剤粒子分散液PY1の調製
イエロ顔料20g(山陽色素社製PY74)、アニオン性界面活性剤2g(第一工業製薬社製ネオゲンR)、イオン交換水78gを混合し、超音波分散機を用いて発振周波数30kHzで20分間分散を行って、中位径が0.12μmの着色剤粒子が分散した着色剤粒子分散液PY1を調製した。
(4)着色剤粒子分散液PB1の調製
ブラック顔料20g(三菱化学社製MA100S)、アニオン性界面活性剤2g(第一工業製薬社製ネオゲンR)、イオン交換水78gを混合し、超音波分散機を用いて発振周波数30kHzで20分間分散を行って、中位径が0.12μmの着色剤粒子が分散した着色剤粒子分散液PB1を調製した。
(実施例3)
[ワックス分散体の作成]
ワックス分散体に用いる界面活性剤のうち、イオン界面活性剤と非イオン界面活性剤を混合して使用することが好ましい。非イオン界面活性剤が界面活性剤全体に対して10〜90wt%有することが好ましい。より好ましくは30〜70wt%有することが好ましい。この構成により水系中で凝集にかかわらない浮遊した着色剤粒子やワックス粒子の存在をなくし、小粒径でかつ均一で狭い範囲でシャープな粒度分布を有する芯粒子を形成することができる。さらには第二の樹脂粒子の浮遊を低減し、凝集粒子に付着溶融を均一にして、シャープな粒度分布を作成することに効果が得られる。(表3)、(表4)、(表5)、(表6)に使用したワックスの特性を示す。
Figure 2006011385
Figure 2006011385
Figure 2006011385
Figure 2006011385
(1)ワックス粒子分散液WA1の調製
図3に攪拌分散装置の概略図、図4に上から見た図を示す。801が外槽でその内部に冷却水を808から注入し、807から排出されるようにしている。802は被処理液がせき止める堰板で中央部に穴があけられており、ここから処理された液が順次805を通じて外部に取り出す。803が高速で回転する回転体でシャフト806に固定され、高速に回転できる。回転体の側面には、1〜5mm程度の穴があけられており、被処理液の移動を可能とする。槽は120mlで、被処理液はその2分の1程度投入する。回転体の速度MAXは50m/sまで可能である。回転体の径は52mm、槽の内径は56mmである。44は連続処理の場合の原料注入口である。高圧処理やバッチ式のときは封印している。
イオン交換水70gと、アニオン界面活性剤(三洋化成工業社製SCF)0.8g、ノニオン界面活性剤(日本乳化剤社製ニューコール565C)1.2g、ワックス(W−1)28gとを仕込み、回転体の速度は20m/sで5min、その後回転速度を50m/sに上げ、2min処理した。槽内の液温度は92℃に上昇した。その熱でワックスが溶融し、強いせん断力により微細なワックス粒子分散液WA1が形成された。
(2)ワックス粒子分散液WA2の調製
(1)と同様の条件で、イオン交換水70gと、アニオン界面活性剤(三洋化成工業社製SCF)0.5g、ノニオン界面活性剤(日本乳化剤社製ニューコール565C)1.5g、ワックス(W−2)28gとを仕込み、回転体の速度は20m/sで3min、その後回転速度を45m/sに上げ、2min処理し、ワックス粒子分散液WA2が形成された。
(3)ワックス粒子分散液WA3の調製
(1)と同様の条件で、槽内を0.4Mpaまで加圧して状態で、イオン交換水70gと、アニオン界面活性剤(三洋化成工業社製SCF)1g、ノニオン界面活性剤(日本乳化剤社製ニューコール565C)1g、ワックス(W−3)28gとを仕込み、回転体の速度は20m/sで3min、その後回転速度を50m/sに上げ、2min処理し、ワックス粒子分散液WA3が形成された。
(4)ワックス粒子分散液WA4の調製
(1)と同様の条件で、イオン交換水70gと、アニオン界面活性剤(三洋化成工業社製SCF)1g、ノニオン界面活性剤(日本乳化剤社製ニューコール565C)1g、ワックス(W−4)28gとを仕込み、回転体の速度は20m/sで3min、その後回転速度を50m/sに上げ、1min処理し、ワックス粒子分散液WA4が形成された。
(5)ワックス粒子分散液WA5の調製
(3)と同様の条件で、イオン交換水70gと、アニオン界面活性剤(三洋化成工業社製SCF)1g、ノニオン界面活性剤(日本乳化剤社製ニューコール565C)1g、ワックス(W−5)28gとを仕込み、回転体の速度は20m/sで3min、その後回転速度を45m/sに上げ、4min処理し、ワックス粒子分散液WA5が形成された。
(6)ワックス粒子分散液WA6の調製
(3)と同様の条件で、イオン交換水70gと、アニオン界面活性剤(三洋化成工業社製SCF)1g、ノニオン界面活性剤(日本乳化剤社製ニューコール565C)1g、ワックス(W−6)28gとを仕込み、回転体の速度は20m/sで3min、その後回転速度を45m/sに上げ、4min処理し、ワックス粒子分散液WA6が形成された。
(7)ワックス粒子分散液WA7の調製
(3)と同様の条件で、イオン交換水70gと、アニオン界面活性剤(三洋化成工業社製SCF)1g、ノニオン界面活性剤(日本乳化剤社製ニューコール565C)1g、ワックス(W−7)28gとを仕込み、回転体の速度は20m/sで3min、その後回転速度を45m/sに上げ、4min処理し、ワックス粒子分散液WA7が形成された。
(8)ワックス粒子分散液WA8の調製
図5に攪拌分散装置の概略図、図6に上から見た図を示す。850は原料投入口、852は固定体でフローティング構造としている。851のばねにより押し付けられ、回転体853の高速回転力との押し上げ力とにより約1μm〜10μm狭ギャップを形成している。854はモータ(図示せず)につながるシャフトである。850から投入された原料は固定体と回転体とのギャップ間で強いせん断力を受け、液中で微細粒子に分散される。その処理された原料液は856から排出される。図6に上から見た図を示す。排出される原料液855は放射状に飛ばされ、それを密閉した容器に回収される。回転体の外径は100mmである。
原料液はあらかじめ加圧加熱された水媒体中にワックスと界面活性剤をプレ分散させておき、それを投入口80から投入して、瞬時に微細化処理される。供給量は1kg/h、回転体の速度はMAX100m/sで回転させた。
イオン交換水70gと、アニオン界面活性剤(三洋化成工業社製SCF)1g、ノニオン界面活性剤(日本乳化剤社製ニューコール565C)1g、ワックス(W−8)28gとを仕込み、回転体の速度は100m/s、供給量は1kg/hで処理し、ワックス粒子分散液WA8が形成された。
(10)ワックス粒子分散液wa10の調製
イオン交換水70gと、アニオン界面活性剤(三洋化成工業社製SCF)1g、ノニオン界面活性剤(日本乳化剤社製ニューコール565C)1g、パラフィンワックス(日本精鑞社製HNP−10、融点75℃)28gとを仕込み、ホモジナイザーにて30min処理し、ワックス粒子分散液wa10が形成された。
(11)ワックス粒子分散液wa11の調製
イオン交換水70gと、アニオン界面活性剤(三洋化成工業社製SCF)1g、ノニオン界面活性剤(日本乳化剤社製ニューコール565C)1g、フィッシャートロプッシュワックス(日本精鑞社製FT0070、融点72℃)28gとを仕込み、ホモジナイザーにて30min処理し、ワックス粒子分散液wa11が形成された。
(12)ワックス粒子分散液wa12の調製
イオン交換水70gと、アニオン界面活性剤(三洋化成工業社製SCF)1g、ノニオン界面活性剤(日本乳化剤社製ニューコール565C)1g、炭化水素系ワックス(日本精鑞社製LUVAX2191、融点83℃)28gとを仕込み、ホモジナイザーにて30min処理し、ワックス粒子分散液wa12が形成された。
(実施例4)
[トナー母体の作成]
作製したトナーの組成を(表7)に示す。
d50(μm)はトナー母体粒子の体積平均粒径、P2は個数分布における2.52〜4μmの粒径を有するトナー母体粒子の含有個数%量、V46は、体積分布における4〜6.06μmの粒径を有するトナ−母体粒子の含有体積%量P46は、個数分布における4〜6.06μmの粒径を有するトナ−母体粒子の含有個数%量、P8は、体積分布における8μm以上の粒径を有するトナ−母体粒子の含有体積%量を示す。
Figure 2006011385
(1)トナー母体M1の作成
温度計、冷却管、攪拌棒、pHメータを装着した4つ口フラスコ2000mlに、第一の樹脂粒子分散液RL2を204g、着色剤粒子分散液PM1を20g、ワックス粒子分散液WA1を50g、イオン交換水200mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。得られた混合分散液のpHは5.8であった。
その後、得られた混合分散液に1N NaOHを投入し、pHを11.9とし、その後23%濃度の硫酸マグネシウム水溶液を260g添加し、10min攪拌した。その後5℃/minの速度で22℃から70℃まで昇温し、その後70℃で2時間加熱した。その後温度を85℃に昇温し、3時間加熱処理した。得られた凝集粒子分散液のpHは9.3であった。コールターカウンター(コールター社製:マルチサイザー2)にて観察すると体積平均粒径4.0μm、変動係数19.7であった。
その後、さらにpHを6.6に調整し、90℃で、2時間加熱処理し凝集粒子を得た。
冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることによりトナー母体M1を得た。体積平均粒径4.3μm、変動係数18.1であった。
このとき混合分散液を作成したときのpHが6.0よりも高いと、加熱して着色樹脂粒子を形成する際に、液中のpH変動(減少現象)が大きくなり、粒子が粗大化してしまう。
水溶性無機塩の添加前及び加熱前の混合分散液のpHを調製する際、9.5よりも低いと形成された着色樹脂粒子が粗大化してしまう。またpHを12.5とすると遊離ワックスが多くなりワックスを均一に内包化することが困難になった。凝集粒子が形成されたときの液のpHが9.5よりも高くなると凝集不良で遊離ワックスが多くなる。
また、5℃/minの速度で22℃から70℃まで昇温し、その後70℃で2時間加熱した。その後温度を85℃に昇温し、3時間加熱処理し、その後、pHを調整せずに、または調整をしてもpHが6.8よりも大きい値で加熱処理すると粒子は粗大化する傾向にある。pHを2.2未満にまで下げると、界面活性剤の効果が消失し粒子径が粗大化する傾向にある。
(2)トナー母体M2の作成
温度計、冷却管、攪拌棒、pHメータを装着した4つ口フラスコ2000mlに、第一の樹脂粒子分散液RL2を204g、着色剤粒子分散液PM1を20g、ワックス粒子分散液WA2を50g、イオン交換水200mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。得られた混合分散液のpHは2.8であった。
その後、得られた混合分散液に1N NaOHを投入し、pHを9.7とし、その後23%濃度の硫酸マグネシウム水溶液を260g添加し、10min攪拌した。その後5℃/minの速度で22℃から70℃まで昇温し、その後70℃で2時間加熱した。その後温度を85℃に昇温し、5時間処理して凝集粒子を得た。得られた凝集粒子分散液のpHは7.2であった。体積平均粒径5.7μm、変動係数18.9であった。
その後、さらにpHを2.5に調整し、90℃で、2時間加熱処理し凝集粒子を得た。
冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることによりトナー母体M2を得た。体積平均粒径6.0μm、変動係数16.9であった。
(3)トナー母体M3の作成
温度計、冷却管、攪拌棒、pHメータを装着した4つ口フラスコ2000mlに、第一の樹脂粒子分散液RL2を204g、着色剤粒子分散液PM1を20g、ワックス粒子分散液WA3を50g、イオン交換水200mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。得られた混合分散液のpHは4.2であった。
その後、得られた混合分散液に1N NaOHを投入し、pHを11.2とし、その後23%濃度の硫酸マグネシウム水溶液を260g添加し、10min攪拌した。その後5℃/minの速度で22℃から70℃まで昇温し、その後70℃で2時間加熱した。その後温度を85℃に昇温し、5時間処理して凝集粒子を得た。得られた凝集粒子分散液のpHは8.5であった。体積平均粒径4.7μm、変動係数19.9であった。
その後、さらにpHを4.5に調整し、90℃で、2時間加熱処理し凝集粒子を得た。
冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることによりトナー母体M3を得た。体積平均粒径4.9μm、変動係数18.1であった。
(4)トナー母体M4の作成
温度計、冷却管、攪拌棒、pHメータを装着した4つ口フラスコ2000mlに、第一の樹脂粒子分散液RL1を204g、着色剤粒子分散液PM1を24g、ワックス粒子分散液WA4を50g、イオン交換水250mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。得られた混合分散液のpHは5.8であった。
その後、得られた混合分散液に1N NaOHを投入し、pHを11.9とし、その後23%濃度の硫酸マグネシウム水溶液を264g添加し、10min攪拌した。その後5℃/minの速度で22℃から70℃まで昇温し、その後70℃で2時間加熱した。その後温度を85℃に昇温し、5時間処理した。そのときの分散液のpHは9.3であった。生成された粒子の体積平均粒径3.7μm、変動係数21.4であった。
その後、さらにpHを6.6に調整し、90℃で、2時間加熱処理し芯粒子を得た。体積平均粒径3.9μm、変動係数19.8であった。
その後、水温を60℃とし、第二のシェル用樹脂粒子分散液RH4を43g添加し、1N NaOHを投入し、pHを8.6とした。
水温を80℃の条件で0.5時間加熱し、その後1N HClを添加し、PHを6.6とした。
その後、さらに90℃の条件で2時間加熱した。
冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後、得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることにより、体積平均粒径4.8μm、変動係数20.1のトナー母体M4を得た。
第二の樹脂粒子分散液(本実施例ではRH4)を添加したときのpHが5.0とすると、第二の樹脂粒子の付着が起こりにくく、遊離樹脂粒子が増加した。またpHを9.0とすると、芯粒子同士の二次凝集が発生し、粒子が粗大化した。
加熱処理後のpHを3.0とすると、一旦付着した樹脂粒子が一部遊離し、微細粒子が発生した。7.0とすると、芯粒子の二次凝集が発生し、粒子が粗大化した。
(5)トナー母体M5の作成
温度計、冷却管、攪拌棒、pHメータを装着した4つ口フラスコ2000mlに、第一の樹脂粒子分散液RL3を204g、着色剤粒子分散液PM1を24g、ワックス粒子分散液WA5を50g、イオン交換水250mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。得られた混合分散液のpHは2.2であった。
その後得られた混合分散液に1N NaOHを投入し、pHを9.7とし、その後23%濃度の硫酸マグネシウム水溶液を264g添加し、10min攪拌した。その後5℃/minの速度で22℃から70℃まで昇温し、その後、70℃で2時間加熱した。その後、温度を85℃に昇温し、5時間処理した。得られた分散液のpHは7.2であった。生成された粒子の体積平均粒径4.7μm、変動係数17.4であった。
その後、さらにpHを2.5に調整し、90℃で、2時間加熱処理し芯粒子を得た。体積平均粒径4.9μm、変動係数16.8であった。
その後、水温を60℃とし、第二のシェル用樹脂粒子分散液RH4を43g添加し、1N NaOHを投入し、pHを5.0とした。
水温を80℃の条件で2時間加熱し、その後1N HClを添加し、PHを3.4とした。その後さらに90℃の条件で2時間加熱した。
冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることにより、体積平均粒径5.9μm、変動係数15.9のトナー母体M5を得た。
(6)トナー母体M6の作成
温度計、冷却管、攪拌棒、pHメータを装着した4つ口フラスコ2000mlに、第一の樹脂粒子分散液RL1を204g、着色剤粒子分散液PM1を24g、ワックス粒子分散液WA6を50g、イオン交換水250mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。得られた混合分散液のpHは3.8であった。
その後、得られた混合分散液に1N NaOHを投入し、pHを11.2とし、その後23%濃度の硫酸マグネシウム水溶液を260g添加し、10min攪拌した。その後5℃/minの速度で22℃から70℃まで昇温し、その後70℃で2時間加熱した。その後温度を85℃に昇温し、5時間処理した。得られた分散液のpHは8.5であった。生成した粒子の体積平均粒径4.0μm、変動係数19.6であった。
その後、さらにpHを4.8に調整し、90℃で、2時間加熱処理し芯粒子を得た。体積平均粒径4.3μm、変動係数18.1であった。
その後、水温を60℃とし、第二のシェル用樹脂粒子分散液RH4を43g添加し、1N NaOHを投入し、pHを6.8とした。
水温を80℃の条件で1時間加熱し、その後1N HClを添加し、PHを5.0とした。その後さらに90℃の条件で5時間加熱した。
冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることにより、体積平均粒径5.2μm、変動係数16.8のトナー母体M6を得た。
(7)トナー母体M7の作成
温度計、冷却管、攪拌棒、pHメータを装着した4つ口フラスコ2000mlに、第一の樹脂粒子分散液RL3を204g、着色剤粒子分散液PM1を24g、ワックス粒子分散液WA7を50g、イオン交換水250mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。得られた混合分散液のpHは4.2であった。
その後、得られた混合分散液に1N NaOHを投入し、pHを11.2とし、その後23%濃度の硫酸マグネシウム水溶液を264g添加し、10min攪拌した。その後5℃/minの速度で22℃から70℃まで昇温し、その後70℃で2時間加熱した。その後温度を85℃に昇温し、5時間処理した。得られた分散液のpHは8.5であった。生成した粒子の体積平均粒径4.0μm、変動係数19.2であった。
その後、さらにpHを4.8に調整し、90℃で、2時間加熱処理し芯粒子を得た。体積平均粒径4.2μm、変動係数17.8であった。
その後、水温を60℃とし、第二のシェル用樹脂粒子分散液RH5を43g添加し、1N NaOHを投入し、pHを6.8とした。
水温を80℃の条件で1時間加熱し、その後1N HClを添加し、PHを5.0とした。その後さらに90℃の条件で5時間加熱した。
冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることにより、体積平均粒径5.2μm、変動係数17.1のトナー母体M7を得た。
(8)トナー母体M8の作成
温度計、冷却管、攪拌棒、pHメータを装着した4つ口フラスコ2000mlに、第一の樹脂粒子分散液RL3を204g、着色剤粒子分散液PM1を24g、ワックス粒子分散液WA8を50g、イオン交換水250mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。得られた混合分散液のpHは4.2であった。
その後、得られた混合分散液に1N NaOHを投入し、pHを11.2とし、その後23%濃度の硫酸マグネシウム水溶液を264g添加し、10min攪拌した。その後5℃/minの速度で22℃から70℃まで昇温し、その後70℃で2時間加熱した。その後温度を85℃に昇温し、5時間処理した。得られた分散液のpHは8.5であった。生成した粒子の体積平均粒径4.7μm、変動係数21.8であった。
その後、さらにpHを4.8に調整し、90℃で、2時間加熱処理し芯粒子を得た。体積平均粒径4.9μm、変動係数19.8であった。
その後、水温を60℃とし、第二のシェル用樹脂粒子分散液RH5を43g添加し、1N NaOHを投入し、pHを6.8とした。
水温を80℃の条件で1時間加熱し、その後1N HClを添加し、PHを5.0とした。その後さらに90℃の条件で5時間加熱した。
冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることにより、体積平均粒径6.0μm、変動係数18.1のトナー母体M8を得た。
(9)トナー母体M9の作成
温度計、冷却管、攪拌棒、pHメータを装着した4つ口フラスコ2000mlに、第一の樹脂粒子分散液RL1を204g、着色剤粒子分散液PM1を24g、ワックス粒子分散液WA2を60g、イオン交換水250mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT25)を用いて10min混合して混合粒子分散液を調製した。得られた混合分散液のpHは3.8であった。
その後得られた混合分散液に1N NaOHを投入し、pHを11.9とし、その後23%濃度の硫酸マグネシウム水溶液を273g添加し、10min攪拌した。その後1℃/minの速度で20℃から90℃まで昇温し、その後3時間加熱処理し、pH9.3の凝集粒子分散液を得た。その後さらにpHを6.6に調整し、90℃で1時間加熱処理し芯粒子を得た。得られた芯粒子分散液のpHは6.3であった。
その後、水温を90℃とした状態で、pHを5.5に調整した第二の樹脂粒子分散液RH4を1g/minの滴下速度で43g添加し、滴下終了後90℃の条件で2時間加熱処理して第二の樹脂粒子が融着した粒子を得た。2時間程度の加熱処理により、第二の樹脂粒子が均一に融着し、処理時間を短縮できる効果が確認できた。
そして、冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることにより、体積平均粒径4.2μm、変動係数16.7のトナー母体M9cを得た。
(表8)に混合後、凝集粒子生成工程での時間経過後に対する槽内温度と、液のpH、体積平均粒径(d50(μm))、第二の樹脂粒子付着溶融工程での第二の樹脂粒子分散液滴下終了後、滴下後の時間経過に対する槽内温度と、体積平均粒径(d50(μm))、第二の樹脂粒子分散液滴下終了の欄に記載する「R:(数値) 」は第二の樹脂粒子分散液の調整後のpH値を示す。M9a〜jは、その第二の樹脂粒子分散液の調整後のpH値を10.5、9.5、8.5、7.5、6.5、5.5、4.5、3.5、11としたときの状態を示し、滴下終了時2h時の体積平均粒径と、形状係数を示す。
Figure 2006011385
pH値を8.5から10.5へと調整することにより、形状が不定形にシフトする傾向がある。
pH値が3.5では、第二の樹脂粒子分散液を滴下すると、第二の樹脂粒子は凝集粒子にまったく付着せず、第二の樹脂粒子のみが凝集を生じて体積変動係数が40以上とかなりブロードな粒度分布になり、分散液は白濁したままであった。pH値を11では、生成する粒子が体積平均粒径で15μm以上にまで粗大化した。
(10)トナー母体m10の作成
温度計、冷却管、攪拌棒、pHメータを装着した4つ口フラスコ2000mlに、樹脂粒子分散液RL2を204g、着色剤粒子分散液PM1を20g、ワックス粒子分散液wa10を30g、イオン交換水200mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。
得られた混合粒子分散液に1N NaOHを投入し、pHを9.2とし、その後23%濃度の硫酸マグネシウム水溶液を260g添加し、10min攪拌した。その後5℃/minの速度で22℃から70℃まで昇温し、その後70℃で2時間加熱した。その後温度を90℃に昇温し、5時間処理して凝集粒子を得た。得られた凝集粒子のpHは6.7であった。
そして、冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることにより体積平均粒径9.1μm、変動係数31.2のトナー母体m10を得た。
(11)トナー母体m11の作成
温度計、冷却管、攪拌棒、pHメータを装着した4つ口フラスコ2000mlに、樹脂粒子分散液RL2を204g、着色剤粒子分散液PM1を20g、ワックス粒子分散液wa11を30g、イオン交換水200mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。
得られた混合粒子分散液に1N NaOHを投入し、pHを9.3とし、その後23%濃度の硫酸マグネシウム水溶液を260g添加し、10min攪拌した。その後5℃/minの速度で22℃から70℃まで昇温し、その後70℃で2時間加熱した。その後温度を85℃に昇温し、5時間処理して凝集粒子を得た。得られた凝集粒子のpHは6.8であった。
そして、冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることにより体積平均粒径8.1μm、変動係数31.8のトナー母体m11を得た。
(12)トナー母体m12の作成
温度計、冷却管、攪拌棒、pHメータを装着した4つ口フラスコ2000mlに、樹脂粒子分散RL2を204g、着色剤粒子分散液PM1を20g、ワックス粒子分散液wa12を30g、イオン交換水200mlを投入し、ホモジナイザー(IKA社製:ウルトラタラックスT50)を用いて10min混合して混合粒子分散液を調製した。
得られた混合粒子分散液に1N NaOHを投入し、pHを9.2とし、その後23%濃度の硫酸マグネシウム水溶液を260g添加し、10min攪拌した。その後5℃/minの速度で22℃から70℃まで昇温し、その後70℃で2時間加熱した。その後温度を85℃に昇温し、5時間処理して凝集粒子を得た。得られた凝集粒子のpHは6.7であった。
そして、冷却後、反応生成物(トナー母体)をろ過し、イオン交換水にて3回洗浄を行った。その後得られたトナー母体を流動式乾燥機で40℃で6時間乾燥させることにより体積平均粒径7.5μm、変動係数42.9のトナー母体m12を得た。
(表9)に本実施例で使用する外添剤を示す。その帯電量はノンコートのフェライトキャリアとの摩擦帯電のブローオフ法により測定したものである。25℃45RH%の環境下で、100mlのポリエチレン容器にキャリア50gとシリカ等0.1gを混合し、縦回転にて100min-1の速度で5分、30分間攪拌した後、0.3g採取し、窒素ガス1.96×104(Pa)で1分間ブローした。負帯電性では5分値が−100〜−800μC/gで、30分の値が−50〜−600μC/gであることが好ましい。高い帯電量のシリカでは少量の添加量で機能を発揮できる。
Figure 2006011385
(表10)に本実施例に本実施例で使用したトナー材料組成を示す。他の黒トナー、シアントナー、イエロートナーは顔料にPB1,PC1,PY1を使用して、他の組成はマゼンタトナー組成と同様とした。
Figure 2006011385
外添剤はトナー母体100重量部に対する配合量(重量部)を示している。外添処理はFM20Bにおいて、攪拌羽根Z0S0型、回転数2000min-1、処理時間5min、投入量1kgで行った。
図1は本実施例で使用したフルカラー画像形成用の画像形成装置の構成を示す断面図である。図1において、カラー電子写真プリンタの外装筐は省略している。転写ベルトユニット17は、転写ベルト12、弾性体よりなる第1色(イエロー)転写ローラ10Y、第2色(マゼンタ)転写ローラ10M、第3色(シアン)転写ローラ10C、第4色(ブラック)転写ローラ10K、アルミローラよりなる駆動ローラ11、弾性体よりなる第2転写ローラ14、第2転写従動ローラ13、転写ベルト12上に残ったトナー像をクリーニングするベルトクリーナブレード16、クリーナブレードに対向する位置にローラ15を設けている。このとき、第1色(Y)転写位置から第2色(M)転写位置までの距離は70mm(第2色(M)転写位置から第3色(C)転写位置、第3色(C)転写位置から第4色(K)転写位置も同様距離)、感光体の周速度は125mm/sである。
転写ベルト12は、絶縁性ポリカーボネート樹脂中に導電性のフィラーを混練して押出機にてフィルム化して用いる。本実施例では、絶縁性樹脂としてポリカーボネート樹脂(たとえば三菱ガス化学製,ユーピロンZ300)95重量部に、導電性カーボン(たとえばケッチェンブラック)5重量部を加えてフィルム化したものを用いた。また、表面にフッ素樹脂をコートし、厚みは約100μm、体積抵抗は107〜1012Ω・cm、表面抵抗は107〜1012Ω/□である。ドット再現性を向上させるためもある。転写ベルト12の長期使用による弛みや,電荷の蓄積を有効に防止できるようにするためであり、表面をフッ素樹脂でコートしているのは、長期使用による転写ベルト表面へのトナーフィルミングを有効に防止できるようにするためである。体積抵抗が107Ω・cmよりも小さいと、再転写が生じ易く、1012Ω・cmよりも大きいと転写効率が悪化する。
第1転写ローラは外径8mmのカーボン導電性の発泡ウレタンローラで、抵抗値は102〜106Ωである。第1転写動作時には、第1転写ローラ10は、転写ベルト12を介して感光体1に1.0〜9.8(N)の押圧力で圧接され、感光体上のトナーがベルト上に転写される。抵抗値が102Ωよりも小さいと、再転写が生じ易い。106Ωよりもおおきと転写不良が生じ易くなる。1.0(N)よりも小さいと転写不良を生じ、9.8(N)よりも大きいと転写文字抜けが生じる。
第2転写ローラ14は外径10mmのカーボン導電性の発泡ウレタンローラで、抵抗値は102〜106Ωである。第2転写ローラ14は、転写ベルト12及び紙、OHP等の転写媒体19とを介して転写ローラ13に圧接される。この転写ローラ13は転写ベルト12に従動回転可能に構成している。第2次転写での第2転写ローラ14と対向転写ローラ13とは5.0〜21.8(N)の押圧力で圧接され、紙等の記録材上19に転写ベルトからトナーが転写される。抵抗値が102Ωよりも小さいと、再転写が生じ易い。106Ωよりもおおきと転写不良が生じ易くなる。5.0(N)よりも小さいと転写不良となり、21.8(N)よりも大きいと負荷が大きくなり、ジッタが出やすくなる。
イエロー(Y)、マゼンタ(M)、シアン(C)、黒(B)の各色用の4組の像形成ユニット18Y、18M、18C、18Kが、図のように直列状に配置されている。
各像形成ユニット18Y、18M、18C、18K、中に入れた現像剤を除きそれぞれ同じ構成部材よりなるので、説明を簡略化するためY用の像形成ユニット18Yについて説明し、他色用のユニットの説明については省略する。
像形成ユニットは以下のように構成されている。1は感光体、3は画素レーザ信号光、4は内部に1200ガウスの磁力を有する磁石を有するアルミよりなる外径10mmの現像ロ−ラで、感光体とギャップ0.3mmで対向し、矢印の方向に回転する。6は攪拌ローラで現像器内のトナーとキャリアを攪拌し、現像ローラへ供給する。キャリアとトナーの配合比を透磁率センサーにより読み取り(図示せず)、トナーホッパー(図示せず)から適時供給される構成である。5は金属製の磁性ブレードで現像ローラ上に現像剤の磁気フ゛ラシ層を規制する。現像剤量は150g投入している。ギャップは0.4mmとした。電源は、省略しているが、現像ローラ4には−500Vの直流と、1.5kV(p−p)、周波数6kHzの交流電圧が印加される。感光体と現像ローラ間の周速度比は1:1.6とした。またトナーとキャリアの混合比は93:7とし、現像器中の現像剤量は150gで行った。
2はエピクロルヒドリンゴムよりなる外径10mmの帯電ローラで直流バイアス−1.2kVが印加される。感光体1表面を−600Vに帯電する。8はクリーナ、9は廃トナーボックス、7は現像剤である。
紙搬送は転写ユニット17の下方から搬送され、転写ベルト12と第2転写ローラ14との圧接されたニップ部に紙給送ローラ(図示せず)により紙19が送られてくるように、紙搬送路が形成されている。
転写ベルト12上のトナーは第2転写ローラ14に印加された+1000Vにより紙19に転写され、定着ローラ201、加圧ローラ202、定着ベルト203、加熱媒体ローラ204、インダクションヒータ部205から構成される定着部に搬送され、ここで定着される。
図2にその定着プロセス図を示す。定着ローラ201とヒートローラ204との間にベルト203がかけられている。定着ローラ201と加圧ローラ202との間に所定の加重がかけられており、ベルト203と加圧ローラ202との間でニップが形成される。ヒートローラ204の外部周面にはフェライトコア206とコイル207よりなるインダクションヒータ部205が設けられ、外面には温度センサー208が配置されている。
ベルトは30μmのNiを基体としてその上にシリコーンゴムを150μm、さらにその上にフッ素樹脂(PFA)チューブ30μmの重ねあわせた構成である。
加圧ローラ202は加圧バネ209により定着ローラ201に押しつけられている。トナー210を有する記録材19は、案内板211に沿って動く。
定着部材としての定着ローラ201は、長さが250mm、外径が14mm、厚さ1mmのアルミニウム製中空ローラ芯金213の表面に、JIS規格によるゴム硬度(JIS−A)が20度のシリコーンゴムからなる厚さ3mmの弾性層214を設けている。この上にシリコーンゴム層215が3mmの厚みで形成され外径が約20mmとなっている。図示しない駆動モータから駆動力を受けて125mm/sで回転する。
ヒートローラ204は肉厚1mm、外径20mmの中空パイプからなっている。定着ベルト表面温度はサーミスタを用いて表面温度170度に制御した。
加圧部材としての加圧ローラ202は、長さが250mm、外径20mmである。これは外径16mm、厚さ1mmのアルミニウムからなる中空ローラ芯金216の表面にJIS規格によるゴム硬度(JIS−A)が55度のシリコーンゴムからなる厚さ2mmの弾性層217を設けている。この加圧ローラ202は、回転可能に設置されており、片側147Nのバネ加重のバネ209によって定着ローラ201との間で幅5.0mmのニップ幅を形成している。
以下、動作について説明する。フルカラーモードではY,M,C,Kのすべての第一転写ローラ10が押し上げられ、転写ベルト12を介して像形成ユニットの感光体1を押圧している。この時第一転写ローラには+800Vの直流バイアスが印加される。画像信号がレーザ光3から送られ、帯電ローラ2により表面が帯電された感光体1に入射し、静電潜像が形成される。感光体1と接触し回転する現像ローラ4上のトナーが感光体1に形成された静電潜像を顕像化する。
このとき像形成ユニット18Yの像形成の速度(感光体の周速に等しい125mm/s)と転写ベルト12の移動速度は感光体速度が転写ベルト速度よりも0.5〜1.5%遅くなるように設定されている。
像形成工程により、Yの信号光3Yが像形成ユニット18Yに入力され、Yトナーによる像形成が行われる。像形成と同時に第1転写ローラ10Yの作用で、Yトナー像が感光体1Yから転写ベルト12に転写される。このとき第1転写ローラ10Yには+800Vの直流電圧を印加した。
第1色(Y)第一転写と第2色(M)第一転写間のタイムラグを持たせて、Mの信号光3Mが像形成ユニット18Mに入力され、Mトナーによる像形成が行われ、像形成と同時に第1転写ローラ10Mの作用で、Mトナー像が感光体1Mから転写ベルト12に転写される。このとき第一色(Y)トナーが形成されている上にMトナーが転写される。同様にC(シアン)、K(ブラック)トナーによる像形成が行われ、像形成と同時に第1転写ローラ10C、10Bの作用で、YMCKトナー像が転写ベルト12上に形成される。いわゆるタンデム方式と呼ばれる方式である。
転写ベルト12上には4色のトナー像が位置的に合致して重ね合わされカラー像が形成された。最後のBトナー像の転写後、4色のトナー像はタイミングを合わせて給紙カセット(図示せず)から送られる紙19に、第2転写ローラ14の作用で一括転写される。このとき転写ローラ13は接地し、第2転写ローラ14には+1kVの直流電圧を印加した。紙に転写されたトナー像は定着ローラ対201・202により定着された。紙はその後排出ローラ対(図示せず)を経て装置外に排出された。中間転写ベルト12上に残った転写残りのトナーは、クリーニングブレード16の作用で清掃され次の像形成に備えた。
(表11)に図1の電子写真装置により、画像出しを行った結果を示す。感光体上へのトナー成分のフィルミングの発生状態、耐久テスト前後での画像濃度、非画像部へのトナー付着であるかぶり、べた画像を全面にとった場合の濃度の均一性、マゼンタ、シアン、イエロートナーの3色重なったフルカラー画像における文字部での転写時の飛散りや一部が転写されずに感光体に残るいわゆる中抜けの状態、イエロ又はマゼンタトナーが転写された後、次のマゼンタ、シアン又はブラックトナーの転写の際にすでに転写されたイエロ又はマゼンタトナーが逆に感光体に付着して戻ってします逆転写の状態を示す。
Figure 2006011385
帯電量はフェライトキャリアとの摩擦帯電のブローオフ法により測定したものである。25℃45%RHの環境下で、耐久性評価のサンプルを0.3g採取し、窒素ガス1.96×104(Pa)で1分間ブローした。
現像剤を用いて画像出しを行ったところ、高画像濃度で非画像部の地かぶりの発生もなく、トナーの飛び散りなどがなく、高解像度で画像濃度1.3以上の高濃度の画像が得られた。更に、A4用紙10万枚の長期耐久テストにおいても、流動性、画像濃度とも変化が少なく安定した特性を示した。また現像時の全面ベタ画像を取ったときの均一性も良好であった。現像メモリーも発生していない。
連続使用時においても、縦筋の異常画像は発生しなかった。キャリアへのトナー成分のスペントもほとんど生じていない。キャリア抵抗の変化、帯電量の低下も少なく、トナー急速補給時の帯電立ち上がり性も良好であり、高湿環境下でかぶりが増大する現象はみられなかった。また長期使用時、高い飽和帯電量が得られ長期間維持できた。低温低湿下での帯電量の変動はほとんど生じていない。またトナーとキャリアとの混合比率を5〜20wt%まで変えても画像濃度、地カフ゛リ等の画質の変化は少なく、広いトナー濃度制御が可能となった。
また転写においても中抜けは実用上問題ないレベルであり、転写効率は95%程度を示した。また、感光体、転写ベルトへのトナーのフィルミングも実用上問題ないレベルであった。転写ベルトのクリーニング不良も未発生であった。また定着時のトナーの乱れやトナー飛びもほとんど生じていない。また3色の重なったフルカラー画像においても、逆転写の転写不良は問題ないレベルであり、定着時において、定着ベルトへの紙の巻付きは発生しなかった。
cm1、cm2、cm3では帯電上昇が発生し、カブリも目立った。また二成分現像で全面ベタ画像をとり続けてトナーを急速に補給したときに、帯電低下が生じ、かぶりが増大した。高湿環境下でその現象が特に悪化した。トナーとキャリアとの混合比率は、5〜8wt%の範囲では濃度を変化させても画像濃度、地カフ゛リ等の画質の変化は少なかったが、これより小さい値となると画像濃度の低下が生じ、また大きい値となると地カフ゛リが増大した。
(表12)に付着量1.2mg/cm2のベタ画像を図2に示したプロセス速度125mm/s、オイルを塗布しないベルトを用いた定着装置にて、OHP透過率(定着温度160℃)、高温でのオフセット性(高温オフセットが発生する温度)、60℃、5時間の放置後の貯蔵安定性の結果、及び定着での定着ベルトへの紙の巻付性や定着時にトナーが飛散るトナーの乱れの状態を評価した。OHP透過率は、分光光度計U−3200(日立製作所)で、700nmの光の透過率を測定した。
Figure 2006011385
定着ニップ部でOHPのジャムは発生しなかった。普通紙の全面ベタグリーン画像では、オフセットは20万枚では全く発生しなかった。シリコーン又はフッ素系の定着ベルトでオイルを塗布せずともベルトの表面劣化現象はみられない。OHP透光性が80%以上を示しており、またオイルを使用しない定着ローラにおいて非オフセット温度幅も広い範囲で得られた。また60℃、5時間の貯蔵安定性においても凝集はほとんど見られなかった(○レベル)。tm10、tm11、tm12トナーではワックスの分散不良、ブロードな粒度分布に起因すると思われる貯蔵安定性の悪化、定着ベルトへの紙の巻付が発生した。
本発明は、感光体を使用した電子写真方式以外でも、ダイレクトに紙にトナーを付着させて印写する方式等にも有用である。
本発明の一実施例で使用した画像形成装置の構成を示す断面図。 本発明の一実施例で使用した定着ユニットの構成を示す断面図。 本発明の一実施例で使用した攪拌分散装置の概略図。 本発明の一実施例で使用した攪拌分散装置の上から見た図。 本発明の一実施例で使用した攪拌分散装置の概略図。 本発明の一実施例で使用した攪拌分散装置の上から見た図。
符号の説明
1Y,1M,1C,1K 感光体
2Y,2M,2C,2K 帯電ローラ
3Y,3M,3C,3K レーザ信号光
4Y,4M,4C,4K 現像ローラ
5Y,5M,5C,5K ブレード
6Y,6M,6C,6K 攪拌ローラ
7Y,7M,7C,7K 現像剤
8Y,8M,8C,8K クリーナ
9Y,9M,9C,9K 廃トナーボックス
10Y,10M,10C,10K 第1転写ローラ
11 駆動ローラ
12 転写ベルト
13 駆動テンションローラ
14 第2転写ローラ
15 ローラ
16 ベルトクリーナブレード
17 転写ベルトユニット
18B,18C,18M,18Y 像形成ユニット
19 転写媒体
201 定着ローラ
202 加圧ローラ
203 定着ベルト
204 加熱媒体ローラ
205 インダクションヒータ部
206 フェライトコア
207 コイル
801 外槽
802 堰板
803 回転体
806 シャフト
807 冷却水排出口
808 冷却水注入口
850 原料投入口
852 固定体
853 回転体
854 シャフト
856 原料液排出

Claims (23)

  1. 水系媒体中において、少なくとも、樹脂粒子を分散させた樹脂粒子分散液、着色剤粒子を分散させた着色剤粒子分散液及びワックス粒子を分散させたワックス粒子分散液とを混合し、凝集加熱により水系中でトナーを作成するトナー製造方法であって、
    少なくとも、前記樹脂粒子を分散させた樹脂粒子分散液、前記着色剤粒子を分散させた着色剤粒子分散液及び前記ワックス粒子を分散させたワックス粒子分散液の混合分散液を作成する工程と、
    前記混合分散液のpHを9.5〜12.2の範囲に調整し、水溶性無機塩を添加し、加熱処理して前記樹脂粒子、前記着色剤粒子及び前記ワックス粒子が凝集した少なくとも一部が溶融した凝集粒子を形成し、前記凝集粒子が形成されたときのpHが7.0〜9.5の範囲である工程と、
    その後pHを2.2〜6.8の範囲に調整し、加熱処理する工程とを含むことを特徴とするトナーの製造方法。
  2. 水系媒体中において、少なくとも、第一の樹脂粒子を分散させた第一の樹脂粒子分散液、着色剤粒子を分散させた着色剤粒子分散液及びワックス粒子を分散させたワックス粒子分散液とを混合し、加熱凝集により水系中でトナーを作成するトナー製造方法であって、
    少なくとも、前記第一の樹脂粒子を分散させた第一の樹脂粒子分散液、前記着色剤粒子を分散させた着色剤粒子分散液及び前記ワックス粒子を分散させたワックス粒子分散液の混合分散液を作成する工程と、
    前記混合分散液のpHを9.5〜12.2の範囲に調整し、水溶性無機塩を添加し、加熱処理して前記第一の樹脂粒子、前記着色剤粒子及び前記ワックス粒子が凝集した少なくとも一部が溶融した芯粒子を形成し、前記芯粒子が形成されたときのpHが7.0〜9.5の範囲である工程と、
    その後pHを2.2〜6.8の範囲に調整し、加熱処理して芯粒子を形成する工程と、
    前記芯粒子が分散した芯粒子分散液に、さらに第二の樹脂粒子を分散させた第二の樹脂粒子分散液を添加する工程と、
    pHを5.2〜8.8の範囲に調整する工程と、
    前記第二の樹脂粒子のガラス転移点温度以上の温度で加熱処理する工程と、
    pHを2.2〜6.8の範囲に調整する工程と、
    さらに、前記第二の樹脂粒子のガラス転移点温度以上の温度で加熱処理して前記芯粒子に、前記第二の樹脂粒子を融着する工程とを含むことを特徴とするトナーの製造方法。
  3. 水系媒体中において、少なくとも、第一の樹脂粒子を分散させた第一の樹脂粒子分散液、着色剤粒子を分散させた着色剤粒子分散液及びワックス粒子を分散させたワックス粒子分散液とを混合し、加熱凝集により水系中でトナーを作成するトナー製造方法であって、
    少なくとも、前記第一の樹脂粒子を分散させた第一の樹脂粒子分散液、前記着色剤粒子を分散させた着色剤粒子分散液及び前記ワックス粒子を分散させたワックス粒子分散液の混合分散液を作成する工程と、
    前記混合分散液のpHを9.5〜12.2の範囲に調整し、水溶性無機塩を添加し、加熱処理して前記第一の樹脂粒子、前記着色剤粒子及び前記ワックス粒子が凝集した少なくとも一部が溶融した芯粒子を形成し、前記芯粒子が形成されたときのpHが7.0〜9.5の範囲である工程と、
    その後pHを2.2〜6.8の範囲に調整し、加熱処理して芯粒子を形成する工程と、
    前記芯粒子が分散した芯粒子分散液のpH値をHSとすると、分散液のpH値をHS+2〜HS−5の範囲に調整した第ニの樹脂粒子を分散させた第二の樹脂粒子分散液を、前記芯粒子が分散した芯粒子分散液に添加混合する工程とを含むことを特徴とするトナーの製造方法。
  4. 前記第ニの樹脂粒子が分散された第二の樹脂粒子分散液のpHを3.5〜10.5の範囲に調整して添加する請求項3に記載のトナーの製造方法。
  5. 前記トナーの体積平均粒径は3〜7μmの範囲、個数分布における2.52〜4μmの粒径を有するトナー母体粒子の含有量は10〜75個数%の範囲、体積分布における4〜6.06μmの粒径を有するトナ−母体粒子が25〜75体積%の範囲であり、体積分布における8μm以上の粒径を有するトナ−母体粒子が5体積%以下で含有し、
    体積分布における4〜6.06μmの粒径を有するトナ−母体粒子の体積%をV46とし、個数分布における4〜6.06μmの粒径を有するトナ−母体粒子の個数%をP46としたとき、P46/V46が0.5〜1.5の範囲にある請求項1〜4のいずれかに記載のトナーの製造方法。
  6. 前記ワックスは、ヨウ素価が25以下、けん化価が30〜300、DSC法による吸熱ピーク温度(融点)が50〜100℃のエステル系ワックスを含む請求項1〜4いずれかに記載のトナーの製造方法。
  7. ワックスが、少なくとも長鎖アルキルアルコール、不飽和多価カルボン酸又はその無水物及び合成炭化水素系ワックスとの反応により得られる酸価10〜80mgKOH/gのワックスを含む請求項1〜4いずれかに記載のトナーの製造方法。
  8. 前記ワックスは、ヒドロキシステアリン酸の誘導体、グリセリン脂肪酸エステル、グリコール脂肪酸エステル及びソルビタン脂肪酸エステルの群から選択される1種以上のワックスを含む請求項1〜4のいずれかに記載のトナーの製造方法。
  9. 前記ワックスは、炭素数4〜30を有する脂肪族アミド系のワックス又は飽和または1〜2価の不飽和のアルキレンビス脂肪酸アミド系のワックスを含む請求項1〜4のいずれかに記載のトナーの製造方法。
  10. 前記ワックスは、少なくとも炭素数4〜30の長鎖アルキルアルコール、不飽和多価カルボン酸又はその無水物及び不飽和炭化水素系ワックスとの反応により得られるワックスである請求項7に記載のトナーの製造方法。
  11. 前記ワックスは、ゲル浸透クロマトグラフィー(GPC)における分子量分布において、数平均分子量が100〜5000、重量平均分子量が200〜10000、重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)が1.01〜8、Z平均分子量と数平均分子量の比(Z平均分子量/数平均分子量)が1.02〜10、分子量5×102〜1×104の領域に少なくとも一つの分子量極大ピークを有し、220℃における加熱減量が8重量%以下であるエステル系ワックスを含む請求項1〜4のいずれかに記載のトナーの製造方法。
  12. 請求項1〜11のいずれか1項で製造されたトナーを母体粒子とし、平均粒子径が6nm〜200nmの範囲の無機微粉末を前記トナー母体粒子100重量部に対し1〜6重量部の範囲で添加し、
    硬化させたバインダー樹脂と磁性体微粒子とからなる磁性粒子であり、前記磁性体微粒子の含有量が80〜99wt%、数平均粒子径が10〜60μmであり、かつ前記磁性粒子の表面がアミノシランカップリング剤を含むフッ素変性シリコーン樹脂により被覆された磁性粒子を含むキャリアとを含むことを特徴とする二成分現像剤。
  13. 前記磁性粒子は、磁性体微粒子と、アルデヒド類をフェノール類に対して反応させることにより硬化させたフェノール樹脂とからなる請求項12に記載のニ成分現像剤。
  14. 表面を被覆された磁性粒子を含むキャリアのBET比表面積が0.03〜0.3m2/gである請求項12に記載のニ成分現像剤。
  15. 磁性粒子の被覆樹脂に、アミノシランカップリング剤が被覆樹脂100重量部中5〜40重量部含有されている請求項12に記載の二成分現像剤。
  16. 被覆樹脂層に導電性微粉末が被覆樹脂100重量部に対して1〜15重量部含有されている請求項12に記載の二成分現像剤。
  17. 前記フッ素変性シリコーン系樹脂が、パーフロロアルキル基含有の有機ケイ素化合物とポリオルガノシロキサンとの反応から得られた架橋性フッ素変性シリコ−ン樹脂である請求項12に記載の二成分現像剤。
  18. 前記パーフロロアルキル基含有の有機ケイ素化合物が、CF3CH2CH2Si(OCH33、C49CH2CH2Si(CH3)(OCH32、C817CH2CH2Si(OCH33、C817CH2CH2Si(OC253、及び(CF32CF(CF28CH2CH2Si(OCH33から選ばれる少なくとも一つである請求項17に記載の二成分現像剤。
  19. 前記ポリオルガノシロキサンは下記(化1)及び(化2)から選ばれる少なくとも一つである請求項17に記載の二成分現像剤。
    Figure 2006011385
    (但し、R1,R2は水素原子、ハロゲン原子、ヒドロキシ基、メトキシ基、炭素数1〜4のアルキル基またはフェニル基、R3,R4は炭素数1〜4のアルキル基またはフェニル基を示し、mは平均重合度であり正の整数を示す。)
    Figure 2006011385
    (但し、R1,R2はそれぞれ水素原子、ハロゲン原子、ヒドロキシ基、メトキシ基、炭素数1〜4のアルキル基、フェニル基、R3,R4,R5,R6は炭素数1〜4のアルキル基またはフェニル基を示し、nは平均重合度であり正の整数を示す。)
  20. 前記フッ素変性シリコーン系樹脂が、ポリオルガノシロキサン100重量部に対して、パーフロロアルキル基含有の有機ケイ素化合物が3重量部以上20重量部以下である範囲の反応から得られる架橋性フッ素変性シリコ−ン樹脂である請求項17記載の二成分現像剤。
  21. 平均粒子径が6nm〜20nmである無機微粉末をトナー母体100重量部に対し0.5〜2.5重量部、平均粒子径が20nm〜200nmである無機微粉末をトナー母体100重量部に対し0.5〜3.5重量部外添した請求項12に記載の二成分現像剤。
  22. 平均粒子径が6nm〜20nm、強熱減量が1.5〜25wt%である無機微粉末をトナー母体100重量部に対し0.5〜2.5重量部、平均粒子径が20nm〜200nm、強熱減量が0.5〜23wt%である無機微粉末をトナー母体100重量部に対し0.5〜3.5重量部を外添処理した請求項12に記載の二成分現像剤。
  23. 少なくとも像担持体と前記像担持体に静電潜像を形成する帯電手段とトナー担持体を含むトナー像形成ステーションを複数個有し、前記像担持体上に形成した静電潜像を請求項1〜11のいずれかに記載の製造方法にて製造されたトナー、又は請求項12〜22のいずれかに記載の二成分現像剤により顕像化し、静電潜像を顕像化した前記トナー像を、順次連続して転写媒体に転写させる転写プロセスが実行されるよう構成された転写システムを具備し、前記転写プロセスが、第1の転写位置から第2の転写位置までの距離、又は第2の転写位置から第3の転写位置までの距離、又は第3の転写位置から第4の転写位置までの距離をd1(mm)、感光体の周速度をv(mm/s)とした場合、d1/v≦0.65(sec)の条件を満足することを特徴とする画像形成装置。
JP2005137639A 2004-05-26 2005-05-10 トナーの製造方法、これを用いた二成分現像剤及び画像形成装置 Active JP4482481B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005137639A JP4482481B2 (ja) 2004-05-26 2005-05-10 トナーの製造方法、これを用いた二成分現像剤及び画像形成装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004156683 2004-05-26
JP2005137639A JP4482481B2 (ja) 2004-05-26 2005-05-10 トナーの製造方法、これを用いた二成分現像剤及び画像形成装置

Publications (2)

Publication Number Publication Date
JP2006011385A true JP2006011385A (ja) 2006-01-12
JP4482481B2 JP4482481B2 (ja) 2010-06-16

Family

ID=35778673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005137639A Active JP4482481B2 (ja) 2004-05-26 2005-05-10 トナーの製造方法、これを用いた二成分現像剤及び画像形成装置

Country Status (1)

Country Link
JP (1) JP4482481B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257119A (ja) * 2005-03-15 2006-09-28 Sumitomo Bakelite Co Ltd フェノール樹脂成形材料
JP2008046640A (ja) * 2006-08-15 2008-02-28 Xerox Corp トナー組成物
WO2008056519A1 (fr) * 2006-11-07 2008-05-15 Panasonic Corporation Toner et procédé de production de toner
JP2009122674A (ja) * 2007-11-15 2009-06-04 Toshiba Corp 現像剤及びその製造方法
JP2011126881A (ja) * 2009-12-18 2011-06-30 Xerox Corp 相変化インク用の低分子量の顔料分散剤

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257119A (ja) * 2005-03-15 2006-09-28 Sumitomo Bakelite Co Ltd フェノール樹脂成形材料
JP4501736B2 (ja) * 2005-03-15 2010-07-14 住友ベークライト株式会社 フェノール樹脂成形材料
JP2008046640A (ja) * 2006-08-15 2008-02-28 Xerox Corp トナー組成物
WO2008056519A1 (fr) * 2006-11-07 2008-05-15 Panasonic Corporation Toner et procédé de production de toner
JP2009122674A (ja) * 2007-11-15 2009-06-04 Toshiba Corp 現像剤及びその製造方法
JP2011126881A (ja) * 2009-12-18 2011-06-30 Xerox Corp 相変化インク用の低分子量の顔料分散剤

Also Published As

Publication number Publication date
JP4482481B2 (ja) 2010-06-16

Similar Documents

Publication Publication Date Title
US7569322B2 (en) Toner, method for producing toner, two-component developer, and image forming apparatus
JP4197516B2 (ja) トナーと二成分現像剤及び画像形成方法
JP4485382B2 (ja) トナーの製造方法
JP2009064038A (ja) トナーの製造方法
US7560214B2 (en) Toner, process for producing toner, two-component developer and image forming apparatus
JP4209888B2 (ja) トナー、トナーの製造方法、二成分現像剤及び画像形成方法
JP4149998B2 (ja) 二成分現像剤及びこれを用いた画像形成方法
JP4181603B2 (ja) トナー及びその製造方法
JP4449826B2 (ja) トナー、トナーの製造方法、二成分現像剤及び画像形成装置
JP4449810B2 (ja) トナーの製造方法
JP4482481B2 (ja) トナーの製造方法、これを用いた二成分現像剤及び画像形成装置
JP4508004B2 (ja) トナー及びトナーの製造方法
JP4597143B2 (ja) トナー、トナーの製造方法及び二成分現像剤
EP1992992A1 (en) Toner and process for producing the same
JP4633786B2 (ja) トナー、トナーの製造方法及び二成分現像剤
JP4186735B2 (ja) トナー、トナーの製造方法、二成分現像剤及び画像形成装置
JP2005309184A (ja) トナーの製造方法、二成分現像剤及び画像形成装置
JP2005250154A (ja) トナーとその製造方法、二成分現像剤及び画像形成装置
JP4483629B2 (ja) トナー、トナーの製造方法、二成分現像剤及び画像形成装置
JP4035040B2 (ja) トナー及び二成分現像剤
JP2006084923A (ja) トナー、トナーの製造方法、二成分現像剤及び画像形成装置
US20090053640A1 (en) Toner and method for producing toner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150