JP2006010709A - パルス電磁力による音響診断・測定装置、及びそれらの診断・測定方法 - Google Patents

パルス電磁力による音響診断・測定装置、及びそれらの診断・測定方法 Download PDF

Info

Publication number
JP2006010709A
JP2006010709A JP2005240512A JP2005240512A JP2006010709A JP 2006010709 A JP2006010709 A JP 2006010709A JP 2005240512 A JP2005240512 A JP 2005240512A JP 2005240512 A JP2005240512 A JP 2005240512A JP 2006010709 A JP2006010709 A JP 2006010709A
Authority
JP
Japan
Prior art keywords
conductor
waveform
coil
acoustic
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005240512A
Other languages
English (en)
Other versions
JP4074961B2 (ja
Inventor
Mitsuo Hashimoto
光男 橋本
Masanori Takanabe
雅則 高鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMIKKU KK
Original Assignee
AMIKKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AMIKKU KK filed Critical AMIKKU KK
Priority to JP2005240512A priority Critical patent/JP4074961B2/ja
Publication of JP2006010709A publication Critical patent/JP2006010709A/ja
Application granted granted Critical
Publication of JP4074961B2 publication Critical patent/JP4074961B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02827Elastic parameters, strength or force

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

【課題】 締め具を介して互いに結合された導電体の締め具合を診断・測定するパルス電磁力による音響診断・測定装置、及び、その方法を提供する。
【解決手段】 締め具23,24を介して互いに結合された導電体21,22の結合部の直上にコイル12を配置し、コイル12に電流パルスを印加して磁場パルスを発生させ、磁場パルスによってコイルに面する側の導電体21に渦電流を誘起させ、渦電流と磁場パルスとの相互作用力により導電体21を励振させて音響を発生させ、音響信号をコイルに面する側の導電体21に取り付けた音響変換器14Rと互いに結合された他の導電体22に取り付けた音響変換器14Lとにより電気信号に変換し、音響変換器14Rによる電気信号の波形と音響変換器14Lによる電気信号の波形とを比較し、締め具23,24の締め具合を診断・測定する。
【選択図】 図23

Description

この発明は、導電体とこの導電体を覆う非導電物質とから成る構造物のパルス電磁力による音響診断・測定装置、及びそれらの診断・測定方法に関し、例えば鉄筋コンクリート中の鉄筋の腐食、付着力、鉄筋の位置、鉄筋の径、鉄筋の断列の有無、断裂の位置、及び土中に埋もれた水道管の位置を診断または測定する方法に関し、さらには締め具で固定された導電体の固定具合の診断方法に関する。
トンネル,橋梁,建物,擁壁,ダム,土木建築等の鉄筋コンクリート構造物においては、強度評価、寿命評価、あるいは工事手順の決定と言った目的のために、鉄筋の所在位置、鉄筋の径、鉄筋の腐食の程度、鉄筋の付着力を非破壊で知る必要がある。このため従来より、鉄筋コンクリートの鉄筋の所在位置、腐食状態、付着力等を判断するために、例えば、X線発生器とフィルム間に構造物をはさんで撮影するX線撮影法、コンクリート表面に超音波発生器を当ててその反射超音波を検出して判断する超音波診断法、ハンマー等により表面を叩いてその反響音から判断する打診法、表面に赤外線を照射する赤外線映像法、マイクロ波を表面から照射するマイクロ波法等、種々の方法が用いられている。
しかしながら、このような従来の鉄筋コンクリートの鉄筋の位置探査、腐食診断法においては、例えばX線撮影法では、構造物をX線発生器とフィルムの間に挟む必要があり、構造物の形状、大きさ、場所等種々の制約があり、トンネル、ダム等ではほとんど使用できず、又、人体に対する重大な危険性も考慮する必要があり、簡便に使用することは困難である。
また、打診法による鉄筋の位置探査は、習熟するのにかなりの経験が必要であり、さらに、勘に頼るために信頼性が低い。また、腐食診断においても、鉄筋の腐食がかなり進行して空洞ができるくらいにならないと判り難い等、習熟するのにかなりの経験が必要であり、さらに、勘に頼るために信頼性が低く、確認するためには結局、部分的にも剥離して確認しなければならないという課題がある。
超音波探査法は、超音波を鉄筋コンクリートの表面から照射し、鉄筋から反射される超音波から鉄筋位置を探査するものであるが、コンクリートの内部は砂利が含まれ、又気泡等により不連続層が密集した状態であるので、超音波が減衰、散乱されてしまい、解析は非常に困難である。
さらに、赤外線映像法及びマイクロ波法は、赤外線、マイクロ波がコンクリートにより急激に減衰するので、構造物の比較的表面しか測定できない。
また、腐食の診断方法としては、構造物が変形または破壊する際に解放される弾性エネルギーにより発生する音響を検出し、分析して構造物の腐食の程度を診断する音響診断法が知られている。例えば、構造物にAE(アコースティックエミッション)センサーを取り付けて長時間、AEを測定し、腐食破壊により突発的、偶発的に生ずる音響(AE)を観測する方法が知られているが、この方法は長時間連続して観測しなければならなかったり、又は必要以上の荷重を加えることが必要であり、構造物の腐食の診断には必ずしも適さない。
このように、従来は、非破壊で鉄筋コンクリート中の鉄筋の腐食の程度や鉄筋とコンクリートの付着力、コンクリート中の鉄筋の位置や径を診断または測定できる確実な方法が無く、そのため、強度予測、寿命予測に狂いが生じ、思わぬ災害を引き起こしていた。
また、張力を加えた導電体と導電体を覆う非導電体とから成る構造物、例えばプレストレス・コンクリート、すなわちこの方式を用いた橋梁、コンクリート製の電柱や、コンクリート製の枕木は、その弾性力を高めるために張力を加えた状態の鉄筋がコンクリート中に埋め込まれており、長期の使用によってこの鉄筋が断裂することがある。しかしながら従来は、断裂の有無を非破壊で診断・測定する方法が無く、定期的に新しいものに取り替えたり、または思わぬ災害につながっている場合があった。
また、非導電体中に埋設された導電体の管、例えば、土中に杭等を打ち込むことが必要な土木工事や建築工事においては、土中に埋設されている水道管やガス管の位置を知る必要がある。従来は金属探知器や超音波探知機等を使用して埋設位置を測定しているが、これらの装置は複雑であり、かつ取り扱いに高度の専門知識を必要とし、埋設位置を手軽に、かつ確実に知る方法がなく、掘り返して確認すると言った手間のかかる方法が採用される場合が多かった。
また、導電体と導電体を締め具で固定してなる構造物、例えば鉄板と鉄板をボルト・ナットで固定して構築される道路の橋等の構造物の場合には、ボルト・ナットによる締め具合を定期的に検査し安全を確保する必要がある。しかし、橋のような大きな構造物の場合には、ボルト・ナットが巨大であり、また締め付け力が巨大であるため作業者が手作業でトルクレンチ等を使用して診断することができなかった。このため従来は検査のための大型の専用機械を必要とし、また橋を通行止めにして検査をしなければならなかった。
本発明は上記の課題に鑑み、導電体と導電体を覆う非導電体とから成る構造物の導電体の腐食の程度、付着力、導電体のかぶり深さ、及び径を非破壊で確実に診断または測定する装置、例えば、非破壊で鉄筋コンクリート中の鉄筋の腐食の程度や鉄筋とコンクリートの付着力、コンクリート中の鉄筋のコンクリートかぶり深さや径を診断・測定できる装置を提供することを第1の目的とする。
また、導電体と導電体を覆う非導電体とから成る構造物の導電体の非導電体中の位置を非破壊で確実に測定する装置、例えば、鉄筋コンクリート中の鉄筋の位置を非破壊で確実に測定する装置を提供することを第2の目的とする。
また、導電体と導電体を覆う非導電体とから成る構造物の導電体の腐食の程度、付着力、及び位置を、表面全体の微小な振動分布、振動の伝搬態様から高度な診断または測定ができる装置、例えば、非破壊で鉄筋コンクリート中の鉄筋の腐食の程度、鉄筋とコンクリートの付着力、鉄筋の位置を高度に診断・測定できる装置を提供することを第3の目的とする。
また、導電体と導電体を覆う非導電体とから成る構造物の導電体の腐食の程度、付着力を非破壊で確実に診断または測定する方法、例えば、非破壊で鉄筋コンクリート中の鉄筋の腐食の程度や鉄筋とコンクリートの付着力を診断・測定できる方法を提供することを第4の目的とする。
また、導電体と導電体を覆う非導電体とから成る構造物の導電体の位置を非破壊で確実に測定する方法、例えば、非破壊で鉄筋コンクリート中の鉄筋の位置を測定できる方法を提供することを第5の目的とする。
また、導電体と導電体を覆う非導電体とから成る構造物の導電体の位置を非破壊で確実に高度に測定する方法、例えば、非破壊で鉄筋コンクリート中の鉄筋の腐食の程度、鉄筋とコンクリートの付着力、及び鉄筋の位置を表面全体の微小な振動分布、振動の伝搬態様から高度に診断・測定できる方法を提供することを第6の目的とする。
また、導電体と導電体を覆う非導電体とから成る構造物の導電体の径、またはかぶり深さを測定する方法、例えば、鉄筋コンクリートの鉄筋の径、またはかぶり深さを測定する方法を提供することを第7の目的とする。
また、締め具を介して結合された導電体の締め具による締め具合を診断または測定する方法、例えば、ボルト・ナットで締め付けられた鉄板の締め付け具合を診断・測定する方法を提供することを第8の目的とする。
また、非導電体中に埋設された導電体の位置を非破壊で確実に診断・測定する方法、例えば、土中に埋設された水道管やガス管の埋設位置を診断・測定する方法を提供することを第9の目的とする。
また、導電体と導電体を覆う非導電体とから成る構造物の導電体の断裂の有無または位置を非破壊で確実に診断・測定する方法、例えば、プレストレス・コンクリート、すなわちこの方式を用いた橋梁、コンクリート製の電柱やコンクリート製の枕木の断裂の有無または位置を測定する方法を提供することを第10の目的とする。
上記目的を達成するために本発明のパルス電磁力による音響診断・測定装置は、締め具を介して互いに結合された導電体の結合部の直上に配置するコイルと、コイルに電流パルスを供給して磁場パルスを発生させる電源部と、磁場パルスによって導電体表面に発生する振動を電気信号に変換する、コイルに面する側の導電体に取り付ける変換器と他の導電体に取り付ける変換器と、変換器の出力波形を比較する計測部とよりなり、締め具の締め具合を診断・測定することを特徴とする。
この装置によれば、例えば、被測定構造物が鉄筋コンクリートの場合には、磁場パルスにより直接鉄筋を励振するから鉄筋位置を音源とする音響が発生し、この音響が構造物の表面に伝搬する。この際、鉄筋の腐食の程度、付着力に応じて、構造物の表面に伝搬する音響波形が変化する。このため、締め具の締め付け具合に応じて、コイルに面する側の導電体の振動の他の導電体に伝わる強度が変化するので、締め付け具合の診断・測定ができる。
磁場パルスによって直接鉄筋を励振するから、従来の超音波源からの音波を鉄筋に反射させて測定する装置に比べれば、極めて音響波形が大きく、また、従来の打診法に比べれば極めて信頼性が高く、非破壊で確実に締め具の締め付け具合が診断・測定できる。
上記構成において、好ましくは、変換器は、アコースティックエミッションセンサー、加速度センサー、マイクロホン、又は導電体表面の振動を光学的変位として測定する変位検出器である。
また、好ましくは、光学的変位として測定する変位検出器は、コヒーレントなレーザー光を導電体の表面に照射し、反射光の有する導電体表面の振動に依存した位相差を干渉縞として検出するレーザー干渉計である。
また、上記コイルは単数のコイル、または複数のコイルから成り、複数のコイルはコイルの軸を揃えかつ密着して構成され、電源部は複数のコイルのそれぞれに直列に接続した蓄電用コンデンサと、コイルとコンデンサからなる複数の直列回路を共通のスイッチを介して並列に接続した電源とから成り、共通のスイッチをONにしてコイルに電流パルスを印加して磁場パルスを発生させる。
複数のコイルからなる場合には、複数のコイルに分割しているので個々のコイルのインダクタンスを小さく、また個々の蓄電用コンデンサの容量を小さくできるので、共通のスイッチをONしたときの個々のコイルに流れる電流パルスの時定数を小さくできる。個々のコイルの発生する磁場パルスは重畳されるので、波高値が高く、かつパルス幅の狭い磁場パルスを発生できる。波高値が高くパルス幅の狭い磁場パルスを発生できるので、鉄筋を強く励振でき、非破壊で確実に診断・測定できる。
さらにまた、コイルに静磁場を発生する磁石を付加すれば好ましい。
この構成によれば、鉄筋を励振する力がさらに強くなるから、構造物の表面からより深い位置にある鉄筋の診断・測定が可能になる。
また、本発明のパルス電磁力による音響診断・測定方法は、締め具を介して互いに結合された複数の導電体の結合部の直上にコイルを配置し、コイルに電流パルスを印加して磁場パルスを発生させ、磁場パルスによってコイルに面する側の導電体に渦電流を誘起し、渦電流と磁場パルスとの相互作用力により導電体を励振して振動させ、コイルに面する側の導電体に取り付けた振動を電気信号に変換する変換器と、導電体以外の他の導電体に取り付けた変換器とにより電気信号に変換し、コイルに面する側の導電体に取り付けた変換器による電気信号の波形と他の導電体に取り付けた変換器による電気信号の波形とを比較し、締め具の締め具合を診断・測定することを特徴とする。
上記構成において、締め具は、好ましくは、ボルト及びナットである。
この方法によれば、例えば、被測定構造物が鉄筋コンクリートの場合には、磁場パルスにより直接鉄筋を励振するから鉄筋位置を音源とする音響が発生し、この音響が構造物の表面に伝搬する。この際、鉄筋の腐食の程度、付着力に応じて、構造物の表面に伝搬する音響波形が変化する。このため、締め付け具合に応じて、コイルに面する側の導電体の振動の他の導電体に伝わる強度が変化するので、締め付け具合の診断・測定ができる。また、締め具がボルト及びナットであれば好適に適用できる。
磁場パルスによって直接鉄筋を励振するから、従来の超音波源からの音波を鉄筋に反射させて測定する装置に比べれば、極めて音響波形が大きく、従って、非破壊で確実に締め付け具合の診断・測定ができる。
このように、本発明によれば、例えばトンネル,橋梁,建物,擁壁,ダム,土木建築等の鉄筋コンクリート構造物において、内部の鉄筋の位置のみならず、ボルト・ナット等の締め具合も容易に検査できる。また、鉄筋の付着力、微小な鉄筋の腐食、錆やコンクリートの剥離、亀裂等も検出することができるので、鉄筋コンクリート構造物の破壊やコンクリート片の剥離等を未然に防止することが可能になる。鉄筋コンクリート構造物の余寿命を正確に推定することも可能になるため鉄筋コンクリート構造物の保全・管理を確実に行なうことができる。
以下、図面に基づき本発明を実施するための最良の形態を詳細に説明する。
最初に導電体の腐食、付着力、かぶり深さ又は径を診断または測定する本発明のパルス電磁力による音響診断・測定装置及び診断・測定方法の実施の形態を説明する。
導電体と導電体を覆う非導電体とから成る構造物が、鉄筋とコンクリートからなる鉄筋コンクリートの場合を例にとって説明する。
この装置によれば、鉄筋の腐食・付着力、かぶり深さ又は径を診断または測定できる。図1は本発明のパルス電磁力による音響診断・測定装置及び診断・測定方法の実施の形態を示した概念図であり、図1(a)は音響変換器をコンクリート表面に取り付けて測定する場合、図1(b)は音響変換器を露出した鉄筋に取り付けて測定する場合を示す。
図1(a)において、パルス電磁力による音響診断・測定装置10は、被試験体構造物である鉄筋コンクリートブロック11の表面に取り付けられる電線で構成したコイル12と、このコイル12に電流パルスを印加する電源部13と、上記鉄筋コンクリートブロック11の表面に取り付けた音響変換器14と、この音響変換器14と信号ケーブル17で接続した計測部15とから構成されている。
上記コイル12は、例えばφ1.6mmの導線を50×30mmの矩形状の枠に7ターン巻回したコイル4個を、互いに軸を揃えかつ密着して構成されている。コイル12は試験体である鉄筋コンクリートブロック11の表面に取り付けられる。電源部13はコイル12に電源ケーブル16を介して電流パルスを印加するようになっている。尚、電源部13は上記の構成に限定されることなく、鉄筋コンクリートブロック11の大きさや鉄筋11aの位置、太さ等に対応して、所望の駆動パルスを発生させることができるように構成される。
上記音響変換器14は公知の音響変換器であって、微弱な振動を検出して電気信号に変換し、信号ケーブル17を介して計測部15に入力する。
計測部15は、例えば音響解析装置として市販されている公知の構成のものであり、音響変換器14からの検出信号をアンプリファイア等により増幅すると共に、不要な信号をフィルタなどにより除去した後、音響解析を行なうようになっている。なお、計測部15は、これに限らず、音響変換器14からの検出信号の波形の計測のみでよい場合には、例えばオシロスコープ等を使用してもよい。
本発明のパルス電磁力による音響診断装置10は、上記のように構成されており、コイル12に電流パルスを印加すると鉄筋コンクリート11の内部方向に磁場パルスが発生し、この磁場パルスが導電体である鉄筋11aに渦電流を誘起する。この渦電流に伴う磁場と磁場パルスの磁場との相互作用力によって、鉄筋11aが励振される。この場合、導電体11aが磁性体であれば、磁気エネルギーに伴う力も励振力に付加され強化される。
鉄筋11aが励振されると鉄筋11aを音源とする音響が発生し、この音響が表面に伝わり、音響変換器14で音響信号が電気信号に変換され、この電気信号が信号ケーブル17を介して計測部15に入力される。計測部15では、電気信号の波形を解析して鉄筋11aの腐食の程度、あるいはコンクリート11bのひび割れを判定する。例えば、鉄筋11aが腐食していれば、鉄筋11aを音源とする音響が腐食部分で吸収されて減衰し、計測部15で観測する波形は強度が小さくなる。また、鉄筋のコンクリートに対する付着力が弱いと、同様に計測部15で観測する波形は強度が小さくなる。また、コンクリート中にひび割れが存在すると音響が減衰し、計測部15で観測する波形は強度が小さくなる。このように、音響波形の強度を比較することにより、鉄筋コンクリート11の損傷の程度を測定できる。
また、図1(b)に示すように、鉄筋の露出部分に音響変換器14を取り付けて、鉄筋の振動を直接観測しても、鉄筋の腐食や付着力を診断・測定できる。
次に、実施例1を示す。
実施例1は、鉄筋の腐食や付着力を診断・測定する本発明のパルス電磁力による音響診断・測定装置による測定例を示すものである。
図2は、実施例1で用いたテスト用鉄筋コンクリートの形状、及び測定系を示す図であり、(a)は平面図、(b)は側面図である。
図2に示すように、テスト用鉄筋コンクリート11は、方形状の200×150×100mmのコンクリート11bと、コンクリート11bの上面からの距離すなわち、かぶり深さdが30mm、下面からの距離57mmの位置に埋設した径13mmの鉄筋11aとからなっている。コイル12は鉄筋コンクリート11の表面上の鉄筋11aの真上に配置している。音響変換器14a,14bは、鉄筋コンクリート11の表面上の鉄筋11aを挟んで対称な位置に配置している。
本実施例では、コンクリート11b中にひび割れのないテスト用鉄筋コンクリート(正常テストブロック)と、コンクリート11b中に鉄筋11aに達するひび割れが存在するテスト用鉄筋コンクリート(ひび割れテストブロック)とを作製し、それぞれ同一の条件で励振して、音響変換器14a,14bで観測される音響波形の比較を行った。
コイル12は、線径1.0mmの導線を25ターン巻した巻径30×70mm、内部抵抗0.2Ωのものを用い、電流波高値1000A、パルス幅1.5msの電流パルスを印加して、鉄筋11aを励振した。
図3は正常テストブロックとひび割れテストブロックの音響波形を示す図であり、(a)は正常ブロックの音響波形、(b)はひび割れブロックの音響波形である。
図3(a)、(b)において、CH1,CH2はそれぞれ音響変換器14a,14bの出力波形であり、CH3は電流パルスの波形である。横軸は0.5ms/divで表示した時間軸であり、縦軸は、CH1,CH2の音響波形の強度を示す電圧軸であり、CH1,CH2は零点をずらして表示している。
図3(a)、(b)から明らかなように、電流パルスで鉄筋11aを励振して発生させた音響は、ひび割れがあると著しく減衰することがわかる。
このようにして、コンクリートのひび割れの存否を診断することができる。
次に、導電体の位置を測定する本発明のパルス電磁力による音響診断・測定装置及びパルス電磁力による音響診断・測定方法の実施の最良の形態を説明する。
この装置によれば、鉄筋コンクリート中の鉄筋の位置を測定できる。
図4は上記本発明のパルス電磁力による音響診断・測定装置の構成及び測定方法を示す概念図である。
図4に示すように、音響位置探査装置20は、鉄筋コンクリートブロック11の表面に取り付けられる電線で構成したコイル12と、このコイル12に電流パルスを印加する電源部13(図1と同等なため図示せず)と、上記鉄筋コンクリート11の表面に取り付ける複数の音響変換器14(14a、14b、14c)と、この音響変換器14と信号ケーブル17(図1と同等なため図示せず)で接続した計測部15(図1と同等なため図示せず)とから構成されている。
複数の音響変換器14をコイル12の周辺に配設し、電流パルスをコイル12に印加して鉄筋11aを励振し、鉄筋11aを音源とする音響を発生させる。この音響を各々の音響変換器14で電気信号に変換し、この各々の電気信号を計測部15で測定することにより、音響が音源から各々の音響変換器14に到達する時間、すなわち、伝搬遅延時間を測定する。
コンクリート11b中の音波の伝搬速度vはほぼ一定であるので、この伝搬速度vと遅延時間tを用いて、各々の音響変換器14と音源との距離r、すなわち各々の音響変換器14と鉄筋11aとの距離を求めることができる。これらの距離から音源位置、すなわち、鉄筋11aの所在位置を求めることができる。
例えば、図4に示すように、鉄筋11aが棒状のものであれば、それぞれ、音響変換器14a,14b及び14cの遅延時間ta,tb,tcを基に、それぞれの音源と鉄筋11aとの距離ra,rb,rc(=v・ta,v・tb,v・tc)を求め、それぞれの音響変換器14の配設位置を中心として半径ra,rb,rcの球を描き、これらの球の共通接線を求めれば、この接線が鉄筋11aの所在位置となる。
なお、上記構成では音響変換器14をコンクリート11の表面に複数配設し、単発の音響信号を発生させて、それぞれの音響変換器14の位置における伝搬遅延時間を同時に測定するが、一個の音響変換器14をコンクリート11の表面上を移動させると共に、それぞれの移動位置において音響信号を発生させて伝搬遅延時間を個々に測定する構成でも良い。
次に実施例2を示す。
実施例2は、導電体の位置を測定する本発明のパルス電磁力による音響診断・測定装置による測定例を示すものである。
図5は、本実施例に用いた鉄筋コンクリートの表面形状及び鉄筋コンクリートの作製方法を示す図である。(a)は鉄筋コンクリート表面形状、(b)は鉄筋コンクリート作製用外枠、(c)は作製した鉄筋コンクリートの外観を示す図である。図5(b)に示すように、本実施例に用いた鉄筋コンクリートは、鉄筋11aの中心を除いて弾性を有するビニールシートで覆い、外枠にコンクリートを流し込んで作製した。従って、この鉄筋コンクリートは、鉄筋11aの中心のみがコンクリート11bと接触し、鉄筋11aの他の部分はコンクリート11bに接触していない。このため、励振した音響は鉄筋11aの中心部分のみからコンクリートに伝わるから、音源は、点音源と見なせる。
図5(a)に示すように、鉄筋コンクリート11の中心を原点とし、横及び縦方向をそれぞれx軸及びy軸とし、原点にコイルを配置し、種々の座標(x,y)点に音響変換器を配置して音響の伝搬遅延時間を測定した。励振用のコイル、音響変換器、電流パルスは実施例1と同等である。
図6は、鉄筋コンクリートにおける音源からの距離の違いによる音響の伝搬遅延時間の測定結果を示す図である。
図6において、CH1,CH2はそれぞれ図5(a)に示した座標(−1,0)、(3,2)に音響変換器を配置した場合の音響波形を示し、CH3は電流パルスの波形である。横軸は0.1ms/divで表示した時間軸であり、縦軸はCH1,CH2の音響波形の強度を示す電圧軸であり、CH1,CH2は零点をずらして表示している。
図6から明らかなように、音源に近いCH1の音響波形は、電流パルス波形の立ち上がりとほぼ同時に立ち上がっているが、音源に遠いCH2の音響波形は、電流パルス波形の立ち上がりからかなり遅れて立ち上がっている。
このように、音源からの距離を伝搬遅延時間として検出できる。
図7は、音源からの種々の距離と伝搬遅延時間の測定からコンクリート中の音速を測定した図である。
図7において、音源からの距離は、図6(a)の各座標点と音源との距離を示す。伝搬遅延時間の測定は、図7で説明した方法と同等である。
図7から明らかなように、コンクリート中での音速はほぼ一定であることがわかる。従って、図6で説明した伝搬遅延時間と図7で説明した音速から、音源までの距離がわかる。測定点を増やして、各測定点から音源までの距離を求め、これらの距離全てを満足する鉄筋コンクリート中の位置を求めれば、鉄筋の所在位置となる。
このようにして、本発明のパルス電磁力による音響位置探査装置によれば、被破壊で鉄筋の位置を探査することができる。
次に、構造物表面の振動を光学的変位として測定する変位検出器を用いた本発明の音響診断・測定装置を説明する。
本発明の音響診断・測定装置は、音響変換器14の代わりに表面変位検出器を設置し、音響の代わりに、被試験体構造物11表面の振動を読み取るものであり、音響診断装置10の構成と同様である。
ここで用いる表面変位検出器としては微小変位を測定できる検出器であればどのようなタイプでも使用可能であるが、特に、コヒーレントなレーザー光を被試験体構造物11の表面全体に照射し、被試験体構造物11表面の振動に伴う反射光の位相差を干渉縞として検出するレーザー干渉計を使用すれば、さらに精密且つ高度な診断ができる。
次に、本発明の音響診断・測定装置に用いるコイル及び電源部の構成を説明する。
図8は、コイルと電源部の構成を示す図であり、図8(a)は従来の構成例を示し、図8(b)は本発明の構成を示す。
従来の構成は図2(a)に示すように、単一のコイルから構成され、商用電源ACからの交流電圧VによりコンデンサCを充電し、充電されたコンデンサCの電荷をメカニカルスイッチ又は半導体スイッチであるスイッチSWをオンすることにより、電流パルスとしてコイル12に印加するように構成されている。
本発明のコイルと電源部は図2(b)に示すように、コイルは小さなインダクタンスを有する複数のコイル12に分割されており、各々のコイルは各々のコイルの発生する磁場が重畳するように軸を揃えかつ密着して構成されており、各々のコイルにはそれぞれ容量Cが直列に接続され、コイル12と容量Cからなる4個の直列回路を共通の電源Vに、メカニカルスイッチ又は半導体スイッチである共通のスイッチSWを介して並列に接続して構成されている。
この構成によれば、個々の直列回路はコイルのインダクタンスが小さく、また個々の容量Cの容量も小さいのでSWをONしたときの電流パルスの時定数が小さくでき、また、個々のコイルの発生する磁場パルスは重畳されるので、パルス幅が短く波高値の大きい磁場パルスが得られる。
図9は、本発明のコイルと電源部による電流パルス波形、及びそれによって発生した音響信号の測定例を示す図であり、図9(a)は従来の構成によるもの、図9(b)は本発明の構成によるものを示す。尚、音響信号の測定は、本発明のパルス電磁力による音響診断・測定装置によって測定した。また、かぶり深さdが30mm、鉄筋13D(異形鉄筋13mmφ)の、鉄筋コンクリートを使用した。図9から明らかなように、本発明のコイルと電源部の構成によれば、従来構成と比べて、遙かに電流パルス幅が狭く、かつ大きいことがわかる。
また、AE(アコ−スチックエミッション)センサーの受信波形、すなわち音響変換器の出力波形も、本発明のコイルと電源部の構成によれば、従来構成と比べて、遙かに大きくなることがわかる。
すなわち、本発明のコイルと電源部の構成によれば、パルス幅が狭く波高値が大きい磁場パルスを生成することができ、その結果鉄筋を強力に励振することができる。
次に、本発明の装置に用いる計測部について説明する。
計測部は、音響変換器の出力波形をサンプリングして、サンプリング値をA/D変換し、A/D変換されたディジタルデータをメモリーに記憶し、CPUを介してディジタルデータを所定の信号処理手順を有するプログラムに従い所定の演算を行い、結果をメモリに蓄積または表示装置を介して表示する。所定の信号処理手順プログラムは、出力波形の時間領域の波形を表示するプログラム、出力波形の時間領域の波形に基づいて出力波形のフーリエ変換スペクトルからなる周波数領域の波形を演算し表示するプログラム、さらには下記に説明する種々の信号処理プログラムである。上記のサンプリング装置、A/D変換器、メモリ、CPU、表示装置は市販されている汎用のものを用いることができる。
この構成によって、時間領域の波形を計測して表示し、腐食・付着力に関する情報を表示することができる。また、時間領域の波形から腐食・付着力に関する特徴を抽出して表示し、または出力波形のフーリエ変換スペクトルからなる周波数領域の波形を演算して表示し、また周波数領域の波形から腐食・付着力に関する特徴を抽出して表示し、腐食・付着力に関する情報を表示することができる。
次に実施例3を示す。
実施例3は、時間領域の波形から腐食・付着力に関する特徴を抽出できることを示すものである。
下記の3種類の鉄筋コンクリートのテストブロックを作製し比較した。
(A)正常な鉄筋コンクリート。
(B)正常な鉄筋コンクリートを疲労試験器を用いて疲労させ、鉄筋から発生するコンクリートの亀裂を僅かに生じさせたもの。
(C)(B)のテストブロックをさらに疲労させ、鉄筋とコンクリートの付着力をなくしたもの。
上記のテストブロックは全て、13D(異形鉄筋13mφ)、かぶり深さdが30mm、200×150×100mmのものを使用した。
上記のテストブロックの表面にコイル12と音響変換器14を取付け、コイル12に波高電流値2000A、パルス幅350μsの電流パルスを印加して鉄筋を励振した。
図10(a)、(b)、(c)は、それぞれのテストブロック(A)、(B)、(C)の音響変換器による出力波形を、本計測部により時間領域の波形として表示した図である。
図からわかるように、正常な鉄筋コンクリート(A)においては、時間軸方向に対称軸、及び頂点を有する三角形形状に近い波形を示すことがわかる。
ひび割れを生じたテストブロック(B)は、時間軸方向に対称軸、及び頂点を有する四角形形状に近い波形を示すことがわかる。
鉄筋とコンクリートとの付着力の無いテストブロック(C)は、ほとんど出力波形が現れないことがわかる。
このように、本発明の装置の計測部により時間領域の波形を表示すれば、鉄筋の腐食・付着力の違いが波形形状に現れることがわかる。
次に実施例4を示す。
実施例4は、図1(b)に示したように、音響変換器(AEセンサー)を鉄筋コンクリートから露出した鉄筋に取り付けた場合にも、時間領域の波形から腐食・付着力に関する特徴を抽出できることを示すものである。
テストブロックは実施例3と同じものを使用し、音響変換器の取付位置以外は実施例3と同じ実験条件である。
図11(a)、(b)、(c)は、それぞれのテストブロック(A)、(B)、(C)の鉄筋に直接、音響変換器を取り付けて測定した出力波形を本計測部で時間領域の波形として表示した図である。
図からわかるように、正常な鉄筋コンクリート(A)においては、ほとんど出力波形が現れないことがわかる。これは、鉄筋とコンクリートの付着力が高いので、鉄筋が励振されても減衰力が強く働き、すぐ振動が減衰してしまうことによる。
ひび割れを生じたテストブロック(B)は、時間軸方向に対称軸、及び頂点を有する三角形形状に近い波形を示すことがわかる。
鉄筋とコンクリートとの付着力の無いテストブロック(C)は、時間軸方向に対称軸、及び頂点を有する三角形形状に近い波形を示すが、時間軸方向に長く尾を引くことがわかる。これは、鉄筋とコンクリートの付着力がない、すなわち、鉄筋とコンクリートの間に空隙ができているために、鉄筋の振動の減衰力が小さく、振動が長く続くことによる。
このように、本発明の装置の計測部により時間領域の波形を表示すれば、鉄筋に直接音響変換器を取り付けても、鉄筋の付着力の違いが波形形状に現れることがわかる。
次に、本計測部による、時間領域の波形の波形率、波高率による腐食・付着力に関する特徴の抽出、及び良・不良の情報の表示を説明する。
初めに、本計測部の信号処理手順プログラムに使用される波形率、波高率を導出するための計算式を示す。
時間領域の波形のそれぞれのデータ値をxi とし、全データ数をNとする。
平均値xavは次式で定義する。
Figure 2006010709
実効値xrms は次式で定義する。
Figure 2006010709
ピーク値xp は次式で定義する。
Figure 2006010709
波形率SFは次式で定義する。
Figure 2006010709
波高率CFは次式で定義する。
Figure 2006010709
次に実施例5を示す。
実施例5は、実施例3で測定したテストブロック(A)、(B)、(C)の時間領域波形から、上記式(1)〜(5)に基づいて、波形率SF、波高率CFを求め、比較したものである。
図12は、テストブロック(A)、(B)、(C)の波形率SF、波高率CFを比較した図である。
図から明らかなように、波形率SF、及び波高率CFは、テストブロックによって、すなわち鉄筋の付着力によって、明確に異なることがわかる。
このようにして、本計測部は、所定の信号処理手順プログラムにより、測定対象の波形率SF、及び波高率CFを計算し、例えば図12において波形率のしきい値を1.50、または波高率のしきい値を5.50に設定すれば、測定対象物の波形率または波高率がこれらのしきい値と比べて未満か以上かを判断し、良、不良の情報を表示する。
次に、本計測部による、時間領域の波形の包絡線の形状から抽出する過酷度による腐食・付着力に関する特徴の抽出、情報の表示を説明する。
初めに、本計測部の信号処理手順プログラムに使用される過酷度を導出するための計算式を示す。
初めに時間領域の波形のデータ値xi の絶対値をとり、サンプリング時間順に並べてスムージングした包絡線波形を計算する。包絡線波形のそれぞれのデータ値をyi とする。 確率P(yi )を次式で定義する。
Figure 2006010709
対象測定物の初期状態の確率P(yi )をPa (yi )、 対象測定物の一定時間使用後の確率P(yi )をPb (yi )として、情報量IF(yi )を次式で定義する。
Figure 2006010709
過酷度SFを次式で定義する。
Figure 2006010709
次に実施例6を示す。
実施例6は、実施例3で求めたテストブロック(A)、(B)、(C)の時間領域波形から、包絡線を求め過酷度を比較したものである。
図13は、テストブロック(A)、(B)、(C)それぞれの包絡線(a)、及び逆数対数包絡線(b)を示す図である。尚、逆数対数包絡線とは、確率P(yi )の逆数の対数をとった値による包絡線である。
(a)から明らかなように、テストブロック(B)及び(C)の包絡線はテストブロック(A)の包絡線からかなりずれていることがわかる。このようにテストブロック(A)の包絡線を初期状態の包絡線とし、テストブロック(B)及び(C)の包絡線を一定時間使用後の包絡線とすれば、包絡線を比較することによって、腐食の発生、あるいは付着力の減少の発生を診断できる。
(b)から明らかなように、逆数対数包絡線においても、初期状態との間に明瞭な差が現れ、この差を時間軸上で足し合わせた過酷度によっても、腐食・付着力を診断できる。 このようにして、本計測部は、所定の信号処理手順プログラムにより、測定対象の包絡線、逆数対数包絡線、及び過酷度を計算し、過酷度の所定のしきい値と比較して、しきい値未満か以上かを判断し、良、不良の情報を表示する。
次に、本計測部による、時間領域の波形の各々の値を時間領域の波形の実効値で除した規格化波形、または規格化波形をべき乗した波形による腐食・付着力に関する特徴の抽出、情報の表示を説明する。
規格化波形は、時間領域の波形のデータ値xi を(2)式で示した実効値xrms で除した波形である。
次に実施例7を示す。
実施例7は、実施例3で測定したテストブロック(A)、(B)、(C)の時間領域波形から、テストブロック(A)、(B)、(C)の規格化波形、及び規格化波形のべき乗波形を計算し比較したものである。
図14は、テストブロック(A)の時間領域波形(a)、規格化波形(b)、規格化波形の2乗波形(c)を示す図である。
図15は、テストブロック(A)の規格化波形の3乗波形(a)、規格化波形の4乗波形(b)を示す図である。
図16は、テストブロック(B)の時間領域波形(a)、規格化波形(b)、規格化波形の2乗波形(c)を示す図である。
図17は、テストブロック(B)の規格化波形の3乗波形(a)、規格化波形の4乗波形(b)を示す図である。
図18は、テストブロック(C)の時間領域波形(a)、規格化波形(b)、規格化波形の2乗波形(c)を示す図である。
図19は、テストブロック(C)の規格化波形の3乗波形(a)、規格化波形の4乗波形(b)を示す図である。
図14〜図19からわかるように、規格化波形、及び規格化波形のべき乗波形は、時間領域波形に比べて、テストブロック(A)、(B)、(C)による違い、すなわち、腐食・付着力の程度による違いが大きいことがわかり、特に高次のべき乗波形は著しく違いが大きいことがわかる。
このように規格化波形、及び規格化波形のべき乗波形を比較することによって、腐食・付着力の程度を高感度に診断できる。
このようにして、本計測部は、所定の信号処理手順プログラムにより、時間領域波形から、規格化波形、及び規格化波形のべき乗波形を計算し、特徴を抽出し、しきい値と比較して、しきい値未満か、以上かを判断し、良、不良の情報を表示する。
次に、本計測部による、周波数領域の波形による腐食・付着力に関する特徴の抽出、及び良・不良の情報の表示を説明する。
周波数領域の波形は、本計測部の信号処理手順プログラムにより時間領域の波形をフーリエ変換して求める。
次に実施例8を示す。
実施例8は、実施例3及び4で求めたテストブロック(A)、(B)、(C)の時間領域波形をフーリエ変換して周波数領域の波形を求め、テストブロック(A)、(B)、(C)の周波数領域の波形を比較するものである。
図20は、実施例3で求めたテストブロック(A)、(B)、(C)の時間領域の波形から求めた周波数領域の波形を示す図であり、(a)はテストブロック(A)の、(b)はテストブロック(B)の、(c)はテストブロック(C)の周波数領域の波形を示す図である。
(a)からわかるように、正常な鉄筋であるテストブロック(A)の場合には、20kHz〜80kHzまでの周波数領域に、ランダムに、かつ、ほぼ連続的に周波数成分が存在する。
(b)からわかるように、ひびの生じた鉄筋であるテストブロック(B)の場合には、特定の周波数成分が特定の間隔で現れるようになる。
(c)からわかるように、付着力を失った鉄筋であるテストブロック(C)の場合には、テストブロック(B)の場合程顕著ではないが、特定の周波数成分が特定の間隔で現れており、また、150kHz近辺の周波数成分が大きくなっている。
(a)と(b)の違い、すなわち、テストブロック(A)とテストブロック(B)の違いは極めて顕著であり、時間領域の波形からは違いが識別できにくい場合にも、周波数領域の波形を使用することで明確に違いを識別できる。
図21は、実施例4で求めた、鉄筋に直接音響変換器を取り付けて測定したテストブロック(A)、(B)、(C)の時間領域の波形から求めた周波数領域の波形を示す図であり、(a)はテストブロック(A)の、(b)はテストブロック(B)の、(c)は、テストブロック(C)の周波数領域の波形を示す図である。
これらの図からわかるように、鉄筋に直接音響変換器を取り付けた場合にも図20と同様に、付着力が小さくなるに従って特定の周波数成分が特定の間隔で現れる傾向を示すことがわかる。
このようにして、本計測部は、所定の信号処理手順プログラムにより、時間領域波形から周波数領域の波形を計算し、基準となるパターンと比較し、一致度を計算し、一致度のしきい値と比較して、しきい値未満か以上かを判断し、良、不良の情報を表示する。
また、本計測部は、周波数領域の波形から、上記実施例6及び7で説明したと同等な手段で規格化波形、または規格化波形のべき乗波形を求め、この規格化波形、または規格化波形のべき乗波形を用いて極めて高感度に腐食・付着力に関する特徴を抽出することができる。また、規格化波形、または規格化波形のべき乗波形から過酷度を計算し、過酷度の所定のしきい値と比較し、測定対象物の過酷度がしきい値以下か未満かを極めて高感度に判断し、良不良の情報を表示することができる。
次に、本発明の鉄筋コンクリートのかぶり深さ、または鉄筋径を測定する方法を説明する。
図22は、本発明の、鉄筋径、または、かぶり深さを測定する方法、及び測定例を示す図であり、(a)は測定方法、(b)は測定結果を示す図である。
(a)に示すように、鉄筋コンクリート11の鉄筋11aの真上に、コイル12を取り付け、鉄筋コンクリート11の表面に音響変換器14を取り付け、コイル12から磁場パルスを印加して、鉄筋11aを励振し、鉄筋11aを音源とする音響信号を音響変換器14で電気信号に変換し、計測部15で音響信号の波高値のピーク・ツー・ピーク値等の特徴値を測定する。かぶり深さdがわかっている場合には、予め準備した鉄筋径とかぶり深さと特徴値との対応関係を用い、測定した特徴値とかぶり深さに対応する鉄筋径を求める。かぶり深さdが不明の場合は、上記に説明した導電体の位置を測定する方法により、かぶり深さdを測定しておく。
鉄筋径がわかっており、かぶり深さdがわからない場合には、測定した特徴値と、予め準備した鉄筋径とかぶり深さと特徴値との対応関係を用い、測定した特徴値と鉄筋径に対応するかぶり深さdを求める。
(b)の縦軸は、特徴値であり、この例では、波高値のピーク・ツー・ピーク値を用いた。横軸はかぶり深さdである。図の挿入図に示すように、径の異なる鉄筋10d、13d、16d、19d、25d(異形鉄筋10mmφ、13mmφ、16mmφ、19mmφ、25mmφ)のそれぞれの特徴値の、かぶり深さd依存性を測定した。
図からわかるように、特徴値は、鉄筋径とかぶり深さdの両方に依存することがわかる。従って、予め準備した対応関係を基に、かぶり深さd、または鉄筋径を測定することができる。
次に、本発明の締め具の締め具合を診断・測定する方法を説明する。
図23は、本発明の締め具の締め具合を診断・測定する方法を示す図であり、(a)は、導電体21と導電体22とをボルト23、ナット24を介して締め付け固定した状態を横から見た図であり、(b)は真上から見た図である。
導電体21のボルト22の真上にコイル12を配置し、導電体21及び導電体22それぞれの表面に音響変換器14R、14Lを取り付ける。コイル12で磁場パルスを印加すれば、導電体21の表面に渦電流が誘起され、渦電流の磁場と磁場パルスの磁場との相互作用力により導電体21が励振される。ボルト23とナット24が堅く締め付けられた状態であれば、導電体21で発生した音響信号が導電体22によく伝わり、音響変換器14Rと音響変換器14Lの音響信号とは、ほぼ同等となる。ボルト23とナット24がゆるんだ状態であれば、導電体21で発生した音響信号は導電体22に伝わりにくく、音響変換器14Rと音響変換器14Lの音響信号との間には差が生ずる。
このようにして、締め具の締め具合を診断・測定することができる。
次に実施例9を示す。
実施例9は、本発明の締め具の締め具合を診断・測定する方法によって、締め具の締め具合を診断・測定できることを示すものである。
アルミ板(200×300×3t)2枚をステンレス製のボルト・ナット(M10×15)6個で固定した。コイルに印加した電流パルスは波高値2000A、パルス幅350μsである。
図24は、ボルト・ナットが堅く締め付けられていた場合の測定結果を示す図であり、(a)及び(b)はコイルに面した側の導電体21に取り付けた音響変換器14Rの出力波形を示し、(c)及び(d)は導電体21にボルト・ナットで締め付け固定された導電体22側の音響変換器14Lの出力波形を示す。
尚、(a)及び(c)はBP(バンドパス・フィルター:通過帯域20kHz〜500kHz))を通過させ、20kHz以下の周波数成分をカットして測定した出力波形であり、(b)及び(d)は500kHzまでの全周波数成分による出力波形である。
図からわかるように、堅く締め付けられていた場合には、音響変換器14Lの出力波形は音響変換器14Rの出力波形と同等であることがわかる。
図25は、ボルト・ナットがゆるんだ状態の場合の測定結果を示す図であり、(a)及び(b)はコイルに面した側の導電体21に取り付けた音響変換器14Rの出力波形を示し、(c)及び(d)は導電体21にボルト・ナットで固定された導電体22側の音響変換器14Lの出力波形を示す。尚、(a)及び(c)はBP(バンドパス・フィルター:通過帯域20kHz〜500kHz)を通過させ、20kHz以下の周波数成分をカットして測定した出力波形であり、(b)及び(d)は500kHzまでの全周波数成分による出力波形である。
図からわかるように、ゆるんでいた場合には、音響変換器14Lの出力波形は音響変換器14Rの出力波形よりも振幅が小さくなることがわかる。
このように、本発明の方法を用いれば、締め具のしまり具合を診断・測定できる。
また、本方法は、橋梁などに使用されるハニカム構造のひび割れの検出、溶接部分の溶接の良否の判定にも同様に使用できる。
次に、本発明の非導電体中に埋め込まれた導電体の位置を測定する方法を説明する。
図26は、本発明の非導電体中に埋め込まれた導電体の位置を測定する方法を示す図であり、(a)は、非導電体である土31に埋められた導電体である水道管32の露出部分33に音響変換器14を取り付け、コイル12を土31の表面34上に配置した状態を横から見た図であり、(b)は真上から見た図である。
コイル12で磁場パルスを印加すれば、水道管32の表面に渦電流が誘起され、渦電流の磁場と磁場パルスの磁場との相互作用力により水道管32が励振される。水道管32が励振されて発生する音響は水道管32の露出部分33に伝わり、音響変換器14で検出される。音響信号の強度はコイル12が水道管32の真上に配置されたときに最も大きくなる。コイル12の配置する位置を変化させて、最も音響信号の強度が大きくなる位置を探すことによって、水道管32の埋設位置を測定することができる。
次に実施例10を示す。
実施例10は、本発明の非導電体中に埋め込まれた導電体の位置を測定する方法によって、非導電体中に埋められた導電体の位置を測定できることを示すものである。
図27は、土中に埋め込まれた水道管の位置を測定した結果を示す図であり、(a)はコイルが水道管の真上にある場合、(b)は土の表面上の水道管の真上の位置から60mm離れていた場合、(c)は土の表面上の水道管の真上の位置から180mm離れていた場合の音響信号波形を示す。
図からわかるように、コイルが真上にある場合に音響信号強度が最も大きく、コイルの位置が真上から離れるに従って音響信号強度が小さくなることがわかる。このように、コイルの位置を変化させて、音響信号が最も大きくなる位置を探せば、その真下に配管があることがわかる。
次に、本発明の非導電体中に埋め込まれた導電体の断裂の有無、断列位置を測定する方法を説明する。
図28は、本発明の非導電体中に埋め込まれた導電体の断裂の有無の診断、断裂位置を測定する方法を示す図である。
プレストレス・コンクリートである長尺の鉄筋コンクリート41中に埋め込まれた鉄筋42の露出部分43に音響変換器14を取り付け、長尺の鉄筋コンクリート41の表面にコイル12を取り付け、コイル12から磁場パルスを印加して鉄筋の表面に渦電流を誘起し、渦電流による磁場と磁場パルスとの相互作用力により鉄筋42を励振する。鉄筋42が励振されて発生する音響は鉄筋42を伝わり、鉄筋42の露出部分43に取り付けた音響変換器14で検出される。鉄筋42が途中44で断裂していれば、検出される音響信号の強度は小さく、断裂の有無を診断できる。また、長尺鉄筋コンクリート41の表面上でコイル12の位置を変化させて測定すれば、音響信号の有無を生ずる位置から、断裂位置44を測定できる。
このようにして本発明によれば、鉄筋の断裂の有無の診断、断裂位置を測定できる。
なお本発明は例示的な実施例について説明したものであり、本発明の要旨及び範囲を逸脱することなく、実施例での種々の変更、省略、追加が可能である。従って本発明は実施例に限定されるものではなく、特許請求の範囲に記載された要素によって規定される範囲及びその規定範囲を包含するものとして理解されなければならない。
上記説明から理解されるように、本発明によれば、導電体とこの導電体を覆う非導電体とからなる構造物において、導電体をパルス電磁力によって直接、強力に励振できるので、例えば、鉄筋コンクリートの鉄筋を励振して、鉄筋の腐食や付着力を反映した極めて大きな音響信号を得ることができ、鉄筋の位置、腐食、付着力、錆、さらには、コンクリートの剥離、亀裂等の状態を、コンクリートの厚さを問わず、また劣化の程度を問わず、非破壊で確実に、診断・測定できる。
したがって、例えば、トンネル,橋梁,建物,擁壁,ダム,土木建築等の鉄筋コンクリート構造物の診断・測定が極めて容易、かつ確実になり、鉄筋コンクリート構造物の保全・管理を確実に行なうことができる。
さらに、本発明のパルス電磁力による診断・測定方法によれば、鉄筋のかぶり深さや径の測定、ボルト・ナット等の締具の締め具合の測定、地中に埋もれた水道管やガス管の位置の測定、鉄筋の断裂といった診断・測定も容易かつ確実にできる。
本発明のパルス電磁力による音響診断・測定装置及び診断・測定方法の実施の形態を示した概念図であり、図1(a)は音響変換器をコンクリート表面に取り付けて測定する場合、図1(b)は音響変換器を露出した鉄筋に取り付けて測定する場合を示す。 実施例1で用いたテスト用鉄筋コンクリートの形状、及び測定系を示す図であり、(a)は平面図、(b)は側面図である。 正常テストブロックとひび割れテストブロックの音響波形を示す図であり、(a)は正常ブロックの音響波形、(b)はひび割れブロックの音響波形である。 本発明のパルス電磁力による音響診断・測定装置の構成を示す図である。 本実施例に用いた鉄筋コンクリートの表面形状及び鉄筋コンクリートの作製方法を示す図である。(a)は鉄筋コンクリート表面形状、(b)は鉄筋コンクリート作製用外枠、(c)は鉄筋コンクリートの外観を示す図である。 鉄筋コンクリートにおける音源からの距離の違いによる音響の伝搬遅延時間の測定結果を示す図である。 音源からの種々の距離と伝搬遅延時間の測定からコンクリート中の音速を測定した図である。 コイルと電源部の構成を示す図であり、(a)は従来の構成例を示し、(b)は本発明の構成を示す。 本発明のコイルと電源部による電流パルス波形、及びそれによって発生した音響信号の測定例を示す図であり、(a)は従来の構成によるもの、(b)は本発明の構成によるものを示す。 テストブロック(A)、(B)、(C)のそれぞれの音響変換器による出力波形を本計測部により時間領域の波形として、(a)、(b)、(c)にそれぞれ表示した図である。 テストブロック(A)、(B)、(C)のそれぞれの、直接鉄筋に音響変換器を取り付けて測定した出力波形を本計測部で時間領域の波形として、(a)、(b)、(c)にそれぞれ表示した図である。 テストブロック(A)、(B)、(C)の波形率SF、波高率CFを比較した図である。 テストブロック(A)、(B)、(C)それぞれの包絡線(a)、及び逆数対数包絡線(b)を示す図である。 テストブロック(A)の時間領域波形(a)、規格化波形(b)、規格化波形の2乗波形(c)を示す図である。 テストブロック(A)の規格化波形の3乗波形(a)、規格化波形の4乗波形(b)を示す図である。 テストブロック(B)の時間領域波形(a)、規格化波形(b)、規格化波形の2乗波形(c)を示す図である。 テストブロック(B)の規格化波形の3乗波形(a)、規格化波形の4乗波形(b)を示す図である。 テストブロック(C)の時間領域波形(a)、規格化波形(b)、規格化波形の2乗波形(c)を示す図である。 テストブロック(C)の規格化波形の3乗波形(a)、規格化波形の4乗波形(b)を示す図である。 実施例3で求めたテストブロック(A)、(B)、(C)の時間領域の波形から求めた周波数領域の波形を示す図であり、(a)はテストブロック(A)の、(b)はテストブロック(B)の、(c)はテストブロック(C)の周波数領域の波形を示す図である。 実施例4で求めたテストブロック(A)、(B)、(C)の時間領域の波形から求めた周波数領域の波形を示す図であり、(a)はテストブロック(A)の、(b)はテストブロック(B)の、(c)は、テストブロック(C)の周波数領域の波形を示す図である。 本発明の、鉄筋径、またはかぶり深さを測定する方法、及び測定例を示す図であり、(a)は測定方法、(b)は測定結果を示す図である。 本発明の締め具の締め具合を診断・測定する方法を示す図であり、(a)は、導電体21と導電体22とをボルト22、ナット23を介して締め付け固定した状態を横から見た図であり、(b)は真上から見た図である。 ボルト・ナットが堅く締め付けられていた場合の測定結果を示す図であり、(a)及び(b)はコイルに面した側の導電体21に取り付けた音響変換器14Rの出力波形を示し、(c)及び(d)は導電体21にボルト・ナットで締め付け固定された導電体22側の音響変換器14Lの出力波形を示す。 ボルト・ナットがゆるんだ状態の場合の測定結果を示す図であり、(a)及び(b)はコイルに面した側の導電体21に取り付けた音響変換器14Rの出力波形を示し、(c)及び(d)は導電体21にボルト・ナットで固定された導電体22側の音響変換器14Lの出力波形を示す。 本発明の非導電体中に埋め込まれた導電体の位置を測定する方法を示す図であり、(a)は非導電体である土31に埋められた導電体である水道管32の露出部分33に音響変換器14を取り付け、コイル12を土31の表面34上に配置した状態を横から見た図であり、(b)は真上から見た図である。 土中に埋め込まれた水道管の位置を測定した結果を示す図であり、(a)はコイルが水道管の真上にある場合、(b)は土の表面上の水道管の真上の位置から60mm離れていた場合、(c)は土の表面上の水道管の真上の位置から180mm離れていた場合の音響信号波形を示す。 本発明の非導電体中に埋め込まれた導電体の断裂の有無の診断、断裂位置を測定する方法を示す図である。
符号の説明
10 パルス電磁力による音響診断・測定装置
11,41 鉄筋コンクリート
11a,42 鉄筋
11b コンクリート
12 コイル
13 電源部
14 音響変換器
15 計測部
16 電源ケーブル
17 信号ケーブル
20 パルス電磁力による音響位置探査装置
21,22 導電体
23 ボルト
24 ナット
31 土
32 水道管
33 水道管の露出部分
34 土の表面
43 鉄筋の露出部分
44 断裂位置

Claims (7)

  1. 締め具を介して互いに結合された導電体の結合部の直上に配置するコイルと、該コイルに電流パルスを供給して磁場パルスを発生させる電源部と、該磁場パルスによって上記導電体表面に発生する振動を電気信号に変換する、上記コイルに面する側の上記導電体に取り付ける変換器と上記他の導電体に取り付ける変換器と、上記変換器の出力波形を比較する計測部とよりなり、上記締め具の締め具合を診断・測定することを特徴とする、パルス電磁力による音響診断・装置。
  2. 前記変換器は、アコースティックエミッションセンサー、加速度センサー、マイクロホン、又は前記導電体表面の振動を光学的変位として測定する変位検出器であることを特徴とする、請求項1に記載のパルス電磁力による音響診断・測定装置。
  3. 前記光学的変位として測定する変位検出器は、コヒーレントなレーザー光を前記導電体の表面に照射し、反射光の有する導電体表面の振動に依存した位相差を干渉縞として検出するレーザー干渉計であることを特徴とする、請求項2に記載のパルス電磁力による音響診断・測定装置。
  4. 前記コイルは複数のコイルから成り、該複数のコイルはコイルの軸を揃えかつ密着して構成され、前記電源部は上記複数のコイルのそれぞれに直列に接続した蓄電用コンデンサと、該コイルとコンデンサからなる複数の直列回路を共通のスイッチを介して並列に接続した電源とから成り、該共通のスイッチをONにして上記コイルに電流パルスを印加して磁場パルスを発生させることを特徴とする、請求項1〜3の何れかに記載のパルス電磁力による音響診断・測定装置。
  5. 前記コイルに静磁場を発生する磁石を付加したことを特徴とする、請求項1〜4の何れかに記載のパルス電磁力による音響診断・測定装置。
  6. 締め具を介して互いに結合された複数の導電体の結合部の直上にコイルを配置し、該コイルに電流パルスを印加して磁場パルスを発生させ、該磁場パルスによって上記コイルに面する側の導電体に渦電流を誘起し、該渦電流と上記磁場パルスとの相互作用力により上記導電体を励振して振動させ、上記コイルに面する側の導電体に取り付けた該振動を電気信号に変換する変換器と、該導電体以外の他の導電体に取り付けた該変換器とにより電気信号に変換し、該コイルに面する側の導電体に取り付けた変換器による電気信号の波形と上記他の導電体に取り付けた変換器による電気信号の波形とを比較し、上記締め具の締め具合を診断・測定することを特徴とする、パルス電磁力による音響診断・測定方法。
  7. 前記締め具は、ボルト及びナットであることを特徴とする、請求項6に記載のパルス電磁力による音響診断・測定方法。
JP2005240512A 2000-11-17 2005-08-22 パルス電磁力による音響診断・測定装置、及びそれらの診断・測定方法 Expired - Lifetime JP4074961B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005240512A JP4074961B2 (ja) 2000-11-17 2005-08-22 パルス電磁力による音響診断・測定装置、及びそれらの診断・測定方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000351879 2000-11-17
JP2001068078 2001-03-12
JP2005240512A JP4074961B2 (ja) 2000-11-17 2005-08-22 パルス電磁力による音響診断・測定装置、及びそれらの診断・測定方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002542839A Division JP3738424B2 (ja) 2000-11-17 2001-11-07 パルス電磁力による音響診断・測定装置、及びそれらの診断・測定方法

Publications (2)

Publication Number Publication Date
JP2006010709A true JP2006010709A (ja) 2006-01-12
JP4074961B2 JP4074961B2 (ja) 2008-04-16

Family

ID=35778087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005240512A Expired - Lifetime JP4074961B2 (ja) 2000-11-17 2005-08-22 パルス電磁力による音響診断・測定装置、及びそれらの診断・測定方法

Country Status (1)

Country Link
JP (1) JP4074961B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041832A (ja) * 2018-09-07 2020-03-19 国立大学法人東北大学 電磁パルス音響非破壊検査方法
CN113009554A (zh) * 2021-03-10 2021-06-22 国家石油天然气管网集团有限公司华南分公司 一种基于sh导波的螺栓组连接松动情况的检测方法和装置
US11570545B2 (en) 2020-11-12 2023-01-31 Kabushiki Kaisha Toshiba Acoustic inspection apparatus and acoustic inspection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041832A (ja) * 2018-09-07 2020-03-19 国立大学法人東北大学 電磁パルス音響非破壊検査方法
JP7126069B2 (ja) 2018-09-07 2022-08-26 国立大学法人東北大学 電磁パルス音響非破壊検査方法
US11570545B2 (en) 2020-11-12 2023-01-31 Kabushiki Kaisha Toshiba Acoustic inspection apparatus and acoustic inspection method
CN113009554A (zh) * 2021-03-10 2021-06-22 国家石油天然气管网集团有限公司华南分公司 一种基于sh导波的螺栓组连接松动情况的检测方法和装置

Also Published As

Publication number Publication date
JP4074961B2 (ja) 2008-04-16

Similar Documents

Publication Publication Date Title
JP3738424B2 (ja) パルス電磁力による音響診断・測定装置、及びそれらの診断・測定方法
JP4074959B2 (ja) パルス電磁力による音響診断・測定装置及びそれらの診断・測定方法
US5821430A (en) Method and apparatus for conducting in-situ nondestructive tensile load measurements in cables and ropes
Ohtsu et al. Stack imaging of spectral amplitudes based on impact-echo for flaw detection
US20040123665A1 (en) Nondestructive detection of reinforcing member degradation
JP6241927B2 (ja) コンクリート構造物の診断方法
Im et al. Non-destructive testing methods to identify voids in external post-tensioned tendons
JP2001021336A (ja) コンクリート構造物の劣化測定方法、および、その測定装置。
CN106978825A (zh) 测量建筑基桩承载力的低应变方法
CN110954033A (zh) 混凝土裂缝深度检测方法及其系统
JP4074962B2 (ja) パルス電磁力による音響診断・測定装置、及びそれらの診断・測定方法
JP4074960B2 (ja) パルス電磁力による音響診断・測定装置、及びそれらの診断・測定方法
JP4074961B2 (ja) パルス電磁力による音響診断・測定装置、及びそれらの診断・測定方法
JP3981740B1 (ja) コンクリート構造物の診断システム及び診断方法
JP3198840U (ja) 支柱路面境界部調査システム
JP2007121123A (ja) 超音波法によるコンクリート構造物内の鉄筋腐食程度の非破壊検査方法及び検査装置
Hill et al. Cross-sectional modes in impact-echo testing of concrete structures
CN218911991U (zh) 一种内建环形超声波传感器阵列的智能灌浆套筒
JP2003185643A (ja) ひび割れ検知システム
JPH0196584A (ja) 土中に埋設された配管の位置を探査する方法
Han et al. Ultrasonic nondestructive testing of cement grouting quality in corrugated pipes based on impact-echo
JP2003329656A (ja) コンクリート吹付法面の密着度診断法とその装置
Niederleithinger et al. Acoustic emission and ultrasonic monitoring of a prestressed concrete bridge in its final years
WO1999053282A1 (en) Method and apparatus for conducting in-situ nondestructive tensile load measurements in cables and ropes
Bartoli et al. Nonlinear ultrasonic guided waves for stress monitoring in prestressing tendons for post-tensioned concrete structures

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080116

R150 Certificate of patent or registration of utility model

Ref document number: 4074961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20220208

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term